Firewalls

• “A system or combination of systems that enforces a boundary between two or more networks” - NCSA Firewall

Functional Summary

• Usually, a computer that keeps the bad guys out

What Is a Firewall, Really?

• Typically a machine that sits between a LAN/WAN and the Internet
• Running special software
• That somehow regulates network traffic between the LAN/WAN and the Internet

Weaknesses of Perimeter Defense Models

• Breaching the perimeter compromises all security
• Windows passwords are a form of perimeter defense
 – If you get past the password, you can do anything
• Perimeter defense is part of the solution, not the entire solution

Firewalls and Perimeter Defense

• Firewalls implement a form of security called perimeter defense
• Protect the inside of something by defending the outside strongly
 – The firewall machine is often called a bastion host
• Control the entry and exit points
• If nothing bad can get in, I’m safe, right?

Typical Use of a Firewall

Local Network

Firewall

Internet

???
Weaknesses of Perimeter Defense

Defense in Depth
- An old principle in warfare
- Don’t rely on a single defensive mechanism or defense at a single point
- Combine different defenses
- Defeating one defense doesn’t defeat your entire plan

So What Should Happen?

Or, Better

Or, Even Better

So Are Firewalls Any Use?
- Definitely!
- They aren’t the full solution, but they are absolutely part of it
- Anyone who cares about security needs to run a decent firewall
- They just have to do other stuff, too
Types of Firewalls

- Filtering gateways
 - AKA screening routers
- Circuit gateways
 - Also a kind of screening router
- Application level gateways
 - AKA proxy gateways
- Hybrid (complex) gateways

Filtering Gateways

- Based on packet routing information
- Look at information in the incoming packets’ headers
- Based on that information, either let the packet through or reject it

Example Use of Filtering Gateways

- Allow particular external machines to telnet into specific internal machines
 - Denying telnet to other machines
- Or allow full access to some external machines
- And none to others

A Fundamental Problem

- Today’s IP packet headers aren’t authenticated
 - And are pretty easy to forge
- If your filtering firewall trusts packet headers, it offers little protection
- Situation may be improved by IPsec
 - But hasn’t been yet

One Exception to This Problem

- Checking internal addresses
- Safety procedures inside the security perimeter may limit some services to LAN members
- The firewall can check that incoming packets don’t claim to be internal to the LAN

Filtering Based on Ports

- Most incoming traffic is destined for a particular machine and port
 - Which can be derived from the IP and TCP headers
- Only let through packets to select machines at specific ports
- Makes it impossible to externally exploit flaws in little-used ports
 - If you configure the firewall right . . .
Pros and Cons of Filtering Gateways

+ Fast
+ Cheap
+ Flexible
+ Transparent
 – Limited capabilities
 – Dependent on header authentication
 – Generally poor logging
 – May rely on router security

Circuit Gateways

• Another kind of filtering firewall
• Used when internal machines request service from machines outside the firewall
• Makes it look like the request came from the firewall
 – Concealing internal system details

Application Level Gateways

• Also known as proxy gateways and stateful firewalls
• Firewalls that understand the application-level details of network traffic
 – To some degree
• Traffic is accepted or rejected based on the probable results of accepting it

How Application Level Gateways Work

• The firewall serves as a general framework
• Various proxies are plugged into the framework
• Incoming packets are examined
 – And handled by the appropriate proxy

Firewall Proxies

• Programs capable of understanding particular kinds of traffic
 – E.g., FTP, HTTP, videoconferencing
• Proxies are specialized
• A good proxy must have deep understanding of the network application

An Example Proxy

• A proxy to audit email
• What might such a proxy do?
 – Only allow email from particular users through
 – Or refuse email from known spam sites
 – Or filter out email with unsafe inclusions (like executables)
What Are the Limits of Proxies?

- Proxies can only test for threats they understand
- Either they must permit a very limited set of operations
- Or they must have deep understanding of the program they protect
 – If too deep, they may share the flaw

Pros and Cons of Application Level Gateways

+ Highly flexible
+ Good logging
+ Content-based filtering
+ Potentially transparent
 – Slower
 – More complex and expensive
 – A good proxy is hard to find

Hybrid Gateways

- A combination of two or more other types
 – Typically filtering gateways and proxy gateways
- Are they better?
 – If in parallel, no
 – If in series, maybe

More Firewall Topics

- Statefulness
- Transparency
- Handling authentication
- Handling encryption
- Looking for viruses

Stateful Firewalls

- Much network traffic is connection-oriented
 – E.g., telnet and videoconferencing
- Proper handling of that traffic requires the firewall to maintain state
- But handling information about connections is more complex

Firewalls and Transparency

- Ideally, the firewall should be invisible
 – Except when it vetoes access
- Users inside should be able to communicate outside without knowing about the firewall
- External users should be able to invoke internal services transparently
Firewalls and Authentication
- Many systems want to allow specific sites or users special privileges
- Firewalls can only support that to the extent that strong authentication is available
 - At the granularity required
- For general use, may not be possible
 - In current systems

Firewalls and Encryption
- Firewalls provide no confidentiality
 - For data they pass back and forth
- Unless the data is encrypted
- But if the data is encrypted, the firewall can’t examine it
- So typically the firewall must be able to decrypt
 - Or only work on unencrypted parts of packets

Firewalls and Link Encryption
- Inter-firewall encryption is essentially link level encryption
 - With all inherent problems
 - Except (presumably) that only trusted machines encrypt and decrypt
- More encryption can be applied at the application level
 - Limiting the firewall’s options

Firewalls and Viruses
- Firewalls are an excellent place to check for viruses
- Virus detection software can be run on incoming executables
- Requires that firewall knows when executables come in
- And must be reasonably fast
- Again, might be issues with encryption

Firewall Configuration and Administration
- Again, the firewall is the point of attack for intruders
- Thus, it must be extraordinarily secure
- How do you achieve that level of security?

Firewall Location
- Clearly, between you and the bad guys
- But you may have some very different types of machines/functionalities
- Sometimes makes sense to divide your network into segments
 - Most typically, less secure public network and more secure internal network
 - Using separate firewalls
Firewall Hardening

- Devote a special machine only to firewall duties
- Alter OS operations on that machine
 - To allow only firewall activities
 - And to close known vulnerabilities
- Strictly limit access to the machine
 - Both login and remote execution

Firewalls and Logging

- The firewall is the point of attack for intruders
- Logging activities there is thus vital
- The more logging, the better
- Should log what the firewall allows
- And what it denies
- Tricky to avoid information overload

Keep Your Firewall Current

- New vulnerabilities are discovered all the time
- You need to update your firewall to fix them
- Even more important, sometimes you have to open doors temporarily
 - Make sure you shut them again later

Closing the Back Doors

- Firewall security is based on assumption that all traffic goes through the firewall
- So be careful with:
 - Modem connections
 - Wireless connections
 - Portable computers
- Put a firewall at every entry point to your network
- And make sure all your firewalls are up to date

What About Portable Computers?

- Many recent worm outbreaks have fed on portable computers
- The computer picks up the worm in the big, bad world
- When the computer returns to the office environment,
 - It comes in behind the firewall

How To Handle This Problem?

- QED, developed at UCLA
- Cisco and partners working on similar system
 - Planned to be available this summer
- In both systems, essentially quarantine the portable computer until it’s safe
How To Tell When It’s Safe?

- Local network needs to examine the quarantined device
- Looking for evidence of worms, viruses, etc.
- If any are found, require decontamination before allowing the portable machine access

Virtual Private Networks

- VPNs
- What if your company has more than one office?
- And they’re far apart?
 – Like on opposite coasts of the US
- How can you have secure cooperation between them?

Leased Line Solutions

- Lease private lines from some telephone company
- The phone company ensures that your lines cannot be tapped
 – To the extent you trust in phone company security
- Can be expensive and limiting

Another Solution

- Communicate via the Internet
 – Getting full connectivity, bandwidth, reliability, etc.
 – At a lower price, too
- But how do you keep the traffic secure?
- Encrypt everything!

Encryption and Virtual Private Networks

- Use encryption to convert a shared line to a private line
- Set up a firewall at each installation’s network
- Set up shared encryption keys between the firewalls
- Encrypt all traffic using those keys

Actual Use of Encryption in VPNs

- VPNs run over the Internet
- Internet routers can’t handle fully encrypted packets
- Obviously, VPN packets aren’t entirely encrypted
- They are encrypted in a tunnel mode
Is This Solution Feasible?
- A VPN can be half the cost of leased lines (or less)
- And give the owner more direct control over the line’s security
- If IPsec succeeds, deployment and interoperation should be easy

Key Management and VPNs
- All security of the VPN relies on key secrecy
- How do you communicate the key?
 - In early implementations, manually
 - Modern VPNs use something like IKE
- How often do you change the key?
 - IKE allows frequent changes

VPNs and Firewalls
- VPN encryption is typically done between firewall machines
- Do I need the firewall for anything else?
 - Probably, since I still need to allow non-VPN traffic in and out

Honeypots and Honeynets
- A honeypot is a machine set up to attract attackers
- Classic use is to learn more about attackers
- Some believe a honeypot can be part of a system’s defenses

Setting Up A Honeypot
- Usually a machine dedicated to this purpose
- Probably easier to find and compromise than your real machines
- But has lots of software watching what’s happening on it
- Providing early warning of attacks

What Have Honeypots Been Used For?
- To study attackers’ common practice
- There are lengthy traces of what attackers do when they compromise a honeypot machine
- Not clear these traces actually provided much we didn’t already know
Can a Honeypot Contribute to Defense?

- Perhaps can serve as an early warning system
 - Assuming that attacker hits the honeypot first
 - And that you know it’s happened
- If you can detect it’s happened there, why not everywhere?

Honeynets

- A collection of honeypots on a single network
- Typically, no other machines are on the network
- Since whole network is phony, all incoming traffic is probably attack traffic

What Can You Do With Honeynets?

- Similar things to what can be done with honeypots (at network level)
- Also good for tracking the spread of worms
 - Worm code typically knocks on their door repeatedly
- Has given evidence on prevalence of DDoS attacks
 - Through backscatter
 - Based on attacker using IP spoofing

Do You Need A Honeypot?

- Not in the same way you need a firewall
- Only worthwhile if you have a security administrator spending a lot of time watching things
- Or if your job is keeping up to date on hacker activity