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1. INTRODUCTION 

The sharing of data in distributed systems is already common and will 
become pervasive as these systems grow in scale and importance. Each 
user in a distributed system is potentially a creator as well as a consumer 
of data. A user may wish to make his actions contingent upon information 
from a remote site, or may wish to update remote information. Sometimes 
the physical movement of a user may require his data to be accessible 
elsewhere. In both scenarios, ease of data sharing considerably enhances 
the value of a distributed system to its community of users. The challenge 
is to provide this functionality in a secure, reliable, efficient, and usable 
manner that is independent of the size and complexity of the distributed 
system. 

This paper is a survey of the current state of the art in the design of 
distributed file systems, the most widely used class of mechanisms for 
sharing data. It consists of four major parts: a brief survey of background 
material, case studies of a number of contemporary file systems, an identi­
fication of the key design techniques in use today, and an examination of 
research issues that are likely to challenge us in the next decade. 

2. BACKGROUND 

We begin by examining the basic abstraction realized by file systems, and 
proceed to develop a taxonomy of issues in their design. Section 2.2 then 
traces the origin and development of distributed file systems until the 
middle of the current decade, when the systems described in Section 3 
came into use. A sizeable body of empirical data on file usage properties 
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74 SATYANARAYANAN 

is available to us today. Section 2.3 summarizes these observations and 
shows how they have influenced the design of distributed file systems. 

2.1 Basic Issues 

Permanent storage is a fundamental abstraction in computing. It consists 
of a named set of objects that come into existence by explicit creation, are 
immune to temporary failures of the system, and persist until explicitly 
destroyed. The naming structure, the characteristics of the objects, and 
the set of operations associated with them characterize a specific refinement 
of the basic abstraction. A file system is one such refinement. 

From the perspective of file system design, computing models can be 
classified into four levels. The set of design issues at any level subsumes 
those at lower levels. Consequently, the implementation of a file system 
for a higher level will have to be more sophisticated than one that is 
adequate for a lower level. 

At the lowest level, exemplified by IBM PC-DOS (IBM 1 983) and Apple 
Macintosh (Apple 1985), one user at a single site performs computations 
via a single process. A file system for this model must address four key 
issues. These include the naming structure of the file system, the application 
programming interface, the mapping of the file system abstraction to 
physical storage media, and the integrity of the file system across power, 
hardware, media, and software failures. 

The next level, exemplified by OS/2 (Letwin 1988), involves a single user 
computing with multiple processes at one site. Concurrency control is 
now an important consideration at the programming interface and in the 
implementation of the file system. The survey by Bernstein & Goodman 
(1981) treats this issue in depth. 

The classic timesharing model, where multiple users share data and 
resources, constitutes the third level of the taxonomy. Mechanisms to 
specify and enforce security now become important. Unix (Ritchie & 
Thompson 1974) is the archetype of a timesharing file system. 

Distributed file systems constitute the highest level of the taxonomy. 
Here multiple users who are physically dispersed in a network of auton­
omous computers share in the use of a common file system. A useful way 
to view such a system is to think of it as a distributed implementation of 
the timesharing file system abstraction. The challenge is in realizing this 
abstraction in an efficient, secure, and robust manner. In addition, the 
issues of file location and availability assume significance. 

The simplest approach to file location is to embed location information 
in names. Examples of this approach can be found in the Newcastle 
Connection (Brownbridge et al 1982), Cedar (Schroeder et al 1985), and 
Vax/VMS (Digital 1985). But the static binding of name to location makes 
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DISTRIBUTED FILE SYSTEMS 75 

it inconvenient to move files between sites. It also requires users to remem­
ber machine names, a difficult feat in a large distributed environment. A 
better approach is to use location transparency, where the name of a file 
is devoid of location information. An explicit file location mechanism 
dynamically maps file names to storage sites. 

Availability is of special significance because the usage site of data can 
be different from its storage site. Hence failure modes are substantially 
more complex in a distributed environment. Replication, the basic tech­
nique used to achieve high availability, introduces complications of its own. 
Since multiple copies of a file are present, changes have to be propagated to 
all the replicas. Such propagation has to be done in a consistent and 
efficient manner. 

2.2 Evolution 

User-initiated file transfer was the earliest form of remote file access. 
Although inconvenient and limited in functionality, it served as an impor­
tant mechanism for sharing data in the early days of distributed computing. 
IFS on the Alto personal computers (Thacker et al 1981) and the Datanet 
file repository on the Arpanet (Marill I975) exemplify this approach. 

A major step in the evolution of distributed file systems was the recog­
nition that access to remote files could be made to resemble access to local 
files. This property, called network transparency, implies that any operation 
that can be performed on a local file may also be performed on a remote 
file. The extent to which an actual implementation meets this ideal is an 
important measure of quality. The Newcastle Connection and Cocanet 
(Rowe & Birman 1982) are two early examples of systems that provided 
network transparency. In both cases the name of the remote site was a 
prefix of a remote file name. 

The decade from 1975 to 1985 saw a profusion of experimental file 
systems. Svobodova examines many of these in her comparative survey 
(Svobodova 1984). Systems such as Felix (Fridrich & Older 1981), XDFS 
(Mitchell & Dion 1982), Alpine (Brown et aI1985), Swallow (Svobodova 
1981), and Amoeba (Mullender & Tanenbaum 1985, 1986) explored the 
issues of atomic transactions and concurrency control on remote files. The 
Cambridge file system (Birrell & Needham 1980) and the CMU-CFS file 
system (Accetta et al 1980) examined how the naming structure of a 
distributed file system could be separated from its function as a permanent 
storage repository. The latter also addressed access control, caching, and 
transparent file migration onto archival media. Cedar (Schroeder et al 
1985) was the first file system to demonstrate the viability of caching 
entire files. Many of its design decisions were motivated by its intended 
application as a base for program development. 
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76 SATYANARAYANAN 

Locus (Popek et al 1981; Walker et al 1983) was a landmark system 
in two important ways. First, it identified location transparency as an 
important design criterion. Second it proposed replication, along with a 
mechanism for detecting inconsistency, to achieve high availability. Locus 
also provided support for atomic transactions on files and generalized the 
notion of transparent remote access to all aspects of the operating system. 
Weighted voting, an alternative way of using replication for availability, 
was demonstrated in Violet (Gifford 197 9a,b). 

The rapid decline of CPU and memory costs motivated research on 
workstations without local disks or other permanent storage media. In 
such a system, a disk server exports a low-level interface that emulates 
local disk operations. Diskless operation has been demonstrated in systems 
such as V (Cheriton & Zwaenepoel 1983) and RVD (IBM 1987): Lazowska 
et al (Lazowska et al 1986) present an in-depth analysis of the performance 
of diskless workstations. Since diskless operation impacts autonomy, scal­
ability, availability, and security, it has to be viewed as a fundamental 
design constraint. It remains to be seen whether these considerations, 
together with continuing improvements in disk technology, will eventually 
outweigh the cost benefits of diskless operation. 

Distributed file systems are in widespread use today. Section 3 describes 
the most prominent of these systems. Each major vendor now supports a 
distributed file system, and users often view it as an indispensable com­
ponent. But the process of evolution is far from complete. As elaborated 
in Section 5 ,  the next decade is likely to see significant improvements in 
the functionality, usability, and performance of distributed file systems. 

2.3 Empirical Observations 

A substantial amount of empirical investigation in the classic scientific 
mold has been done on file systems. The results of this work have been 
used to guide high-level design as well as to determine values of system 
parameters. For example, data on file sizes has been used in the efficient 
mapping of files to disk storage blocks. Information on the frequency of 
different file operations and the degree of read- and write-sharing of files 
has influenced the design of caching algorithms. Type-specific file reference 
information has been useful in file placement and in the design of repli­
cation mechanisms. 

