
A Survey of Insider Attack Detection Research

Malek Ben Salem Shlomo Hershkop
Salvatore J. Stolfo

Department of Computer Science
Columbia University

500 West 120th Street, New York, NY, 10027
{malek,shlomo,sal}@cs.columbia.edu

Abstract

This paper surveys proposed solutions for the problem of insider attack
detection appearing in the computer security research literature. We dis-
tinguish between masqueraders and traitors as two distinct cases of insider
attack. After describing the challenges of this problem and highlighting
current approaches and techniques pursued by the research community
for insider attack detection, we suggest directions for future research.

1 Introduction

Recent news articles have reported that the cell phones of prominent Greek
leg-islators were found to be bugged [26]. Rogue software was injected into the
operational systems of the Greek cell phone provider, Vodafone Greece, which
controlled a tap for incoming and outgoing calls on selected phones. The phone
used by the prime minister and other high ranking officials were apparently
targeted. This act was eventually traced to a malicious insider who had hacked
the Vodafone system sometime in 2004 and installed the equivalent of a rootkit
on an internal Ericsson phone switch. The hack was accidentally discovered
through a misconfiguration of a software update a considerable time after the
tapping began. The rootkit update accidentally conflicted with other system
processes and resulted in alarms being set off in the system. The complexity of
the attack could only be attributed to someone with intimate knowledge of the
Ericsson switch operating software, which was developed for the last 15 years
in Greece.

External threats to the cyber-infrastructure of an organization are constantly
evolving. The greatest threat, however, is the problem of insiders who misuse
their privileges for malicious purposes. Insider attack has overtaken viruses and
worm attacks as the most reported security incident according to a report from
the US Computer Security Institute (CSI) [10]. The annual Computer Crime
and Security Survey for 2007 surveyed 494 security personnel members from US
corporations and government agencies, finding that insider incidents were cited
by 59 percent of respondents, while only 52 percent said they had encountered
a conventional virus in the previous year.

1

Much research in computer security has focused on the means of preventing
unauthorized and illegitimate access to systems and information. Unfortunately,
the most damaging malicious activity is the result of internal misuse within an
organization, perhaps since far less attention has been focused inward. De-
spite classic internal operating system security mechanisms and the literature
on formal specification of security and access control policies, including Bell-
LaPadula and the Clark-Wilson models [1, 3], we still have an extensive insider
attack problem. Indeed in many cases, formal security policies are incomplete
and implicit or they are purposely ignored in order to get business goals ac-
complished. There seems to be little technology available to address the insider
threat problem. The state-of-the-art seems to be still driven by forensics anal-
ysis after an attack, rather than technologies that prevent, detect, and deter
insider attack.

The inside attacker has been defined in many different contexts with no stan-
dard definition agreed upon by the research community. How might one then
think it is possible to make scientific progress if the problem itself is ill-defined?
Nevertheless, there are many well known examples of insider attacks familiar to
most people.

For our purposes in this paper, we define a malicious insider to be two classes
of malfeasant users; traitors and masqueraders. A traitor is a legitimate user
within an organization who has been granted access to systems and informa-
tion resources, but whose actions are counter to policy, and whose goal is to
negatively affect confidentially, integrity, or availability of some information as-
set [21]. The traitor uses his/her legitimate credentials when perpetrating their
malicious actions, such as in the Greek Vodafone case mentioned above.

The most familiar example of an insider is a masquerader; an attacker who
succeeds in stealing a legitimate user’s identity and impersonates another user
for malicious purposes. Credit card fraudsters are perhaps the best example of
masqueraders. Once a bank customer’s commercial identity is stolen (e.g. their
credit card or account information), a masquerader presents those credentials
for the malicious purpose of using the victim’s credit line to steal money.

We may distinguish traitors and masqueraders based upon the amount of
knowledge each has. A traitor of course has full knowledge of the systems they
routinely use and likely the security policies in force. The masquerader may
have far less knowledge than the traitor. Furthermore, an insider attack may
be due to an innocent mistake by a legitimate user. Hence, insider attack may
also be distinguished by intent of the user’s actions. Traitors and masqueraders
are two sides of what we consider to be the insider threat. The distinction is
not entirely satisfactory. After all, a disgruntled insider employee may act as a
traitor and a masquerader after stealing the identity of a coworker. But for our
present purposes, the distinction is clear enough to consider the general themes
of past research in insider attack detection.

An extensive literature exists reporting on approaches that profile user be-
havior as a means of detecting insider attack, and identity theft in particular.
A traitor is presumed to have full knowledge of the internal systems of an or-
ganization to which they belong. They use their own credentials and the access
granted by those credentials to perform their malicious deeds. A traitor may
exhibit normal behavior and still perpetrate malicious acts. Profiling user be-
havior in this case may seem less relevant except for identifying subtle but
significant changes in a user’s normal behavior. A masquerader, on the other

2

hand, has stolen someone’s credentials, and is unlikely to know the behavior of
their victim. Thus, even though they control the victim’s credentials that grant
access to whatever the victim is authorized to use, the masquerader is likely to
perform actions inconsistent with the victim’s typical behavior.

Behavior is not something that can be easily stolen. Stealing someone’s
credit card information does not reveal the amount and frequency of what the
victim typically buys and from whom. Hence, if one profiles the typical buying
patterns of a customer (and keeps this historical information secret) an iden-
tity thief, a masquerader, has a relatively low probability of misusing the stolen
quarry in a manner consistent with the victim’s behavior that will go unnoticed.
Fraudulent transactions are thus fairly easy to detect even given proper creden-
tials and credit availability. It is this observation that the credit card companies
recognized a couple of decades ago when designing early fraud warning systems,
and this idea has largely been the driving theme for much subsequent research
on masquerade detection.

On the other hand, a traitor is presumably behaving normally and hence
profiling a user to detect significant change as a means of detecting malicious
actions may not be the best strategy for detecting this class of insider attack.
The intelligence and military communities are challenged with detecting traitors
and have devised a host of means of using decoys and trap-based defenses to
entice and trick users into revealing their nefarious actions. Far less work has
been reported in the computer security literature on developing decoy network
defenses beyond early work on honeypots and general ideas on the use of honey-
tokens of various forms. The detection of traitors is an area ripe with challenges
begging for new research.

