Firewalls

• “A system or combination of systems that enforces a boundary between two or more networks”- NCSA Firewall Functional Summary

• Usually, a computer that keeps the bad guys out

Firewalls and Perimeter Defense

• Firewalls implement a form of security called perimeter defense

• Protect the inside of something by defending the outside strongly
 – The firewall machine is often called a bastion host

• Control the entry and exit points

• If nothing bad can get in, I’m safe, right?

Weaknesses of Perimeter Defense Models

• Breaching the perimeter compromises all security

• Windows passwords are a form of perimeter defense
 – If you get past the password, you can do anything

• Perimeter defense is part of the solution, not the entire solution
Weaknesses of Perimeter Defense

Defense in Depth
- An old principle in warfare
- Don’t rely on a single defensive mechanism or defense at a single point
- Combine different defenses
- Defeating one defense doesn’t defeat your entire plan

So What Should Happen?

Or, Better

Or, Even Better

So Are Firewalls Any Use?
- Definitely!
- They aren’t the full solution, but they are absolutely part of it
- Anyone who cares about security needs to run a decent firewall
- They just have to do other stuff, too
- 97% of respondents in 2005 CSI/FBI survey say they use firewalls
Types of Firewalls

- Filtering gateways
 - AKA screening routers
- Circuit gateways
 - Also a kind of screening router
- Application level gateways
 - AKA proxy gateways

Filtering Gateways

- Based on packet routing information
- Look at information in the incoming packets’ headers
- Based on that information, either let the packet through or reject it

Example Use of Filtering Gateways

- Allow particular external machines to telnet into specific internal machines
 - Denying telnet to other machines
- Or allow full access to some external machines
- And none to others

A Fundamental Problem

- IP addresses can be spoofed
- If your filtering firewall trusts packet headers, it offers little protection
- Situation may be improved by IPsec
 - But hasn’t been yet
- Firewalls can perform the ingress/egress filtering discussed earlier

Filtering Based on Ports

- Most incoming traffic is destined for a particular machine and port
 - Which can be derived from the IP and TCP headers
- Only let through packets to select machines at specific ports
- Makes it impossible to externally exploit flaws in little-used ports
 - If you configure the firewall right . . .

Pros and Cons of Filtering Gateways

+ Fast
+ Cheap
+ Flexible
+ Transparent
 - Limited capabilities
 - Dependent on header authentication
 - Generally poor logging
 - May rely on router security
Application Level Gateways

- Also known as proxy gateways and stateful firewalls
- Firewalls that understand the application-level details of network traffic
 - To some degree
- Traffic is accepted or rejected based on the probable results of accepting it

How Application Level Gateways Work

- The firewall serves as a general framework
- Various proxies are plugged into the framework
- Incoming packets are examined
 - And handled by the appropriate proxy

Firewall Proxies

- Programs capable of understanding particular kinds of traffic
 - E.g., FTP, HTTP, videoconferencing
- Proxies are specialized
- A good proxy must have deep understanding of the network application

An Example Proxy

- A proxy to audit email
- What might such a proxy do?
 - Only allow email from particular users through
 - Or refuse email from known spam sites
 - Or filter out email with unsafe inclusions (like executables)

What Are the Limits of Proxies?

- Proxies can only test for threats they understand
- Either they must permit a very limited set of operations
- Or they must have deep understanding of the program they protect
 - If too deep, they may share the flaw
- Performance limits on how much work they can do on certain types of packets

Pros and Cons of Application Level Gateways

+ Highly flexible
+ Good logging
+ Content-based filtering
+ Potentially transparent
- Slower
- More complex and expensive
- A good proxy is hard to find
More Firewall Topics

- Statefulness
- Transparency
- Handling authentication
- Handling encryption
- Looking for viruses

Stateful Firewalls

- Much network traffic is connection-oriented
 - E.g., telnet and videoconferencing
- Proper handling of that traffic requires the firewall to maintain state
- But handling information about connections is more complex

Firewalls and Transparency

- Ideally, the firewall should be invisible
 - Except when it vetoes access
- Users inside should be able to communicate outside without knowing about the firewall
- External users should be able to invoke internal services transparently

Firewalls and Authentication

- Many systems want to allow specific sites or users special privileges
- Firewalls can only support that to the extent that strong authentication is available
 - At the granularity required
- For general use, may not be possible
 - In current systems

Firewalls and Encryption

- Firewalls provide no confidentiality
- Unless the data is encrypted
- But if the data is encrypted, the firewall can’t examine it
- So typically the firewall must be able to decrypt
 - Or only work on unencrypted parts of packets
- Can decrypt, analyze, and re-encrypt

Firewalls and Viruses

- Firewalls are an excellent place to check for viruses
- Virus detection software can be run on incoming executables
- Requires that firewall knows when executables come in
- And must be reasonably fast
- Again, might be issues with encryption
Firewall Configuration and Administration

- Again, the firewall is the point of attack for intruders
- Thus, it must be extraordinarily secure
- How do you achieve that level of security?

Firewall Location

- Clearly, between you and the bad guys
- But you may have some very different types of machines/functionalities
- Sometimes makes sense to divide your network into segments
 - Most typically, less secure public network and more secure internal network
 - Using separate firewalls

Firewall Hardening

- Devote a special machine only to firewall duties
- Alter OS operations on that machine
 - To allow only firewall activities
 - And to close known vulnerabilities
- Strictly limit access to the machine
 - Both login and remote execution

Firewalls and Logging

- The firewall is the point of attack for intruders
- Logging activities there is thus vital
- The more logging, the better
- Should log what the firewall allows
- And what it denies
- Tricky to avoid information overload

Keep Your Firewall Current

- New vulnerabilities are discovered all the time
- Must update your firewall to fix them
- Even more important, sometimes you have to open doors temporarily
 - Make sure you shut them again later
- Can automate some updates to firewalls
- How about getting rid of old stuff?

Closing the Back Doors

- Firewall security is based on assumption that all traffic goes through the firewall
- So be careful with:
 - Modem connections
 - Wireless connections
 - Portable computers
- Put a firewall at every entry point to your network
- And make sure all your firewalls are up to date
What About Portable Computers?

Now Bob Goes To Work . . .

How To Handle This Problem?
- Essentially quarantine the portable computer until it’s safe
- Don’t permit connection to wireless access point until you’re satisfied that the portable is safe
- UCLA did it first with QED
- Now very common in Cisco, Microsoft, and other companies’ products

How To Tell When It’s Safe?
- Local network needs to examine the quarantined device
- Looking for evidence of worms, viruses, etc.
- If any are found, require decontamination before allowing the portable machine access

Virtual Private Networks
- VPNs
- What if your company has more than one office?
- And they’re far apart?
 - Like on opposite coasts of the US
- How can you have secure cooperation between them?

Leased Line Solutions
- Lease private lines from some telephone company
- The phone company ensures that your lines cannot be tapped
 - To the extent you trust in phone company security
- Can be expensive and limiting
Another Solution

• Communicate via the Internet
 – Getting full connectivity, bandwidth, reliability, etc.
 – At a lower price, too
• But how do you keep the traffic secure?
• Encrypt everything!

Encryption and Virtual Private Networks

• Use encryption to convert a shared line to a private line
• Set up a firewall at each installation’s network
• Set up shared encryption keys between the firewalls
• Encrypt all traffic using those keys

Actual Use of Encryption in VPNs

• VPNs run over the Internet
• Internet routers can’t handle fully encrypted packets
• Obviously, VPN packets aren’t entirely encrypted
• They are encrypted in a tunnel mode

Is This Solution Feasible?

• A VPN can be half the cost of leased lines (or less)
• And give the owner more direct control over the line’s security
• Ease of use improving
 – Often based on IPsec

Key Management and VPNs

• All security of the VPN relies on key secrecy
• How do you communicate the key?
 – In early implementations, manually
 – Modern VPNs use something like IKE
• How often do you change the key?
 – IKE allows frequent changes

VPNs and Firewalls

• VPN encryption is typically done between firewall machines
• Do I need the firewall for anything else?
• Probably, since I still need to allow non-VPN traffic in and out
Honeypots and Honeynets

- A *honeypot* is a machine set up to attract attackers
- Classic use is to learn more about attackers
- Ongoing research on using honeypots as part of a system’s defenses

Setting Up A Honeypot

- Usually a machine dedicated to this purpose
- Probably easier to find and compromise than your real machines
- But has lots of software watching what’s happening on it
- Providing early warning of attacks

What Have Honeypots Been Used For?

- To study attackers’ common practices
- There are lengthy traces of what attackers do when they compromise a honeypot machine
- Not clear these traces actually provided much we didn’t already know

Can a Honeypot Contribute to Defense?

- Perhaps can serve as an early warning system
 - Assuming that attacker hits the honeypot first
 - And that you know it’s happened
- If you can detect it’s happened there, why not everywhere?

Honeynets

- A collection of honeypots on a single network
 - Maybe on a single machine with multiple addresses
- Typically, no other machines are on the network
- Since whole network is phony, all incoming traffic is probably attack traffic

What Can You Do With Honeynets?

- Similar things to what can be done with honeypots (at network level)
- Also good for tracking the spread of worms
 - Worm code typically knocks on their door repeatedly
- Has given evidence on prevalence of DDoS attacks
 - Through *backscatter*
 - Based on attacker using IP spoofing
Do You Need A Honeypot?

• Not in the same way you need a firewall
• Only worthwhile if you have a security administrator spending a lot of time watching things
• Or if your job is keeping up to date on hacker activity