Network Security: Firewalls and Virtual Private Networks
CS 239
Computer Software
March 3, 2003

Firewalls
- “A system or combination of systems that enforces a boundary between two or more networks” - NCSA Firewall
- Functional Summary
 - Usually, a computer that keeps the bad guys out

Typical Use of a Firewall

What Is a Firewall, Really?
- Typically a machine that sits between a LAN/WAN and the Internet
- Running special software
- That somehow regulates network traffic between the LAN/WAN and the Internet

Firewalls Today
- A standard piece of equipment for all installations that care about security
- At minimum, prevent information coming into a network on “bad” ports
- Often implement ingress/egress filtering
- Many high-quality commercial products available

Types of Firewalls
- Filtering gateways
 - AKA screening routers
- Circuit gateways
 - Also a kind of screening router
- Application level gateways
 - AKA proxy gateways
- Hybrid (complex) gateways
Filtering Gateways

• Based on packet routing information
• Look at information in the incoming packets’ headers
• Based on that information, either let the packet through or reject it

Example Use of Filtering Gateways

• Allow particular external machines to telnet into specific internal machines
 – Denying telnet to other machines
• Or allow full access to some external machines
• And none to others

A Fundamental Problem

• Today’s IP packet headers aren’t authenticated
 – And are pretty easy to forge
• If your filtering firewall trusts packet headers, it offers little protection
• Situation may be improved by IPSEC
 – But hasn’t been yet

Filtering Based on Ports

• Most incoming traffic is destined for a particular machine and port
 – Which can be derived from the IP and TCP headers
• Only let through packets to select machines at specific ports
• Makes it impossible to externally exploit flaws in little-used ports
 – If you configure the firewall right . . .

Pros and Cons of Filtering Gateways

+ Fast
+ Cheap
+ Flexible
+ Transparent
 – Limited capabilities
 – Dependent on header authentication
 – Generally poor logging
 – May rely on router security

Circuit Gateways

• Another kind of filtering firewall
• Used when internal machines request service from machines outside the firewall
• Makes it look like the request came from the firewall
 – Concealing internal system details
Application Level Gateways

- Also known as proxy gateways
- Firewalls that understand the application-level details of network traffic
 - To some degree
- Traffic is accepted or rejected based on the probable results of accepting it

How Application Level Gateways Work

- The firewall serves as a general framework
- Various proxies are plugged into the framework
- Incoming packets are examined
 - And handled by the appropriate proxy

Firewall Proxies

- Programs capable of understanding particular kinds of traffic
 - E.g., FTP, HTTP, videoconferencing
- Proxies are specialized
- A good proxy must have deep understanding of the network application

An Example Proxy

- A proxy to audit email
- What might such a proxy do?
 - Only allow email from particular hosts through
 - Or from particular users
 - Or filter out email with unsafe inclusions (like executables)

What Are the Limits of Proxies?

- Proxies can only test for threats they understand
- Either they must permit a very limited set of operations
- Or they must have deep understanding of the program they protect
 - If too deep, they may share the flaw

Pros and Cons of Application Level Gateways

+ Highly flexible
+ Good logging
+ Content-based filtering
+ Potentially transparent
 - Slower
 - More complex and expensive
 - A good proxy is hard to find
Hybrid Gateways

• A combination of two or more other types
 – Typically filtering gateways and proxy gateways
• Are they better?
 – If in parallel, no
 – If in series, maybe

Firewall Characteristics

• Statefulness
• Transparency
• Firewalls and authentication
• Firewalls and encryption
• Firewalls and viruses

Stateful Firewalls

• Much network traffic is connection-oriented
 – E.g., telnet and videoconferencing
• Proper handling of that traffic requires the firewall to maintain state
• But handling information about connections is more complex

Firewalls and Transparency

• Ideally, the firewall should be invisible
 – Except when it vetoes access
• Users inside should be able to communicate outside without knowing about the firewall
• External users should be able to invoke internal services transparently

Firewalls and Authentication

• Many systems want to allow specific sites or users special privileges
• Firewalls can only support that to the extent that strong authentication is available
 – At the granularity required
• For general use, may not be possible
 – In current systems

