
Annu. Rev. Comput. Sci. 1990.4:73-104

Copyright © 1990 by Annual Reviews Inc. All rights reserved

A SURVEY OF DISTRIBUTED

FILE SYSTEMS

M. Satyanarayanan

School of Computer Science, Carnegie Mellon University

1. INTRODUCTION

The sharing of data in distributed systems is already common and will
become pervasive as these systems grow in scale and importance. Each
user in a distributed system is potentially a creator as well as a consumer
of data. A user may wish to make his actions contingent upon information
from a remote site, or may wish to update remote information. Sometimes
the physical movement of a user may require his data to be accessible
elsewhere. In both scenarios, ease of data sharing considerably enhances
the value of a distributed system to its community of users. The challenge
is to provide this functionality in a secure, reliable, efficient, and usable
manner that is independent of the size and complexity of the distributed
system.

This paper is a survey of the current state of the art in the design of
distributed file systems, the most widely used class of mechanisms for
sharing data. It consists of four major parts: a brief survey of background
material, case studies of a number of contemporary file systems, an identi­
fication of the key design techniques in use today, and an examination of
research issues that are likely to challenge us in the next decade.

2. BACKGROUND

We begin by examining the basic abstraction realized by file systems, and
proceed to develop a taxonomy of issues in their design. Section 2.2 then
traces the origin and development of distributed file systems until the
middle of the current decade, when the systems described in Section 3
came into use. A sizeable body of empirical data on file usage properties

73
8756--7016/90/1115-0073$02.00

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

74 SATYANARAYANAN

is available to us today. Section 2.3 summarizes these observations and
shows how they have influenced the design of distributed file systems.

2.1 Basic Issues

Permanent storage is a fundamental abstraction in computing. It consists
of a named set of objects that come into existence by explicit creation, are
immune to temporary failures of the system, and persist until explicitly
destroyed. The naming structure, the characteristics of the objects, and
the set of operations associated with them characterize a specific refinement
of the basic abstraction. A file system is one such refinement.

From the perspective of file system design, computing models can be
classified into four levels. The set of design issues at any level subsumes
those at lower levels. Consequently, the implementation of a file system
for a higher level will have to be more sophisticated than one that is
adequate for a lower level.

At the lowest level, exemplified by IBM PC-DOS (IBM 1 983) and Apple
Macintosh (Apple 1985), one user at a single site performs computations
via a single process. A file system for this model must address four key
issues. These include the naming structure of the file system, the application
programming interface, the mapping of the file system abstraction to
physical storage media, and the integrity of the file system across power,
hardware, media, and software failures.

The next level, exemplified by OS/2 (Letwin 1988), involves a single user
computing with multiple processes at one site. Concurrency control is
now an important consideration at the programming interface and in the
implementation of the file system. The survey by Bernstein & Goodman
(1981) treats this issue in depth.

The classic timesharing model, where multiple users share data and
resources, constitutes the third level of the taxonomy. Mechanisms to
specify and enforce security now become important. Unix (Ritchie &
Thompson 1974) is the archetype of a timesharing file system.

Distributed file systems constitute the highest level of the taxonomy.
Here multiple users who are physically dispersed in a network of auton­
omous computers share in the use of a common file system. A useful way
to view such a system is to think of it as a distributed implementation of
the timesharing file system abstraction. The challenge is in realizing this
abstraction in an efficient, secure, and robust manner. In addition, the
issues of file location and availability assume significance.

The simplest approach to file location is to embed location information
in names. Examples of this approach can be found in the Newcastle
Connection (Brownbridge et al 1982), Cedar (Schroeder et al 1985), and
Vax/VMS (Digital 1985). But the static binding of name to location makes

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 75

it inconvenient to move files between sites. It also requires users to remem­
ber machine names, a difficult feat in a large distributed environment. A
better approach is to use location transparency, where the name of a file
is devoid of location information. An explicit file location mechanism
dynamically maps file names to storage sites.

Availability is of special significance because the usage site of data can
be different from its storage site. Hence failure modes are substantially
more complex in a distributed environment. Replication, the basic tech­
nique used to achieve high availability, introduces complications of its own.
Since multiple copies of a file are present, changes have to be propagated to
all the replicas. Such propagation has to be done in a consistent and
efficient manner.

2.2 Evolution

User-initiated file transfer was the earliest form of remote file access.
Although inconvenient and limited in functionality, it served as an impor­
tant mechanism for sharing data in the early days of distributed computing.
IFS on the Alto personal computers (Thacker et al 1981) and the Datanet
file repository on the Arpanet (Marill I975) exemplify this approach.

A major step in the evolution of distributed file systems was the recog­
nition that access to remote files could be made to resemble access to local
files. This property, called network transparency, implies that any operation
that can be performed on a local file may also be performed on a remote
file. The extent to which an actual implementation meets this ideal is an
important measure of quality. The Newcastle Connection and Cocanet
(Rowe & Birman 1982) are two early examples of systems that provided
network transparency. In both cases the name of the remote site was a
prefix of a remote file name.

The decade from 1975 to 1985 saw a profusion of experimental file
systems. Svobodova examines many of these in her comparative survey
(Svobodova 1984). Systems such as Felix (Fridrich & Older 1981), XDFS
(Mitchell & Dion 1982), Alpine (Brown et aI1985), Swallow (Svobodova
1981), and Amoeba (Mullender & Tanenbaum 1985, 1986) explored the
issues of atomic transactions and concurrency control on remote files. The
Cambridge file system (Birrell & Needham 1980) and the CMU-CFS file
system (Accetta et al 1980) examined how the naming structure of a
distributed file system could be separated from its function as a permanent
storage repository. The latter also addressed access control, caching, and
transparent file migration onto archival media. Cedar (Schroeder et al
1985) was the first file system to demonstrate the viability of caching
entire files. Many of its design decisions were motivated by its intended
application as a base for program development.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

76 SATYANARAYANAN

Locus (Popek et al 1981; Walker et al 1983) was a landmark system
in two important ways. First, it identified location transparency as an
important design criterion. Second it proposed replication, along with a
mechanism for detecting inconsistency, to achieve high availability. Locus
also provided support for atomic transactions on files and generalized the
notion of transparent remote access to all aspects of the operating system.
Weighted voting, an alternative way of using replication for availability,
was demonstrated in Violet (Gifford 197 9a,b).

The rapid decline of CPU and memory costs motivated research on
workstations without local disks or other permanent storage media. In
such a system, a disk server exports a low-level interface that emulates
local disk operations. Diskless operation has been demonstrated in systems
such as V (Cheriton & Zwaenepoel 1983) and RVD (IBM 1987): Lazowska
et al (Lazowska et al 1986) present an in-depth analysis of the performance
of diskless workstations. Since diskless operation impacts autonomy, scal­
ability, availability, and security, it has to be viewed as a fundamental
design constraint. It remains to be seen whether these considerations,
together with continuing improvements in disk technology, will eventually
outweigh the cost benefits of diskless operation.

Distributed file systems are in widespread use today. Section 3 describes
the most prominent of these systems. Each major vendor now supports a
distributed file system, and users often view it as an indispensable com­
ponent. But the process of evolution is far from complete. As elaborated
in Section 5 , the next decade is likely to see significant improvements in
the functionality, usability, and performance of distributed file systems.

2.3 Empirical Observations

A substantial amount of empirical investigation in the classic scientific
mold has been done on file systems. The results of this work have been
used to guide high-level design as well as to determine values of system
parameters. For example, data on file sizes has been used in the efficient
mapping of files to disk storage blocks. Information on the frequency of
different file operations and the degree of read- and write-sharing of files
has influenced the design of caching algorithms. Type-specific file reference
information has been useful in file placement and in the design of repli­
cation mechanisms.

Empirical work on file systems involves many practical difficulties. The
instrumentation usually requires modifications to the operating system. In
addition, it has to impact system performance minimally. The total volume
of data generated is usually large, and needs to be stored and processed
efficiently.