In the following sections, we provide a general overview of the literature on
the insider problem driven primarily by various methods of profiling user ac-
tions and the systems they use. Much of the work reports on studies describing
various audit sources and algorithms to profile users that are tested on sim-
ulated masquerade attack data. Researchers have also distinguished between
network-level and host-level detection systems. Most of this work is specific to
masquerade attack detection, although some work is reported on trap-based de-
fenses aimed to the traitor detection problem using honeypots and honeytokens.
We conclude with a view of what we see as the state-of-the-art of the insider
attack detection problem, and we provide recommendations on future research
directions.

2 Insider Attacks

In order to understand how to detect malicious insider actions, we have to
understand the many forms of attack that have been reported [25]. For example:

• Unauthorized extraction, duplication, or ex-filtration of data

• Tampering with data (unauthorized changes of data or records)

• Destruction and deletion of critical assets

• Downloading from unauthorized sources or use of pirated software which
might contain backdoors or malicious code

3

• Eavesdropping and packet sniffing

• Spoofing and impersonating other users

• Social engineering attacks

• Misuse of resources for non-business related or unauthorized activities

• Purposefully installing malicious software

Each of these actions can be considered malicious, but not every one of them
may leave an audit trail which can be easily accessed. Several of these actions
do leave some trail in some log file which can be linked to the actions of a
user after the fact. Hence, when a malfeasance is detected, there is some hope
forensics could lead to the perpetrator. Log analysis remains the state-of-the-
art in insider attack detection, after a breach has been discovered. Naturally,
sophisticated attackers may expend much effort trying to cover their tracks and
attacking the logging or auditing sources to remain stealthy. If an organization
is not actively monitoring their systems (and users) with sufficient controls
preventing tampering with monitor logs, an inside attacker will undoubtedly
rarely be detected.

In an insider threat study in the banking and finance sector, Randazzo et
al. [27] list the characteristics of insider attacks. Their analysis of validated
cases of insider attack indicated that:

• Most incidents required little technical sophistication

• Actions were planned

• Motivation was financial gain

• Acts were committed while on the job

• Incidents were usually detected by non-security personnel

• Incidents were usually detected through manual procedures

These observations should motivate any organization to field monitoring sys-
tems to have any hope of automatically and reliably detecting, and deterring,
insider attack. We note from this study that most insider attacks on hosts
seem to occur at the application level and not at the network-level and hence
host-based monitoring is not a desiderata, it is a requirement.

When monitoring systems to mitigate the insider threat, one can collect audit
data at either host level activity, network level activity, and or a combination
of the two. The main consideration is scalability versus coverage. Hosts sensors
are hard to deploy, network sensors are relatively easy to install. Many of the
insider problems do not even touch the network level. Schultz pointed out that
not one approach will work but solutions need to be based on multiple sensors
to be able to find any combination of features to detect insiders [29]. Models to
detect insider threats will only be as good as the data collected.

4

3 Detecting Insider Attacks

3.1 Host-based User Profiling

Understanding the intent of some user action is important to mitigate the insid-
er attack problem. Once an attack has taken place, an investigator needs to
reconstruct the intent of the attacker from the audit source. This is a slow and
manual process which cannot be easily generalized to pre-attack analysis. Rules
might be able to be crafted to cover known attacks, but sophisticated attackers
will find new ways and new attack methods to fly under the radar. In addition,
the task of keeping rules or profiles updated to the latest threat is a significant
challenge to using a host-based protection scheme.

One approach reported in the literature is to profile users by the commands
they issue (among the first is [6]). In the general case of computer user profiling,
the entire audit source can include information from a variety of sources:

• Command line calls issued by users

• System call monitoring for unusual application use/events

• Database/file access monitoring

• Organization policy management rules and compliance logs

The type of analysis used is primarily the modeling of statistical features,
such as the frequency of events, the duration of events, the co-occurrence of
multiple events combined through logical operators, and the sequence or tran-
sition of events. However, most of this work failed to reveal or clarify the user’s
intent when issuing commands. The focus is primarily on accurately detecting
change or unusual command sequences. We begin with a survey of a collection
of papers whose primary focus is command sequence analysis.

3.1.1 Modeling Unix Shell Commands

A hybrid high-order Markov chain model was introduced by Ju and Vardi [12].
A Markov chain is a discrete-time stochastic process. The goal of the work is
to identify a ‘signature behavior’ for a particular user based on the command
sequences that the user executed. In order to overcome the high-dimensionality,
inherent in high-order Markov chains, a ‘mixture transition distribution’ (MTD)
approach is used to model the transition probabilities. When the test data
contains many commands unobserved in the training data, a Markov model is
not usable. Here, a simple independence model with probabilities estimated
from a contingency table of users versus commands may be more appropriate.
The authors used a method that automatically toggled between a Markov model
and an independence model generated from a multinomial random distribution
as needed, depending on whether the test data were ‘usual’ (i.e. the commands
have been previously seen), or ‘unusual’ (i.e. Never-Before-Seen Commands or
NBSCs).

Schonlau et al. applied six masquerade detection methods to a data set
of ”truncated” UNIX shell commands for 70 users [28] collected using the
UNIX acct auditing mechanism. Each user had 15,000 commands collected
over a period of time ranging between a few days and several months. 50 users

5

were randomly chosen to serve as intrusion targets. The other 20 users were
used as simulated masqueraders. The first 5000 commands for each of the 50
users were left intact or ‘clean’, the next 10,000 commands were randomly in-
jected with 100-command blocks issued by the 20 masquerade users. When
commands are grouped into blocks of 100 commands each, the block is either
”‘clean”’, or ‘dirty’, that is all 100 commands were originated by a masquer-
ader. The complete data set and more information about it can be found at
http://www.schonlau.net. The objective was to accurately detect the ‘dirty’
blocks and classify them as masquerader blocks. This data set was widely used
by several authors that investigated different detection methods and has served
as the standard benchmark dataset for this line of research.

One detection method explored by Schonlau, called ‘uniqueness’ relies on
the fact that half of the commands in the training data are unique (i.e. used
by one user only), and many more are unpopular amongst the users (i.e. used
only by a few users). The second method investigated was the Bayes one-step
Markov approach. It was based on one step transitions from one command
to the next. The approach, due to DuMouchel [7], uses a Bayes factor statis-
tic to test the null hypothesis that the observed one-step command transition
probabilities were consistent with the historical transition matrix. The two hy-
potheses modeled were the null hypothesis, which assumed that the observed
transitions probabilities stem from the historical transition matrix, and the al-
ternative hypothesis which assumed that they were generated from a Dirichlet
distribution.

