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ABSTRACT
A novel behavioral detection framework is proposed to detect mo-
bile worms, viruses and Trojans, instead of the signature-based so-
lutions currently available for use in mobile devices. First, we pro-
pose an efficient representation of malware behaviors based on a
key observation that the logical ordering of an application’s actions
over time often reveals the malicious intent even when each action
alone may appear harmless. Then, we generate a database of ma-
licious behavior signatures by studying more than 25 distinct fam-
ilies of mobile viruses and worms targeting the Symbian OS—the
most widely-deployed handset OS—and their variants. Next, we
propose a two-stage mapping technique that constructs these signa-
tures at run-time from the monitored system events and API calls
in Symbian OS. We discriminate the malicious behavior of mal-
ware from the normal behavior of applications by training a classi-
fier based on Support Vector Machines (SVMs). Our evaluation on
both simulated and real-world malware samples indicates that be-
havioral detection can identify current mobile viruses and worms
with more than 96% accuracy. We also find that the time and re-
source overheads of constructing the behavior signatures from low-
level API calls are acceptably low for their deployment in mobile
devices.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcomputers—
Portable devices; D.4.6 [Operating System]: Security and Protec-
tion—Invasive software; K.6.5 [Management of Computing and
Information System]: Security and Protection

General Terms
Design, Security
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1. INTRODUCTION
Mobile handsets, much like PCs, are becoming more intelligent

and complex in functionality. They are increasingly used to access
services, such as messaging, video/music sharing, and e-commerce
transactions that have been previously available on PCs only. How-
ever, with this new capability of handsets, there comes an increased
risk and exposure to malicious programs (e.g., spyware, Trojans,
mobile viruses and worms) that attempt to compromise data con-
fidentiality, integrity and availability of services on handsets. The
first mobile worm Cabir [15] appeared in June 2004 targeting Sym-
bian OS and shortly thereafter, the anti-virus industry was startled
again by the Windows CE virus, WinCE.Duts, which was the first
file injector on mobile handsets capable of infecting all the executa-
bles in the devices’ root directory. The following three years wit-
nessed a considerable increase in number of both malware families
and their variants. By the end of 2006, the known number of mo-
bile malware families and their variants increased by 59% and 75%
from year 2005, reaching 35 and 186, respectively [30]. Although
mobile malware have not yet caused major outbreak, making some
people mistakenly think that mobile malware exist only in the labs
of anti-virus companies, their threats are far more real and mobile
handsets are expected to become targets of increasing number of
malware [29]. For example, in less than one year, the infection of
both Cabir and Commwarrior worms have been reported in more
than 20 countries [31] and 0.5–1.5% of MMS traffic in a Russian
mobile network is made up of infected messages (which is already
close to the fraction of malicious code in the email traffic) [32].

In response to this increasing threat, a number of handset manu-
facturers and network operators have partnered with security soft-
ware vendors to offer anti-virus programs for mobile devices [25,
11]. However, current anti-virus solutions for mobile devices rely
primarily on signature-based detection and are thus useful mostly
for post-infection cleanup. For example, if a handset is infected
with a mobile virus, these tools can be used to scan the system di-
rectory for the presence of files with specific extensions (e.g., .APP,
.RSC and .MDL in Symbian-based devices) typical of virus pay-
load. However, several important differences exist between mobile
and traditional desktop environments, making conventional anti-
virus solutions less efficient or even unworkable for mobile de-
vices. First, mobile devices generally have limited resources such
as CPU, memory, and battery power. Although handsets’ CPU
speed and memory capacity have been increasing rapidly at low
cost in recent years, they are still much less than their desktop
counterpart. In particular, energy-efficiency is the most critical re-
quirement that limits the effectiveness of complex anti-malware so-
lutions in battery-powered handsets. Because the signature-based
approach must check if each derived signature of an application
matches any signature in the malware database, it will not be ef-
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ficient for resource-constrained mobile devices, especially in view
of the fact that their malware threats will grow at a fast rate with
soon-to-emerge all IP mobile devices based on Wibro and WiMAX
technologies. The emergence of crossover worms and viruses [19]
that infect a handset when it is connected to a desktop for synchro-
nization (and vice versa) requires mobile applications and data to be
checked against both traditional as well as mobile virus signatures.
Furthermore, signature-based detection can be evaded by simple
obfuscation, polymorphism and packing techniques [34, 36], thus
requiring a new signature for almost every single malware variant.
These all limit the extent to which the signature-based approach can
be deployed on resource-constrained handsets. Second, most pub-
lished studies (e.g., [39, 54]) on the detection of Internet malware
focus on their network signatures (i.e., scanning, failed connection,
and DNS request). However, due to the high mobility of devices
and the relatively closed nature of cellular networks, constructing
network signatures of mobile malware is very difficult. In addition,
the emergence of mobile malware that spread via non-traditional
vectors (i.e., SMS/MMS messaging and Bluetooth [4, 14]) makes
possible malware outbreak whose progress closely tracks human
mobility patterns [29], hence requiring novel detection methods.
Also, compared to traditional OSes, Symbian and other mobile
OSes have important differences in the way file permissions and
modifications to the OS are handled. Considering all these differ-
ences, we need a new lightweight classifier for mobile handsets that
accounts for new malware behaviors. The goal of this work is to
develop such a detection framework that overcomes the limitations
of signature-based detection while addressing unique features and
constraints of mobile handsets.

An alternative to the signature-based approach, behavioral de-
tection [13], has emerged as a promising way of preventing the
intrusion of spyware, viruses and worms. In this approach, the run-
time behavior of an application (e.g., file accesses, API calls) is
monitored and compared against malicious and/or normal behav-
ior profiles. The malicious behavior profiles can be specified as
global rules that apply to all applications, as well as fine-grained
application-specific rules. Behavioral detection is more resilient to
polymorphic worms and code obfuscation, because it assesses the
effects of an application based on more than just specific payload
signatures. For example, since encryption/decryption does not al-
ter the application behavior, multiple malware variants generated
via run-time packers (e.g., UPX[2]) can be detected with a single
behavior specification. As a result, a typical database of behavior
profiles should be much smaller than that needed for storing spe-
cific payload signatures for each variant of many different classes
of malware. This makes behavioral detection particularly suitable
for resource-limited handsets. Moreover, behavioral detection has
potential for detecting new malware and zero-day [50] worms, be-
cause new malware are often constructed by adding new behaviors
to existing malware [34] or replacing the obsolete modules with
fresh ones, indicating that they share similar behavior patterns with
existing malware.

However, there are two challenges in deploying a behavioral de-
tection framework. The first is specification of what constitutes
normal or malicious behavior that covers a wide range of applica-
tions, while keeping the rate of false positives low. The second is
on-line reconstruction of potentially suspicious behavior from the
run-time behavior of applications, so that the observed signatures
can be matched against a database of normal and malicious sig-
natures. Our main contribution in this paper is to overcome these
two challenges in the mobile operating environment. The starting
point of our approach is to generate a catalog of malicious behavior
signatures by examining the behavior of current-generation mobile

viruses, worms and Trojans that have thus far been reported in the
wild. We specify an application behavior as a collection of system
events and resource-access attempts made by programs, interposed
by a temporal logic called the temporal logic of causal knowledge
(TLCK). Monitoring system call events and file accesses have been
used successfully in intrusion detection [21] and backtracking [28].
In our approach, we reconstruct higher-level behavior signatures
on-line from lower-level API calls, much like how individual pieces
are put together to form a jigsaw puzzle. The TLCK-based behav-
ior specification addresses the first challenge of behavioral detec-
tion, by providing a compact “spatial-temporal" representation of
program behavior. The next step is fast and accurate reconstruc-
tion of these signatures during run-time by monitoring system calls
and resource accesses so that appropriate alerts can be generated.
This overcomes the second challenge for deployment of behavioral
detection in mobile handsets. In order to detect malicious pro-
grams from their partial or incomplete behavior signatures (e.g.,
new worms that share only partial behaviors with known worms),
we train a machining learning classifier called Support Vector Ma-
chines (SVMs) [8] with both normal and malicious behaviors, so
that partial signatures for malicious behavior can be classified cor-
rectly from those of normal applications running on the handset.
For real-life deployment, the resulting SVM model and the mali-
cious signature database are preloaded onto the handset by either
the handset manufacturer or a cellular service provider. These are
updated only when new behaviors (i.e., not minor variants of cur-
rent malware) are discovered. The updating process is similar to
how anti-virus signatures are updated by security vendors. How-
ever, since totally new behaviors are far fewer than new variants,
the updates are not expected to be frequent.