In addition to the difficulty of collecting data, there are two basic

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 77

concerns about its interpretation. Generality i s one of these concerns.
How specific are the observations to the system being observed? Data of
widespread applicability is obviously of most value. Independent inves­
tigations have been made of a variety of academic and research environ­
ments. The systems examined include IBM MVS (Revelle 1975 ; Stritter
1977 ; Smith 198 1), DEC PDP-I0 (Satyanarayanan 198 1, 1984) , and Unix
(Ousterhout et a11985; Floyd 1986a, b; Majumdar & Bunt 1986). Although
these studies differ in their details, there is substantial overlap in the set of
issues they investigate. Further, their results do not exhibit any serious
contradictions. We thus have confidence in our understanding of file
system characteristics in academic and research environments. Unfor­
tunately there is little publicly available information from other kinds of
environments.

The second concern relates to the interdependency of design and empiri­
cal observations. Are the observed properties an artifact of existing system
design or are they intrinsic? Little is known about the influence of system
design on file properties, although the existence of such influence is unde­
niable. For example, in a design that uses whole-file transfer, there is
substantial disincentive to the creation of very large files. In the long run
this may affect the observed file size distribution. It is therefore important
to revalidate our understanding of file properties as new systems are built
and existing systems mature.

Studies of file systems fall into two broad categories. Early studies
(Revelle 1975 ; Stritter 1977 ; Smith 1981 ; Satyanarayanan 1981) were based
on static analysis, using one or more snapshots of a file system. The data
from these studies is unweighted. Later studies (Satyanarayanan 1984;
Ousterhout et a11985; Floyd 1986a,b; Majumdar & Bunt 1986) are based
on dynamic analysis, using continuous monitoring of a file system. These
data are weighted by frequency of file usage.

Although these studies have all been done on timesharing file systems
their results are assumed to hold for distributed file systems. This is based
on the premise that user behavior and programming environment charac­
teristics are the primary factors influencing file properties. A further
assumption is that neither of these factors changes significantly in moving
to a distributed environment. No studies have yet been done to validate
these assumptions.

The most consistent observation in all the studies is the skewing of file
sizes toward the low end. In other words, most files are small, typically in
the neighborhood of 10 kilobytes. Another common observation is that
read operations on files are much more frequent than write operations.
Random accessing of a file is rare. A typical application program sequen­
tially reads an entire file into its address space and then performs non-

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

78 SATYANARAYANAN

sequential processing on the in-memory data. A related observation is that
a file is usually read in its entirety once it has been opened.

A veraged over all the files in a system, data appears to be highly mutable.
The functional lifetime of a file, defined as the time interval between the
most recent read and the most recent write, is skewed toward the low end.
In other words, data in files tends to be overwritten often. Although
the mean functional lifetime is small, the tail of the distribution is long,
indicating the existence of files with long-lived data.

Most files are read and written by one user. When users share a file, it
is usually the case that only one of them modifies it. Fine granularity read­
write sharing of files is rare. It is important to emphasize that these
are observations derived from research or academic environments. An
environment with large collaborative projects or one that makes extensive
use of databases may show substantially greater write-sharing of data.

File references show substantial temporal locality of reference. If a file
is referenced there is a high probability it will be referenced again in the
near future. Over short periods of time the set of referenced files is a very
small subset of all files.

The characteristics described above apply to the file population as a
whole. If one were to focus on files of a specific type their properties may
differ significantly. For example, system programs tend to be stable and
rarely modified. Consequently the average functional lifetime of system
programs is much largerlhan the average over all files. Temporary files
on the other hand show substantially shorter lifetimes. More fine-grained
classification of files is also possible, as demonstrated by some of the
investigations mentioned earlier (Satyanarayanan 1981; Floyd J 986a,b).

3. CASE STUDIES

In this section we examine three distributed file systems that are widely
used today, focusing on their design goals, their naming and location
mechanisms, their use of replication and caching, and the support they
provide for security and system management. Due to constraints of space
we only provide sufficient detail to highlight the differences and similarities
of their designs. In addition, we touch upon the noteworthy features of
three other contemporary file systems in Section 3. 4.

3.1 Sun Network File System

3.1.1 DESIGN CONSIDERATIONS Since its introduction in 1985, the Sun
Microsystems Network File System (NFS) has been widely used in industry
and academia. In addition to its technical innovations it has played a
significant educational role in exposing a large number of users to the

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 79

benefits of a distributed file system. Other vendors now support NFS and
a significant fraction of the user community perceives it to be a de facto
standard.

Portability and heterogeneity are two considerations that have played a
dominant role in the design of NFS. Although the original file system
model was based on Unix, NFS has been ported to non-Unix operating
systems such as PC-DOS. To facilitate portability, Sun makes a careful
distinction between the NFS protocol, and a specific implementation of an
NFS server or client. The NFS protocol defines an RPC interface that
allows a server to export local files for remote access. The protocol does
not specify how the server should implement this interface, nor does it
mandate how the interface should be used by a client.

Design details such as caching, replication, naming, and consistency
guarantees may vary considerably in different NFS implementations. In
order to focus our discussion, we restrict our attention to the implemen­
tation of NFS provided by Sun for its workstations that run the SunOS
flavor of Unix. Unless otherwise specified, the term " NFS" will refer to
this implementation. The term "NFS protocol" will continue to refer to
the generic interface specification.

SunOS defines a level of indirection in the kernel that allows file system
operations to be intercepted and transparently routed to a variety of local
and remote file systems. This interface, often referred to as the vnode
interface after the primary data structure it exports, has been incorporated
into many other versions of Unix.

With a view to simplifying crash recovery on servers, the NFS protocol
is designed to be stateless. Consequently, servers are not required to
maintain contextual information about their clients. Each RPC request
from a client contains all the information needed to satisfy the request. To
some degree functionality and Unix compatibility have been sacrificed to
meet this goal. Locking, for instance, is not supported by the NFS protocol,
since locks would constitute state information on a server. SunOS does,
however, provide a separate lock server to perform this function.

Sun workstations are often configured without a local disk. The ability
to operate such workstations without significant performance degradation
is another goal of NFS. Early versions of Sun workstations used a separate
remote-disk network protocol to support diskless operation. This protocol
is no longer necessary since the kernel now transforms all its device oper­
ations into file operations.

A high-level overview of NFS is presented by Walsh et al (1985). Details
of its design and implementation are given by Sandberg et al (1985).
Kleiman (1986) describes the vnode interface, while Rosen et al (1986)
comment on the portability of NFS.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

80 SATYANARAYANAN

3. 1.2 NAMING AND LOCATION The NFS paradigm treats workstations
as peers, with no fundamental distinction between clients and servers. A
workstation may be a server, exporting some of its files. It may also be a
client, accessing files on other workstations. But it is common practice for
installations to be configured so that a small number of nodes run as
dedicated servers, while the others run as clients.

NFS clients are usually configured so that each sees a Unix file name
space with a private root. Using an extension of the Unix mount mechan­
ism, subtrees exported by NFS serxers are individually bound to nodes of
the root file system. This binding usually occurs when Unix is initialized,
and remains in effect until explicitly modified. Since each workstation is
free to configure its own name space there is no guarantee that all work­
stations at an installation have a common view of shared files. But col­
laborating groups of USers usually configure their workstations to have the
same name space. Location transparency is thus obtained by convention,
rather than being a basic architectural feature of NFS.

Since name-to-site bindings are static, NFS does not require a dynamic
file location mechanism. Each client maintains a table mapping remote
subtrees to servers. The addition of new servers or the movement of files
between servers renders the table obsolete. There is no mechanism built
into NFS to propagate information about such changes.

3. 1.3 CACHING AND REPLICATION NFS clients cache individual pages of
remote files and directories in their main memory. They also cache the
results of pathname to vnode translations. Local disks, even if present, are
not used for caching.

When a client caches any block of a file, it also caches a timestamp
indicating when the file was last modified on the server. To validate cached
blocks of a file, the client compares its cached timestamp with the time­
stamp on the server. If the server timestamp is more recent, the client
invalidates all cached blocks of the file and refetches them on demand. A
validation check is always performed when a file is opened and when the
server is contacted to satisfy a cache miss. After a check, cached blocks
are assumed valid for a finite interval of time, specified by the client when
a remote file system is mounted. The first reference to any block of the file
after this interval forces a validation check.