A hybrid multi-step Markov method similar to the one introduced by Ju and
Vardi [12] is also used. The fourth method used, called the compression method,
was based on the premise that test data appended to historical training data
compressed more readily when the test data stemmed from the very same user
rather than from a masquerader, and was implemented through the UNIX tool
‘compress’ which implements a modified Lempel-Ziv algorithm.

IPAM (Incremental Probabilistic Action Modeling), another method applied
on the same dataset, and introduced by Davidson and Hirsch [6] was also based
on one-step command transition probabilities estimated from the training data.
The probabilities were continuously updated following an exponential decay
scheme with the arrival of a new command.

The sequence-match approach was presented by Lane and Brodley [15]. For
each new command, a similarity measure is computed between the 10 most re-
cent commands and a user’s historical profile. A user’s profile consisted of com-
mand sequences of length 10 that the user had previously used. The similarity
measure was a count of the number of matches in a command-by-command
comparison of 2 command sequences with a greater weight assigned to adja-
cent matches. This similarity measure was computed for the test data sequence
paired with each command sequence in the profile.

Maxion and Townsend applied a näıve Bayes classifier, which had been
widely used in text classification tasks, to the same data set [19]. Maxion
provided a thorough and detailed investigation of classification errors of the
classifier in a separate paper [20], highlighting why some masquerade victims
were more vulnerable than others, and why some masqueraders were more suc-
cessful than others. Killourhy and Maxion also investigated a shortcoming of
the näıve Bayes classifier when dealing with NBSCs [13].

The semi-global alignment method presented by Coull et al. [4] is a mod-

6

Table 1: Accuracy performance Summary of Anomaly Detectors Using the
Schonlau Data Set

Method False Alarms (%) Missing Alarms(%)

Uniqueness 1.4 60.6
Bayes one-step Markov 6.7 30.7

Hybrid multi-step Markov 3.2 50.7
Compression 5.0 65.8

Sequence Match 3.7 63.2
IPAM 2.7 58.9

Näıve Bayes (Updating) 1.3 38.5
Näıve Bayes (No Updating) 4.6 33.8

Semi-Global Alignment 7.7 24.2
Eigen Co-occurrence Matrix 2.5 28.0

Näıve Bayes + EM 1.3 25.0

ification of the Smith-Waterman local alignment algorithm. It uses a scoring
system that rewards the alignment of commands in a test segment, but does
not necessarily penalize the misalignment of large portions of the signature of
the user.

Another approach called a self-consistent näıve Bayes classifier is proposed
by Yung [38] and applied on the same data set. This method was a combination
of the näıve Bayes classifier and the EM-algorithm. The self-consistent näıve
Bayes classifier is not forced to make a binary decision for each new block of
commands, i.e. a decision whether the block is a masquerader block or not.
Rather, it assigns a score that indicates the probability that the block is a
masquerader block. Moreover, this classifier can change scores of earlier blocks
as well as later blocks of commands.

Oka et al. had the intuition that the dynamic behavior of a user appearing in
a sequence could be captured by correlating not only connected events, but also
events that were not adjacent to each other, while appearing within a certain
distance (non-connected events). With that intuition they developed the layered
networks approach based on the Eigen Co-occurrence Matrix (ECM) [24, 23].
The ECM method extracts the causal relationships embedded in sequences of
commands, where a co-occurrence means the relationship between every two
commands within an interval of sequences of data. This type of relationship
cannot be represented by frequency histograms nor through n-grams.

Table 1 presents the estimated accuracy of the classification methods which
are all based on a two-class supervised training methodology whereby data is
labeled as self or non-self. The Schonlau data used is a mixture of command se-
quences from different users. The classifiers produced in these studies essentially
identify a specific user from a set of known users who provided training data.
Furthermore, mixing data from multiple users to train classifiers to detect mas-
queraders is complicated and fraught with problems. Besides potential privacy
threats, requiring the mixture of data from multiple users requires substantial
retraining of classifiers as users join and leave an organization.

In a real-word setting it is probably more appropriate to use a one-class,
anomaly detection-based training approach. Wang and Stolfo experimented
with one-class training methods in [36] using a näıve Bayes classifier and a Sup-

7

port Vector Machine (SVM) model of user commands to detect masqueraders.
The authors have also investigated SVMs using binary features and frequency-
based features. The one-class SVM algorithm using binary features was the
best performing classifier among four one-class training algorithms that were
analyzed. It also performed better than most of the two-class algorithms listed
above, except the two-class multinomial näıve Bayes algorithm with updating.
In summary, Wang and Stolfo’s experiment confirmed that, for masquerade
detection, one-class training is as effective as two-class training.

Szymanski and Zhang [34] proposed recursively mining the sequence of com-
mands by finding frequent patterns, encoding them with unique symbols, and
rewriting the sequence using this new coding. A signature was then generated
for each user using the first 5000 commands. The process stopped when no new
dominant patterns in the transformed input could be discovered. They used
a one-class SVM classifier for masquerade detection. Although they presented
a weighting prediction scheme for author identification, we will limit our focus
here to the masquerade detection application of their approach. The authors
used an individual intrusion detection approach with 4 features (the number of
dominant patterns in levels 1 and 2, and the number of distinct dominant pat-
terns in levels 1 and 2), as well as a ‘communal’ intrusion detection approach,
where they added new features, such as the number of users sharing each dom-
inant pattern in a block. Again, such an approach demands mixing user data
and may not be ideal or easily implemented in a real-world setting.

Dash et al. [5] created user profiles from groups of commands called se-
quences. 13 temporal features are used to check the consistency of patterns of
commands within a given temporal sequence. Probabilities are calculated for
movements of commands within a sequence in a predefined reordering between
commands. They achieve high accuracy, but also high false positive rates on
their experiments.