The paper is organized as follows. We review the related litera-
ture in Section 2. Section 3 presents an overview of system archi-
tecture and design. Section 4 describes the construction of behavior
signatures using the TLCK logic and shows examples from current
mobile worms. Section 5 and 6 describes our implementation of a
monitoring layer and the machine learning algorithm that we use
to detect malicious behavior from normal behavior. Section 7 dis-
cusses possible limitations of our approach and their countermea-
sures. We evaluate the effectiveness of behavioral detection in Sec-
tion 8 against real-world mobile worms and Section 9 concludes
the paper.

2. RELATED WORK
Recently, several behavior-based malware analysis and detec-

tion techniques have been proposed in the desktop environments to
overcome the limitations of traditional signature-based solutions.
We first compare and contrast our approach with related work in
the area of behavior-based malware detection. Besides the differ-
ence in the target environment (mobile vs. desktop environments),
several important features also distinguish our work from previous
research.

Early efforts, such as the one by Forrest et al. [21], are de-
signed for host-based anomaly detection. These approaches ob-
serve the application behavior in the form of system call sequences
and create a database of all consecutive system calls from nor-
mal applications. Possible intrusions are discovered by looking
for call sequences that do not appear in the database. Later work
improves the behavior profile by applying advanced mining tech-
niques on the call sequences, e.g., rule learning algorithms [9],
finite-state automata [41], and hidden Markov model [51]. All
these share the same concept of representing a program’s normal
behavior with system calls and detecting anomalies by measuring
the deviation from normal profiles. However, because these ap-
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proaches ignore the semantics of the call sequences, one of their
limitations is that they could be evaded by simple obfuscation or
mimicry attacks [49]. Christodorescu et al. proposed static semantics-
aware malware detection [34] that attempts to detect code obfusca-
tion by identifying semantically-equivalent instruction sequences
in the malware variants. They apply a matching algorithm on the
disassembled binaries to find the instruction sequences that match
the predefined template of malicious behaviors, e.g., decryption
loop. By abstracting away the name of register and symbolic con-
stants, this approach is resilient to several code obfuscation tech-
niques. However, as it requires exact matching between the tem-
plate and application instructions, attacks using the equivalent in-
struction replacement and reordering are still possible. Similarly,
the approach proposed by Kirda et al. [12] also uses static analy-
sis of application behavior to determine a spyware component in a
browser. It statically extracts a set of Windows API calls invoked in
response to browser events, and identifies the interactions between
the component and the OS via dynamic analysis. A spyware-like
behavior is detected if the component monitors user behavior and
leaks this information via some API calls.

Our approach differs from those mentioned above in several ways.
The first difference lies in the definition of application behavior.
Our approach observes the programs’ run-time behavior at a higher
level (i.e., system events or resource-access) than system calls [21,
51] and machine instructions [34]. The higher-level abstraction al-
lows the detection algorithm to incoporate more semantics of ap-
plication behavior, thus improving the resilience to polymorphism
and malware variants. Second, our approach employs a run-time
analysis, which effectively bypasses the need to deal with code ob-
fuscation, and also avoids the possible information loss of the static
approach, since a static analysis often fails to reveal inter-compo-
nent interaction information [46] and/or disassembly is not always
possible for all binaries. Third, in contrast to Forrest’s anomaly
detection [21] which learns only normal applications’ behavior or
Christodorescu’s misuse detection [34] which matches against only
malicious templates, our approach exploits information on both
normal programs’ and malware’s behaviors, and employs a ma-
chine learning (instead of exact matching) algorithm to improve the
detection accuracy. Since the learning and classification are based
on two opposite-side data sets, this approach conceptually com-
bines the anomaly detection with misuse detection and therefore,
could strike a balance between false positives and false negatives.

There are also several existing works that leverage on the run-
time analysis for improving the detection accuracy. Lee and Mody
collected a sequence of application events at run-time and con-
structed an opaque object to represent the behavior in rich syn-
tax [46]. Their work is similar to ours in that both apply a machine
learning algorithm on high-level behavior representations. How-
ever, their work focuses on clustering malware into different fam-
ilies using nearest-neighbor algorithms based on the edit distance
between data samples, while we emphasize only on distinguishing
normal from malicious programs. Moreover, we use a supervised
learning procedure to make best of existing normal and malicious
program information while clustering is a common unsupervised
learning procedure. Ellis et al. present a novel approach for au-
tomatic detection of Internet worms using their behavioral signa-
tures [13]. These signatures were generated from worm behav-
iors manifested in network traffic, e.g., tree-like propagation and
changing a server into a client. Along the same line, NetSpy [24]
performs behavior characterization and differential analysis on the
network traffic to help automatically generate network-level signa-
tures of new spyware. Our approach is different from the above two
approaches in that we focus on the characterization of host-based

behavior of mobile malware, incorporating a wide range of system
events into behavior signatures.

Previous research we have discussed so far dealt primarily with
the desktop environment and thus are not suitable for addressing
malware in mobile settings which are capable of spreading via non-
traditional vectors such as Bluetooth and SMS/MMS messages. To
the best of our knowledge, this is the first attempt to construct a
behavioral detection model for mobile environments. The most rel-
evant to our work is the analysis of mobile viruses and worms [4,
35, 47]. Many well-known mobile viruses and worms, including
some of the malware mentioned herein, have been analyzed in [4]
and [47]. Morales et al. test virus detectors for handsets against
windows mobile viruses and show that current anti-virus solution
performs poorly in identifying virus variants [36]. There have also
been recent studies to model propagation of such malware in cellu-
lar and ad-hoc (e.g., in Bluetooth piconets) networks [35, 52, 53].
For example, Mickens and Noble proposed the probabilistic queu-
ing for modeling malware propagation in an ad-hoc Bluetooth en-
vironment [35]. Fleizach et al. evaluated the speed and severity
of random contact worms in mobile phone networks under sev-
eral scenarios (e.g., MMS and VoIP) [20], showing aggressive mal-
ware could quickly bottleneck the capacity of network links and
launch denial-of-service attacks. Although our focus is primarily
handset-based detection, analysis and modeling of mobile viruses
and worms can help us devise appropriate behavior signatures and
response mechanisms. There are also several recent efforts on de-
tecting mobile malware based on their network characteristics. For
example, Sarat and Terzis applied random moonwalks to identify
mobile worms (focusing on the worms spreading in the wireless
domains where mobility is caused by the physical movement of
mobile hosts, such as laptops) and their origins. Cheng et al. pro-
posed SmartSiren [7], a collaborative virus detection and alert sys-
tem for smartphones. In SmartSiren, a centralized proxy collects
the communication activities from a number of smartphones and
performs a statistical analysis on the collected data to detect ab-
normal communication patterns such as excessive daily usage of
SMS/MMS messages.

Applying machine learning algorithms in anomaly detection has
also received considerable attention [22]. Recently, Support Vector
Machines (SVMs) [40]—a supervised learning algorithm based on
the pioneering work of Vapnik [48] and Joachims [26] on statisti-
cal learning theory—have been successfully applied in a number of
classification problems. For example, Mukkamala et al. compared
the performance of neural network-based and SVM-based systems
for intrusion detection using a set of DARPA benchmark data [37].
Honig et al. describe Adaptive Model Generation (AMG) [23], a
real-time architecture for implementing data-mining-based intru-
sion detection systems. AMG uses SVMs as one specific type of
model-generation algorithms for anomaly detection.

3. SYSTEM OVERVIEW
Figure 1 illustrates the architecture of the proposed framework.

The left side of the figure shows the pre-deployment step in a ser-
vice provider’s network. The handset manufacturer, in cooperation
with a service provider, develops a behavior classifier trained by
the normal behavior of typical services on handsets as well as mali-
cious patterns for currently-known mobile malware. The classifier
along with a behavior signature database is then deployed in the
handsets, where the framework consists of three building blocks.
The monitor agent collects the application behavior in the form
of system events/API calls at multiple locations (e.g., Bluetooth
and MMS) and reports aggregated behavior signatures to the de-
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Figure 1: System Overview

tection agent. Upon receiving the signature, the detection agent
performs machine-learning classification with the pre-loaded clas-
sifier and labels the activity as malicious or innocent. This result
could be used for activating response mechanisms (e.g., requesting
the user’s verification, rate-limiting, drop packets,etc.) against any
detected malicious behavior. Additionally, since the classifier pa-
rameters and database need to be updated when new mobile threats
are discovered, the service provider can update the handset detec-
tion agent with over-the-air updates. In what follows, we will detail
this proposed behavioral detection framework.