Empirical work on file systems involves many practical difficulties. The 
instrumentation usually requires modifications to the operating system. In 
addition, it has to impact system performance minimally. The total volume 
of data generated is usually large, and needs to be stored and processed 
efficiently. 

In addition to the difficulty of collecting data, there are two basic 
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DISTRIBUTED FILE SYSTEMS 77  

concerns about its interpretation. Generality i s  one of  these concerns. 
How specific are the observations to the system being observed? Data of 
widespread applicability is obviously of most value. Independent inves­
tigations have been made of a variety of academic and research environ­
ments. The systems examined include IBM MVS (Revelle 1975 ; Stritter 
1977 ; Smith 198 1), DEC PDP-I0 (Satyanarayanan 198 1, 1984) , and Unix 
(Ousterhout et a11985; Floyd 1986a, b; Majumdar & Bunt 1986). Although 
these studies differ in their details, there is substantial overlap in the set of 
issues they investigate. Further, their results do not exhibit any serious 
contradictions. We thus have confidence in our understanding of file 
system characteristics in academic and research environments. Unfor­
tunately there is little publicly available information from other kinds of 
environments. 

The second concern relates to the interdependency of design and empiri­
cal observations. Are the observed properties an artifact of existing system 
design or are they intrinsic? Little is known about the influence of system 
design on file properties, although the existence of such influence is unde­
niable. For example, in a design that uses whole-file transfer, there is 
substantial disincentive to the creation of very large files. In the long run 
this may affect the observed file size distribution. It is therefore important 
to revalidate our understanding of file properties as new systems are built 
and existing systems mature. 

Studies of file systems fall into two broad categories. Early studies 
(Revelle 1975 ; Stritter 1977 ; Smith 1981 ;  Satyanarayanan 1981) were based 
on static analysis, using one or more snapshots of a file system. The data 
from these studies is unweighted. Later studies (Satyanarayanan 1984; 
Ousterhout et a11985; Floyd 1986a,b; Majumdar & Bunt 1986) are based 
on dynamic analysis, using continuous monitoring of a file system. These 
data are weighted by frequency of file usage. 

Although these studies have all been done on timesharing file systems 
their results are assumed to hold for distributed file systems. This is based 
on the premise that user behavior and programming environment charac­
teristics are the primary factors influencing file properties. A further 
assumption is that neither of these factors changes significantly in moving 
to a distributed environment. No studies have yet been done to validate 
these assumptions. 

The most consistent observation in all the studies is the skewing of file 
sizes toward the low end. In other words, most files are small, typically in 
the neighborhood of 10 kilobytes. Another common observation is that 
read operations on files are much more frequent than write operations. 
Random accessing of a file is rare. A typical application program sequen­
tially reads an entire file into its address space and then performs non-
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78 SATYANARAYANAN 

sequential processing on the in-memory data. A related observation is that 
a file is usually read in its entirety once it has been opened. 

A veraged over all the files in a system, data appears to be highly mutable. 
The functional lifetime of a file, defined as the time interval between the 
most recent read and the most recent write, is skewed toward the low end. 
In other words, data in files tends to be overwritten often. Although 
the mean functional lifetime is small, the tail of the distribution is long, 
indicating the existence of files with long-lived data. 

Most files are read and written by one user. When users share a file, it 
is usually the case that only one of them modifies it. Fine granularity read­
write sharing of files is rare. It is important to emphasize that these 
are observations derived from research or academic environments. An 
environment with large collaborative projects or one that makes extensive 
use of databases may show substantially greater write-sharing of data. 

File references show substantial temporal locality of reference. If a file 
is referenced there is a high probability it will be referenced again in the 
near future. Over short periods of time the set of referenced files is a very 
small subset of all files. 

The characteristics described above apply to the file population as a 
whole. If one were to focus on files of a specific type their properties may 
differ significantly. For example, system programs tend to be stable and 
rarely modified. Consequently the average functional lifetime of system 
programs is much largerlhan the average over all files. Temporary files 
on the other hand show substantially shorter lifetimes. More fine-grained 
classification of files is also possible, as demonstrated by some of the 
investigations mentioned earlier (Satyanarayanan 1981; Floyd J 986a,b). 

3. CASE STUDIES 

In this section we examine three distributed file systems that are widely 
used today, focusing on their design goals, their naming and location 
mechanisms, their use of replication and caching, and the support they 
provide for security and system management. Due to constraints of space 
we only provide sufficient detail to highlight the differences and similarities 
of their designs. In addition, we touch upon the noteworthy features of 
three other contemporary file systems in Section 3. 4. 

3.1 Sun Network File System 

3.1.1 DESIGN CONSIDERATIONS Since its introduction in 1985, the Sun 
Microsystems Network File System (NFS) has been widely used in industry 
and academia. In addition to its technical innovations it has played a 
significant educational role in exposing a large number of users to the 
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DISTRIBUTED FILE SYSTEMS 79  

benefits of  a distributed file system. Other vendors now support NFS and 
a significant fraction of the user community perceives it to be a de facto 
standard. 

Portability and heterogeneity are two considerations that have played a 
dominant role in the design of NFS. Although the original file system 
model was based on Unix, NFS has been ported to non-Unix operating 
systems such as PC-DOS. To facilitate portability, Sun makes a careful 
distinction between the NFS protocol, and a specific implementation of an 
NFS server or client. The NFS protocol defines an RPC interface that 
allows a server to export local files for remote access. The protocol does 
not specify how the server should implement this interface, nor does it 
mandate how the interface should be used by a client. 

Design details such as caching, replication, naming, and consistency 
guarantees may vary considerably in different NFS implementations. In 
order to focus our discussion, we restrict our attention to the implemen­
tation of NFS provided by Sun for its workstations that run the SunOS 
flavor of Unix. Unless otherwise specified, the term " NFS" will refer to 
this implementation. The term "NFS protocol" will continue to refer to 
the generic interface specification. 

SunOS defines a level of indirection in the kernel that allows file system 
operations to be intercepted and transparently routed to a variety of local 
and remote file systems. This interface, often referred to as the vnode 
interface after the primary data structure it exports, has been incorporated 
into many other versions of Unix. 

With a view to simplifying crash recovery on servers, the NFS protocol 
is designed to be stateless. Consequently, servers are not required to 
maintain contextual information about their clients. Each RPC request 
from a client contains all the information needed to satisfy the request. To 
some degree functionality and Unix compatibility have been sacrificed to 
meet this goal. Locking, for instance, is not supported by the NFS protocol, 
since locks would constitute state information on a server. SunOS does, 
however, provide a separate lock server to perform this function. 

Sun workstations are often configured without a local disk. The ability 
to operate such workstations without significant performance degradation 
is another goal of NFS. Early versions of Sun workstations used a separate 
remote-disk network protocol to support diskless operation. This protocol 
is no longer necessary since the kernel now transforms all its device oper­
ations into file operations. 

A high-level overview of NFS is presented by Walsh et al ( 1985). Details 
of its design and implementation are given by Sandberg et al (1985). 
Kleiman (1986) describes the vnode interface, while Rosen et al ( 1986) 
comment on the portability of NFS. 
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3. 1.2 NAMING AND LOCATION The NFS paradigm treats workstations 
as peers, with no fundamental distinction between clients and servers. A 
workstation may be a server, exporting some of its files. It may also be a 
client, accessing files on other workstations. But it is common practice for 
installations to be configured so that a small number of nodes run as 
dedicated servers, while the others run as clients. 