Seo and Cha [30] experimented with combinations of SVM kernels with some
success. They managed to increase the accuracy at the expense of somewhat
higher false positives. Tan and Maxion investigated which detector window
size would enable the best detection results [35]. They uncovered that the best
detector window size was dependent on the size of the minimal foreign sequence
in test data, which is not determinable a priori. A foreign sequence is one
that is not contained in the alphabet set of the training data, but each of its
individual symbols is, whereas a minimal foreign sequence is a foreign sequence
that contains within it no smaller foreign sequences.

It has been shown that the Schonlau data set was not appropriate for the
masquerade detection task. Maxion lists several reasons [20]. First, the data
was gathered over varied periods for different users (from several days to several
months), and the number of login sessions varied by user. Second, the source
of data is not clear. We do not know whether the users perform the same jobs
or are widely spread across different job functions. Moreover, in acct, the audit
mechanism used to collect the data, commands are not logged in the order in
which they are typed, but rather when the application ends. Hence the methods
applied that focus on strict sequence analysis may be faulty.

In order to alleviate some of the problems encountered with the Schonlau
data set, Maxion applied the näıve Bayes classifier to the Greenberg data set, a
user command data set enriched with flags and arguments in [18]. He compared
the performance of the classifier on the Greenberg data set by using enriched

8

commands and truncated commands. The hit rate achieved using the enriched
command data was more than 15% higher than with the truncated data. How-
ever, the false positives rate was approximately 21% higher as well. Neverthe-
less, when plotting the ROC curves for both data sets, the one for enriched data
runs above the ROC curve for truncated data, showing that a better detection
performance can be achieved using the user commands enriched with flags and
arguments.

As noted, several types of attributes and statistical features can be used for
modeling a user’s actions. Ye et al. studied the attributes of data for intrusion
detection [37]. The attributes studied included the occurrence of individual
events (audit events, system calls, user commands), the frequency of individual
events (e.g. number of consecutive password failures), the duration of individual
events (CPU time of a command, duration of a connection), and combinations
of events, as well as the frequency histograms or distributions of multiple events,
and the sequence or transition of events. The goal was to find out whether the
frequency property was sufficient for masquerader detection, and if so whether
there was a single event at a given time sufficient for detecting a masquerader.
Five probabilistic techniques were investigated on system call data: a decision
tree, Hotelling’s T 2 test, the chi-square test, the multivariate test, and the
Markov chain. The data set used was made up of 250 auditable security-relevant
events collected by the Solaris Basic Security Module (BSM) and 15 simulated
intrusions on the background of normal activities. The investigation confirmed
the importance of both the frequency property, and the ordering property of
events.

3.1.2 User Profiling in Windows Environments

Less research work has been applied to Windows environments compared to
work directed for the Unix environment. Much of the difference lies in the
auditing methods available on each platform. Linux apparently has cleaner
auditing mechanisms (acct, BSM, etc.) whereas Windows has a plethora of
system actions that can be captured by various monitoring subsystems.

Shavlik et al. presented a prototype anomaly detection system that cre-
ates statistical profiles of users running Windows 2000 [31]. Their algorithm
measures more than two-hundred Windows 2000 properties every second, and
creates about 1500 features from the measurements. The system assigns weights
to the 1500 features in order to accurately characterize the particular behavior
of each user - each user thus is assigned his or her own set of feature weights
as their unique signature. Following training, each second all of the features
‘vote’ as to whether or not it seems likely that an intrusion has occurred. The
weighted votes ‘for’ and ‘against’ an intrusion are compared, and if there is
enough evidence, an alarm is raised.

Nguyen, Reiher & Kuenning propose detecting insider threats by monitoring
system call activity [22]. Instead of building profiles on system call traces, they
analyze relationships between users and files, users and processes, and processes
and files. They build user-oriented models as well as process-oriented models
using file system and process-related system calls exploiting the regularity in the
patterns of file accesses and process-calling by programs and users. They focus
on building a Buffer-overflow Detection System (BDS), which is able to detect
buffer overflows in many cases, but only if they occur in a set of programs that

9

have a fixed list of children, i.e. only 92% of programs. The authors’ approach,
as they point out, was not suitable for detecting malicious insider activity on
laptops, because the traces collected on laptops are very dynamic and users
do not have a fixed pattern of working time which could be used to define an
adequate time window for analysis.

Jha et al. present a statistical anomaly detection algorithm that has the
potential of handling mixtures of traces from several users (this will occur when
several users are colluding) by using mixtures of Markov chains [11]. The tech-
nique which has an unobserved or hidden component can be compared to Hid-
den Markov Models (HMMs). The training algorithm for HMMs runs in time
O(n×m2), where n is the number of states in the HMM and m is the size of the
trace, whereas, the training time for Markov chains is O(m). So the authors’
approach was less computationally expensive than HMMs.

Li and Manikopoulos [16] explored modeling user profiles with SVMs using
audit data from a Windows environment gathered over a year. They model
the sequence of windows and processes over time in a manner similar to what a
process sensor would see. They simulate attack data by mixing data between le-
gitimate user sessions. They reported some success at modeling the user profiles,
but suffer with high false positive rates.

In most of the approaches surveyed above, either user command data or
system calls data were used. User command data fail to capture window be-
havior and do not include commands executed inside a script, whereas system
call data are not particularly human-readable, nor easily attributed to direct
user action. On the other hand, process table data includes window behavior
and anything running in a script, and can be easily interpreted when read by a
human. Moreover, window tracing provides information at a level of granularity
somewhere between the levels of a command line and a system call, while most
of the system noise can be filtered out (a formidable challenge when tracing
Windows), which makes it a good candidate for user profiling.

Goldring collected user data consisting of successive window titles with pro-
cess information (from the process table) for a group of users over 2 years [9].
The combination of data sources allowed use of the process tree structure to
filter out system noise. However it complicated the feature selection task. The
system reduces the stream of data to a single feature vector that consists of a
mixture of different feature types per session. A record is generated each time
a new window is opened including information about the window title, and all
contents in a window title’s bar (a wealth of new information, e.g. subject lines
of emails, names of web pages, files and directories). Besides that, the window’s
process and parent process ID’s are saved. The window titles’ data allows one
to distinguish between the operating system’s programs such as Control Panel
and find Files, which would not be distinguishable from inspecting the process
table alone. Goldring reported no performance results, but rather presented a
proof-of-concept system. Even if detailed accuracy results were reported, the
datasets used bear little resemblance to other data used by researchers. This
highlights another important methodological weakness of this line of research
where a paucity of data makes it difficult to know whether advances have been
made.