4. MALICIOUS BEHAVIOR SIGNATURES

4.1 Temporal patterns
We define behavior signature as the manifestation of a specifi-

cation of resource accesses and events generated by applications,
including malware. We are interested in only those behaviors that
indicate the presence of a malicious activity, such as damage to the
handset operating environment (e.g., draining the battery or over-
writing system files), installing a worm payload, sending out an
infected message, etc. For this, it is not sufficient to monitor a sin-
gle event (e.g., a file read/write access) of a process in isolation in
order to classify an activity to be malicious. In fact, there are many
steps a malicious worm or virus performs in the course of its life-
cycle that may appear to be harmless when analyzed in isolation.
However, a logical ordering of these steps over time often clearly
reveals the malicious intent. The temporal pattern—i.e., the prece-
dence order of these events and resource accesses—is therefore key
to detecting such malicious intent. For example, consider a sim-
ple file transfer by calling the Bluetooth OBEX system call (e.g.,
CObexClient::Put()) in Symbian OS. This is often used by appli-
cations for exchanging data or files among nearby handsets. On
their own, any such calls will appear harmless. However, when the
received file is of type .SIS (Symbian installation file) and that file
is later executed, and the installer process seeks to overwrite files
in the system directory, we can say with a high degree of certainty
that the handset has been infected by a virus such as Mabir [44]
or Commwarrior [43]. With subsequent monitoring of the files and
processes touched by the above activities, the confidence level of
detection can be improved further. This means that if we view the
handset as a system exhibiting a wide range of behaviors over time,
we can classify some of the temporal manifestations of these behav-
iors as malicious. Note that the realization of specific behaviors is
dependent on how a user interacts with the handset and the specific
implementation (e.g., infection vectors) of a malware. However,
the specification of temporal manifestation of malicious behaviors
can still be prescribed a priori by considering their effects on the
handset resources and the environment. For this reason, behavioral
detection is more resilient to code obfuscation and polymorphism
than the signature-based detection.

A simple representation of malicious behavior can be given by
ordering the corresponding actions using a vector clock [33] and
applying the “and” operator to the actions. However, for more
complex behavior that requires complicated temporal relationships
among actions performed by different processes, simple temporal
representations may not be sufficient. This suggests that behavior
signatures are best specified using temporal logic instead of clas-
sical propositional logic. Propositional logic supports reasoning
with statements that evaluate to be either true or false. On the other
hand, temporal logic allows propositions whose evaluation depends
on time, making it suitable for describing sequences of events and
properties of correlated behaviors. There have been significant re-
search in applying temporal logic to study distributed systems, and
software programs. Among the results of this research, the tem-
poral logic of causal knowledge (TLCK) [38] allows concurrency
relations on branching structures that are naturally suitable for de-
scribing actions of multiple programs. Therefore, we adopt the
specification language of TLCK to represent malicious behaviors
within the context of a handset environment.

4.2 Temporal Logic of Malicious Behavior
This section describes how to specify malicious behavior in terms

of system events, interposed by temporal and logical operators. The
specification of malicious behavior is the first step of any behav-
ioral detection framework. Though our presentation is primarily
targeted at the Symbian OS, it can be extended for other mobile
OSes as well.

First, let us formally define a behavior signature as a finite set of
propositional variables interposed using TLCK, where each vari-
able (when true) confirms the execution of either (i) a single or
an aggregation of system calls, or (ii) an event such as read/write
access to a given file descriptor, directory structure or memory lo-
cation. Note that we do not keep track of all system calls and events
generated by all processes—doing so will impose unacceptable per-
formance overhead in constructing behavior signatures. Therefore,
only those system calls and events that are used in the specifica-
tion of malicious behavior are to be monitored. In fact, we find that
specifying behavior signatures for the majority of mobile malicious
programs reported to date, requires monitoring only a small subset
of Symbian API calls. Let PS = {p1, p2, · · · , pm}S{i|i ∈ N} be a
set of m atomic propositional variables belonging to N malicious
behavior signatures. Atomic propositions can be joined together to
form higher-level propositional variables in our specification. The
logical operators not (¬) and and (∧) are defined as usual. The
temporal operators defined using past-time logic are as follows:

• �t true at time t

• ♦t true at some instant before t

• �t true at all instants before t

• ♦t−k
t true at some instant in the interval [t −k, t].

♦t−k
t is a quantified operator to range k time instants over the

time variable t. We make the following assumptions.

1. Time is represented by a sequence of discrete time instants.

2. A duration is given by a sequence of time instants with initi-
ating and terminating instants.

3. A system call or an event is instantiated at a given instant but
may take place over a duration.
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4. The strong synchrony hypothesis [3] holds for the handset
operating system environment, i.e., the instantiation of a sin-
gle event at a given instant can generate other events syn-
chronously. In case of synchronous events, one can still use
relative order to denote relationship among events.

5. Higher-level events and system calls of greater complexity
can be composed by temporal and logical predicates of the
above atomic propositional variables.

To illustrate the application of the above logic, we apply it to
specify the behavior of a family of mobile worms, Commwarrior.
Following this, we will specify behavior signatures that are general
enough to cover different families of mobile worms. This general-
ization is a key benefit of using a behavioral approach as opposed to
payload signatures, given the small memory and storage footprint
of these devices.

4.3 Example: Commwarrior Worm
The Commwarrior worm [43] targets Symbian Series 60 phones

and spreads via both Bluetooth and MMS messages. The worm
payload is transferred via a SIS file with randomly-generated names.
The payload consists of the main executable commwarrior.exe and
a boot component commrec.mdl that are installed under \System
\updates, \System\Apps and \System\Recogs directories. Once
the installation of the SIS file is permitted by the user, the SIS file
installer installs the payload and automatically starts the worm pro-
cess commwarrior.exe. It then rebuilds a SIS file from the above
files and places it as \System\updates\commw.sis. Commwar-
rior spreads via Bluetooth by contacting all devices in range and
by sending a copy of itself in a round-robin manner during the
time window from 08:00 to 23:59 hours. It also spreads via MMS
by randomly choosing a phone number from the device’s phone-
book, and sends an MMS message with commw.sis as an “applica-
tion/vnd.symbian.install" MIME attachment so that the target de-
vice invokes the Symbian installer upon receiving the message. The
daily window for replication via MMS is only from 00:00 to 06:59
hours. Commwarrior also resets the device on the 14-th day of
each month, deleting all users’ settings and data. Figure 2 graphi-
cally describes the Commwarrior’s behavior. Our goal is to convert
this graphical representation to a behavior signature using logical
and temporal operators defined in Section 4.2.

Note that the specification of Commwarrior behavior requires the
monitoring of a small number of processes and system calls (N =
5), namely, the Symbian installer, the worm process (commwar-
rior.exe), two Symbian Bluetooth API calls and the native MMS
messaging application on the handset. By generalizing the behav-
ior signatures across many families of mobile malware, we hope to
keep N to be a small number. To specify Commwarrior with TLCK
logic, we first identify the set PS of atomic propositional variables:

ReceiveFile(f,mode,type): Receive file f via either mode= Blue-
tooth or mode=MMS of type SIS.

InstallApp(f,files,dir): Install a SIS archive file f by extracting files
and installing them in directory dir.

LaunchProcess(p,parent): Launch an application p by a parent
process, which is typically the Symbian installer.

MakeSIS(f,files): Create a SIS archive file f from files f iles (files
are assumed to have fully-qualified path names).

BTFindDevice(d): Discover a random Bluetooth device d nearby.

Figure 2: Behavior signature for Commwarrior worm

OBEXSendFile(f,d): Transfer a file f (with full path name) to a
nearby Bluetooth device d via the OBEX protocol.

MMSFindAddress(a): Look up a random phone number a in the
device Phonebook.

MMSSendMessage(f,a): Send MMS message with attachment f to
a random phone number a.

SetDevice(act,< condition >): Perform action act (e.g., reset de-
vice) when < condition > holds true. < condition > is typically
expressed as a set of other predicates to verify device time and date
(see below).

VerifyDayofMonth(date,< mm : dd >): Verify if current date is <
mm : dd >, e.g., “the 14th day of any month."

Next, we combine the atomic variables into seven higher-level
signatures that correspond to the major behavioral steps of the worm
family. Notice that since the filename of a malware’s payload and
its activation time can be changed easily(as in case of many vari-
ants of commwarrior worms), when constructing high level signa-
tures we exclude these detailed information to improve the gener-
ality of the behavior signatures. Four of these seven signatures can
be placed in our malicious behavior database to trigger an alarm.
In particular, “bt − trans f er” and “mms− trans f er” are perfectly
harmless signatures, where as “activate−worm”, “run−worm−
1”, “run−worm− 2” and “run−worm− 3” can be used to warn
the user, or trigger an appropriate preventive action, e.g., quarantine
an outgoing message. Later, in Section 6, we show that malicious
behavior can be detected more accurately by training an SVM.