If a cached page is modified, it is marked as dirty and scheduled to be
flushed to the server. The actual flushing is performed by an asynchronous
kernel activity and will occur after some unspecified delay. However, the
kernel does provide a guarantee that all dirty pages of a file will be flushed
to the server before a close operation on the file completes.

Directories are cached for reading in a manner similar to files. Modi-

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DlS�RIBUTED FILE SYSTEMS 81

fications to directories, however, are performed directly on the server.
When a file is opened, a cache validation check is also performed
on its parent directory. Files and directories can have different revalida­
tion intervals, typical values being 3 seconds for files and 30 seconds for
directories.

NFS performs network data transfers in large block sizes, typically 8
Kbytes, to improve performance. Read-ahead is employed to improve
sequential access performance. Files corresponding to executable binaries
are fetched in their entirety if they are smaller than a certain threshold.

As originally specified, NFS did not support data replication. More
recent versions of NFS support replication via a mechanism called Auto­
mounter (Garlick et a1 1988; Callaghan & Lyon 1989). Automounter allows
remote mount points to be specified using a set of servers rather than a
single server. The first time a client traverses such a mount point a request
is issued to each server, and the earliest to respond is chosen as the remote
mount site. All further requests at the client that cross the mount point
are directed to this server. Propagation of modifications to replicas has to
be done manually. This replication mechanism is intended primarily for
frequently read and rarely written files such as system binaries.

3.1.4 SECURITY NFS uses the underlying Unix file protection mech­
anism on servers for access checks. Each RPC request from a client conveys
the identity of the user on whose behalf the request is being made. The
server temporarily assumes this identity, and file accesses that occur while
servicing the request are checked exactly as if the user had logged in directly
to the server. The standard Unix protection mechanism using user, group
and world mode bits is used to specify protection policies on individual
files and directories.

In the early versions of NFS, mutual trust was assumed among all
participating machines. The identity of a user was determined by a client
machine and accepted without further validation by a server. The level of
security of an NFS site was effectively that of the least secure system in
the environment. To reduce vulnerability, requests made on behalf of root
(the Unix superuser) on a workstation were treated by the server as if they
had come from a nonexistent user, nobody. Root thus received the lowest
level of privileges for remote files.

More recent versions of NFS can be configured to provide a higher level
of security. DES-based mutual authentication is used to validate the client
and the server on each RPC request. Since file data in RPC packets is not
encrypted, NFS is still vulnerable to unauthorized release and modification
of information if the network is not physically secure.

The common DES key needed for mutual authentication is obtained

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

82 SATYANARAYANAN

from information stored in a publicly readable database. Stored in this
database for each user and server is a pair of keys suitable for public key
encryption. One key of the pair is stored in the clear, while the other is
stored encrypted with the login password of the user. Any two entities
registered iIi the database can deduce a unique DES key for mutual
authentication. Taylor (1 986, 1 988) describes the details of this mechanism.

3. 1 .5 SYSTEM MANAGEMENT Sun provides two mechanisms to assist sys­
tem managers. One of these, the Yellow Pages (YP), is a mechanism for
maintaining key-value pairs. The keys and values are application-specific
and are not interpreted by YP. A number of Unix databases such as those
mapping us ern ames

'
to passwords, hostnames to network addresses, and

network services to Internet port numbers are stored in YP. YP provides
read-only replication, with one master and many slaves. Lookups may be
performed at any replica. Updates are performed at the master, which is
responsible for propagating the changes to the slaves. YP provides a shared
repository for system information that changes relatively infrequently and
that does not require simultaneous updates at all replication sites. YP is
usually in use at NFS installations, although this is not mandatory.

The Automounter, mentioned in Section 3. 1.3 in the context of read-only
replication, is another mechanism for simplifying system management. It
allows a client to lazy-evaluate NFS mount points, thus avoiding the
need to mount all remote files of interest when the client is initialized.
Automounter can be used in conjunction with YP to reduce the adminis­
trative overheads of server reconfiguration.

3.2 Apollo Domain File System

3.2. 1 DESIGN CONSIDERATIONS The DOMAIN system, built by Apollo
Computers Inc., is a distributed workstation environment whose develop­
ment began in the early 1980s. The goal of this system was to provide a
usable and efficient computing base for a close-knit team of collaborating
individuals. Although scale was not a dominant design consideration, large
Apollo installations now exist. The largest of these is located at the Apollo
corporate headquarters and encompasses over 3500 nodes.

Apollo workstations range in hardware capability from small, diskless
units to large configurations with disks and other peripherals. The under­
lying network technology is a proprietary 12 Mbit token ring (Leach et al
1983). Installations may choose to treat some of their nodes as dedicated
servers that run only system software, and other nodes as clients per­
forming user computations. Such a dichotomy is only a matter of conven­
tion. The DOMAIN software treats all nodes as peers.

DOMAIN provides support for the distribution of typed files via an

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 83

Object Storage System (OSS). A system-wide Single Level Store (SLS)
that provides a mapped virtual-memory interface to objects is built on top
of the OSS. The DOMAIN distributed file system is layered on the SLS
and presents a Unix-like file interface to application programs. A facility
called the Open Systems Toolkit (Rees et al 1986) uses the file typing
mechanism of the OSS to create an extensible I/O system. Users can write
nonkernel code to interpret I/O operations. When a file is opened its type
is determined and the code implementing I/O operations on that type of
object is dynamically loaded by the system.

Levine (1987) presents the design and rationale of the DOMAIN file
system. Its goals include location transparency, data consistency, a system­
enforced uniform naming scheme, and a uniform mechanism for access
control. Full functionality, good performance and ease of administration
are other stated goals of DOMAIN. In addition to the survey by Levine
are other papers on the file system (Leach et al 1982, 1985), the overall
architecture (Leach et al 1 983), an object-oriented development tool for
distributed applications (Dineen et al 1 987), and the user registry (Apollo
1 988; Pato et al 1 988).

3.2.2 NAMING AND LOCATION Every object in the system is uniquely
named by a 64-bit identifier called its u/D. Each Apollo workstation is
given a unique node identifier at the time of its manufacture. This identifier
forms one component of the UID of every object created at that work­
station. The time at which the object was created forms another compon­
ent. Together these two components guarantee uniqueness ofUIDs. Loca­
tion-specific information in UIDs does not violate the goal of location
transparency since its sole function is to guarantee uniqueness.

At any instant of time an object has a home node associated with it. The
OSS maps objects to their homes by using a hint server. As its name
implies, the hint server performs the mapping using a number of heuristics.
It is updated in normal system operation by many diverse components of
the DOMAIN software as they discover the location of objects. A heuristic
that is frequently successful is to assume that objects created at the same
node are likely to be located together. A distributed naming server that
maps string names to UIDs is built on top of the OSS. This server provides
a hierarchical, Unix-like, location-transparent name space for all files and
directories in the system. Directories in DOMAIN are merely objects that
map name components to UIDs. The network-wide root directory of the
name space is implemented as a replicated distributed database with a
server instance at the site of each replica. The naming facility is a good
source of hints for the hint manager, since objects are often co-located
with their parent directory.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

84 SATYANARAYANAN

3.2.3 CACHING AND REPLICATION The DOMAIN system transparently
caches data and attributes of objects at the usage node. Mapped virtual­
memory accesses via the SLS interface and file accesses via the file system
interface are both translated into object references at the OSS level. The
latter manages a cache of individual pages of objects using a write-back
scheme with periodic flushing of data to the home of the objects.

A timestamp is associated with each object indicating the time at its
home node when it was last modified. Every cached page of the object
contains this timestamp. The consistency of locally cached data pages is
verified by comparing their timestamps with the timestamp of the object
at the home node. Invalid pages are merely discarded. In the course of
references to the object, missing pages are obtained by demand paging
across the network to the home node. Fetch-ahead (currently 8 Kbytes) is
used to improve sequential access performance.