10

3.1.3 User Profiling in Web Environments

There is a vast literature on data mining methods applied to web user ‘click’
data for marketing analytics that goes well beyond the scope of this paper. How-
ever, some work has been done focusing on web profiling for security problems.
Kim, Cho, Seo, Lee, and Cha studied the problem of masquerade detection in
a web environment. They focused on ‘anomalous web requests generated by
insiders who attempted to violate existing security policies given by the specific
organization’ [14]. They applied SVMs to web server logs and used two different
kernels: TinySVM (an implementation of SVM for pattern recognition) and the
Radial Basis Function (RBF) kernel. Only simple features were used, i.e. nei-
ther session features, nor temporal features were included. Simple features are
those related to a single web sever request such as the IP address, the hour of
the day, the HTTP method (get, post, put, delete, options, head, and trace), the
requested page ID, the request status code, the number of transferred bytes, etc.
The results showed that SVMs achieved near-perfect classification rates using
simple features only. However, the method used did not handle concept drift
well, and failed to generalize the model for two users due to changes in user
behavior.

3.1.4 Program Profiling Approaches

Besides user-issued commands, inside attackers may inject programs or infect
host systems causing changes in underlying system configurations and program
behaviors. Hence, approaches to profiling environments and program executions
may have relevance to the insider attack detection problem. Much work in this
area is devoted to detection of code injection attacks, too broad a topic to
describe here. A few characteristic works are described in the following.

Forrest et al. proposed a real-time online anomaly detection system [8] that
mimicked the mechanisms used by the natural immune systems. This is done
by monitoring system calls of running privileged processes (profiles were built
using normal runs of such programs). The modeling is limited to privileged
root processes since they have more access to computer resources than user
processes, and they have a limited range of behavior that is quite stable and
predictable. A separate database of normal behavior is built for each privileged
process. The database was specific to a particular architecture, software version
and configuration, local administrative policies, and usage patterns, providing
a unique definition of ‘self’.

The underlying assumptions are that the sequences of system calls executed
by a program are locally consistent during normal operation, and that if a
security hole in a program is exploited, then abnormal sequences of system calls
will occur. A number of experiments were performed using the normal traces
of the sendmail and lpr processes as examples. The results obtained showed
that the behavior of different processes was easily distinguishable using the
sequence information alone for these two system programs. Several attacks on
the sendmail process were tested, such as the sunsendmailcp script, the syslog
attack, the lprcp attack script, the decode attack, and the lpr attack. Other
sources of anomalous behavior tested included unsuccessful intrusion attempts,
such as remote attack scripts, called sm565a and sm5x, and error conditions.
The results have shown that short sequences of system calls could indeed define

11

a unique and stable signature, which allows for the detection of common sources
of anomalous behavior.

The method proposed is computationally efficient and has very low storage
requirements. Many aspects of process behavior are ignored (e.g. parameter
values passed to system calls, timing information, and instruction sequences
between system calls). Although the approach could enable the detection of
several scenarios, such as when a program moves to an unusual error state
during an attempted break-in, when an intruder replaces code inside a running
program, and when new processes are forked, it would not detect race conditions
or masqueraders using another user’s account. This work led to a number of
derivative ideas explored by the computer security community.

Stolfo et al. [33] present the modeling of accesses to the Windows registry by
exploiting regularity in process accesses to Windows registry. They introduced
a general purpose algorithm for anomaly detection, the Probabilistic Anomaly
Detection (PAD) algorithm, that assumes anomalies or noise are a minority of
the training data. PAD was applied to model Registry queries and contrasts
with the One-Class Support Vector Machine (OCSVM) algorithm using several
different kernels. PAD showed better performance, both in accuracy, and in
computational complexity, achieving a 100% detection rate of anomalies with a
5% false positives rate for the particular test sets available for the study.

3.2 Network-Based Sensors

3.2.1 Network Observable User Actions

ARDA sponsored a Cyber Indications and Warning workshop dealing with the
insider threat. One of the lessons learned was that in many cases insider threats
have authorization to access information but may access information they do
not have a ‘need to know’. When an insider accesses information that they do
not need to know, one may have good evidence of an insider attack. A system
for detecting insiders who violate need-to-know, called ELICIT, was developed
by Maloof and Stephens [17]. The focus of their work was on detecting activi-
ties, such as searching, browsing, downloading, and printing, by monitoring the
use of sensitive search terms, printing to a non-local printer, anomalous brows-
ing activity, and retrieving documents outside of one’s social network. Five
malicious insider scenarios were tested, that represented need-to-know viola-
tions. Contextual information about the user identity, past activity, and the
activity of peers in the organization or in a social network were incorporated
when building the models. HTTP, SMB, SMTP, and FTP traffic was collected
from within a corporate intranet network for over 13 months, but no inbound
or outbound traffic was gathered. In order to identify the information deemed
outside the scope of an insider’s duties, a social network was computed for each
insider based on the people in their department, whom they e-mailed, and with
whom they worked on projects. A Bayesian network for ranking the insider
threats was developed using 76 detectors. Subject-matter experts defined the
thresholds for these detectors, at which an alarm is set. A single threat score is
computed for each user based on the alerts from these detectors.

Identifying specific users from observable network events consumed consider-
able effort. Event attribution proved to be a major challenge: 83% of events
initially had no attribution, and 28.6% of them remained unattributed, even

12

after the use of two offline methods to determine the originator of a particular
event. The evaluation of the system used scenarios that were executed over a
short period of time, less than one day. However, attacks by insiders who violate
need-to-know usually occur over days, months, and even decades, such as in the
case of Robert Hanssen. Therefore, it is important to evaluate the ELICIT
system using other scenarios that occur over longer periods of time. In any
event, although interesting, the focus of this system is limited to environments
and organizations that have a formal policy restricting access to information on
a need-to-knowbasis. It is rare that such controls are easily discernible in most
organizations.

3.2.2 Honeypots

Honeypots are information system resources designed to attract malicious users.
Honeypots have been widely deployed in De-Militarized Zones (DMZ) to trap
attempts by external attackers to penetrate an organization’s network. Their
typical use is for early warning and slowing down or stopping automated attacks
from external sources, and for capturing new exploits and gathering informa-
tion on new threats emerging from outside the organization. These trap-based
defenses are also useful for the insider threat.