• �t(bt − trans f er) = ♦t(BT FindDevice(d))∧
(�t(OBEXSendFile( f ,d)))
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• �t(mms− trans f er) = ♦t(MMSFindAddress(a))∧
(�t(MMSSendMessage( f ,a)))

• �t(init −worm) = �t(ReceiveFile(mode = Bluetooth))
∨ (�t(ReceiveFile(mode = MMS)))

• �t(activate−worm) = ♦t(init −worm)∧
(�t(InstallApp)∧�t(LaunchProcess))

• �t(run−worm−1) = ♦t(activate−worm)∧
(�t(MakeSIS)∧�t(Veri f yDayo f Month)∧
(♦0:00

1:00(SetDevice)))

• �t(run−worm−2) = ♦t(activate−worm)∧
(�t(MakeSIS)∧ (♦8:00

23:59(bt − trans f er)))

• �t(run−worm−3) = ♦t(activate−worm)∧
(�t(MakeSIS)∧ (♦0:00

6:59(mms− trans f er)))

4.4 Generalized Behavior Signatures
In order to create generalized signatures that are not specific to

each variant of malware, we studied more than 25 distinct families
of mobile viruses and worms targeting the Symbian OS, includ-
ing their 140 variants reported thus far. For each malware family,
we generated propositional variables corresponding to its actions,
identified the argument lists for each variable, and assigned TLCK
operators to construct the behavior signatures for the malware fam-
ily. Then, we looked at these signatures across families of malware,
and wherever possible, extracted the most common signature ele-
ments and recorded the Symbian API calls and applications that
must be monitored. The result is a database of behavior signa-
tures for malware targeting Symbian-powered devices reported to
date that depends very little on specific payload names and byte
sequences, but rather on the behavior sequences. Currently the be-
havior signatures are generated by hand and we plan to investigate
automatic feature extraction and signature generation as a future
work. We find that the malware actions can be naturally placed into
three categories i.e., actions that affect User Data Integrity (UDI),
actions that damage System Data Integrity (SDI) and Trojan-like
Actions, based on which layer of the handset environment the be-
havior manifests itself. The categorization identifies three points
of insertion where malware detection and response agents can be
placed in the mobile operating system.

(1) User Data Integrity (UDI): These actions correspond to dam-
aging the integrity of user data files on the device. Most common
user data files are address and phone books, call and SMS logs, and
mobile content such as video clips, songs, ringtones, etc. These
files are commonly organized in the \System\Apps directory on
the handset. The actions (and, in turn, propositional variables de-
fined to express them) in this group, when true, confirm execution
of system and API calls that open, read and write these data files.

Example: Acallno [18] is a commercial tool for monitoring SMS
text messages to and from a target phone — the tool has been re-
cently classified as a spyware by security software vendors. Acallno
forwards all incoming and outgoing SMS messages on the desig-
nated phone to a pre-configured phone number. We define three
UDI variables, CopySMSToDraft(msg), RemoveEntrySMSLog(msg)
and ForwardSMSToNumber(msg, phone number), to represent the
major tasks performed by Acallno. CopySMSToDraft(msg) copies
the last SMS message msg received into a new SMS message in the
Drafts folder. RemoveEntrySMSLog(msg) is true when the corre-
sponding entry for msg is successfully deleted from the SMS log so
that the user is not aware of the presence of Acallno. ForwardSM-
SToNumber(msg,phone number) is true when msg is forwarded to

an external phone number. These three variables, when interposed
with appropriate temporal logic, represent the behavior of “SMS
spying” on a device. The UDI variable called “InstallApp(f, files,
dir)" that we have already used earlier for Commwarrior has the
following argument values for Acallno: f [SMSCatcher.SIS], files
[s60calls.exe, s60system.exe, s60system1.exe, s60calls.mdl, s60sysp.mdl,
s60syss.mdl] and dir [\System\Apps,\System\recogs]. These
four UDI actions are present in all SMS spyware programs such as
Acallno, MobiSpy and SMSSender, and the resulting generalized
behavior signature can be used for their detection in place of their
specific payload signatures.

(2) System Data Integrity (SDI): Several malware attempt to dam-
age the integrity of system configuration files and helper applica-
tion data files by overwriting the original files in the Symbian sys-
tem directory with corrupted versions. This is possible for two rea-
sons: (i) the malware files are installed in flash RAM drive C: un-
der Symbian with the same path as the OS binaries in ROM drive
Z:. The Symbian OS allows files in C: take precedence over files
in Z: with the same name and pathname, and therefore, any file
with the same path can be overwritten; and (ii) Symbian does not
enforce basic security policies such as file permissions based on
user and group IDs and access control lists. As a result, the user,
by agreeing to install an infected SIS file, unknowingly allows the
malware to modify the handset operating environment. The SDI
actions (and the propositional variables) correspond to attempts to
modify critical system and application files including files required
at device startup.

Example: The actions of Skulls, Doomboot (or SingleJump),
AppDisabler, and their variants can be categorized under SDI. These
malware overwrite and disable a wide range of applications run-
ning under Symbian, including InfraRed, File Manager, System
Explorer, Antivirus (Simworks, F-Secure), and device drivers for
camera, video recorders, etc. The target directories are, for ex-
ample, \System\Apps\IrApp\ and \System\ Apps\BtUi\ for
InfraRed and Bluetooth control panels, respectively. Any file with
the ".APP" extension in these directories is an application that is
visible in the applications menu. If any of these files is overwritten
with a corrupted version, the corresponding application is disabled.
Since there are many application directories under \System\Apps,
our goal is to monitor only those directories that contain critical
system and application files such as fonts, file manager, device
drivers, startup files, anti-virus, etc. We define the variable Re-
placeSystemAppDirectory(directory) where directory is a canoni-
cal pathname of the target directory of a SIS archive.1 The variable
returns true when directory matches against a hash table of pre-
compiled list of critical system and application directories. At this
point, because this is a potentially dangerous operation, the instal-
lation process can be suspended until the user permits to go ahead
with the installation. However, since the user may be tricked by
attacker’s social engineering tactics and fail to recognize the mali-
cious application, these generalized SDI signatures, together with
other behavior signatures, will later go through the machine learn-
ing algorithm to identify malware behavior.

Another serious SDI action is deletion of subdirectories under
\System. One of the actions performed by the Cardblock Trojan is
deleting bootdata, data, install, libs, mail in \System.
The install directory contains installation and uninstallation in-
formation for applications. Many Symbian applications log error
codes in \System\bootdata when they generate a panic. With-
out these directories, most handset applications become unusable.

1When there are multiple target directories, ReplaceSystemAppDi-
rectory(directory) is evaluated for each entry in the target list.
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As a general rule, no user application should be able to delete these
directories. We, therefore, define a variable called DRSystemDirec-
tory(directory) where directory checks against a hash table of these
directories whenever a process attempts to either delete or rename
a subdirectory under \System.

(3) Trojan-like Actions: This category of actions are performed
by a malware when it is delivered to a device via either another
malware (“dropper") or an infected memory card. These actions
attempt to compromise the integrity of user and system data on
the device (without requiring user prompts) by exploiting specific
OS features and by masquerading as an otherwise useful program
(“cracking"). Once a malware infects a device with Trojan-like
actions, it may use UDI and SDI actions to alter the handset en-
vironment. To date, we find that there are two types of vectors
for mobile Trojans: (i) memory cards and (ii) other malware. The
memory cards used in cell phones are primarily Reduced-Size Mul-
tiMediaCard (RS-MMC) and micro/mini Secure Digital (SD) cards
that can be secured using a password. the Symbian drive E: is used
for memory cards with the same \System directory structure as of
the other drives.

Example: The Cardblock Trojan mentioned earlier, is a cracked
version of a legitimate Symbian application called InstantSis. In-
stantSis allows a user to create a SIS archive of any installed ap-
plication and copy them to another device. Cardblock appears to
have the same look and feel of InstantSis, except that when the
user attempts to use the program, it blocks the MMC memory card
and deletes the subdirectories under \System (SDI action). The
Trojan-like action of Cardblock is the locking of the MMC card
by setting a random password to the card. Detection of Cardblock
must be done either when it is first installed on the device or before
it actually performs its two tasks (MMC blocking and deleting sys-
tem directories). We define a variable called SetPasswdtoMMC() to
capture the event that a process is attempting to set a password to
the MMC card without prompting the user.

SDI Actions and Symbian OS V9: In order to restrict applications
from accessing the entire filesystem, Symbian has recently intro-
duced capabilities beginning with Symbian OS v9 [45]. A capa-
bility is an access token that allows the token holder to access re-
stricted system resources. In previous versions of Symbian OS, all
user-level applications had read/write access to the entire filesys-
tem, including \System and all its subdirectories. Therefore, ma-
licious applications can easily overwrite or replace critical system
files in all previous versions of Symbian, including OS v8. How-
ever, in the new Symbian platform security model, access to cer-
tain functions and APIs will be restricted by capabilities. In order
to access the sensitive capabilities, an application must be “Sym-
bian Signed" by Symbian. In case of self-certified applications,
the phone manufacturer must recommend the application devel-
oper for access to desired capabilities from Symbian. The three
capabilities that can prevent many SDI actions currently performed
by mobile malware are AllFiles, TCB (Trusted Computing Base)
and DiskAdmin. Without these capabilities, an application will no
longer be able to access the “\sys" directory where most of the
critical system executables and data are stored. For example, it re-
quires AllFiles capability to read from and TCB capability to write
to “\sys". Most user applications in Symbian OS v9 are allowed
to access a single directory called “\sys\bin" to install executa-
bles and create a private directory called “\private\SID" for
temporary files, where SID refers to the Secure ID of the caller ap-
plication, assigned when the application is Symbian Signed. There
are also important changes in OS v9 regarding how an applica-

tion is installed. The “\System\Apps" subdirectory previously
used by applications for storing application information (resource
files, bitmap files, helper application, etc.) is no longer supported.
Instead, a separate filesystem path called “\resource\apps" is
used for storing application information. By separating system and
application data in different filesystems and by introducing capa-
bilities for accessing sensitive system resources, Symbian OS v9
clearly improves the security model for mobile devices and will
prevent a number of current-generation malware from damaging
the integrity of the device.

However, Symbian OS v9 is unlikely to completely stop mobile
malware for the following reasons. First, given the vast number of
mobile applications available on the Internet, one cannot expect all
applications to be signed with the Symbian root certificate. In fact,
most third party applications are installed using self-signed certifi-
cate and thus, cannot be free of malicious codes. Second, it may
not prevent mobile worms that spread via SMS/MMS or Bluetooth
and social engineering techniques. Third, there will increasingly
be higher-level vulnerabilities (e.g., Web scripts) as handsets be-
come Internet-capable and these vulnerabilities could be exploited
by malware to propagate itself.

5. RUN-TIME CONSTRUCTION OF
BEHAVIOR SIGNATURES

To build a malware detection system, the behavior signatures
must be constructed at run-time by monitoring the target system
events and API calls. We describe next the implementation of the
monitoring layer in Symbian Operating System.

5.1 Monitoring of API Calls via Proxy DLL
Because Symbian is a proprietary OS and provides very little

public information about either kernel monitoring APIs or system-
wide hooks, intercepting API calls is very difficult, if not impossi-
ble. Fortunately, the Symbian SDK is accompanied with a Symbian
OS emulator, which accurately emulates almost all functions of a
real handset. The emulator implements the Symbian APIs in the
form of Dynamic Link Libraries (DLLs). This is the feature that we
were able to exploit to build the monitoring system. Specifically,
we use a technique called Proxy DLL to collect the API traces of
applications running in the emulator. Proxy DLL is a popular tech-
nique used by anti-virus tools, e.g., to hook into Winsock’s I/O
functions and network data for virus signatures [27].

CObexClient :: 
Put(“Cabir.sis”, 

istatus)

CObexClient:: 
Put(“Cabir.sis”, 

istatus)

Application
CObexClient::Put(obj, istatus) {
  Rlibrary::Load(irobex.dll);
  FuncAddr = Rlibrary::Lookup(20);
  (*FuncAddr)(obj, istatus); 
 }

irobex.lib irobex.dll

a)  An application calls an exported function CObexClient::Put() in irobex.dll

Application
irobex.lib

irobex.dll (Proxy dll)

b)  Using Proxy DLL to log call events of CObexClient::Put()

EXPORT_C 
CObexClient::Put(obj,istatus)
{
   //Send Object via BT
   ….
}

EXPORT_C 
CObexClient::Put(obj,istatus) {
   Rlibrary::Load(orign_irobex.dll);
   FuncAddr = Rlibrary::Lookup(20);
   ret = (*FuncAddr)(obj,istatus);
   log(timestamp, ret, obj, istatus) ;      
}

orign_irobex.dll

CObexClient::Put(obj, istatus) {
  Rlibrary::Load(irobex.dll);
  FuncAddr = Rlibrary::Lookup(20);
  (*FuncAddr)(obj, istatus);  
}

EXPORT_C 
CObexClient::Put(obj,istat
us){
   //Send Object via BT
   ….
}

Figure 3: Proxy DLL to capture API call arguments

A proxy DLL is a shim between the application and the real DLL
file. It is named exactly the same as the original DLL and gets
loaded in the run time by the application. The proxy DLL loads the
real DLL and passes all API calls from the application to the orig-
inal DLL. This allows the proxy DLL to intercept and record ev-
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ery detail about the API call events from the application while still
maintaining its correct operation. Figure 3 illustrates an example
of a proxy DLL that we implemented in the Symbian OS emulator
to log CObexClient::Put() API call (exported by irobex.dll), a func-
tion commonly used by mobile worms to transfer infected payload
to nearby devices. The .lib file, which is called import library, is
statically linked to the application and invokes the exported func-
tions in the original DLL with functions’ ordinal number.2 Without
the proxy DLL (Figure 3(a)), when CObexClient::Put() is called,
the import library loads the original irobex.dll, searches for the en-
try point of the function by its ordinal number (i.e., 20) and in-
vokes the function. On the other hand, in Figure 3(b), the orig-
inal irobex.dll is replaced with a proxy DLL which also exports
CObexClient::Put(), but is instrumented with logging functional-
ities. When the application calls CObexClient::Put(), the proxy
DLL will be loaded into the memory and spy the application’s call
events (e.g., timestamp, caller ID, arguments, etc.). Meanwhile, the
proxy DLL passes the function call to the original DLL to ensure
the normal operation. Since we are not interested in logging every
API call, the monitoring system was customized to log only those
functions that can be exploited by mobile malware, i.e., a small
set of functions that constitute the atomic proposition variables de-
scribed in Section 4. The number of function calls to be monitored
may increase in future as new malware families emerge.

The rest of this section describes a two-stage mapping technique
that we have used to construct the behavior signatures from the cap-
tured API calls. Figure 4 presents a schematic diagram of how low-
level system events and API calls are first mapped to a sequence of
atomic propositional variables (see Section 4.2), and then by graph
pruning and aggregation, a set of behavior signatures.

5.2 Stage I: Generation of Dependency Graph
Using the proxy DLL, our monitoring agent logs a sequence of

target API calls invoked by running processes. The next step is to
correlate these API calls using the TLCK logic described in Sec-
tion 4.2, and build the behavior signatures (see Section 4). To effi-
ciently represent the interactions and correlation among processes,
we construct a dependency graph from logged API calls by apply-
ing the following rules to the captured API calls.

Intra-process rule: API calls that are invoked by the same pro-
cess are directly connected in the graph according to their tem-
poral order. For example, in Figure 5, we represent the depen-
dency graphs for two processes that generate two atomic proposi-
tional variables, MakeSIS(f,files) and OBEXSendFile(f,d), respec-
tively. The dependency graph for Process 2 (a set of API calls for
sending files via Bluetooth) is an example of intra-process tempo-

2Each function exported by a DLL is identified by a unique ordinal
number. To facilitate programming, each DLL is often accompa-
nied by an import library which allows the application to invoke
DLL functions by function names instead of their ordinal numbers.

Process 2
OBEXSendFile
(Caribe.sis,..) CObexClient::NewL

(obexProtocolInfo )

CObexClient ::
Connect ()

CObexFileObject 
::InitFromFileL(cabir.sis)

CObexClient ::
Put(FileObject)

open(“c:\system\apps\
caribe\caribe.app”, “r”)

open(“c:\system\apps\
caribe\flo.mdl”, “r”)

f1=open(“c:\system\apps\
caribe\caribe.sis ”, “w”)

close(f1)

Process 1 
MakeSIS(caribe.sis...)

Inter Process 
Link

Inra Process 
Link

MakeSIS(caribe.sis,..)

OBEXSendFile
(Caribe.sis,..)

Aggregate to 
MakeSIS 
(caribe.sis,..)

OBEXSendFile
(Caribe.sis,..)

Figure 5: Dependency graphs for constructing atomic proposi-
tional variables

ral ordering. Because all the functions had been called by a single
process, they are connected with directed arrows indicating their
temporal order. The result of this temporal ordering is the atomic
propositional variable OBEXSendFile(caribe.sis,d) becoming true.

Inter-process rule: Because malware behavior often involve
multiple processes, we define following rules to identify inter-process
relationships. (1) Process-process relationship where a process
creates another process by forking and cloning within the context
of a single application. In this case, the API calls become a new
branch in the forked or cloned process. (2) Process-file relation-
ship where a process creates, modifies or changes the attributes
of a file, and the same file is read by another process. Estab-
lishing a chain of events from process-file access relationships is
similar to the concept of backtracking [28]. Figure 5 shows an
example of the inter-process dependency rule, where Process 1
packages some files into a SIS file (caribe.sis), and subsequently,
Process 2 reads the file and sends it to in-range devices via Blue-
tooth. This constructs a larger signature: MakeSIS(caribe.sis, ..)∧
OBEXSendFile(caribe.sis, ..).