Cache management in DOMAIN is integrated with its concurrency
control mechanisms. Each node runs a lock manager that synchronizes
accesses to all objects that have their home at that node. Two modes of
locking are supported. One mode allows multiple distributed readers or a
single writer to access the object. The other mode allows access to multiple
readers and writers co-located at a single node. Lock managers do not
queue requests. If a lock for an object cannot be granted immediately, the
requesting node must periodically retry its request.

Cache validation is performed when an object is locked. When a write­
lock on an object is released, an implicit purify operation is performed.
This operation atomically flushes updated pages of an object to its home
node. Application software is responsible for ensuring that objects are
locked before being mapped into virtual memory or opened for file access.
It is also responsible for releasing locks when appropriate.

DOMAIN does not support read-only or read-write replication of data.
An object can have only one home at any instant of time. But replicated
services such as a replicated user registry and a replicated naming service
are supported by DOMAIN.

3.2.4 SECURITY Security in DOMAIN is predicated on the physical

integrity of Apollo workstations ,and on the trustworthiness of the kernels
on them. Since the network is also assumed to be secure, communications
on it are sent in the clear. The network component of the kernel at each
node uses a special field in the header of every packet to indicate whether
the originator of the packet was a user-level program, or the kernel itself.
This prevents user-level programs from masquerading as trusted system
software.

A distributed user registry stores each user's login password in encrypted

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 85

form, as in Unix. When a user logs in on a node, the local kernel encrypts
the password typed by the user, fetches his login entry from the registry,
and validates the user by comparing the two encrypted passwords. Each
instance of a logged-in user is associated with a unique identifier, called a
PPON, that identifies the user, the project and organization he belongs
to, and the node at which this login instance occurred. The PPON is used
on all access checks on behalf of this logged-in instance of the user. Nodes
cache recently used registry information to enhance availability.

The user registry, called RGY, is a replicated database with one master
site and multiple read-only slaves for availability. Each replica contains
the entries for all users in the system. Updates are made at the master site,
which then propagates them asynchronously to the slave sites. Direct
authentication to the master, using a Needham-Schroeder authentication
handshake, is required before an update can be performed.

Protection policies are specified by access lists on objects. An access list
entry maps a PPON to a set of rights. Components of PPONs can be
wildcarded. If multiple entries are applicable in a given access check, the
most specific matching entry overrides the others. Checking of access has
been done at the home node of objects in some releases of DOMAIN, and
at the usage node in other releases. These are logically equivalent, since
the kernels trust each other.

3.2.5 SYSTEM MANAGEMENT Concern for ease of administration has been
an important influence on the design of the DOMAIN user registry
described in the previous section. Its design allows multiple mutually
suspicious groups to use a single registry for system management infor­
mation. Each group can have a distinct system administrator who is
the only person who can manipulate entries pertaining to the group.
Decentralized administration and specification of usage policies are effec­
tively supported by this mechanism. The registry also supports hetero­
geneity, initially in the form of a client interface for Sun workstations.

An interactive tool, edrgy, provides a structured interface to the registry.
It possesses substantial semantic knowledge of the contents of the registry
and guides administrators. Edrgy detects and notifies administrators of
potentially serious side effects of their actions.

3.3 Andrew File System

3.3. 1 DESIGN CONSIDERATIONS Andrew is a distributed workstation
environment that has been under development at Carnegie Mellon Uni­
versity since 1983. It combines the rich user interface characteristic of
personal computing with the data-sharing simplicity of timesharing. The
primary data-sharing mechanism is a distributed file system spanning all

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

86 SATYANARAYANAN

the workstations. Using a set of trusted servers, collectively called Vice,
the Andrew file system presents a homogeneous, location-transparent file
name space to workstations. Clients and servers both run the 4.3 BSD
version of Unix. It is a relatively heavyweight operation to configure a
machine as an Andrew server. This is in contrast to systems such as Sun
NFS, where it is trivial for any machine to export a subset of its local file
system.

Scalability is the dominant design consideration in Andrew. Many
design decisions in Andrew are influenced by its anticipated final size
of 5000 to 10,000 nodes. Careful design is necessary to provide good
performance at large scale and to facilitate system administration. Scale
also renders security a serious concern, since it has to be enforced rather
than left to the good will of the user community.

The goals and directions of the Andrew project have been described by
Morris et al (1986). The file system has been discussed extensively in
papers focusing on architecture (Satyanarayanan et aI1985), performance
(Howard et aI1988), security (Satyanarayanan 1989), and the influence of
scale (Satyanarayanan 1988). The Andrew file system has undergone one
complete revision, and a second revision is under way (Spector & Kazar
1989).

3.3.2 NAMING AND LOCATION The file name space on an Andrew work­
station is partitioned into a shared and a local name space. The shared
name space is location transparent and is identical on all workstations.
The local name space is unique to each workstation and is relatively
small. It only contains temporary files or files needed for workstation
initialization. Users see a consistent image of their data when they move
from one workstation to another, since their files are in the shared name
space.

Both name spaces are hierarchically structured, as in Unix. The shared
name space is partitioned into disjoint subtrees, and each such subtree is
assigned to a single server, called its custodian. This assignment is relatively
static, although reassignment for operational reasons is possible. Intern­
ally, Andrew uses 96-bit file identifiers to uniquely identify files. These
identifiers are not visible to application programs.

Each server contains a copy of a fully replicated location database
that maps files to custodians. This database is relatively small because
custodianship is on subtrees, rather than on individual files. Temporary
inaccuracies in the database are harmless, since forwarding information is
left behind when data is moved from one server to another.

3.3.3 CACHING AND REPLICATION Files in the shared name space are
cached on demand on the local disks of workstations. A cache manager,

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 87

called Venus, runs on each workstation. When a file is opened, Venus
checks the cache for the presence of a valid copy. If such a copy exists, the
open request is treated as a local file open. Otherwise an up-to-date copy
is fetched from the custodian. Read and write operations on an open file
are directed to the cached copy. No network traffic is generated by such
requests. If a cached file is modified, it is copied back to the custodian
when the file is closed.

Cache consistency is maintained by a mechanism called callback. When
a file is cached from a server, the latter makes a note of this fact and
promises to inform the client if the file is updated by someone else.
Callbacks may be broken at will by the client or the server. The use of
callback, rather than checking with the custodian on each open, sub­
stantially reduces client-server interactions. The latter mechanism was used
in the first version of Andrew. Andrew caches large chunks of files, to
reduce client-server interactions and to exploit bulk data transfer proto­
cols. Earlier versions of Andrew cached entire files.

A mechanism orthogonal to caching is read-only replication of data that
is frequently read but rarely modified. This is done to enhance availability
and to evenly distribute server load. Subtrees that contain such data may
have read-only replicas at multiple servers. But there is only one read­
write replica and all updates are directed to it. Propagation of changes to
the read-only replicas is done by an explicit operational procedure.

Concurrency control is provided in Andrew by emulation of the Unix
flock system call. Lock and unlock operations on a file are performed
directly on its custodian. If a client does not release a lock within 30
minutes, it is timed out by the server.

3.3.4 SECURITY The design of Andrew pays serious attention to security,
while ensuring that the mechanisms for enforcing it do not inhibit legiti­
mate use of the system (Satyanarayanan 1989). Security is predicated on
the integrity of Vice servers. Servers are physically secure, are accessible
only to trusted operators, and run only trusted system software. Neither
the network nor workstations are trusted by Vice. Authentication and
secure transmission mechanisms based on end-to-end encryption are used
to provide secure access to servers from workstations.

It is still the responsibility of a user to ensure that he is not being
compromised by malicious software on his workstation. To protect himself
against Trojan horse attacks, a concerned user has to maintain the physical
integrity of his workstation and to deny remote access to it via the network.

The protection domain in Andrew is composed of users, corresponding
to human users, and groups, which are sets of users and other groups.
Membership in a group is inherited, and a user accumulates the privileges

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

88 SATYANARAYANAN

of all the groups he belongs to directly and indirectly. Inheritance of
membership simplifies the maintenance and administration of the pro­
tection domain. Membership in a special group called " System:
Administrators" endows administrative privileges, including unrestricted
access to any file in the system.