NFS clients are usually configured so that each sees a Unix file name 
space with a private root. Using an extension of the Unix mount mechan­
ism, subtrees exported by NFS serxers are individually bound to nodes of 
the root file system. This binding usually occurs when Unix is initialized, 
and remains in effect until explicitly modified. Since each workstation is 
free to configure its own name space there is no guarantee that all work­
stations at an installation have a common view of shared files. But col­
laborating groups of USers usually configure their workstations to have the 
same name space. Location transparency is thus obtained by convention, 
rather than being a basic architectural feature of NFS. 

Since name-to-site bindings are static, NFS does not require a dynamic 
file location mechanism. Each client maintains a table mapping remote 
subtrees to servers. The addition of new servers or the movement of files 
between servers renders the table obsolete. There is no mechanism built 
into NFS to propagate information about such changes. 

3. 1.3 CACHING AND REPLICATION NFS clients cache individual pages of 
remote files and directories in their main memory. They also cache the 
results of pathname to vnode translations. Local disks, even if present, are 
not used for caching. 

When a client caches any block of a file, it also caches a timestamp 
indicating when the file was last modified on the server. To validate cached 
blocks of a file, the client compares its cached timestamp with the time­
stamp on the server. If the server timestamp is more recent, the client 
invalidates all cached blocks of the file and refetches them on demand. A 
validation check is always performed when a file is opened and when the 
server is contacted to satisfy a cache miss. After a check, cached blocks 
are assumed valid for a finite interval of time, specified by the client when 
a remote file system is mounted. The first reference to any block of the file 
after this interval forces a validation check. 

If a cached page is modified, it is marked as dirty and scheduled to be 
flushed to the server. The actual flushing is performed by an asynchronous 
kernel activity and will occur after some unspecified delay. However, the 
kernel does provide a guarantee that all dirty pages of a file will be flushed 
to the server before a close operation on the file completes. 

Directories are cached for reading in a manner similar to files. Modi-
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fications to directories, however, are performed directly on the server. 
When a file is opened, a cache validation check is also performed 
on its parent directory. Files and directories can have different revalida­
tion intervals, typical values being 3 seconds for files and 30 seconds for 
directories. 

NFS performs network data transfers in large block sizes, typically 8 
Kbytes, to improve performance. Read-ahead is employed to improve 
sequential access performance. Files corresponding to executable binaries 
are fetched in their entirety if they are smaller than a certain threshold. 

As originally specified, NFS did not support data replication. More 
recent versions of NFS support replication via a mechanism called Auto­
mounter (Garlick et a1 1988; Callaghan & Lyon 1989). Automounter allows 
remote mount points to be specified using a set of servers rather than a 
single server. The first time a client traverses such a mount point a request 
is issued to each server, and the earliest to respond is chosen as the remote 
mount site. All further requests at the client that cross the mount point 
are directed to this server. Propagation of modifications to replicas has to 
be done manually. This replication mechanism is intended primarily for 
frequently read and rarely written files such as system binaries. 

3.1.4 SECURITY NFS uses the underlying Unix file protection mech­
anism on servers for access checks. Each RPC request from a client conveys 
the identity of the user on whose behalf the request is being made. The 
server temporarily assumes this identity, and file accesses that occur while 
servicing the request are checked exactly as if the user had logged in directly 
to the server. The standard Unix protection mechanism using user, group 
and world mode bits is used to specify protection policies on individual 
files and directories. 

In the early versions of NFS, mutual trust was assumed among all 
participating machines. The identity of a user was determined by a client 
machine and accepted without further validation by a server. The level of 
security of an NFS site was effectively that of the least secure system in 
the environment. To reduce vulnerability, requests made on behalf of root 
(the Unix superuser) on a workstation were treated by the server as if they 
had come from a nonexistent user, nobody. Root thus received the lowest 
level of privileges for remote files. 

More recent versions of NFS can be configured to provide a higher level 
of security. DES-based mutual authentication is used to validate the client 
and the server on each RPC request. Since file data in RPC packets is not 
encrypted, NFS is still vulnerable to unauthorized release and modification 
of information if the network is not physically secure. 

The common DES key needed for mutual authentication is obtained 
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from information stored in a publicly readable database. Stored in this 
database for each user and server is a pair of keys suitable for public key 
encryption. One key of the pair is stored in the clear, while the other is 
stored encrypted with the login password of the user. Any two entities 
registered iIi the database can deduce a unique DES key for mutual 
authentication. Taylor ( 1 986, 1 988) describes the details of this mechanism. 

3. 1 .5 SYSTEM MANAGEMENT Sun provides two mechanisms to assist sys­
tem managers. One of these, the Yellow Pages (YP), is a mechanism for 
maintaining key-value pairs. The keys and values are application-specific 
and are not interpreted by YP. A number of Unix databases such as those 
mapping us ern ames 

'
to passwords, hostnames to network addresses, and 

network services to Internet port numbers are stored in YP. YP provides 
read-only replication, with one master and many slaves. Lookups may be 
performed at any replica. Updates are performed at the master, which is 
responsible for propagating the changes to the slaves. YP provides a shared 
repository for system information that changes relatively infrequently and 
that does not require simultaneous updates at all replication sites. YP is 
usually in use at NFS installations, although this is not mandatory. 

The Automounter, mentioned in Section 3. 1.3 in the context of read-only 
replication, is another mechanism for simplifying system management. It 
allows a client to lazy-evaluate NFS mount points, thus avoiding the 
need to mount all remote files of interest when the client is initialized. 
Automounter can be used in conjunction with YP to reduce the adminis­
trative overheads of server reconfiguration. 

3.2 Apollo Domain File System 

3.2. 1 DESIGN CONSIDERATIONS The DOMAIN system, built by Apollo 
Computers Inc., is a distributed workstation environment whose develop­
ment began in the early 1980s. The goal of this system was to provide a 
usable and efficient computing base for a close-knit team of collaborating 
individuals. Although scale was not a dominant design consideration, large 
Apollo installations now exist. The largest of these is located at the Apollo 
corporate headquarters and encompasses over 3500 nodes. 

Apollo workstations range in hardware capability from small, diskless 
units to large configurations with disks and other peripherals. The under­
lying network technology is a proprietary 12 Mbit token ring (Leach et al 
1983). Installations may choose to treat some of their nodes as dedicated 
servers that run only system software, and other nodes as clients per­
forming user computations. Such a dichotomy is only a matter of conven­
tion. The DOMAIN software treats all nodes as peers. 

DOMAIN provides support for the distribution of typed files via an 
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Object Storage System (OSS). A system-wide Single Level Store (SLS) 
that provides a mapped virtual-memory interface to objects is built on top 
of the OSS. The DOMAIN distributed file system is layered on the SLS 
and presents a Unix-like file interface to application programs. A facility 
called the Open Systems Toolkit (Rees et al 1986) uses the file typing 
mechanism of the OSS to create an extensible I/O system. Users can write 
nonkernel code to interpret I/O operations. When a file is opened its type 
is determined and the code implementing I/O operations on that type of 
object is dynamically loaded by the system. 

Levine (1987) presents the design and rationale of the DOMAIN file 
system. Its goals include location transparency, data consistency, a system­
enforced uniform naming scheme, and a uniform mechanism for access 
control. Full functionality, good performance and ease of administration 
are other stated goals of DOMAIN. In addition to the survey by Levine 
are other papers on the file system (Leach et al 1982, 1985), the overall 
architecture (Leach et al 1 983), an object-oriented development tool for 
distributed applications (Dineen et al 1 987), and the user registry (Apollo 
1 988; Pato et al 1 988). 

3.2.2 NAMING AND LOCATION Every object in the system is uniquely 
named by a 64-bit identifier called its u/D. Each Apollo workstation is 
given a unique node identifier at the time of its manufacture. This identifier 
forms one component of the UID of every object created at that work­
station. The time at which the object was created forms another compon­
ent. Together these two components guarantee uniqueness ofUIDs. Loca­
tion-specific information in UIDs does not violate the goal of location 
transparency since its sole function is to guarantee uniqueness. 