5.3 Stage II: Graph Pruning and Aggregation
Since every process has its own call-chain graph and may be

connected to other processes via dependency links, the graph for
system-wide process interactions could grow very large. A sim-
ple expiration policy is to destroy the call-chain graph of a pro-
cess upon its termination. However, this has an undesirable conse-
quence because it will not allow building a future inter-process de-
pendency graph with propositional variables generated by another
process. This “information loss" can be exploited by a mobile mal-
ware by waiting for some time after each of its steps and avoid-
ing detection by not letting its behavior signature to be completely
built! To avoid such a scenario while still keeping memory require-
ments reasonable for generating behavior signatures, we specify the
following rules in the monitoring layer. The dependency graph and
propositional variables generated from API calls made by a process
are discarded (upon its termination) if and only if:
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1. The process didn’t have inter-process dependency relation-
ships with any other process (i.e., it was independent);

2. Its graph doesn’t partially match with any malicious behav-
ioral signatures;

3. It didn’t create or modify any file or directory in the list of
directories maintained in a hash table of critical user and sys-
tem directories (see Section 4.4); and

4. It is a helper process that takes input from a process and re-
turns data to the main process.

Since the dependency graphs can grow over time, we aggregate
each API call sequence (e.g., Process 1 and Process 2 in Figure 5)
as early as possible to reduce the size of the overall storage. Fi-
nally, to construct a behavior signature by composing TLCK opera-
tors over the propositional variables, we use a state transition graph
for each behavior signature, where the transition of each state is
triggered by one or more atomic propositional variables. The ad-
vantage of encoding atomic variables into a state transition graph
is that the monitoring system can easily validate the variable from
operations performed in Stage I. A behavior signature is, therefore,
constructed as a jig-saw puzzle by confirming a set of propositional
variables along its state transition graph. The outcome of the two
stages is a behavior signature that is to be classified either malicious
or harmless by the detection system.

6. BEHAVIOR CLASSIFICATION BY
MACHINE LEARNING ALGORITHM

The behavior signatures for the complete life-cycle of a malware,
such as those developed in Section 4, are placed in the behavior
database for run-time classification. However, if we have to wait
until the complete behavior signature of a malware is constructed,
it may be too late to prevent the malware from inflicting some dam-
age to the handset. In order to activate early response mechanisms,
our malicious behavior database must also contain partial signa-
tures that have a high probability of eventually manifesting as ma-
licious behavior. These partial signatures (e.g., sms-transfer and
init_worm in Section 4.3) are directly constructed from the com-
plete life-cycle malware signatures in the database. However, this
introduces the problem of false-positives, i.e., partial signatures that
may also represent the behavior of legitimate applications running
on the handset, but may be falsely classified as malicious. More-
over, the behavior-detection system can detect even new malware
or variants of existing malware, whose behavior is only partially
matched with the signatures in the database. Therefore, instead of
exact matching, we need a mechanism to classify partial (or incom-
plete) malicious behavior signatures. We use a learning method for
classifying these partial behavior signatures from the training data
of both normal and malicious applications. In what follows, we de-
scribe a particular machine learning approach called Support Vec-
tor Machines (SVMs) that we applied for the binary classification
of partial behavior signatures.

6.1 Support Vector Machines
SVMs, based on the pioneering work of Vapnik [48] and Joachims

[26] on statistical learning theory, have been successfully applied
to a large number of classification problems, such as intrusion de-
tection, gene expression analysis and machine diagnostics. SVMs
address the problems of overfitting and capacity control associated
with the classical learning machines such as neural networks. For
a given learning task with a finite training set, the learning machine
must strike a balance between the accuracy obtained on the given

training set and the generalization of the algorithm which measures
its ability to learn future unknown data without error. The flexible
generalization ability of SVMs makes it suitable for real-world ap-
plications with a limited amount of training data. We refer to solv-
ing classification problems using SVMs as Support Vector Classi-
fication (SVC).

Let (x1,y1), · · · ,(xm,ym) denote m observations (or the training
set) of behavior signatures x. Each behavior signature xi is of di-
mension d corresponding to the number of propositional variables,
and yi =±1 is the corresponding class label (i.e., malicious or non-
malicious) assigned to each observation i. We denote the space of
input signatures (i.e., xi’s) as Θ. Given this training data, we want
to be able to generalize to new observations, i.e., given a new obser-
vation x̄ ∈ Θ, we would like to predict the corresponding y ∈ {±1}.
To do this, we need a function, k(x, x̄), that can measure similarity
(i.e., the scalar distance) between data points x and x̄ in Θ:

k : Θ×Θ �→ ℜ(x, x̄) � k(x, x̄). (1)

The function k is called a kernel and is most often represented as
a canonical dot product. For example, given two behavior vectors
x and x̄ of dimension d, the kernel k can be represented as

k(x · x̄) = Σd
i=1(x)i · (x̄)i. (2)

The dot-product representation of kernels allows geometrical in-
terpretation of the behavior signatures in terms of angles, lengths
and their distances. A key step in SVM is mapping of the vec-
tors x from their original input space Θ to a higher-dimensional
dot-product space, F , called the feature space. This mapping is
represented as Φ : Θ → F . The kernel functions are chosen such
that the similarity measure is preserved as a dot product in F :

k(x, x̄) → K(x, x̄) := (Φ(x) ·Φ(x̄)) (3)

There are many choices for the kernel functions, such as poly-
nomials, radial basis functions, multi-layer perceptron, splines and
Fourier series, leading to different learning algorithms. We refer
to [8] for an explanation of requirements and properties of kernel-
induced mapping functions. We found the Gaussian radial basis
functions an effective choice for our classification problem (σ is
the width of the Gaussian):

K(x, x̄) = exp(−‖x− x̄‖2

2σ2 ). (4)

With these definitions, the two basic steps of SVM can be written
as: (i) map the training data into a higher-dimensional feature space
via Φ, and (ii) construct a hyperplane in feature space F that sep-
arates the two classes with maximum margin. Note that there are
many linear classifiers that can separate the two classes but there
is only one that maximizes the distance between the closest data
points of each class and the hyperplane itself. The solution to this
linear hyperplane is obtained by solving a distance optimization
problem given below. The result is a classifier that will work well
on previously-unseen examples leading to good generalization. Al-
though the separating hyperplane in F is linear, it yields a nonlinear
decision boundary in the original input space Θ. The properties of
the kernel function K allow computation of the separating hyper-
plane without explicitly mapping the vectors in the feature space.
The equation of the optimal separating hyperplane in the feature
space to determine the class of a new observation x is given by:

y = f (x) = sgn

(
m

∑
i=1

yi αi · (Φ(x) · Φ(xi)) + b

)

= sgn

(
m

∑
i=1

yi αi · K(x,xi) + b

)
. (5)
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The Lagrange multipliers αi’s are found by solving the following
optimization problem:

maximize W (α) =
m

∑
i=1

αi − 1
2

m

∑
i, j=1

αiα jyiy j K(xi,x j) (6)

subject to the following constraints:

m

∑
i=1

αiyi = 0, αi ≥ 0, i = 1,2, · · · ,m (7)

where xi’s denote the training data of the behavior vectors. Note
that only those data that have non-zero αi contribute to the hyper-
plane equation. These are termed Support Vectors (SVs). If the
data points are linearly separable in the feature space, all the SVs
will lie on the margin and therefore, the number of SVs are typi-
cally small. This means that the hyperplane will be determined by
only a small subset of the training set and the other points in the
training set will have no effect on the hyperplane, so the size of the
resulting signature database will be small and suitable for resource-
constrained handset environments. With an appropriate choice of
kernel K, one can transform a linearly non-separable training set
into one that is linearly separable in the feature set and apply the
above equations as shown. The parameter b (also called the “bias”)
can be calculated from:

b =
1
2

m

∑
i=1

αiyi[K(xi,xr)+K(xi,xs)] (8)

where xr and xs are any SVs from each class satisfying αr ,αs > 0
and yr = −1,ys = 1.

In practice, a separating hyperplane may not always be computed
due to high overlap of the two classes in the input behavior vec-
tors. There are modified formulations of the optimization problem,
e.g., with slack variables and soft margin classifiers [8], resulting
in well-generalizing classifiers in this case.

7. POSSIBLE EVASION & LIMITATIONS,
AND THEIR COUNTERMEASURES

We now discuss (i) several possible ways attackers may evade
our detection framework as well as a few limitations associated
with it, and (ii) possible countermeasures against them.

A malware writer who has learned our detection system may try
to evade it by modifying existing malware or creating new mali-
cious behaviors. Similar to code obfuscation [34], program be-
havior can be obfuscated by behavior reordering, file or directory
renaming, normal behavior insertion and equivalent behavior re-
placement. For behavior reordering, attackers cannot arbitrarily re-
order the program behaviors, since some temporal constraints must
be satisfied in order to maintain the correct functionality. For ex-
ample, the temporal ordering of ReceiveFile and InstallApp cannot
be reversed, because the installation of malware depends on first
receiving the malware file. Similar temporal ordering must hold
within a Bluetooth or MMS transfer. On the other hand, the or-
dering between Bluetooth and MMS transfers can be changed arbi-
trarily. Our approach is resilient to reordering in that we use TLCK
to capture only those inherent constraints and construct high-level
behavior signatures (Section 4), thus providing strong protection
against the reordering obfuscation. File/directory renaming is done
by assigning different names to malware executables or installation
directories so that exact matching will fail to detect the variants. To
resist such obfuscation, we abstract away the file/directory name
and keep only file types, e.g., installation type (.SiS) and system
directory in the behavior signatures (\system). The third type of

obfuscation (i.e., normal behavior insertion) inserts useless or in-
nocent behavior sequences that do not influence the program func-
tionality among malicious behaviors. Our approach is resilient to
this obfuscation because it does not seek any exact match of some
malicious template with program behavior. Instead, the signature is
constructed by validating each behavior propositional variable and
then classified via a learning algorithm. Moreover, in our frame-
work, most behavior variables on their own are normal, but they to-
gether, when connected with temporal relationships, become strong
indicators of malicious activities. Hence, insertion of useless or
normal behavior cannot evade the detection. Finally, equivalent
behavior substitution replaces groups of behaviors with other se-
quences that have the same functionality but are not captured with
our signatures. Alternatively, attackers may try to circumvent the
detection by mimicry attacks [49], i.e., disguising its behavior as
normal sequences while having the same effects on the system. Al-
though our approach cannot completely handle this type of obfus-
cation, it makes substitution or mimicry more difficult. First, the
high-level definition of behavior signature hides implementation
details. Finding equivalent behavior sequences is more difficult
than that for machine instruction sequences, where a rich instruc-
tion set is available [34]. Second, even if the monitor layer misses
some malware behaviors due to lack of specification for equiva-
lent behavior sequences, the machine learning algorithm may still
be able to make correct classification based on the captured partial
signatures that match the existing malicious behavior.

However, our approach also has a few limitations. First, since
the current set of behavior signatures is defined based on the exist-
ing mobile malware, the detection might fail if most behaviors of
a mobile malware are completely new or the same as normal pro-
grams (this is equivalent to the case when attackers manage to sub-
stitute most of their malicious behaviors with equivalent sequences
that are not detectable by our system). This is a fundamental lim-
itation of any behavioral approach that detects unseen anomalies
based on their similarities from existing training data. Fortunately,
in most cases, new malware share a great deal of similarity with
their predecessors for the following reasons. First, due to the grow-
ing complexity and modularization of current malware, addition of
new behaviors to existing malware is a common technique used
by malware writers [34]. Creation of truly new malware is very
rare. Second, runtime packers (e.g., UPX, MEW, FSG, [5] etc.)
are one of the most widely-used techniques for generating malware
variants (e.g., over 92% of malware files in wildlist 03/2006 are
packed [5]). These packed malware runs by unpacking the origi-
nal executable codes and then transferring control to them. Hence,
the run-time behavior of packed variants is the same as the origi-
nal malware. A recent report by Symatec [10] also confirms our
observation that most new malware are variations of existing ones.
Second, like all host-based mechanisms, our system can be circum-
vented by malware that can bypass the API monitoring (e.g., install
rootkit, place hook deeper than the monitor layer) or modify the
framework configuration (e.g., disable the detection engine). Coun-
termeasures have been proposed for desktop environments, such as
the rootkit revealer [1] and the tiny hypervisor to protect kernel
code integrity [42]. These approaches have the potential to be ap-
plied in mobile settings with the growing capability and power of
handset devices.

In summary, while there are several ways an attacker could at-
tempt to evade detection, our approach, as demonstrated in the next
section, is still effective in detecting many mobile malware vari-
ants and thus raises the bar significantly high for mobile malware
writers.
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8. EVALUATION
The main components of the proposed framework include the

monitor agent and the behavior detection agent. Because the mon-
itor agent is platform-dependent, we implemented and tested it on
the Symbian Emulator using the Proxy DLL technique described
in section 5.1. On the other hand, the high-level detection agent,
which translates API traces collected from monitor agent into be-
havior signatures and performs SVM classification algorithm, is
not necessarily coupled with specific OS platform. As a result, we
currently implemented it separately on the desktop machine run-
ning Symbian Emulator and used the specific SVM implementa-
tion called libsvm [6]. However, since the detection algorithm is
OS-independent, it is easy to be ported to the handset environment
(e.g., Symbian OS).

8.1 Methodology
Since the monitor agent is implemented in the Symbian OS Em-

ulator, which is a windows application simulating the phone hard-
ware and OS, application executables for a real smartphone (ARM
platform) cannot be directly executed in the emulator. In order for
an application to run in the emulator, it has to be recompiled from
its source code for the emulator platform. Due to limited access
to the source codes of worms and normal applications, we evalu-
ate the proposed behavioral detection framework first by emulat-
ing program behavior and then testing it against real-world worms
whose source codes are available to us. First, we wrote several
applications that emulated known Symbian worms: Cabir, Mabir,
Lasco, Commwarrior and a generic worm that spreads by sending
messages via MMS and Bluetooth. For each malware, we repro-
duced the infection state machine, especially the resource accesses
and system events that these malware trigger in the Symbian OS.
We also included variants of each malware based on our review of
the malware family published by various anti-virus vendors. For
most malware, this required addition of different variations in mal-
ware lifetime, number and contents of messages, file name, type
and attachment sizes, different installation directories for the worm
payload, etc. We also built 3 legitimate applications that shared
several common partial behavior signatures with the worms. These
are Bluetooth OBEX file transfer, MMS client, and the MakeSIS
utility in Symbian OS that creates an SIS archive file from a given
list of files.

These 8 (5 worms and 3 legitimate) applications contain many
execution branches corresponding to different behavior signatures
that can be captured by the runtime monitoring. We run these appli-
cations repeatedly so that most branches are executed at least once.
Each run of an application results in a set of behavior signatures
captured by the monitoring layer. Depending on the time window
over which these behavior signatures are created from the monitor-
ing logs, we obtain partial/full signatures of various lengths. Next,
we remove all repeated signatures and collect only the unique sig-
natures generated from the above runs to create a training dataset
and a test dataset that are subsequently used for our evaluation. We
generate several training and test datasets by repeating the above
procedure and calculate expected averages of classification accu-
racy, false positive and negative rates. Next, we use the training
data to train the SVM model and classify each signature in the test
data to determine the classification accuracy.

8.2 Accuracy of SVC
We first evaluate the accuracy of SVC in detecting existing or

known worms (the capability of detecting unknown worms will be
discussed in the next subsection). To evaluate the effectiveness of
SVC in capturing known worms, we vary the size of the training

set (in all cases, around two thirds of the training set consists of
the normal signatures and the remaining one third are worm signa-
tures) to determine its effect on the classification error. Notice that
the signatures of same worm may appear in both training and test-
ing set. However, because of the different running environments
and execution paths, the test set also contains many signatures that
do not appear in the training set. Table 1 shows the classification
accuracy, number of false positives and false negatives for a test
set of 905 distinct signatures and different training data sizes. We
found that SVC almost never falsely classifies a legitimate applica-
tion signature to be malicious. On the other hand, for small training
data sizes, the number of false negatives (malicious signatures clas-
sified as legitimate) is high. However, as the training data size is
increased, the classification accuracy increases quickly, reaching
near 100% detection of malicious signatures. In our experiments
with other training and test dataset sizes, we observed very similar
trend and results.

Training number of Accu- False False
Set Size Support Vectors racy Positive Negative

22 21 82.1% 0 16
47 22 97.9% 1 18
56 20 97.5% 0 22
74 34 98.4% 0 14
92 29 99.4% 0 5

122 30 99.5% 0 4
142 51 99.2% 0 7
153 38 99.6% 0 3
256 48 100% 0 0
356 82 99.7% 0 2
462 61 100% 0 0
547 95 99.8% 0 1
628 106 99.8% 0 1
720 68 100% 0 0
798 186 99.8% 0 1

Table 1: Classification accuracy.