Andrew uses an access list mechanism for protection. The total rights
specified for a user are the union of all the rights collectively specified for
him and for all the groups of which he is a direct or indirect member. An
access list can specify negative rights. An entry in a negative rights list
indicates denial of the specified rights, with denial overriding possession
in case of conflict. Negative rights are intended primarily a means of
rapidly and selectively revoking access to critical files and directories.

For conceptual simplicity, Vice associates access lists with directories
rather than files. The access list applies to all files in the directory, thus
giving them uniform protection status. In addition, the three owner bits
of the Unix file mode are used to indicate readability, writability, or
executability. In Andrew, these bits indicate what can be done to the file
rather than who can do it.

For reasons of compatibility, Andrew will replace its original au­
thentication system with the Kerberos authentication system of Project
Athena (Steiner et al 1988). The two resemble each other closely in archi­
tecture, although they differ substantially in the details. Both use a two­
step authentication scheme. When a user logs in to a workstation, his
password is used to establish a communication channel to an authentication
server. A pair of authentication tokens (in the case of Andrew) or an au­
thentication ticket (in the case of Kerberos) is obtained from the authen­
tication server and saved for future use. These are used, as needed, to
establish secure RPC connections on behalf of the user to individual file
servers. The authentication server has to run on a trusted machine in both
systems. For robustness, there are multiple instances of this server. Only
one server, the master, accepts updates. The others are slaves and respond
only to queries. Changes are propagated to slaves by the master.

3.3.5 SYSTEM MANAGEMENT Operability is a major concern in Andrew
on account of its scale. The system has to be easy for a small staff to run
and administer. Regular operational procedures have to be performed in
a manner that causes minimal disruption of service to users.

The operational mechanisms of Andrew are built around a data struc­
turing primitive called a volume (Sidebotham 1986). A volume is a col­
lection of files forming a partial subtree of the Vice name space and having
the same custodian. Volumes are glued together at mount points to form
the complete name space.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 89

There is usually one volume per user, as well as a number of volumes
containing system software. Volume sizes are usually small enough to
allow many volumes per disk partition on a server. Disk storage quotas
are applied on a per-volume basis. Operations such as moving a volume
from one server to another can be performed while the volume is still
online. A read-only replica of a volume can be created by a clone operation.
Such replicas can be used to improve availability and performance. Read­
only volumes can also be used to implement an orderly release process for
system software.

Volumes also form the basis of the backup and restoration mechanism.
To backup a volume a snapshot of its files is created by cloning. An
asynchronous mechanism then transfers this clone to a staging machine
from where it is dumped to tape. To handle the common case of accidental
deletion by users, the cloned backup volume of each user's files is made
available as a read-only subtree in Vice.

Andrew has been extended to allow decentralized operation. A coop­
erating group of cells adhering to a standardized set of protocols and
naming conventions (Zayas & Everhart 1988) can jointly provide the image
of a single file name space. Cross-cell authentication and translation of
user identities in different administrative domains are key issues that have
been addressed in this mechanism.

3.4 Other Contemporary Systems

Each of the three systems described in this section is important either
because it is widely used or because it occupies a unique position in the
space of distributed file system designs. In the interests of brevity, only
condensed descriptions of the most distinctive aspects of these systems are
presented.

3.4.1 IBM AIX DISTRIBUTED SERVICES As its name implies, A/X Dis­
tributed Services (DS) is a collection of distributed system services
developed by IBM for its workstations running the AIX Operating System.
AIX is a derivative of the System V version of Unix. The primary com­
ponent of DS is a distributed file system whose design goals include strict
emulation of Unix semantics, ability to support databases efficiently, and
ease of administering a wide range of DS installation configurations.

A DS client can access remote files via an extension of the Unix mount
mechanism. DS allows individual files and directories to be mounted, in
contrast to distributed file systems that allow mounts only at the granu­
larity of an entire subtree. A server need not advertise the files it wishes to
share. Rather, all files are assumed to be remotely accessible, subject to
access checks. Most file system operations behave identically on local and

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

90 SATYANARAYANAN

remote files. Two significant exceptions are the inability to access remote
devices, and the inability to map remote files into the address space of a
process. The latter restriction will be removed in a future release of DS.

DS uses client main memory as a write-through cache of individual
pages of files. Clients notify servers of each open of a file for reading or
writing. The behavior of the caching mechanism depends on whether it is
in read-only mode (one or more clients reading and no clients writing),
async mode (one client reading and writing), or full-sync mode (multiple
clients writing). In read-only mode caching is enabled at all clients. In
async mode caching is enabled only at the writer, with all other sites
directing their read requests to the server. Client caching is disabled in full
sync mode. Cache consistency is maintained by a mechanism reminiscent
of the Andrew callback mechanism. Since a server is aware of all remote
opens of its files, it can keep track of all clients that have opened a file
since the last time it was modified. Before accepting the next open for
modification, it notifies this list of clients and they invalidate all pages of
the file that are in their caches.

DS uses virtual circuit communication based on the SNA LU6.2 proto­
col. Future versions ofDS will also be able to run on the TCPjIP protocol.
Node to node DES mutual authentication is provided as part of the LU6.2
implementation. Users and groups have 32-bit network-wide ids. DS trans­
lates these network ids into machine-specific Unix-compatible 16-bit ids.
The Kerberos authentication mechanism will be supported as an option
in the future.

Sauer et al (1987) and Levitt (1987) describe the design of DS. Sauer
(1988) presents a detailed description of the fine-granularity mount mech­
anism. Sauer et al (1988) discuss the rationale for maintaining client state
on servers for some aspects of DS while avoiding state for other aspects.

3. 4.2 AT&T REMOTE FILE SHARING Remote File Sharing (RFS) is a
distributed file system developed by AT&T for its System V version of
Unix, and is derived from an earlier implementation for Unix Edition 8
(Weinberger 1984). The most distinctive feature of RFS is its precise
emulation of local Unix semantics for remote files. An operation on a
remote file is indistinguishable from the corresponding operation on a
local file. This aspect ofRFS extends to areas such as concurrency control,
write-sharing semantics, and the ability to access and control remote
devices.

RFS uses the client-server model with virtual circuit communication
based on Unix System V streams (Olander et al 1986) to provide easy
portability across a variety of transport protocols. A server advertises each
subtree it wishes to export, using a network-wide symbolic name for the

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 91

root of the subtree. Clients explicitly import remote subtrees using sym­
bolic names. A name server performs the translation of symbolic names
to server addresses.

Accuracy of Unix system call emulation is achieved by executing all
remote file system calls on the server. A client merely intercepts and
forwards these calls to the server. The exact execution environment of the
client is recreated on the server for the duration of a call, using information
passed by the client in its request.

The initial version of RFS used no caching. It has since been extended
to provide caching in client main memory, retaining the exact emulation
of Unix semantics. Caching is used only for simple files, not for directories
or devices. The cache is write-through, with consistency being checked on
opens. With a single writer and multiple readers, caching is disabled at the
readers. Caching is reenabled when the writer closes the file, or when the
time interval since the last modification by the writer exceeds a predefined
threshold. All caching in the system is disabled when there are multiple
writers.

RFS clients and servers trust each other. Protection on files and direc­
tories is specified exactly as in Unix. A mechanism to map user and group
identities allows files to be shared across administrative domains. RFS
also provides a mechanism to restrict the privileges of remote users at a
coarse granularity.

The rationale, architecture, and implementation of RFS are described
by Rifkin et al (1986). Bach et al (1987) describe how RFS was extended
to incorporate caching. Chartock (1987) shows how RFS was made to
coexist with Sun NFS, using the vnode interface. A comparison of Sun
NFS and AT&T RFS is presented by Hatch et al (1985).