Spitzner presented several ways to adapt the use of honeypots to the insider
attack detection problem [32]. Since insiders probably know what information
they are after, and in many cases, where that information is to be found, and
possibly how to access it, he recommends implanting honeytokens with per-
ceived value in the network or in the intranet search engine. A honeytoken
is ‘information that the user is not authorized to have or information that is
inappropriate’ [32]. This information can then direct the insider to the more ad-
vanced honeypot that can be used to discern whether the insider intention was
malicious or not, a decision that may be determined by inspecting the insiders
interaction with the honeypot. In order to reach such interaction that will be
used to gather information, it is important to ensure that the honeypot looks
realistic to the insider. Humans have a keen sense of suspicion, and hence the
grand challenge for honeypots or any trap-based defense is believability, while
preventing poisoning of operational systems.

Honeypots suffer from some shortcomings. First, the inside attacker may not
ever use or interact with the honeypot or honeytoken, especially if their identity
is known or discovered by the insider. Moreover, if an attacker discovers a
honey-pot, he/she can possibly inject bogus or false information to complicate
detection.

3.3 Integrated Approaches

Among the first integrated systems devised for the malicious insider detection
problem was the one presented by Maybury et al. in [21]. The integrated system
used honeypots, network-level sensors for traffic profiling to monitor scanning,
downloads, and inside connections, and Structured Analysis, a real-time and
top-down structural analysis that uses the models of insiders and pre-attack
indicators to infer the malicious intent of an insider. Moreover, several data
sources were used in addition to auditing of cyber assets. Physical security logs,
such as employee badge readers, were also integrated to keep track of the loca-

13

tion of a user. The program funding this effort apparently ended prematurely.
Insufficient test and evaluations were performed on an approach that seemed
quite promising.

3.4 Summary

By way of summary, the papers surveyed report the use of heterogeneous audit
sources. Most user profiling techniques designed for use in the Unix or Linux
environment used the Schonlau data set, a data set made up of truncated se-
quences of user commands. We have surveyed all two-class based methods and
the few one-class based methods applied to this data set. Other approaches using
other data sets, such as the Greenberg data set that includes command flags and
arguments, were presented. User commands in Unix and Linux environments
are easily captured in and are directly observable user actions. The Schonlau
datasets serve as a general benchmark dataset and hence most of the literature
has been focused on masquerade detection using Unix commands.

In the Windows operating system environment, a variety of audit sources
can be exploited. The range of data available inclues system calls, registry
accesses [33] which occur when users execute applications, and a combination
of process and windows data (window title, how long a window has been open,
etc.).

On the network level, the observables are more distant from a distinct user.
Attributing of a network level event to a distinct user is a hard. Detecting
masqueraders from network level data alone remains a challenge. However net-
work level events are valuable in detecting malicious or unusual activities such
as massive downloading of information that the insider does not have a need to
know, or the dissemination of information outside the organization’s network.

In the reports appearing in the research literature it appears that the data
used for training is real data acquired from real sources. However, for testing of
proposed detection methods, most authors had to resort to simulated attacks.
For instance, Maloof and Stephens asked a red team to perform some attacks
based on pre-defined scenarios, and Schonlau used normal user data injected
into a different user’s data set to serve as a simulated masquerade data. That
is hardly a real masquerade attack.

The approaches used also depend on the type of insider problem tackled.
For masquerade detection the approach of choice was host-based user profiling,
whereas for traitor detection other approaches, such as host-based program
profiling using systems calls or registry access data, were used to detect the
malicious activity on a system. Network-level sensors were used for traitor
detection by Maybury et al. and by Maloof and Stephens, whose approach
seems promising for the detection of need-to-know violations. There have been a
limited number of reports on trap-based, or honeypot-based, detection methods
for the insider problem.

Of particular note is the difficulty of comparatively evaluating competing
methods and approaches. This is primarily due to the lack of a uniform test
data with known ground truth. Although, the Schonlau data set has been widely
used by many authors, it has been shown that it is far from being suitable for
an objective evaluation of the insider attack detection algorithms.

Table 2 represents a broad summary of the assumptions on how a specific
audit source may contribute to detecting masqueraders or traitors gleaned from

14

Table 2: Summary of Insider Approaches and Suitability of Audit Mechanism
Masquerader) Internal Traitor

Two Class: Unix High - Unfamiliar Low - Can mimic
Command Sequences with local setup another normal user

One Class: Unix High - Unfamiliar Medium - Malicious
Command Sequences with local settings actions may deviate

from norm
Unix Audit Events Medium - Has Low - Application level

credentials and might malicious acts may not
not trigger alerts manifest as unusual

Unix System Calls Medium - Might not Low - Application level
violate system call profile malicious acts may not

manifest as unusual
Window Usage Events High - May use Medium - May use

Windows in unusual ways Windows Applications
in unusual ways

Windows Registry Medium - unless Medium - unless
malicious programs malicious programs

access access Registry access Registry
Network Activity Medium - If attack Medium - If attack

Audit occurs over network uses network

the surveyed research papers. Each cell of the table represents our opinion
about how well a specific approach may be suitable as an audit source to detect
masqueraders or traitors. For example, a masquerader is more likely to trigger
unusual behavior models by executing commands that are unusual for the victim
whose credentials they have stolen. That assumption has driven a considerable
amount of research activity. Network-level audit sources are assumed helpful in
detecting anomalous application-level violations, such as ex-filtration of data.
No formal study of each audit source has been reported validating or refuting
these assumptions. However, this table may serve as a guide for such future
research.

4 Future Research Directions

User profiling as a means of identifying abnormal user behavior is well estab-
lished as a primary methodology for masquerader attack detection. As we have
noted, a masquerader impersonates another persona and it is unlikely the vic-
tim’s behavior will be easily mimicked. Hence, abnormal behavior is a good
indicator of a potential masquerade attack as a consequence of identity theft.
User profiling may also be useful in detecting a traitor, if subtle but significant
changes in a user’s behavior indicate a malicious activity. We believe that it
will be important to derive user profile models that reveal user intent in order
to hone in on insider actions that are suspicious and likely malicious. It may
not be enough to know of a malicious act merely from knowing that a user has
issued an abnormal command sequence unless that sequence could violate a se-
curity policy. For example, we conjecture that modeling a user’s search behavior
may be one way of capturing a user’s intent to seek information for malicious

15

purposes, something that a masquerader, and possibly a traitor, is likely to do
early in their attack behavior. Too much searching, or searching in abnormal
directories or locations, seems more than odd, it may seem sinister in intent.