Firewalls and Encryption

• Firewalls provide no confidentiality
 – For data they pass back and forth
• Unless the data is encrypted
• But if the data is encrypted, the firewall can’t examine it
• So typically the firewall must be able to decrypt
 – Or only work on unencrypted parts of packets
Firewalls and Link Encryption

- Inter-firewall encryption is essentially link level encryption
 - With all inherent problems
 - Except (presumably) that only trusted machines encrypt and decrypt
- More encryption can be applied at the application level
 - Limiting the firewall’s options

Firewalls and Viruses

- Firewalls are an excellent place to check for viruses
- Virus detection software can be run on incoming executables
- Requires that firewall knows when executables come in
- And must be reasonably fast

Firewall Configuration and Administration

- Again, the firewall is the point of attack for intruders
- Thus, it must be extraordinarily secure
- How do you achieve that level of security?

Firewall Hardening

- Devote a special machine only to firewall duties
- Alter OS operations on that machine
 - To allow only firewall activities
 - And to close known vulnerabilities
- Strictly limit access to the machine
 - Both login and remote execution

Firewalls and Logging

- The firewall is the point of attack for intruders
- Logging activities there is thus vital
- The more logging, the better
- Should log what the firewall allows
- And what it denies
- Tricky to avoid information overload

Closing the Back Doors

- Firewall security is based on assumption that all traffic goes through the firewall
- So be careful with:
 - Modem connections
 - Wireless connections
 - Portable computers
- Put a firewall at every entry point to your network
- And make sure all your firewalls are up to date
Personal Firewalls
- Firewalls installed on individual machines
- Essentially, a software interface to protect machine
- Generally a good idea
 - Especially if local network has no firewall
- Suffer from disadvantage that firewall isn’t only thing on machine
- Typically requires somewhat expert user
- But can be customized for individual needs

Firewalls and Perimeter Defense
- Firewalls implement a form of security called perimeter defense
- Protect the inside of something by defending the outside strongly
 - The firewall machine is often called a bastion host
- Control the entry and exit points
- If nothing bad can get in, I’m safe, right?

Weaknesses of Perimeter Defense Models
- Breaching the perimeter compromises all security
- Windows passwords are a form of perimeter defense
 - If you get past the password, you can do anything
- Perimeter defense is part of the solution, not the entire solution

The Basic Limitation of Firewalls
- Firewalls must allow some stuff through
- If the security flaw being exploited is consistent with what they allow through,
 - Firewalls offer no protection
- Firewalls are a useful tool, not the ultimate answer to security problems
- So if someone says, “Don’t worry, we have a firewall,”
 - Worry

So How Good Are Firewalls?
- Properly configured, very helpful
- Can drastically reduce security incidents in a network
- E.g., UCLA CS Department has had very few serious security incidents since a firewall was installed
- But they don’t solve all problems
 - Especially if not well configured

Virtual Private Networks
- VPNs
- What if your company has more than one office?
- And they’re far apart?
 - Like on opposite coasts of the US
- How can you have secure cooperation between them?
Hope For the Best

- Internet lines aren’t easy to tap
 - Though redirecting traffic is sometimes possible
- Backbone carriers are probably trustworthy
- Most traffic isn’t that important
- Maybe just encrypt the critical stuff?

Leased Line Solutions

- Lease private lines from some telephone company
- The phone company ensures that your lines cannot be tapped
 - To the extent you trust in phone company security
- Can be expensive and limiting

Another Solution

- Communicate via the Internet
 - Getting full connectivity, bandwidth, reliability, etc.
 - At a lower price, too
- But how do you keep the traffic secure?
- Encrypt everything!

Encryption and Virtual Private Networks

- Use encryption to convert a shared line to a private line
- Set up a firewall at each installation’s network
- Set up shared encryption keys between the firewalls
- Encrypt all traffic using those keys

Is This Solution Feasible?

- A VPN can be half the cost of leased lines (or less)
- And give the owner more direct control over the line’s security
- IPsec might make deployment and interoperation easy

Key Management and VPNs

- All security of the VPN relies on key secrecy
- How do you communicate the key?
 - In early implementations, manually
 - Modern VPNs use something like IKE
- How often do you change the key?
 - IKE allows frequent changes
VPNs and Firewalls

- VPN encryption is typically done between firewall machines
- Do I need the firewall for anything else?
- Probably, since I still need to allow non-VPN traffic in and out