At any instant of time an object has a home node associated with it. The 
OSS maps objects to their homes by using a hint server. As its name 
implies, the hint server performs the mapping using a number of heuristics. 
It is updated in normal system operation by many diverse components of 
the DOMAIN software as they discover the location of objects. A heuristic 
that is frequently successful is to assume that objects created at the same 
node are likely to be located together. A distributed naming server that 
maps string names to UIDs is built on top of the OSS. This server provides 
a hierarchical, Unix-like, location-transparent name space for all files and 
directories in the system. Directories in DOMAIN are merely objects that 
map name components to UIDs. The network-wide root directory of the 
name space is implemented as a replicated distributed database with a 
server instance at the site of each replica. The naming facility is a good 
source of hints for the hint manager, since objects are often co-located 
with their parent directory. 
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3.2.3 CACHING AND REPLICATION The DOMAIN system transparently 
caches data and attributes of objects at the usage node. Mapped virtual­
memory accesses via the SLS interface and file accesses via the file system 
interface are both translated into object references at the OSS level. The 
latter manages a cache of individual pages of objects using a write-back 
scheme with periodic flushing of data to the home of the objects. 

A timestamp is associated with each object indicating the time at its 
home node when it was last modified. Every cached page of the object 
contains this timestamp. The consistency of locally cached data pages is 
verified by comparing their timestamps with the timestamp of the object 
at the home node. Invalid pages are merely discarded. In the course of 
references to the object, missing pages are obtained by demand paging 
across the network to the home node. Fetch-ahead (currently 8 Kbytes) is 
used to improve sequential access performance. 

Cache management in DOMAIN is integrated with its concurrency 
control mechanisms. Each node runs a lock manager that synchronizes 
accesses to all objects that have their home at that node. Two modes of 
locking are supported. One mode allows multiple distributed readers or a 
single writer to access the object. The other mode allows access to multiple 
readers and writers co-located at a single node. Lock managers do not 
queue requests. If a lock for an object cannot be granted immediately, the 
requesting node must periodically retry its request. 

Cache validation is performed when an object is locked. When a write­
lock on an object is released, an implicit purify operation is performed. 
This operation atomically flushes updated pages of an object to its home 
node. Application software is responsible for ensuring that objects are 
locked before being mapped into virtual memory or opened for file access. 
It is also responsible for releasing locks when appropriate. 

DOMAIN does not support read-only or read-write replication of data. 
An object can have only one home at any instant of time. But replicated 
services such as a replicated user registry and a replicated naming service 
are supported by DOMAIN. 

3.2.4 SECURITY Security in DOMAIN is predicated on the physical 

integrity of Apollo workstations ,and on the trustworthiness of the kernels 
on them. Since the network is also assumed to be secure, communications 
on it are sent in the clear. The network component of the kernel at each 
node uses a special field in the header of every packet to indicate whether 
the originator of the packet was a user-level program, or the kernel itself. 
This prevents user-level programs from masquerading as trusted system 
software. 

A distributed user registry stores each user's login password in encrypted 
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form, as in Unix. When a user logs in on a node, the local kernel encrypts 
the password typed by the user, fetches his login entry from the registry, 
and validates the user by comparing the two encrypted passwords. Each 
instance of a logged-in user is associated with a unique identifier, called a 
PPON, that identifies the user, the project and organization he belongs 
to, and the node at which this login instance occurred. The PPON is used 
on all access checks on behalf of this logged-in instance of the user. Nodes 
cache recently used registry information to enhance availability. 

The user registry, called RGY, is a replicated database with one master 
site and multiple read-only slaves for availability. Each replica contains 
the entries for all users in the system. Updates are made at the master site, 
which then propagates them asynchronously to the slave sites. Direct 
authentication to the master, using a Needham-Schroeder authentication 
handshake, is required before an update can be performed. 

Protection policies are specified by access lists on objects. An access list 
entry maps a PPON to a set of rights. Components of PPONs can be 
wildcarded. If multiple entries are applicable in a given access check, the 
most specific matching entry overrides the others. Checking of access has 
been done at the home node of objects in some releases of DOMAIN, and 
at the usage node in other releases. These are logically equivalent, since 
the kernels trust each other. 

3.2.5 SYSTEM MANAGEMENT Concern for ease of administration has been 
an important influence on the design of the DOMAIN user registry 
described in the previous section. Its design allows multiple mutually 
suspicious groups to use a single registry for system management infor­
mation. Each group can have a distinct system administrator who is 
the only person who can manipulate entries pertaining to the group. 
Decentralized administration and specification of usage policies are effec­
tively supported by this mechanism. The registry also supports hetero­
geneity, initially in the form of a client interface for Sun workstations. 

An interactive tool, edrgy, provides a structured interface to the registry. 
It possesses substantial semantic knowledge of the contents of the registry 
and guides administrators. Edrgy detects and notifies administrators of 
potentially serious side effects of their actions. 

3.3 Andrew File System 

3.3. 1 DESIGN CONSIDERATIONS Andrew is a distributed workstation 
environment that has been under development at Carnegie Mellon Uni­
versity since 1983. It combines the rich user interface characteristic of 
personal computing with the data-sharing simplicity of timesharing. The 
primary data-sharing mechanism is a distributed file system spanning all 
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the workstations. Using a set of trusted servers, collectively called Vice, 
the Andrew file system presents a homogeneous, location-transparent file 
name space to workstations. Clients and servers both run the 4.3 BSD 
version of Unix. It is a relatively heavyweight operation to configure a 
machine as an Andrew server. This is in contrast to systems such as Sun 
NFS, where it is trivial for any machine to export a subset of its local file 
system. 

Scalability is the dominant design consideration in Andrew. Many 
design decisions in Andrew are influenced by its anticipated final size 
of 5000 to 10,000 nodes. Careful design is necessary to provide good 
performance at large scale and to facilitate system administration. Scale 
also renders security a serious concern, since it has to be enforced rather 
than left to the good will of the user community. 

The goals and directions of the Andrew project have been described by 
Morris et al (1986). The file system has been discussed extensively in 
papers focusing on architecture (Satyanarayanan et aI1985), performance 
(Howard et aI1988), security (Satyanarayanan 1989), and the influence of 
scale (Satyanarayanan 1988). The Andrew file system has undergone one 
complete revision, and a second revision is under way (Spector & Kazar 
1989). 

3.3.2 NAMING AND LOCATION The file name space on an Andrew work­
station is partitioned into a shared and a local name space. The shared 
name space is location transparent and is identical on all workstations. 
The local name space is unique to each workstation and is relatively 
small. It only contains temporary files or files needed for workstation 
initialization. Users see a consistent image of their data when they move 
from one workstation to another, since their files are in the shared name 
space. 

Both name spaces are hierarchically structured, as in Unix. The shared 
name space is partitioned into disjoint subtrees, and each such subtree is 
assigned to a single server, called its custodian. This assignment is relatively 
static, although reassignment for operational reasons is possible. Intern­
ally, Andrew uses 96-bit file identifiers to uniquely identify files. These 
identifiers are not visible to application programs. 

Each server contains a copy of a fully replicated location database 
that maps files to custodians. This database is relatively small because 
custodianship is on subtrees, rather than on individual files. Temporary 
inaccuracies in the database are harmless, since forwarding information is 
left behind when data is moved from one server to another. 

3.3.3 CACHING AND REPLICATION Files in the shared name space are 
cached on demand on the local disks of workstations. A cache manager, 
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called Venus, runs on each workstation. When a file is opened, Venus 
checks the cache for the presence of a valid copy. If such a copy exists, the 
open request is treated as a local file open. Otherwise an up-to-date copy 
is fetched from the custodian. Read and write operations on an open file 
are directed to the cached copy. No network traffic is generated by such 
requests. If a cached file is modified, it is copied back to the custodian 
when the file is closed. 

Cache consistency is maintained by a mechanism called callback. When 
a file is cached from a server, the latter makes a note of this fact and 
promises to inform the client if the file is updated by someone else. 
Callbacks may be broken at will by the client or the server. The use of 
callback, rather than checking with the custodian on each open, sub­
stantially reduces client-server interactions. The latter mechanism was used 
in the first version of Andrew. Andrew caches large chunks of files, to 
reduce client-server interactions and to exploit bulk data transfer proto­
cols. Earlier versions of Andrew cached entire files. 

A mechanism orthogonal to caching is read-only replication of data that 
is frequently read but rarely modified. This is done to enhance availability 
and to evenly distribute server load. Subtrees that contain such data may 
have read-only replicas at multiple servers. But there is only one read­
write replica and all updates are directed to it. Propagation of changes to 
the read-only replicas is done by an explicit operational procedure. 

Concurrency control is provided in Andrew by emulation of the Unix 
flock system call. Lock and unlock operations on a file are performed 
directly on its custodian. If a client does not release a lock within 30 
minutes, it is timed out by the server. 

3.3.4 SECURITY The design of Andrew pays serious attention to security, 
while ensuring that the mechanisms for enforcing it do not inhibit legiti­
mate use of the system (Satyanarayanan 1989). Security is predicated on 
the integrity of Vice servers. Servers are physically secure, are accessible 
only to trusted operators, and run only trusted system software. Neither 
the network nor workstations are trusted by Vice. Authentication and 
secure transmission mechanisms based on end-to-end encryption are used 
to provide secure access to servers from workstations. 

It is still the responsibility of a user to ensure that he is not being 
compromised by malicious software on his workstation. To protect himself 
against Trojan horse attacks, a concerned user has to maintain the physical 
integrity of his workstation and to deny remote access to it via the network. 

The protection domain in Andrew is composed of users, corresponding 
to human users, and groups, which are sets of users and other groups. 
Membership in a group is inherited, and a user accumulates the privileges 
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of all the groups he belongs to directly and indirectly. Inheritance of 
membership simplifies the maintenance and administration of the pro­
tection domain. Membership in a special group called " System: 
Administrators" endows administrative privileges, including unrestricted 
access to any file in the system. 

Andrew uses an access list mechanism for protection. The total rights 
specified for a user are the union of all the rights collectively specified for 
him and for all the groups of which he is a direct or indirect member. An 
access list can specify negative rights. An entry in a negative rights list 
indicates denial of the specified rights, with denial overriding possession 
in case of conflict. Negative rights are intended primarily a means of 
rapidly and selectively revoking access to critical files and directories. 

For conceptual simplicity, Vice associates access lists with directories 
rather than files. The access list applies to all files in the directory, thus 
giving them uniform protection status. In addition, the three owner bits 
of the Unix file mode are used to indicate readability, writability, or 
executability. In Andrew, these bits indicate what can be done to the file 
rather than who can do it. 

For reasons of compatibility, Andrew will replace its original au­
thentication system with the Kerberos authentication system of Project 
Athena (Steiner et al 1988). The two resemble each other closely in archi­
tecture, although they differ substantially in the details. Both use a two­
step authentication scheme. When a user logs in to a workstation, his 
password is used to establish a communication channel to an authentication 
server. A pair of authentication tokens (in the case of Andrew) or an au­
thentication ticket (in the case of Kerberos) is obtained from the authen­
tication server and saved for future use. These are used, as needed, to 
establish secure RPC connections on behalf of the user to individual file 
servers. The authentication server has to run on a trusted machine in both 
systems. For robustness, there are multiple instances of this server. Only 
one server, the master, accepts updates. The others are slaves and respond 
only to queries. Changes are propagated to slaves by the master. 

3.3.5 SYSTEM MANAGEMENT Operability is a major concern in Andrew 
on account of its scale. The system has to be easy for a small staff to run 
and administer. Regular operational procedures have to be performed in 
a manner that causes minimal disruption of service to users. 

The operational mechanisms of Andrew are built around a data struc­
turing primitive called a volume (Sidebotham 1986). A volume is a col­
lection of files forming a partial subtree of the Vice name space and having 
the same custodian. Volumes are glued together at mount points to form 
the complete name space. 
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There is usually one volume per user, as well as a number of volumes 
containing system software. Volume sizes are usually small enough to 
allow many volumes per disk partition on a server. Disk storage quotas 
are applied on a per-volume basis. Operations such as moving a volume 
from one server to another can be performed while the volume is still 
online. A read-only replica of a volume can be created by a clone operation. 
Such replicas can be used to improve availability and performance. Read­
only volumes can also be used to implement an orderly release process for 
system software. 

Volumes also form the basis of the backup and restoration mechanism. 
To backup a volume a snapshot of its files is created by cloning. An 
asynchronous mechanism then transfers this clone to a staging machine 
from where it is dumped to tape. To handle the common case of accidental 
deletion by users, the cloned backup volume of each user's files is made 
available as a read-only subtree in Vice. 

Andrew has been extended to allow decentralized operation. A coop­
erating group of cells adhering to a standardized set of protocols and 
naming conventions (Zayas & Everhart 1988) can jointly provide the image 
of a single file name space. Cross-cell authentication and translation of 
user identities in different administrative domains are key issues that have 
been addressed in this mechanism. 

3.4 Other Contemporary Systems 

Each of the three systems described in this section is important either 
because it is widely used or because it occupies a unique position in the 
space of distributed file system designs. In the interests of brevity, only 
condensed descriptions of the most distinctive aspects of these systems are 
presented. 

3.4.1 IBM AIX DISTRIBUTED SERVICES As its name implies, A/X Dis­
tributed Services (DS) is a collection of distributed system services 
developed by IBM for its workstations running the AIX Operating System. 
AIX is a derivative of the System V version of Unix. The primary com­
ponent of DS is a distributed file system whose design goals include strict 
emulation of Unix semantics, ability to support databases efficiently, and 
ease of administering a wide range of DS installation configurations. 

A DS client can access remote files via an extension of the Unix mount 
mechanism. DS allows individual files and directories to be mounted, in 
contrast to distributed file systems that allow mounts only at the granu­
larity of an entire subtree. A server need not advertise the files it wishes to 
share. Rather, all files are assumed to be remotely accessible, subject to 
access checks. Most file system operations behave identically on local and 
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remote files. Two significant exceptions are the inability to access remote 
devices, and the inability to map remote files into the address space of a 
process. The latter restriction will be removed in a future release of DS. 

DS uses client main memory as a write-through cache of individual 
pages of files. Clients notify servers of each open of a file for reading or 
writing. The behavior of the caching mechanism depends on whether it is 
in read-only mode (one or more clients reading and no clients writing), 
async mode (one client reading and writing), or full-sync mode (multiple 
clients writing). In read-only mode caching is enabled at all clients. In 
async mode caching is enabled only at the writer, with all other sites 
directing their read requests to the server. Client caching is disabled in full 
sync mode. Cache consistency is maintained by a mechanism reminiscent 
of the Andrew callback mechanism. Since a server is aware of all remote 
opens of its files, it can keep track of all clients that have opened a file 
since the last time it was modified. Before accepting the next open for 
modification, it notifies this list of clients and they invalidate all pages of 
the file that are in their caches. 

DS uses virtual circuit communication based on the SNA LU6.2 proto­
col. Future versions ofDS will also be able to run on the TCPjIP protocol. 
Node to node DES mutual authentication is provided as part of the LU6.2 
implementation. Users and groups have 32-bit network-wide ids. DS trans­
lates these network ids into machine-specific Unix-compatible 16-bit ids. 
The Kerberos authentication mechanism will be supported as an option 
in the future. 