3.4.3 SPRITE NETWORK FILE SYSTEM Sprite is an operating system for
networked uniprocessor and multiprocessor workstations, designed at the
University of California at Berkeley. The goals of Sprite include efficient
use of large main memories, support for multiprocessor workstations,
efficient network communication, and diskless operation. Besides a dis­
tributed file system, Sprite provides other distributed system facilities such
as process migration.

Most workstations in a Sprite network are diskless. Although the design
of Sprite does not make a rigid distinction between clients and servers, a
few machines with disks are usually dedicated as file servers. These servers
jointly present a location-transparent Unix file system interface to clients.

Clients do not have to import files explicitly from individual servers.
Each server can respond to location queries, using remote links embedded
in the file system at each server. Remote links are effectively pointers to

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

92 SATYANARAYANAN

files at other servers. Each client maintains a local prefix table, which maps
path name prefixes to servers. Substantial performance improvement is
achieved by using the cached information in the prefix table for locating
files.

Sprite is intended for use by collaborating users who are either incapable
of subverting the kernels on workstations, or who trust each other. Conse­
quently Sprite kernels trust each other, and communication between them
is neither authenticated nor encrypted.

Exact emulation of Unix file system semantics is an important goal of
Sprite. Whenever a client opens or closes a file for reading or writing, it
notifies the server that stores the file. A Sprite client usually caches pages
of a file, validating these pages each time the file is opened. Caching is
disabled when multiple clients have a file open and one or more of these
clients have it open for writing. Once caching is disabled, it is reenabled
only after all clients concurrently using the file have closed it. This strategy
enables Sprite to provide consistency at the granularity of individual read
and write operations.

Sprite provides location-transparent remote access to devices as well as
files. To provide good performance under a wide variety of workloads,
physical memory on a Sprite workstation is dynamically partitioned
between the virtual memory subsystem and the file cache. Sprite uses
ordinary files in the shared name space for paging. This simplifies process
migration, since the backing files are visible at all other Sprite workstations
in the environment.

Ousterhout et al (1988) provide an overview of Sprite. Welch & Ouster­
hout (1986) describe the prefix mechanism used for file location. A detailed
performance analysis of caching in Sprite is presented by Nelson et al
(1988).

4. MECHANISMS AND TECHNIQUES

Here I highlight and discuss certain mechanisms that have been found to
be of significant value in the design of distributed file systems. These
mechanisms are of general applicability, except for mount points, which
are Unix specific. But even mount points are widely used since the majority
of distributed file systems at the present time are based on Unix. The
dominance of the Unix file system model is indeed remarkable.

4.1 Mount Points

The mount mechanism in Unix enables the gluing together of file name
spaces to provide applications with a single, seamless, hierarchically struc­
tured name space. On startup, the Unix file name space consists of a single

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 93

root file system. Individual mount commands may then be issued to bind
the root of an external file system to an internal or leaf node of the local
name space. A mount on an internal node hides the original subtree
beneath that node. To simplify the implementation, Unix imposes certain
restrictions such as the inability to place hard links across mount points.

Mount was originally conceived as a mechanism to allow self-contained
file systems on removable storage media to be added to or removed without
reinitializing Unix. When performing a name lookup, the kernel uses an
internal data structure called the mount table to direct its search to the
appropriate storage device. A single lookup may span many devices if
multiple mounts are in effect. In a distributed file system, the mount
mechanism provides a natural hook on which to hang a remote subtree.
There are two fundamentally different ways to use the mechanism, with
numerous variants of each.

The simpler approach is used by systems such as NFS, where each
client individually mounts subtrees from servers. There is no centralized
management of mount information. Servers are unaware of where the
subtrees exported by them have been mounted. Although this approach is
easier to implement, it has the disadvantage that the shared name space is
not guaranteed to be identical at all clients. Further, movement of files
from one server to another requires each client to unmount and remount
the affected subtree. In practice, systems that use this approach have
usually had to provide auxiliary mechanisms (such as the Yellow Pages
and Automounter in NFS) to automate and centralize mounts.

The alternative approach is to embed mount information in the data
stored in the file servers. Andrew, for example, uses mount points em­
bedded in volumes. Sprite uses remote links for a similar purpose. Using
this approach, it is trivial to ensure that all clients see precisely the same
shared file name space. Further, operational tasks such as moving files
from one server to another only involve updating the mount information
on the servers.

4.2 Caching at Clients

The caching of data at clients is undoubtedly the architectural feature
that contributes most to performance in a distributed file system. Every
distributed file system in serious use today uses some form of caching.
Even AT &Ts RFS, which initially avoided caching in the interests of strict
Unix emulation, now uses it.

Caching exploits locality of reference. There is a high probability that
file data will be reused soon after its first use. By obtaining a local copy of
the data a client can avoid many further interactions with the server. Meta­
data such as directories, protection and file status information, and file

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

94 SATYANARAYANAN

location information also exhibit locality of reference and are thus good

candidates for caching.

A key issue in caching is the size of the cached units of data. Most

distributed file systems cache individual pages of files. Early versions of
Andrew cached entire files. Although this simplifies cache management
and offers simpler failure semantics it does suffer from the inability to

access files that are larger than the client's cache. More recent versions of
Andrew cache large portions (typically 64 Kbytes) of files. The unit of
caching is closely related to the use of bulk transfer protocols, as discussed
in Section 4.4.

In most systems clients maintain the cache in their main memory.
Andrew is an exception in that it caches on its local disk, with a further
level of caching in main memory. Besides providing larger cache sizes, disk

caching preserves cache contents across system reboots.
The validation of cache contents can be done in two fundamentally

different ways. One approach, used by most systems, is for the client to
contact the server for validation. The alternative approach, used in Andrew

and DS, is to have the server notify clients when cached data is about to
be rendered stale. Although more complex to implement, the latter
approach can produce substantial reductions in client-server traffic.

Existing systems use a wide spectrum of approaches in propagating

modifications from client to server. In async mode, DS propagates changes
to the server only when the file is explicitly flushed. Andrew propagates
changes when a file is closed after writing. Sprite delays propagation until

dirty cache pages have to be reclaimed or for a maximum of 30 seconds.
Deferred propagation improves performance since data is often over­
written, but increases the possibility of server data being stale due to a
client crash.

References within a file also exhibit spatial locality . If a page of a file is
read, there is substantial likelihood that succeeding pages will also be read.
This property is exploited in many systems by using read-ahead of file
data. The client can overlap the processing of one page with the fetching
of the next page or set of pages from the server.

4.3 Hints

In the context of distributed systems, a hint (Lampson 1 983) is a piece of
information that can substantially improve performance if correct but
has no semantically negative consequence if erroneous. For maximum
performance benefit a hint should nearly always be correct. Terry (1 987)
discusses the use of hints in detail and provides many examples of how
they may be used in distributed systems.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 95

By caching hints one can obtain substantial performance benefits with­
out incurring the cost of maintaining cache consistency. Only information
that is self-validating upon use is amenable to this strategy. One cannot,
for instance, treat file data as a hint because the use of a cached copy of
the data will not reveal whether it is current or stale.

Hints are most often used for file location information in distributed file
systems. Sprite, for instance, caches mappings of pathname prefixes to
servers. Similarly, Andrew caches individual entries from the volume
location database. In these systems a client will use cached location infor­
mation until a server rejects a request because it no longer stores the file
referred to in the request. The client then obtains the new location of the
file, and caches this information as a fresh hint. A more elaborate location
scheme, incorporating a hint manager, is used by Apollo Domain.

4.4 Transferring Data in Bulk

Network communication overheads typically account for a major portion
of the latency in a distributed file system. Although the transit time of
small amounts of data across a local area network is insignificant, the
delays caused by protocol processing can be substantial. Transferring data
in bulk reduces this overhead at both the source and sink of the data. At the
source, multiple packets are formatted and transmitted with one context
switch. At the sink, an acknowledgment is avoided for each packet. Some
bulk transfer protocols also make better use of the disks at the source and
sink. Multiple blocks of data may often be obtained at the source with a
single seek. Similarly, packets can be buffered and written en masse to the
disk at the sink. In effect, the use of bulk transfer amortizes fixed protocol
overheads over many consecutive pages of a file.

