DNS Security

Matt Beaumont-Gay
4/12/06
The Domain Name System

• Translates host names to network addresses
 – Also provides information on where to find services within a domain (MX, SRV records)

• Hierarchically organized
 – 13 root servers
 – Multiple servers for each top-level domain (e.g. com, edu, uk)
 – Each subsidiary domain associated with two or more authoritative servers
The Domain Name System

- Runs almost exclusively over UDP
 - Response associated to request via 16-bit ID
- End hosts configured with address for local resolver
- Local resolver configured with addresses of root nameservers
 - Almost always serves as a cache
DNS at work

- User points web browser at www.google.com
- Host's stub resolver sends recursive query to local nameserver
- Local nameserver asks...
 - a.root-servers.net about com
 - k.gtld-servers.net about google.com
 - ns2.google.com about www.google.com
- Local nameserver returns IP address to stub resolver
Why do we want to protect DNS?

• Q: What happens if the attacker can provide arbitrary response to end host's DNS queries?

• A: All sorts of evil
 – All responses point to adware/malware site
 – Response for bank address points to phishing site
 – All responses are NXDOMAIN or point to black hole address (denial of service)
Attack methods

- Packet interception
- Port or query ID guessing
 - 16 bits each
 - Each often predictable from previous queries or otherwise chosen from small subspace
- Cache poisoning
- Reconfigure end host so "local resolver" is a machine controlled by attacker
DNSSEC

- Cryptography provides fairly straightforward solution to problem of forged responses
- Nameservers sign responses
- Superzones provide public keys for subzones
 - Bootstrap off of well-known key for root servers
- Subtleties: negative responses, wildcard entries
Operational Issues

- The big issue: Nobody really uses DNSSEC
- Not deployed at root or (all but two) TLD nameservers
 - See http://www.dnssec-deployment.org/ for more info, including roadmap to high-level deployment
- Can be deployed by individual domains, but much less useful without chain of trust
Operational Issues

• Not deployed at clients
 – DNSSEC-aware stub resolver API not yet developed
 – Client needs either to have secure channel to local resolver or to verify response signatures itself to prevent spoofed responses
 • Deployment at local resolver prevents cache poisoning
Barriers to adoption

• Chicken-and-egg problem
 – Hopefully solved by push to deploy at root

• Zone enumeration via negative responses
 – Under discussion by IETF

• Computational cost of cryptography
DDoS via DNS

- DNS requests are unauthenticated
- Attacker sends requests w/ spoofed source address to some nameserver, nameserver sends replies to target
- With preparation, 60-byte request can elicit 4000-byte response (TXT record)
Questions

• How effective can partial deployment of DNSSEC be?

• Assuming DNSSEC becomes widely deployed, how will attackers adapt?

• What (besides forcing all sites to properly configure their resolvers) can be done about the DDoS amplification effect?