Sauer et al (1987) and Levitt ( 1987) describe the design of DS. Sauer 
(1988) presents a detailed description of the fine-granularity mount mech­
anism. Sauer et al (1988) discuss the rationale for maintaining client state 
on servers for some aspects of DS while avoiding state for other aspects. 

3. 4.2 AT&T REMOTE FILE SHARING Remote File Sharing (RFS) is a 
distributed file system developed by AT&T for its System V version of 
Unix, and is derived from an earlier implementation for Unix Edition 8 
(Weinberger 1984). The most distinctive feature of RFS is its precise 
emulation of local Unix semantics for remote files. An operation on a 
remote file is indistinguishable from the corresponding operation on a 
local file. This aspect ofRFS extends to areas such as concurrency control, 
write-sharing semantics, and the ability to access and control remote 
devices. 

RFS uses the client-server model with virtual circuit communication 
based on Unix System V streams (Olander et al 1986) to provide easy 
portability across a variety of transport protocols. A server advertises each 
subtree it wishes to export, using a network-wide symbolic name for the 
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root of the subtree. Clients explicitly import remote subtrees using sym­
bolic names. A name server performs the translation of symbolic names 
to server addresses. 

Accuracy of Unix system call emulation is achieved by executing all 
remote file system calls on the server. A client merely intercepts and 
forwards these calls to the server. The exact execution environment of the 
client is recreated on the server for the duration of a call, using information 
passed by the client in its request. 

The initial version of RFS used no caching. It has since been extended 
to provide caching in client main memory, retaining the exact emulation 
of Unix semantics. Caching is used only for simple files, not for directories 
or devices. The cache is write-through, with consistency being checked on 
opens. With a single writer and multiple readers, caching is disabled at the 
readers. Caching is reenabled when the writer closes the file, or when the 
time interval since the last modification by the writer exceeds a predefined 
threshold. All caching in the system is disabled when there are multiple 
writers. 

RFS clients and servers trust each other. Protection on files and direc­
tories is specified exactly as in Unix. A mechanism to map user and group 
identities allows files to be shared across administrative domains. RFS 
also provides a mechanism to restrict the privileges of remote users at a 
coarse granularity. 

The rationale, architecture, and implementation of RFS are described 
by Rifkin et al (1986). Bach et al (1987) describe how RFS was extended 
to incorporate caching. Chartock (1987) shows how RFS was made to 
coexist with Sun NFS, using the vnode interface. A comparison of Sun 
NFS and AT&T RFS is presented by Hatch et al (1985). 

3.4.3 SPRITE NETWORK FILE SYSTEM Sprite is an operating system for 
networked uniprocessor and multiprocessor workstations, designed at the 
University of California at Berkeley. The goals of Sprite include efficient 
use of large main memories, support for multiprocessor workstations, 
efficient network communication, and diskless operation. Besides a dis­
tributed file system, Sprite provides other distributed system facilities such 
as process migration. 

Most workstations in a Sprite network are diskless. Although the design 
of Sprite does not make a rigid distinction between clients and servers, a 
few machines with disks are usually dedicated as file servers. These servers 
jointly present a location-transparent Unix file system interface to clients. 

Clients do not have to import files explicitly from individual servers. 
Each server can respond to location queries, using remote links embedded 
in the file system at each server. Remote links are effectively pointers to 
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files at other servers. Each client maintains a local prefix table, which maps 
path name prefixes to servers. Substantial performance improvement is 
achieved by using the cached information in the prefix table for locating 
files. 

Sprite is intended for use by collaborating users who are either incapable 
of subverting the kernels on workstations, or who trust each other. Conse­
quently Sprite kernels trust each other, and communication between them 
is neither authenticated nor encrypted. 

Exact emulation of Unix file system semantics is an important goal of 
Sprite. Whenever a client opens or closes a file for reading or writing, it 
notifies the server that stores the file. A Sprite client usually caches pages 
of a file, validating these pages each time the file is opened. Caching is 
disabled when multiple clients have a file open and one or more of these 
clients have it open for writing. Once caching is disabled, it is reenabled 
only after all clients concurrently using the file have closed it. This strategy 
enables Sprite to provide consistency at the granularity of individual read 
and write operations. 

Sprite provides location-transparent remote access to devices as well as 
files. To provide good performance under a wide variety of workloads, 
physical memory on a Sprite workstation is dynamically partitioned 
between the virtual memory subsystem and the file cache. Sprite uses 
ordinary files in the shared name space for paging. This simplifies process 
migration, since the backing files are visible at all other Sprite workstations 
in the environment. 

Ousterhout et al (1988) provide an overview of Sprite. Welch & Ouster­
hout (1986) describe the prefix mechanism used for file location. A detailed 
performance analysis of caching in Sprite is presented by Nelson et al 
( 1988). 

4. MECHANISMS AND TECHNIQUES 

Here I highlight and discuss certain mechanisms that have been found to 
be of significant value in the design of distributed file systems. These 
mechanisms are of general applicability, except for mount points, which 
are Unix specific. But even mount points are widely used since the majority 
of distributed file systems at the present time are based on Unix. The 
dominance of the Unix file system model is indeed remarkable. 

4.1 Mount Points 

The mount mechanism in Unix enables the gluing together of file name 
spaces to provide applications with a single, seamless, hierarchically struc­
tured name space. On startup, the Unix file name space consists of a single 
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root file system. Individual mount commands may then be issued to bind 
the root of an external file system to an internal or leaf node of the local 
name space. A mount on an internal node hides the original subtree 
beneath that node. To simplify the implementation, Unix imposes certain 
restrictions such as the inability to place hard links across mount points. 

Mount was originally conceived as a mechanism to allow self-contained 
file systems on removable storage media to be added to or removed without 
reinitializing Unix. When performing a name lookup, the kernel uses an 
internal data structure called the mount table to direct its search to the 
appropriate storage device. A single lookup may span many devices if 
multiple mounts are in effect. In a distributed file system, the mount 
mechanism provides a natural hook on which to hang a remote subtree. 
There are two fundamentally different ways to use the mechanism, with 
numerous variants of each. 

The simpler approach is used by systems such as NFS, where each 
client individually mounts subtrees from servers. There is no centralized 
management of mount information. Servers are unaware of where the 
subtrees exported by them have been mounted. Although this approach is 
easier to implement, it has the disadvantage that the shared name space is 
not guaranteed to be identical at all clients. Further, movement of files 
from one server to another requires each client to unmount and remount 
the affected subtree. In practice, systems that use this approach have 
usually had to provide auxiliary mechanisms (such as the Yellow Pages 
and Automounter in NFS) to automate and centralize mounts. 

The alternative approach is to embed mount information in the data 
stored in the file servers. Andrew, for example, uses mount points em­
bedded in volumes. Sprite uses remote links for a similar purpose. Using 
this approach, it is trivial to ensure that all clients see precisely the same 
shared file name space. Further, operational tasks such as moving files 
from one server to another only involve updating the mount information 
on the servers. 

4.2 Caching at Clients 

The caching of data at clients is undoubtedly the architectural feature 
that contributes most to performance in a distributed file system. Every 
distributed file system in serious use today uses some form of caching. 
Even AT &Ts RFS, which initially avoided caching in the interests of strict 
Unix emulation, now uses it. 

Caching exploits locality of reference. There is a high probability that 
file data will be reused soon after its first use. By obtaining a local copy of 
the data a client can avoid many further interactions with the server. Meta­
data such as directories, protection and file status information, and file 
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location information also exhibit locality of reference and are thus good 

candidates for caching. 