Bulk transfer protocols depend for effectiveness on spatial locality of
reference within files. There is a high probability that succeeding pages of
a file will soon be referenced at the client if an earlier page is referenced.
As mentioned in Section 2.3 there is substantial empirical evidence to
indicate that files are read in their entirety once they are opened.

The degree to which bulk transfer is exploited varies from system to
system. Andrew, for instance, is critically dependent on it for good per­
formance. Early versions of the system transferred entire files, and the
current version transfers files in 64-Kbyte chunks. Systems such as NFS
and Sprite exploit bulk transfer by using very large packet sizes, typically
8 Kbytes. The latter systems depend on the link level protocol to fragment
and reassemble smaller packets at the media access level. Bulk transfer
protocols will increase in importance as distributed file systems spread

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

96 SATYANARAYANAN

across networks of wider geographic area and thus have greater inherent
latency.

4.5 Encryption

Encryption is an indispensable building block for enforcing security in a
distributed system. Voydock & Kent (1983) classify threats to security
as actions that cause unauthorized release of information, unauthorized
modification of information, or unauthorized denial of resources. Encryp­
tion is primarily of value in preventing unauthorized release and modi­
fication of information. Because it is a national standard, DES (Meyer
& Matyas 1982) is the most commonly used form of private-key encryp­
tion.

The seminal work of Needham & Schroeder (1978) on the use of encryp­
tion for authentication is the basis of all current security mechanisms in
distributed file systems. At the heart of these mechanisms is a handshake
protocol in which each party challenges the other to prove its identity.
Possession of a secret encryption key, known only to a legitimate client
and server, is assumed to be prima facie evidence of authenticity. Thus
two communicating entities that are mutually suspicious at the beginning
end up confident of each other's identity, without ever transmitting their
shared secret key in the clear.

This basic scheme is used in two distinct ways in current systems. The
difference lies in the way user passwords are stored and used on :servers.
In the scheme used by Kerberos and Andrew, an authentication server
that is physically secure maintains a list of user passwords in the clear. In
contrast, the public key scheme used by Sun NFS maintains a publicly
readable database of authentication keys that are encrypted with user
passwords. The latter approach has the attractive characteristic that physi­
cal security of the authentication server is unnecessary.

Encryption is usually implemented end-to-end, at the RPC level. DS, in
contrast, uses node-to-node encryption. In some systems, such as Andrew,
encryption can be used to protect the data and· headers of all packets
exchanged after authentication. Other systems, such as Sun NFS, do not
provide this capability.

A difficult nontechnical problem is justifying the cost of encryption
hardware to management and users. Unlike extra memory, processor
speed, or graphics capability, encryption devices do not provide tangible
benefits to users. The importance of security is often perceived only after
it is too late. At present, encryption hardware is viewed as an expensive
frill. Hopefully, the emerging awareness that encryption is indispensable
for security will make rapid, cheap encryption a universally available
capability.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

5 . CURRENT ISSUES

DISTRIBUTED FILE SYSTEMS 97

Distributed file systems continue to be the subject of considerable activity
and innovation in industry and academia. Work is being done in the areas
of availability, further scaling, support for heterogeneity, and database
access. We briefly consider each of these issues in the following sections.

5.1 Availability

As reliance on distributed file systems increases, the problem of availability
becomes acute. Today a single server crash or network partition can
seriously inconvenience many users in a large distributed file system. There
is a growing need for distributed file systems that are resilient to failures.

Availability is the focus of the Coda file system, currently being built at
Carnegie Mellon University. Coda's goal is to provide the highest degree
of availability in the face of all realistic failures, without significant loss of
usability, performance, or security. Two orthogonal mechanisms, server
replication and disconnected operation, are used to achieve this goal. Many
key architectural features of Coda, such as the use of caching with callback,
whole-file transfer, RPC-based authentication and encryption, and aggre­
gation of data into volumes are inherited from Andrew.

Consistency, availability, and performance, tend to be mutually con­
tradictory goals in a distributed system. Coda's strategy is to provide the
highest availability at the best performance. It considers inconsistency
tolerable if it is rare, occurs only under conditions of failure, is always
detected, and is allowed to propagate as little as possible. The relative
infrequency of simultaneous write-sharing of files by multiple users makes
this a viable strategy.

High availability is also a key concern of the Echo file system being built
at the System Research Center of Digital Equipment Corporation. This
design also uses replication, but its strategy differs substantially from that
of Coda. At any time exactly one of the servers with a replica of a file is
its primary site. Clients interact only with the primary site, which assumes
the responsibility of propagating changes to the other replication sites. In
case of partition,: file updates are allowed only in the partition containing
a majority of the replication sites. When the primary site is down, a new
primary site is elected.

Other recent experimental efforts in lhis .area include RNFS at Cornell
. University and Gemini at the University Of California at San Diego (Burk­
hard 1 989; Marzullo & Schmuck 1 988).

5.2 Scalability

Certain problems induced by scale have been exposed by the extensive use
of large distributed file systems. One problem is the need for decen-

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

98 SATYANARAYANAN

tralization. The ability to delegate administrative responsibility along lines
that parallel institutional boundaries is critical for smooth and efficient
operation. The ideal model of decentralization is one in which users per­
ceive the system as monolithic even when their accesses span many admin­
istrative domains. In practice, of course, most accesses from a client are
likely to be directed to a server in the same administrative domain. As
mentioned in Section 3 the Apollo and Andrew file systems have been
extended to support decentralized administration.

Another aspect of scaling is the extension of the distributed file system
paradigm over wide geographic areas. Virtually all distributed file systems
today are designed with local area networks in mind. It is an open question
whether such designs can be extended over networks with longer latencies
and greater chances of network congestion. An effort is currently under
way to extend Andrew to operate over a wide-area network. With its
emphasis on caching and minimization of client-server interactions, the
design of Andrew secms quitc appropriate for such extension.

A basic question that arises at very large scale is whether a single
hierarchically organized name space is indeed the most appropriate model
for sharing data. This paradigm, originally invented for timesharing sys­
tems of tens or hundreds of users, has been successfully extended to
distributed file systems of a thousand or so nodes. Will it be the best model
when there are two orders of magnitude or more nodes? Pa thnames become
longer and it becomes increasingly difficult to search for a file whose name
is not precisely known. The Quicksilver file system (Cabrera & Wyllie
1 988), currently under development at the IBM Almaden Research Center,
addresses this issue. Its approach is to provide mechanisms for a user to
customize his name space. Since the customization is location-transparent
the user retains his context when he moves to any other node in the system.
A similar approach has been proposed in the Plan 9 system at Bell Labs
(Pres otto 1988).

Network topology is becoming an increasingly important aspect of
distributed systems. Large networks often have complex topologies, caused
by a variety of factors. Electrical considerations limit the lengths of indi­
vidual network segments and the density of machines on them. Main­
tenance and fault isolation are simplified if a network is decomposable.
Administrative functions such as the assignment of unique host addresses
can be decentralized if a network can be partitioned. Although distributed
file systems mask underlying network complexity, performance inhomo­
geneities cannot be hidden. Routers, which introduce load-dependent
transmission delays, are a common source of performance inhomogeneity.
Uneven loading of subnets is another cause. The interaction between
network topology and distributed system performance is still poorly under-

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 99

stood. A preliminary investigation of these issues has been reported in the
context of Andrew (Lorence & Satyanarayanan 1988).

5.3 Heterogeneity

As a distributed system evolves it tends to grow more diverse. A variety
of factors contribute to increased heterogeneity. First, a distributed system
becomes an increasingly valuable resource as it grows in size and stores
larger amounts of shared data. There is then considerable incentive and
pressure to allow users outside the scope of the system to participate in the
use of its resources. A second source of heterogeneity is the improvement in
performance and decrease in cost of hardware over time. This makes it
likely that the most effective hardware configurations will change over the
period of growth of the system. Functional specialization is a third reason
for heterogeneity. Certain combinations of hardware and software may
be more appropriate than others for specific applications.

