Network Security: IPsec
CS 239
Computer Software
March 2, 2005

IPsec
• Until recently, the IP protocol had no standards for how to apply security
• Encryption and authentication layered on top
 – Or provided through ad hoc extensions
• Increasing security needs mandated a standard method of securing IP traffic

How Was This Handled?
• The usual way that enhancements to standard Internet protocols are handled
 – The RFC/IETF mechanism
• Smart people worked out a proposal
• They published the proposal and requested comments
• Eventually agreement was reached

IP Security RFCs
• RFC 2401 (originally RFC 1825)
 – Security Architecture for the Internet Protocol
• RFC 2402 (originally RFC 1826)
 – IP Authentication Header
• RFC 2406 (originally RFC 1827)
 – IP Encapsulating Security Payload

Other Related RFCs
• RFC 1828 - IP Authentication Using Keyed MD5
• RFC 1829 - The ESP DES-CBC Transform
• RFC 1851 - The ESP Triple DES Transform
• RFC 1852 - IP Authentication Using Keyed SHA
• RFC 2085 - HMAC-MD5 IP Authentication With Replay Prevention
• And many, many others

RFC 2401
• Defined the basics of security for the Internet Protocol
• Briefly, add per-packet encryption and authentication standards
• Basically, two mechanisms
 – A way to authenticate IP packets
 – A way to encrypt IP packets
What Is Covered

• Message integrity
• Message authentication
• Message confidentiality

What Isn’t Covered

• Non-repudiation
• Digital signatures
• Key distribution
• Traffic analysis
• Handling of security associations
• Some of these covered in later RFCs and related standards

Some Important Terms for IPsec

• Security Association - "A Security Association (SA) is a simplex "connection" that affords security services to the traffic carried by it. – Basically, a secure channel
• SPI (Security Parameters Index) – Combined with destination IP address and IPsec protocol type, uniquely identifies an SA

General Structure of IPsec

• Really designed for end-to-end encryption – Though could do link level
• Designed to operate with either IPv4 or IPv6
• Meant to operate with a variety of different encryption protocols
• And to be neutral to key distribution methods

What IPsec Requires

• Protocol standards – To allow messages to move securely between nodes
• Supporting mechanisms at hosts running IPsec – E.g., a Security Association Database
• Lots of plug-in stuff to do the cryptographic heavy lifting

The Protocol Components

• Pretty simple
• Necessary to interoperate with non-IPsec equipment
• So everything important is inside an individual IP packet’s payload
• No inter-message components to protocol – Though some security modes enforce inter-message invariants
The Supporting Mechanisms

- Methods of defining security associations
- Databases for keeping track of what’s going on with other IPsec nodes
 - To know what processing to apply to outgoing packets
 - To know what processing to apply to incoming packets

Plug-In Mechanisms

- Designed for high degree of generality
- So easy to plug in:
 - Different crypto algorithms
 - Different hashing/signature schemes
 - Different key management mechanisms

Security Associations

- Groups of entities that legitimately are cooperating in use of IPsec for a particular connection
 - Hosts, applications, gateways, etc.
- Uniquely identified by:
 - Destination address
 - IPsec protocol (to be discussed later)
 - Plus a Security Parameter Index
 - Basically a pseudo-random number

Creating Security Associations

- Setting them up properly is a major task in itself
- Not covered in basic IPsec RFCs
 - But heavily studied
- One way
 - Two way traffic requires two Security Associations
- Sometimes, single packet goes through multiple SAs

New IPSEC Protocols

- The RFCs define two new protocols
 - Authentication Header
 - Encapsulating Security Payload
- Part of the identification of an SA
- These in turn require special headers
- Can be used together

Authentication Header Protocol

- AH
- Provides integrity and authentication
 - Not confidentiality
- The associated header is calculated on payload plus most IP header fields
 - Except those that change in transit
 - So both data and headers are authenticated
Authentication and Backwards Compatibility

- The authentication header is carried in the packet payload
- Non-participating routers can ignore it
- Participating routers know its payload location and can extract and check it as necessary

What’s In the Authentication Header?

<table>
<thead>
<tr>
<th>8 bits</th>
<th>8 bits</th>
<th>16 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Header</td>
<td>Length</td>
<td>RESERVED</td>
</tr>
<tr>
<td>Security Parameters Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence Number Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentication Data (variable number of 32-bit words)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Authentication Header Fields

- **Next header** identifies the next header in the packet
 - Might be unrelated to IPsec
- **Length** is length of this header’s Authentication Data in words (minus two)
- **Reserved** is, well, reserved
- **SPI** identifies the Security Association
- **Sequence Number Field** – monotonically increasing counter value (for each SA)
- **Authentication data** is the actual “signature”

Creating the AH

- Sending site increments per-SA counter and inserts into packet
- Then computes hash
 - Using algorithm specified for SA
 - Based on packet payload, AH header fields, and unchanging or predictable IP header fields

Using the AH

- At receiving site, based on SA, extract AH from packet
- Check that sequence number is higher
 - Optional at this end
- Compute hash on same fields as sender did
- Check if sent hash matches locally computed hash

Different AH Modes

- **Transport mode**
 - Slip the AH between IP header and transport header
- **Tunnel mode**
 - Put AH in front of entire packet
 - Put new IP header in front of AH
Encapsulating Security Payload (ESP) Protocol

- Encrypt the data and place it within the ESP
- The ESP has normal IP headers
- Can be used to encrypt just the payload of the packet
- Or the entire IP packet

ESP Modes

- Transport mode
 - Encrypt just the transport-level data in the original packet
 - No IP headers encrypted
- Tunnel mode
 - Original IP datagram is encrypted and placed in ESP
 - Unencrypted headers wrapped around ESP

ESP in Transport Mode

- Extract the transport-layer frame
 - E.g., TCP, UDP, etc.
- Encapsulate it in an ESP
- Encrypt it
- The encrypted data is now the last payload of a cleartext IP datagram
ESP Transport Mode

Using ESP in Tunnel Mode
- Encrypt the IP datagram
 - The entire datagram
- Encapsulate it in a cleartext IP datagram
- Routers not understanding IPsec can still handle it
- Receiver reverses the process

ESP Tunnel Mode

Uses and Implications of Tunnel Mode
- Typically used when there are security gateways between sender and receiver
 - And/or sender and receiver don’t speak IPsec
- Outer header shows security gateway identities
 - Not identities of real parties
- Can thus be used to hide some traffic patterns

What’s the Status of IPsec?
- The standard is done
- Widely implemented and used
 - Supported in Windows 2000 and XP
 - In Linux 2.6 kernel
- The architecture doesn’t require everyone to use it
- Generally considered to be a successful extension to IP

What More Is Needed?
- Key distribution
 - E.g., IKE
- Security association handling
 - Also dealt with by IKE
- Implementations of IPsec and IKE are freely available
- More work on broadcast/multicast use
IPsec and the AES Ciphers

- RFC 3602 on using AES in IPsec still listed as "proposed"
 - Actually only covers CBC mode
 - But much of content is relevant to any AES mode
- Further drafts looking at different modes/aspects of AES
- Expected that AES will become default for ESP in IPsec