A key issue in caching is the size of the cached units of data. Most 

distributed file systems cache individual pages of files. Early versions of 
Andrew cached entire files. Although this simplifies cache management 
and offers simpler failure semantics it does suffer from the inability to 

access files that are larger than the client's cache. More recent versions of 
Andrew cache large portions (typically 64 Kbytes) of files. The unit of 
caching is closely related to the use of bulk transfer protocols, as discussed 
in Section 4.4. 

In most systems clients maintain the cache in their main memory. 
Andrew is an exception in that it caches on its local disk, with a further 
level of caching in main memory. Besides providing larger cache sizes, disk 

caching preserves cache contents across system reboots. 
The validation of cache contents can be done in two fundamentally 

different ways. One approach, used by most systems, is for the client to 
contact the server for validation. The alternative approach, used in Andrew 

and DS, is to have the server notify clients when cached data is about to 
be rendered stale. Although more complex to implement, the latter 
approach can produce substantial reductions in client-server traffic. 

Existing systems use a wide spectrum of approaches in propagating 

modifications from client to server. In async mode, DS propagates changes 
to the server only when the file is explicitly flushed. Andrew propagates 
changes when a file is closed after writing. Sprite delays propagation until 

dirty cache pages have to be reclaimed or for a maximum of 30 seconds. 
Deferred propagation improves performance since data is often over­
written, but increases the possibility of server data being stale due to a 
client crash. 

References within a file also exhibit spatial locality . If a page of a file is 
read, there is substantial likelihood that succeeding pages will also be read. 
This property is exploited in many systems by using read-ahead of file 
data. The client can overlap the processing of one page with the fetching 
of the next page or set of pages from the server. 

4.3 Hints 

In the context of distributed systems, a hint (Lampson 1 983) is a piece of 
information that can substantially improve performance if correct but 
has no semantically negative consequence if erroneous. For maximum 
performance benefit a hint should nearly always be correct. Terry ( 1 987) 
discusses the use of hints in detail and provides many examples of how 
they may be used in distributed systems. 
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By caching hints one can obtain substantial performance benefits with­
out incurring the cost of maintaining cache consistency. Only information 
that is self-validating upon use is amenable to this strategy. One cannot, 
for instance, treat file data as a hint because the use of a cached copy of 
the data will not reveal whether it is current or stale. 

Hints are most often used for file location information in distributed file 
systems. Sprite, for instance, caches mappings of pathname prefixes to 
servers. Similarly, Andrew caches individual entries from the volume 
location database. In these systems a client will use cached location infor­
mation until a server rejects a request because it no longer stores the file 
referred to in the request. The client then obtains the new location of the 
file, and caches this information as a fresh hint. A more elaborate location 
scheme, incorporating a hint manager, is used by Apollo Domain. 

4.4 Transferring Data in Bulk 

Network communication overheads typically account for a major portion 
of the latency in a distributed file system. Although the transit time of 
small amounts of data across a local area network is insignificant, the 
delays caused by protocol processing can be substantial. Transferring data 
in bulk reduces this overhead at both the source and sink of the data. At the 
source, multiple packets are formatted and transmitted with one context 
switch. At the sink, an acknowledgment is avoided for each packet. Some 
bulk transfer protocols also make better use of the disks at the source and 
sink. Multiple blocks of data may often be obtained at the source with a 
single seek. Similarly, packets can be buffered and written en masse to the 
disk at the sink. In effect, the use of bulk transfer amortizes fixed protocol 
overheads over many consecutive pages of a file. 

Bulk transfer protocols depend for effectiveness on spatial locality of 
reference within files. There is a high probability that succeeding pages of 
a file will soon be referenced at the client if an earlier page is referenced. 
As mentioned in Section 2.3 there is substantial empirical evidence to 
indicate that files are read in their entirety once they are opened. 

The degree to which bulk transfer is exploited varies from system to 
system. Andrew, for instance, is critically dependent on it for good per­
formance. Early versions of the system transferred entire files, and the 
current version transfers files in 64-Kbyte chunks. Systems such as NFS 
and Sprite exploit bulk transfer by using very large packet sizes, typically 
8 Kbytes. The latter systems depend on the link level protocol to fragment 
and reassemble smaller packets at the media access level. Bulk transfer 
protocols will increase in importance as distributed file systems spread 
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across networks of wider geographic area and thus have greater inherent 
latency. 

4.5 Encryption 

Encryption is an indispensable building block for enforcing security in a 
distributed system. Voydock & Kent (1983) classify threats to security 
as actions that cause unauthorized release of information, unauthorized 
modification of information, or unauthorized denial of resources. Encryp­
tion is primarily of value in preventing unauthorized release and modi­
fication of information. Because it is a national standard, DES (Meyer 
& Matyas 1982) is the most commonly used form of private-key encryp­
tion. 

The seminal work of Needham & Schroeder (1978) on the use of encryp­
tion for authentication is the basis of all current security mechanisms in 
distributed file systems. At the heart of these mechanisms is a handshake 
protocol in which each party challenges the other to prove its identity. 
Possession of a secret encryption key, known only to a legitimate client 
and server, is assumed to be prima facie evidence of authenticity. Thus 
two communicating entities that are mutually suspicious at the beginning 
end up confident of each other's identity, without ever transmitting their 
shared secret key in the clear. 

This basic scheme is used in two distinct ways in current systems. The 
difference lies in the way user passwords are stored and used on :servers. 
In the scheme used by Kerberos and Andrew, an authentication server 
that is physically secure maintains a list of user passwords in the clear. In 
contrast, the public key scheme used by Sun NFS maintains a publicly 
readable database of authentication keys that are encrypted with user 
passwords. The latter approach has the attractive characteristic that physi­
cal security of the authentication server is unnecessary. 

Encryption is usually implemented end-to-end, at the RPC level. DS, in 
contrast, uses node-to-node encryption. In some systems, such as Andrew, 
encryption can be used to protect the data and· headers of all packets 
exchanged after authentication. Other systems, such as Sun NFS, do not 
provide this capability. 

A difficult nontechnical problem is justifying the cost of encryption 
hardware to management and users. Unlike extra memory, processor 
speed, or graphics capability, encryption devices do not provide tangible 
benefits to users. The importance of security is often perceived only after 
it is too late. At present, encryption hardware is viewed as an expensive 
frill. Hopefully, the emerging awareness that encryption is indispensable 
for security will make rapid, cheap encryption a universally available 
capability. 
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Distributed file systems continue to be the subject of considerable activity 
and innovation in industry and academia. Work is being done in the areas 
of availability, further scaling, support for heterogeneity, and database 
access. We briefly consider each of these issues in the following sections. 

5.1 Availability 

As reliance on distributed file systems increases, the problem of availability 
becomes acute. Today a single server crash or network partition can 
seriously inconvenience many users in a large distributed file system. There 
is a growing need for distributed file systems that are resilient to failures. 

Availability is the focus of the Coda file system, currently being built at 
Carnegie Mellon University. Coda's goal is to provide the highest degree 
of availability in the face of all realistic failures, without significant loss of 
usability, performance, or security. Two orthogonal mechanisms, server 
replication and disconnected operation, are used to achieve this goal. Many 
key architectural features of Coda, such as the use of caching with callback, 
whole-file transfer, RPC-based authentication and encryption, and aggre­
gation of data into volumes are inherited from Andrew. 

Consistency, availability, and performance, tend to be mutually con­
tradictory goals in a distributed system. Coda's strategy is to provide the 
highest availability at the best performance. It considers inconsistency 
tolerable if it is rare, occurs only under conditions of failure, is always 
detected, and is allowed to propagate as little as possible. The relative 
infrequency of simultaneous write-sharing of files by multiple users makes 
this a viable strategy. 