The distributed file system community has gained some experience with
heterogeneity. Pinkerton et al (1988) describe an experimental file system
at Washington that focuses on heterogeneity. TOPS (Stroud 1988) is a
product offered by Sun Microsystems that allows personal computers
running the PC-DOS and Macintosh operating systems to share files. PC­

NFS, also from Sun, allows PC-DOS applications to access files on an
NFS server. A surrogate server mechanism in Andrew, called PCServer
(Raper 1986), enables PC-DOS applications to access files in Vice.

Coping with heterogeneity is inherently difficult because of the presence
of multiple computational environments, each with its own notions of file
naming and functionality. Since few general principles are applicable, the
idiosyncrasies of each new system have to be accommodated by ad hoc
mechanisms. Unfortunately heterogeneity cannot be ignored since it is
likely to be more widespread in the future.

5.4 Database Access

As mentioned in the introduction, a file system is a refinement of the
permanent storage abstraction. A database is an alternative refinement
and differs from a file system in two important ways. One difference is the
storage model presented to application programs and users. A file system
views the data in a file as an uninterpreted byte sequence. In contrast, a
database encapsulates substantial information about the types and logical
relationships of data items stored in it. It can ensure that constraints on
values are satisfied and can enforce protection policies at fine granularity.
The second fundamental distinction is in the area of naming. A file system
provides access to a file by name whereas a database allows associative

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

100 SATYANARAYANAN

access. Data items can be accessed and modified in a database based on
user-specified predicates.

Neither the difference in storage model nor that in naming makes it a

priori more difficult to build distributed databases than file systems. How­
ever, the circumstances that lead to the use of a database are often precisely
those that make distribution of data difficult. The use of databases is most
common in applications where data has to be concurrently shared for
reading and writing by a large number of users. These applications usually
demand strict consistency of data as well as atomicity of groups of oper­
ations. Although the total quantity of data in the database may be large,
the granularity of access and update is usually quite fine. It is this com�
bination of application characteristics that makes the implementation of
distributed databases substantially harder than the implementation of
distributed file systems.

Distributing a database is particularly difficult at large scale. In its
most general form the problem seems hopelessly difficult. A database is
conceptually a focal point for enforcing concurrency control and atomicity
properties. If the control structures to enforce these properties are phys­
ically distributed, the resulting network protocols have to be substantially
more complex. The feasibility of fully distributing data and control at
small scale has been demonstrated by systems such as R * (Lindsay et al
1984). But extension to larger distributed systems is not trivial.

A less ambitious approach attempts to provide distributed access to data
on a single large database server. Although the data itself is located at a
single site, transparent access to this data is possible from many sites. In
this model the database requirements of a large distributed system are
met by a small number of powerful database servers each exporting a
standardized network interface. An example of such a system, Scylla, has
been demonstrated at Carnegie Mellon University by integrating an off­
the-shelf relational database system, Informix, with an RPC package.
Siinilar approaches have recently been announced by Microsoft (Adler
1988), Oracle (Mace 1988) and other vendors.

6. CONCLUSION

Since the earliest days of distributed computing, file systems have been the
most important; :and widely used form of shared permanent storage. The
continuing interest in distributed file systems bears testimony to the robust­
ness of this model of data sharing. We now understand how to implement
distributed file systems that span a few hundred to a few thousand nodes.
But scaling beyond that will be a formidable challenge. As elaborated in
the preceding section, availability, heterogeneity, and support for data-

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

DISTRIBUTED FILE SYSTEMS 101

bases will also be key issues. Security will continue to be a serious concern
and may, in fact, turn out to be the bane of large distributed systems.
Regardless of the specific technical direction taken by distributed file
systems in the next decade, there is little doubt that it will be an area of
considerable ferment in industry and academia.

ACKNOWLEDGMENTS

Brent Callaghan, Michael Kazar, James Kistler, Paul Leach, Paul Levine,
John Ousterhout, Charlie Sauer, Ellen Siegel, Chris Silveri, Carl Smith,
Warren Smith, Alfred Spector, and Peter Weinberger each made valuable
comments on this paper and contributed to its technical accuracy and
readability.

I was supported in the writing of this paper by the National Science
Foundation (Contract No. CCR-8657907), Defense Advanced Research
Projects Agency (Order No. 4976, Contract F33615-84-K-1520), and the
IBM Corporation (Faculty Development Award).

Literature Cited

Accetta, M., Robertson, G., Satyan­
arayanan, M., Thompson, M. 1 980. The
design of a network-based central file
system. Tech. Rep. CMU-CS-80-1 34, Dep.
Comput. Sci., Carnegie Mellon Univ.

Adler, M. 1988. Developing SQL server
database applications through DB-lib­
rary. Microsoft Syst. J. 3(6): 1 3-24

Apollo Computer Inc. 1988. Heterogeneous
Registry Client Side Release Document.
Part No. I S 182-AO

Apple Computer, Inc. 1 985. Inside Macin­
tosh, Volume II. Reading, MA: Addison
Wesley

Bach, M . J., Luppi, M . W., Melamed, A.
S., Yueh, K. 1987. A remote-file cache
for RFS. Proc. Summer Usenix Conf.,
Phoenix

Bernstein, P. A., Goodman, N. 198 1 . Con­
currency control in distributed database
systems. Comput. Surv. 1 3(2) : 1 85-222

Birrell, A. D., Needham, R. M. 1980. A Uni­
versal File Server. IEEE Trans. Software
Eng. SE-6(5): 450--53

Brown, M. R., Kolling, K. N., Taft, E. A.
1985. The Alpine file system. A CM Trans.
Comput. Syst. 3(4): 261-93

Brownbridge, D. R., Marshall, L. F.,
Randell, B. 1 982. The Newcastle Con­
nection. Software Practice and Experience
1 2: 1 147--62

Burkhard, W. A., Martin, 8. E., Paris, J. F.
1 989. The Gemini replicated file system
test bed. Info. Sci. 48(2): 1 19-34

Cabrera, L. F., Wyllie, J. 1988. Quicksilver
distributed file services: an architecture for
horizontal growth. Proc. 2nd IEEE Conf.
Comput. Workstations, Santa Clara. Also
available as Tech. Rep. R 1 5578, April
1 987, Comput. Sci. Dep., IBM Almaden
Res. Cent.

Callaghan, 8., Lyon, T. 1 989. The Auto­
mounter. Proc. Winter Usenix Conf., San
Diego

Chartock, H. 1987. RFS in SunOS. Proc.
Summer Usenix Conf., Phoenix

Cheriton, D. R., Zwaenepoel, W. 1983. The
distributed V kernel and its performance
for diskless workstations. Proc. 9th ACM
Symp. Operating System Principles, Bret­
ton Woods

Digital Equipment Corporation. 1 985. VMS
System Software Handbook. Marlboro,
MA: DEC

Dineen, T. H., Leach, P. J., Mishkin, N.
W., Pato, J. N., Wyant, G. L. 1 987. The
network computing architecture and sys­
tem: an environment for developing dis­
tributed applications. Proc. Summer Use­
nix Conf., Phoenix

Floyd, R. 1 986a. Short-term file reference
patterns in a Unix environment. Tech.
Rep. TR- I 77, Dep. Comput. Sci., Univ.
Rochester

Floyd, R. 1986b. Directory reference pat­
terns in a Unix environment. Tech. Rep.
TR- 1 79, Dep. Comput. Sci., Univ. Ro­
chester

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

102 SATYANARAYANAN

Fridrich, M . , Older, W. 1 98 1 . The FELIX
file server. Proc. 8th ACM Symp. Oper­
ating System Principles, Asilomar

Garlick, L., Lyon, R. , Delzompo, L., Cal­
laghan, B. 1988. The open network com­
puting environment. Sun Technol. 1(2):
42-46

Gifford, D. K. 1 979a. Violet, an experi­
mental decentralized system. Tech. Rep.
CSL-79- 1 2, Xerox Corp., Palo Alto Res.
Cent.

Gifford, D. K. 1 979b. Weighted voting for
replicated data. Tech. Rep. CSL-79- 14,
Xerox Corp., