Intrusion Detection
CS 239
Computer Software
March 10, 2004

Outline

• Introduction
• Characteristics of intrusion detection systems
• Some sample intrusion detection systems

Introduction

• Many mechanisms exist for protecting systems from intruders
 – Access control, firewalls, authentication, etc.
• They all have one common characteristic:
 – They don’t always work

Intrusion Detection

• Work from the assumption that sooner or later your security measures will fail
• Try to detect the improper behavior of the intruder who has defeated your security
• Inform the system or system administrators to take action

Why Intrusion Detection?

• If we can detect bad things, can’t we simply prevent them?
• Possibly not:
 – May be too expensive
 – May involve many separate operations
 – May involve things we didn’t foresee

For Example,

• Your intrusion detection system regards setting uid on root executables as suspicious
 – Yet the system must allow the system administrator to do so
• If the system detects several such events, it becomes suspicious
 – And reports the problem
Couldn’t the System Just Have Stopped This?

- Perhaps, but -
- The real problem was that someone got root access
 - The changing of setuid bits was just a symptom
- And under some circumstances the behavior is legitimate

Intrusions

- “any set of actions that attempt to compromise the integrity, confidentiality, or availability of a resource”
- Which covers a lot of ground
 - Implied they’re hard to stop

Is Intrusion Really a Problem?

- Is intrusion detection worth the trouble?
- Yes, at least for some installations
- Consider the experience of NetRanger intrusion detection users

The NetRanger Data

- Gathered during 5 months of 1997
- From all of NetRanger’s licensed customers
- A reliable figure, since the software reports incidents to the company

NetRanger’s Results

- 556,464 security alarms in 5 months
- Some serious, some not
 - “Serious” defined as attempting to gain unauthorized access
- For NetRanger customers, serious attacks occurred 3 to 5 times per month
 - Electronic commerce sites hit most

Kinds of Attacks Seen

- Often occurred in waves
 - When someone published code for a particular attack, it happened a lot
 - Because of “Script Kiddies”
- 100% of web attacks were on web commerce sites
Where Did Attacks Come From?

• Just about everywhere
• 48% from ISPs
• But also attacks from major companies, business partners, government sites, universities, etc.
• 39% from outside US
 – Only based on IP address, though

Kinds of Intrusions:

• External intrusions
• Internal intrusions

External Intrusions

• What most people think of
• An unauthorized (usually remote) user trying to illicitly access your system
• Using various security vulnerabilities to break in
• The typical case of a hacker attack

Internal Intrusions

• An authorized user trying to gain privileges beyond those he is entitled to
• 80% of all intrusions and attacks are by insiders according to FBI reports
• More dangerous, because insiders have a foothold and know more

Basics of Intrusion Detection

• Watch what’s going on in the system
• Try to detect behavior that characterizes intruders
• While avoiding improper detection of legitimate access
• Hopefully all at a reasonable cost

Intrusion Detection and Logging

• A natural match
• The intrusion detection system examines the log
 – Which is being kept, anyway
• Secondary benefits of using the intrusion detection system to reduce the log
On-Line Vs. Off-Line Intrusion Detection

- Intrusion detection mechanisms can be complicated and heavy-weight
- Often better to run them off-line
 - E.g., at nighttime
- Disadvantage is that you don’t catch intrusions as they happen

Failures In Intrusion Detection

- False positives
 - Legitimate activity identified as an intrusion
- False negatives
 - An intrusion not noticed
- Subversion errors
 - Attacks on the intrusion detection system

Desired Characteristics in Intrusion Detection

- Continuously running
- Fault tolerant
- Subversion resistant
- Minimal overhead
- Must observe deviations
- Easily tailorable
- Evolving
- Difficult to fool

Host Intrusion Detection

- Run the intrusion detection system on a single computer
- Look for problems only on that computer
- Often by examining the logs of the computer

Advantages of the Host Approach

- Lots of information to work with
- Only need to deal with problems on one machine
- Can get information in readily understandable form

Network Intrusion Detection

- Do the same for a local (or wide) area network
- Either by using distributed systems techniques
- Or (more commonly) by sniffing network traffic
Advantages of Network Approach

• Need not use up any resources on users’ machines
• Easier to properly configure for large installations
• Can observe things affecting multiple machines

Network Intrusion Detection and Data Volume

• Lots of information passes on the network
• If you grab it all, you will produce vast amounts of data
• Which will require vast amounts of time to process

Network Intrusion Detection and Sensors

• Use programs called sensors to grab only relevant data
• Sensors quickly examine network traffic
 – Record the relevant stuff
 – Discard the rest
• If you design sensors right, greatly reduces the problem of data volume

Styles of Intrusion Detection

• Misuse intrusion detection
 – Try to detect things known to be bad
• Anomaly intrusion detection
 – Try to detect deviations from normal behavior
• Specification intrusion detection
 – Try to detect deviations from defined “good states”

Misuse Detection

• Determine what actions are undesirable
• Watch for those to occur
• Signal an alert when they happen
• Often referred to as signature detection

Level of Misuse Detection

• Could look for specific attacks
 – E.g., Syn attacks or IP spoofing
• But that only detects already-known attacks
• Better to also look for known suspicious behavior
 – Like trying to become root
 – Or changing file permissions
How Is Misuse Detected?

- By examining logs
 - Only works after the fact
- By monitoring system activities
 - Often hard to trap what you need to see
- By scanning the state of the system
 - Can’t trap actions that don’t leave traces
- By sniffing the network
 - For network intrusion detection systems

Pluses and Minuses of Misuse Detection

+ Few false positives
+ Simple technology
+ Hard to fool
 - Only detects known problems
 - Gradually becomes less useful if not updated
 - Sometimes signatures are hard to generate

Misuse Detection and Commercial Systems

- Essentially all commercial intrusion detection systems detect misuse
 - Primarily using signatures of attacks
- Many of these systems are very similar
 - With only different details
- Differentiated primarily by quality of their signature library
 - How large, how quickly updated

Anomaly Detection

- Misuse detection can only detect known problems
- And many potential misuses can also be perfectly legitimate
- Anomaly detection instead builds a model of valid behavior
 - And watches for deviations

Methods of Anomaly Detection

- Statistical models
 - User behavior
 - Program behavior
 - Overall system/network behavior
- Expert systems
- Misuse detection and anomaly detection sometimes blur together

Pluses and Minuses of Anomaly Detection

+ Can detect previously unknown attacks
 - Hard to identify and diagnose nature of attacks
 - Unless careful, may be prone to many false positives
 - Depending on method, can be expensive and complex
Anomaly Detection and Academic Systems

- Most academic research on IDS in this area
 - More interesting problems
 - Greater promise for the future
- But few really effective systems currently use it
 - Not entirely clear that will ever change

Specification Detection

- Define some set of states of the system as good
- Detect when the system is in a different state
- Signal a problem if it is

How Does This Differ From Misuse and Anomaly Detection?

- Misuse detection says that certain things are bad
- Anomaly detection says deviations from statistically normal behavior are bad
- Specification detection specifies exactly what is good and calls the rest bad
- A relatively new approach

Some Challenges

- How much state do you have to look at?
 - Typically dealt with by limiting observation to state relevant to security
- How do you specify a good state?

Pluses and Minuses of Anomaly Detection

- Allows formalization of what you're looking for
- Limits where you need to look
- Can detect unknown attacks
- Not very well understood yet
- Based on locating right states to examine

Customizing and Evolving Intrusion Detection

- A single intrusion detection solution is impossible
 - Good behavior on one system is bad behavior on another
 - Behaviors change and new vulnerabilities are discovered
- Intrusion detection systems must change to meet needs
How Do Intrusion Detection Systems Evolve?