High availability is also a key concern of the Echo file system being built 
at the System Research Center of Digital Equipment Corporation. This 
design also uses replication, but its strategy differs substantially from that 
of Coda. At any time exactly one of the servers with a replica of a file is 
its primary site. Clients interact only with the primary site, which assumes 
the responsibility of propagating changes to the other replication sites. In 
case of partition,: file updates are allowed only in the partition containing 
a majority of the replication sites. When the primary site is down, a new 
primary site is elected. 

Other recent experimental efforts in lhis .area include RNFS at Cornell 
. University and Gemini at the University Of California at San Diego (Burk­
hard 1 989; Marzullo & Schmuck 1 988). 

5.2 Scalability 

Certain problems induced by scale have been exposed by the extensive use 
of large distributed file systems. One problem is the need for decen-
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tralization. The ability to delegate administrative responsibility along lines 
that parallel institutional boundaries is critical for smooth and efficient 
operation. The ideal model of decentralization is one in which users per­
ceive the system as monolithic even when their accesses span many admin­
istrative domains. In practice, of course, most accesses from a client are 
likely to be directed to a server in the same administrative domain. As 
mentioned in Section 3 the Apollo and Andrew file systems have been 
extended to support decentralized administration. 

Another aspect of scaling is the extension of the distributed file system 
paradigm over wide geographic areas. Virtually all distributed file systems 
today are designed with local area networks in mind. It is an open question 
whether such designs can be extended over networks with longer latencies 
and greater chances of network congestion. An effort is currently under 
way to extend Andrew to operate over a wide-area network. With its 
emphasis on caching and minimization of client-server interactions, the 
design of Andrew secms quitc appropriate for such extension. 

A basic question that arises at very large scale is whether a single 
hierarchically organized name space is indeed the most appropriate model 
for sharing data. This paradigm, originally invented for timesharing sys­
tems of tens or hundreds of users, has been successfully extended to 
distributed file systems of a thousand or so nodes. Will it be the best model 
when there are two orders of magnitude or more nodes? Pa thnames become 
longer and it becomes increasingly difficult to search for a file whose name 
is not precisely known. The Quicksilver file system (Cabrera & Wyllie 
1 988), currently under development at the IBM Almaden Research Center, 
addresses this issue. Its approach is to provide mechanisms for a user to 
customize his name space. Since the customization is location-transparent 
the user retains his context when he moves to any other node in the system. 
A similar approach has been proposed in the Plan 9 system at Bell Labs 
(Pres otto 1988). 

Network topology is becoming an increasingly important aspect of 
distributed systems. Large networks often have complex topologies, caused 
by a variety of factors. Electrical considerations limit the lengths of indi­
vidual network segments and the density of machines on them. Main­
tenance and fault isolation are simplified if a network is decomposable. 
Administrative functions such as the assignment of unique host addresses 
can be decentralized if a network can be partitioned. Although distributed 
file systems mask underlying network complexity, performance inhomo­
geneities cannot be hidden. Routers, which introduce load-dependent 
transmission delays, are a common source of performance inhomogeneity. 
Uneven loading of subnets is another cause. The interaction between 
network topology and distributed system performance is still poorly under-
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stood. A preliminary investigation of these issues has been reported in the 
context of Andrew (Lorence & Satyanarayanan 1988). 

5.3 Heterogeneity 

As a distributed system evolves it tends to grow more diverse. A variety 
of factors contribute to increased heterogeneity. First, a distributed system 
becomes an increasingly valuable resource as it grows in size and stores 
larger amounts of shared data. There is then considerable incentive and 
pressure to allow users outside the scope of the system to participate in the 
use of its resources. A second source of heterogeneity is the improvement in 
performance and decrease in cost of hardware over time. This makes it 
likely that the most effective hardware configurations will change over the 
period of growth of the system. Functional specialization is a third reason 
for heterogeneity. Certain combinations of hardware and software may 
be more appropriate than others for specific applications. 

The distributed file system community has gained some experience with 
heterogeneity. Pinkerton et al (1988) describe an experimental file system 
at Washington that focuses on heterogeneity. TOPS (Stroud 1988) is a 
product offered by Sun Microsystems that allows personal computers 
running the PC-DOS and Macintosh operating systems to share files. PC­

NFS, also from Sun, allows PC-DOS applications to access files on an 
NFS server. A surrogate server mechanism in Andrew, called PCServer 
(Raper 1986), enables PC-DOS applications to access files in Vice. 

Coping with heterogeneity is inherently difficult because of the presence 
of multiple computational environments, each with its own notions of file 
naming and functionality. Since few general principles are applicable, the 
idiosyncrasies of each new system have to be accommodated by ad hoc 
mechanisms. Unfortunately heterogeneity cannot be ignored since it is 
likely to be more widespread in the future. 

5.4 Database Access 

As mentioned in the introduction, a file system is a refinement of the 
permanent storage abstraction. A database is an alternative refinement 
and differs from a file system in two important ways. One difference is the 
storage model presented to application programs and users. A file system 
views the data in a file as an uninterpreted byte sequence. In contrast, a 
database encapsulates substantial information about the types and logical 
relationships of data items stored in it. It can ensure that constraints on 
values are satisfied and can enforce protection policies at fine granularity. 
The second fundamental distinction is in the area of naming. A file system 
provides access to a file by name whereas a database allows associative 

A
nn

u.
 R

ev
. C

om
pu

t. 
Sc

i. 
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s 
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



100 SATYANARAYANAN 

access. Data items can be accessed and modified in a database based on 
user-specified predicates. 

Neither the difference in storage model nor that in naming makes it a 

priori more difficult to build distributed databases than file systems. How­
ever, the circumstances that lead to the use of a database are often precisely 
those that make distribution of data difficult. The use of databases is most 
common in applications where data has to be concurrently shared for 
reading and writing by a large number of users. These applications usually 
demand strict consistency of data as well as atomicity of groups of oper­
ations. Although the total quantity of data in the database may be large, 
the granularity of access and update is usually quite fine. It is this com� 
bination of application characteristics that makes the implementation of 
distributed databases substantially harder than the implementation of 
distributed file systems. 

Distributing a database is particularly difficult at large scale. In its 
most general form the problem seems hopelessly difficult. A database is 
conceptually a focal point for enforcing concurrency control and atomicity 
properties. If the control structures to enforce these properties are phys­
ically distributed, the resulting network protocols have to be substantially 
more complex. The feasibility of fully distributing data and control at 
small scale has been demonstrated by systems such as R * (Lindsay et al 
1984). But extension to larger distributed systems is not trivial. 

A less ambitious approach attempts to provide distributed access to data 
on a single large database server. Although the data itself is located at a 
single site, transparent access to this data is possible from many sites. In 
this model the database requirements of a large distributed system are 
met by a small number of powerful database servers each exporting a 
standardized network interface. An example of such a system, Scylla, has 
been demonstrated at Carnegie Mellon University by integrating an off­
the-shelf relational database system, Informix, with an RPC package. 
Siinilar approaches have recently been announced by Microsoft (Adler 
1988), Oracle (Mace 1988) and other vendors. 

6. CONCLUSION 

Since the earliest days of distributed computing, file systems have been the 
most important; :and widely used form of shared permanent storage. The 
continuing interest in distributed file systems bears testimony to the robust­
ness of this model of data sharing. We now understand how to implement 
distributed file systems that span a few hundred to a few thousand nodes. 
But scaling beyond that will be a formidable challenge. As elaborated in 
the preceding section, availability, heterogeneity, and support for data-
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bases will also be key issues. Security will continue to be a serious concern 
and may, in fact, turn out to be the bane of large distributed systems. 
Regardless of the specific technical direction taken by distributed file 
systems in the next decade, there is little doubt that it will be an area of 
considerable ferment in industry and academia. 
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