A major challenge of insider attack detection research is the lack of real data
in order to study general solutions and models. It is hard, if not impossible, to
collect data from normal users in many different environments. It is especially
hard to acquire real data from a masquerader or traitor while performing their
malicious actions. Even if such data were available, it is more likely to be out of
reach and controlled under the rules of evidence, rather than being a source of
valuable information for research purposes. Because of the scarcity of real data,
Chinchani et al. created RACOON [2], a system for generating user command
data for anomaly detection from customizable templates representing particular
user profiles. However, the system suffered from the same shortcomings of most
simulated data: Even though noise was introduced into the simulated data, that
noise still followed a predictable distribution.

It is hard to obtain real intrusions for ground truth test and evaluation for
a number of reasons:

• Researchers generally do not have direct access to real attacks

• Attacks may be undetected and thus unavailable for study

• Organizations do not admit that they were attacked and hence shy away
from cooperating with researchers

• Attacks might be mistaken for incompetence

Given these challenges, devising capture the flag exercises to generate insider
attack datasets that are realistic in nature may provide a means of advancing
the state-of-the-art in understanding and solving the insider threat.

It is generally unknown what types of audit sources are most discrimina-
tory to reliably detect insider malicious behavior. Moreover, it is not obvious
what amount of data is needed for modeling, nor how long the training or data
collection period should be.

We posit that malicious insider actions on computer systems are likely to
occur at the application level. For instance, a customer service employee in a
call center may access more customer records on one particular day than he/she
typically accesses on other days, possibly to commit a crime to sell confidential
information. Detecting such unusual events can only occur at the business
application level, and application-level knowledge is needed to understand the
user’s intent and confirm whether the intent of user actions is possibly malicious.
This can be detected using host-based sensors, and possibly through network-
based sensors if the application is accessed remotely.

The most vexing problem for researchers is to devise detection methods
that accurately distinguish between the cases where an insider attack is verified
with high confidence versus cases where an insider attack is inferred from partial
knowledge of possibly suspicious actions. Distinguishing false positives from true
positives in the presence of uncertainty is particularly challenging when people’s
reputations are at stake. Hence, we also believe that any technologies developed
to detect insider attack have to include strong privacy-preserving guarantees
to avoid making false claims that could harm the reputation of individuals
whenever errors occur.

16

Another important topic for research is the investigation of alternative miti-
gation strategies. For instance, how does a monitoring or detection system chal-
lenge a user when the system detects what it believes are malicious activities?
How might a system alert a supervisor of a possible attack without disclosing
an employee’s true identity unless and until an attack has been validated?

Beyond the significant challenges in computing accurate user profiles, consid-
erable effort is needed on developing techniques for trapping traitor behaviors.
We believe a major challenge will be to develop and inject bogus data and in-
formation that is believable to sophisticated humans with full knowledge of an
organization’s internal systems without negatively impacting operations. How
does one develop a trap for those, who are aware that such technology is in
use, and do so, without poisoning the operations of the business functions con-
ducted by insiders, who may get inadvertently confused by realistic, but bogus
information?

5 Conclusion

Insider threat detection is a nascent research field begging for new approaches
and new research methodologies. A plethora of modeling algorithms are avail-
able as well as a wealth of audit sources that can be acquired effectively. How-
ever, building effective systems for detecting insider attacks remains an open
challenge. The lack of ground truth data limits the potential value of various
proposed solutions since progress is so hard to measure. Even so, much work
has been published using ‘simulated’ masquerade attack data. We surveyed the
different machine learning and modeling algorithms applied to masquerader at-
tack detection using host-based and network based audit sources. There has
been a modest amount of work in the area. However, the best audit sources and
most discriminating features one might use in automated systems to detect mas-
querader are still unknown. The experimental methodology has been generally
weak. Although, there have been many methods proposed, their utility is uncer-
tain, and none of them is clearly superior to all others. Although one dataset,
the Schonlau dataset, has been useful for a community of researchers to use
in comparative evaluations, that dataset itself is insufficient to conduct realistic
evaluations. The data set is limited in scope of information it provides, and does
not contain true insider attack command sequences. At best, the dataset may be
useful to compare computational performance between competing algorithms,
but accuracy is not measurable.

By way of summary, new methods of detecting insider attack, whether by
trai-tor or masquerader, remains an open and active area of research, and we
expect it to be so for some time to come.

References

[1] D. Elliott Bell and Leonard J. Lapadula. Secure computer systems: Math-
ematical foundations, 1973.

[2] Ramkumar Chinchani, Aarthie Muthukrishnan, Madhusudhanan Chan-
drasekaran, and Shambhu Upadhyaya. RACOON: Rapidly generating user

17

command data for anomaly detection from customizable templates. Com-
puter Security Applications Conference, Annual, 0:189–204, 2004.

[3] D. D. Clark and D. R.Wilson. A Comparison of Commercial and Military
Computer Security Policies. In Proceedings of the 1987 IEEE Symposium
on Security and Privacy, pages 184–194. IEEE Computer Society Press,
1987.

[4] S. E. Coull, J. Branch, B. Szymanski, and E. Breimer. Intrusion detection:
A bioinformatics approach. In Proceedings of the 19th Annual Computer
Security Applications Conference, pages 24–33, 2001.

[5] Subrat Kumar Dash, Sanjay Rawat, G. Vijaya Kumari, and Arun K. Pujari.
Masquerade detection using ia network. In First International Workshop
on Applications of Constraint Satisfaction and Programming to Computer
Security Problems, pages 18–30, 2005.

[6] B. D. Davison and H. Hirsh. Predicting sequences of user actions. In
Working Notes of the Joint Workshop on Predicting the Future: AI Ap-
proaches to Time Series Analysis, 15th National Conference on Artificial
Intelligence/15th International Conference on Machine Learning, pages 5–
12. AAAI Press, 1998.

[7] William Dumouchel. Computer intrusion detection based on bayes fac-
tors for comparing command transition probabilities. Technical report, In
National Institute of Statistical Sciences, 1999.

[8] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A sense of self for unix processes. In Proceedings of the 1996
IEEE Symposium on Security and Privacy, pages 120–128. IEEE Computer
Society Press, 1996.

[9] Tom Goldring. Authenticating users by profiling behavior.
http://www.galaxy.gmu.edu/interface/i03/i2003html/goldringtom/
goldringtom.presentation.ppt. In DMSEC’03: ICDM Workshop on Data
Mining for Computer Security, 2003.

[10] Lawrence A. Gordon, Martin P. Loeb, William Lucyshyn, and Robert
Richardson. CSI/FBI computer crime and security survey, 2006.

[11] S. Jha, L. Kruger, T. Kurtzy, Y. Leez, and A. Smith. A filtering approach
to anomaly and masquerade detection, 2004.

[12] Wen-Hua Ju and Yehuda Vardi. A hybrid high-order markov chain model
for computer intrusion detection. Journal of Computational and Graphical
Statistics, June, 2001.

[13] K. S. Killhourhy and Roy Maxion. Investigating a possible flaw in a mas-
querade detection system. Technical report, University of Newcastle upon
Tyne, Technical Report CS-TR-869, 2004.

[14] H. Kim, S. Cho, J. Seo, Y. Lee, and S. Cha. Use of support vector ma-
chine (svm) in detecting anomalous web usage patterns. In Symposium on
Information and Communications Technology, 2004.

18

[15] T. Lane and C. E. Brodley. Sequence matching and learning in anomaly
detection for computer security. In In AAAI Workshop: AI Approaches to
Fraud Detection and Risk Management, pages 43–49. AAAI Press, 1997.

[16] L. Li and C.N. Manikopoulos. Windows NT one-class masquerade detec-
tion. In Proceedings of the Fifth Annual IEEE SMC Information Assurance
Workshop, pages 82–87, June 2004.

[17] M. A. Maloof and G. D. Stephens. elicit: A system for detecting insiders
who violate need-to-know. In RAID, pages 146–166, 2007.

[18] R. A. Maxion. Masquerade detection using enriched command lines. De-
pendable Systems and Networks, International Conference on, 0:5, 2003.

[19] R. A. Maxion and T. N. Townsend. Masquerade detection using trun-
cated command lines. In DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks, pages 219–228. IEEE
Computer Society, 2002.

[20] R. A. Maxion and T. N. Townsend. Masquerade detection augmented with
error analysis. IEEE Transactions on Reliability, 53(1):124–147, 2004.

[21] Mark Maybury, Penny Chase, Brant Cheikes, Dick Brackney, Sara Matzner,
Tom Hetherington, Brad Wood, Conner Sibley, Jack Marin, and Tom
Longstaff. Analysis and detection of malicious insiders. In Proceedings
of the International Conference on Intelligence Analysis, 2005.

[22] Nam Nguyen, Peter Reiher, and Geoffrey H. Kuenning. Detecting insider
threats by monitoring system call activity. In Proceedings of the 2003 IEEE
Workshop on Information Assurance, pages 18–20. United States Military
Academy West Point, 2003.

[23] M. Oka, Y. Oyama, H. Abe, and K. Kato. Anomaly detection using layered
networks based on eigen co-occurrence matrix. In Proceedings of the 7th
International Symposium on Recent Advances in Intrusion Detection, 2004.

[24] M. Oka, Y. Oyama, and K. Kato. Eigen co-occurrence matrix method for
masquerade detection. In Publications of the Japan Society for Software
Science and Technology, 2004.

[25] A. H. Phyo and S. M. Furnell. A detection-oriented classification of insider
it misuse. In Proceedings of the Third Security Conference, 2004.

[26] Vassilis Prevelakis and Diomidis Spinellis. The athens affair. IEEE Spec-
trum, 44:7:26–33, 2007.

[27] M. R. Randazzo, M. Keeney, E. Kowalski, D. Cappelli, and A. Moore.
Insider threat study: Illicit cyber activity in the banking and finance sector,
2004.

[28] M. Schonlau, W. Dumouchel, W. Ju, A. F. Karr, M. Theus, and Y. Vardi.
Computer intrusion: Detecting masquerades. Statistical Science, 16:58–74,
2001.

19

[29] E. Eugene Schultz. A framework for understanding and predicting insider
attacks. Computers & Security, 21(6):526 – 531, 2002.

[30] Jeongseok Seo and Sungdeok Cha. Masquerade detection based on svm and
sequence-based user commands profile. In ASIACCS ’07: Proceedings of
the 2nd ACM symposium on Information, computer and communications
security, pages 398–400, 2007.

[31] Jude Shavlik and Mark Shavlik. Selection, combination, and evaluation of
effective software sensors for detecting abnormal computer usage. In KDD
’04: Proceedings of the tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 276–285, New York, NY,
USA, 2004. ACM.

[32] Lance Spitzner. Honeypots: Catching the insider threat. Annual Computer
Security Applications Conference, 2003.

[33] Salvatore J. Stolfo, Frank Apap, Eleazar Eskin, Katherine Heller, Shlomo
Hershkop, Andrew Honig, and Krysta Svore. A comparative evaluation of
two algorithms for windows registry anomaly detection. Journal of Com-
puter Security, 13(4):659–693, 2005.

[34] Boleslaw K. Szymanski and Yongqiang Zhang. Recursive data mining for
masquerade detection and author identification. In Proceedings of the 13rd
Annual IEEE Information Assurance Workshop. IEEE Computer Society
Press, 2004.

[35] Kymie M. C. Tan and Roy A. Maxion. ”why 6?” defining the operational
limits of stide, an anomaly-based intrusion detector. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 188–202, 2001.

[36] K. Wang and S. J. Stolfo. One-class training for masquerade detection.
In Proceedings of the 3rd IEEE Workshop on Data Mining for Computer
Security, 2003.

[37] Nong Ye, Xiangyang Li, Qiang Chen, S.M. Emran, and Mingming Xu.
Probabilistic techniques for intrusion detection based on computer audit
data. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 31(4):266–274, Jul 2001.

[38] K. H. Yung. Using self-consistent näıve bayes to detect masqueraders. In
PAKDD’08: Proceedings of the 8th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 329–340, 2004.

20