- Manually or semi-automatically
 - New information added that allows them to detect new kinds of attacks
- Automatically
 - Deduce new problems or things to watch for without human intervention

A Problem With Evolving Intrusion Detection Systems

- Very clever intruders can use the evolution against them
- Instead of immediately performing dangerous actions, evolve towards them
- If the intruder is more clever than the system, the system gradually accepts the new behavior

Practicalities of Operation

- Most commercial intrusion detection systems are add-ons
 - They run as normal applications
- They must make use of readily available information
 - Audit logged information
 - Sniffed packets
 - Output of systems calls they make
- And performance is very important

Practicalities of Audit Logs for IDS

- Operating systems only log certain stuff
- They don’t necessarily log what an intrusion detection system really needs
- They produce large amounts of data
 - Expensive to process
 - Expensive to store
- If attack was successful, may be corrupted

What Does an IDS Do When It Detects an Attack?

- Automated response
 - Shut down the “attacker”
 - Or more carefully protect the attacked service
- Alarms
 - Notify a system administrator
 - Who investigates and takes action

Consequences of the Choices

- Automated
 - Too many false positives and your network stops working
 - Is the automated response effective?
- Alarm
 - Too many false positives and your administrator ignores them
 - Is the administrator able to determine what’s going on fast enough?
Sample Intrusion Detection Systems

- Emerald
- DIDS
- NetRanger
- CIDF

Emerald

- From SRI
- In a family of intrusion detection systems
 - IDES and NIDES were earlier versions
- Addresses practical intrusion detection problems
 - Heterogeneity
 - Scaling
 - Multiple levels of abstraction

Emerald Characteristics

- Combines multiple approaches to detecting problems
- Has built-in capabilities to invoke code to deal with problems
- Component-based architecture
- Intended to scale well

Emerald Architecture

- Divided into generic components and specific object components
- Generic components provide base engine for intrusion detection
 - No code relating to specific events or characteristics here
- Bulk of code in specific object components

Object Monitors

- Code intended to watch for intrusions on particular types of system objects
 - Types of services (FTP, HTTP)
 - Network elements (firewalls, routers)
 - Possible kinds of attacks

Object Monitor Architecture

- Target-specific resource object
- Resolved engines
- Profiler engines
Signature Engines

- Analyzes behavior to find known problems
- Uses expert systems technology
 - Allowing detection beyond pattern matching of signatures
- But also watches for problems expert system knows about

Profiler Engines

- Statistically-based subsystem to watch for unusual behavior
- Types of statistical variables:
 - Categorical (discrete types)
 - Continuous (numerical qualities)
 - Traffic intensity (volume over time)
 - Event distribution (e.g., meta-measure of other measures)

Resolver

- Coordinator of monitor’s external reporting system
- Implements monitor’s response policy
 - E.g., could shut down all HTTP traffic if things look very bad
 - Or could simply request more detailed monitoring

Customizing Emerald

- On installation, administrator chooses from library of resource objects
 - Depending on what his system does and what threats he anticipates
- Can also develop new resource objects for new/particular threats
- Goal is high reusability of code
Analyzing Systems From Multiple Perspectives
• Emerald is designed to allow correlation of multiple analyses
• E.g., detecting common types of events from different monitors
• Or combining low-rate events from different monitors
• Or analyzing the same system from multiple perspectives

DIDS
• Distributed Intrusion Detection System
• Multi-host anomaly and misuse detection system
• First intrusion detection system to aggregate audit reports from multiple hosts
• Developed at UC Davis

NetRanger
• A commercial intrusion detection system
• For use in network environments
• Examines data flows
 – Denying access to suspicious flows
• Using misuse detection techniques

The Common Intrusion Detection Framework (CIDF)
• An attempt to allow intrusion detection systems to interoperate
• Possibly combining advantages of all
• An architecture, a communication specification, and a language
• IETF also working on intrusion detection standard

Basic CIDF Architecture
• Several kinds of components:
 – Event generators (E-boxes)
 – Event analyzers (A-boxes)
 – Event databases (D-boxes)
 – Response units (R-boxes)

CIDF Generalized Intrusion Detection Objects (Gidos)
• The means of communicating among other components
• Some examples:
 – Encoding occurrence of particular event at particular time
 – Encoding a conclusion about a set of events
 – Transporting instruction to carry out an action
Conclusions

- Intrusion detection systems are helpful enough that those who care about security should use them
- They are not yet terribly sophisticated
 - Which implies they aren’t that effective
- Much research continues to improve them