Table 1 also shows the number of Support Vectors (SVs) for each
training set, which indicate the size of the SVM model (Section 6)
that must be included in the monitoring layer for classifying the
run-time behavior signatures. Since a training data size of 150 is
sufficient for the 5 worms we studied, on average, about 50 SVs
are included in the SVM model for run-time detection. Each SV
corresponds to a signature in the training dataset and therefore, the

Training Set Testing Set (“unknown" worms) Overall
(“known") worms Cabir Mabir CW Lasco
Cabir 100 17 35 72.5 56
Mabir 100 100 51 27 69.5
CW 100 30.5 100 69.5 75
Lasco 64.5 17.5 38.5 100 55.1
Cabir, Mabir 100 100 42 54 74
Cabir, CW 100 45 100 100 86.3
Cabir, Lasco 100 27 50.5 100 69.4
Mabir, CW 100 100 100 100 100
Mabir, Lasco 100 100 100 100 100
CW, Lasco 100 34.5 100 100 86.3
Cabir, Mabir, CW 100 100 100 76.5 94.1
Cabir, Mabir, Lasco 100 100 100 100 100
Cabir, CW, Lasco 100 99.5 100 100 99.9
Mabir, CW, Lasco 100 100 100 100 100

Table 2: Detection accuracy (%) for unknown worms
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number of signatures needed for classification for hundreds of vari-
ants of these worms is relatively small.

8.3 Generality of Behavior Signatures
A major benefit of behavioral detection is its capability of de-

tecting new malware based on existing malicious behavior signa-
tures if the new malware, as is commonly the case, share some
behavior with the existing malware signatures. In case of payload
signature-based detection systems, their signature database must
be updated to detect the new malware. In order to evaluate the ef-
fectiveness of ‘generalization’ in our behavior detection algorithm,
we divide the 4 worms (Cabir, Mabir, Lasco, and Commwarrior
(CW)) into 2 groups. The signatures of the first group (“known
worms”) are placed in the malicious behavior signature database
and used to train the SVM model. The worms in the second group
(“unknown worms”) are then executed in the emulator; their sig-
natures are captured by the monitoring layer and comprise the test
dataset. The resulting detection rates for different combinations
of known and unknown worms are summarized in Table 2. The
results show that the combination of TLCK-based signature gen-
eration and SVC methodology is able to detect previous unseen
worms, especially for malware that share similar behavior with ex-
isting ones. For example, when the training set contains 3 malware,
the detection achieves very high accuracy for the remaining un-
known malware, whose behavior is likely to be covered by existing
malware. Therefore, the size of the malicious signature database
could remain small as new strains of malware targeting handsets
are discovered.

8.4 Evaluation with Real-world Mobile Worms
To confirm the effectiveness of our behavior-based detection,

we tested it against real-world mobile malware. We were able to
collect the source codes of 2 Symbian worms, Cabir and Lasco.
Cabir [15] replicates over Bluetooth by scanning to discover Blue-
tooth devices in its range and sending copies of infected worm pay-
load (SIS file). Lasco [16] propagates via Bluetooth in the same
manner. It is also capable of inserting itself into other SIS files in
the devices, so that Lasco will automatically start when the injected
files are installed.

We collected the behavior signatures for these worms by com-
piling and running them on the Symbian emulator. Considering the
fact that the dynamic analysis results may depend on the run-time
environment, we ran each malware sample 10 times with different
environmental settings such as running time, number of neighbor-
ing devices, number of failed Bluetooth connections, etc. For ex-
ample, in one setting, the number of neighboring devices is zero,
thus making the worm continuously search for new devices. This
generates varying-size signatures that describe the worm behavior
in each specific environment. We apply the trained classifier (with
training set size 92 as in Table 1) on each captured signature. SVC
was found to achieve 100% detection of all worm instances.

To test our framework’s resilience to the variations and obfusca-
tion, we modified the source codes and implemented worm variants
based on F-Secure mobile malware descriptions [17]. Since we did
not find any information for Lasco variants, we mainly focus on
creating variants for Cabir. Cabir has 32 variants (Cabir.A-Z, AA,
AB, AC,AD, AE, AF), most of which are minor variations of the
original Cabir worm. For example, Cabir.Z differs only in the in-
fected SIS file name (i.e., file-renaming obfuscation) from Cabir.B,
which, in turn, differs trivially from the original Cabir worm by
displaying a different message on the screen. Since our behavioral
detection abstracts away the name details, these variants are eas-

ily detectable.3 As a result, we only implement 3 major types of
variations. First, the original Cabir has an implementation flaw that
makes it lock on the device found first and never search for the oth-
ers, which slows down its spreading speed. One major variation
(e.g., Cabir.H) is to fix this bug by enabling the worm to search
for new targets when the first device is out of range. We modi-
fied the replication routine in the source code and implemented this
variation. The second major variant is Cabir.AF, which is a size-
optimized recompilation of the original Cabir. We implemented
this variation by incorporating the compression routine found in
Lasco source code, which utilizes the zlib library to compress the
SIS file. Third, we implemented a synthetic behavior-reordering
obfuscation. The original Cabir worm always prepares an infected
SIS file before searching for nearby Bluetooth devices. In con-
trast, the new variant finds an available device first, then creates a
SIS file, and finally transfers it via Bluetooth. We collected behav-
ior signatures for these variants by running each of them 10 times
in different environments and apply the trained classifier. Again,
SVC is found to be resilient to these obfuscation, and successfully
detects all the variants.

8.5 Overhead of Proxy DLL
The major overhead of our monitoring system comes from the

Proxy DLL that logs API call events in real time. To estimate this
overhead, we measure the execution time of functions before and
after they are wrapped by Proxy DLL. Average overheads (over
10,000 repeated executions) for some typical API calls are: 564.2 µs
(establish a session with the local Bluetooth service database), 670 µs
(display a message on the screen), 625.8 µs (SMS messaging li-
brary call) and 608.5 µs (allocate new objects). The overhead is,
on average, 600 microseconds. We conjecture that this is primar-
ily due to disk accesses. Since we only need to monitor a small
subset of API calls (e.g., Bluetooth device search, OBEX transfer,
SMS/MMS send/receive) which are usually invoked sporadically
during an application’s lifetime, the overall overhead is expected
to be low. We confirm this by measuring the running time of a
Bluetooth file exchange application before and after enabling the
monitor agent. The result shows that to transfer a 10K byte file,
the original application spends, on average, 10.36 seconds. On the
other hand, the same process takes 10.6 seconds with the monitor
agent enabled, which represents only 3% overhead.

8.6 Summary and Discussion of Results
Overall, the behavior-based approach is found to be highly ef-

fective in detecting mobile malware and variants thereof. However,
we also noticed the limitation of current evaluation: the monitor-
ing layer is implemented in a Symbian emulator, rather than in a
real handset, due to the restricted access of the Symbian OS kernel
information, which is only available to their business partners or
licensed users. This keeps us from testing the framework against
a wide range of normal applications whose source codes are not
available. Thus, we have to resort to the emulator to accurately re-
produce the programs’ real behavior. Nevertheless, the synthetic
traces could overestimate the detection accuracy and/or underesti-
mate the framework overhead. These limitations prevent us from
comparing the proposed behavior-based approach against existing

3Although the signature-based approach is also resilient to simple
renaming obfuscation, some variants (e.g., Cabir.AA), besides re-
naming the infected file, modify and recompile the source code,
thus resulting in different binary images from the original worm.
Hence, to detect this variant, a signature-based approach may re-
quire additional signatures, while a single behavior signature for
the original worm will suffice for the behavioral detection.
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signature-based solutions. Although signature-based solutions are
known to have a very low false positive rate, they cannot detect
new malware or variants of existing malware whose signatures are
not in the database (e.g., through simple obfuscation). By contrast,
behavior-based approaches like ours are usually more resilient to
variations of malware in the same family (since they share simi-
lar behaviors) and can thus respond to new malware outbreaks in
a timely manner. We are currently collaborating with a major mo-
bile phone manufacturer to implement the proposed framework on
real handsets. Despite these limitations, our evaluation results on
real mobile worms still indicate that the behavioral detection of-
fers a good alternative to signature-based detection, because of its
smaller database and capability of detecting new malware variants.

9. CONCLUSIONS
We have presented a behavioral detection framework for viruses,

worms and Trojans that increasingly target mobile handsets. The
framework begins with extraction of key behavior signatures of
mobile malware by applying TLCK on a set of atomic steps. We
have generated a malicious behavior signature database based on a
comprehensive review of mobile malware reported to date. Since
behavior signatures are fewer and shorter than traditional payload
signatures, the database is compact and can thus be placed on a
handset. A behavior signature also has the advantage of describing
behavior for an entire malware family including their variants. This
eliminates the need for frequent updates of the behavior signature
database as new variants emerge. We have implemented the moni-
toring layer on the Symbian emulator for run-time construction of
behavior signatures. In order to identify malicious behavior from
partial signatures, we used SVM to train a classifier from normal
and malicious data. Our evaluation of both emulated and real-world
malware shows that behavioral detection not only results in high
detection rates but also detects new malware which share certain
behavioral patterns with existing patterns in the database.
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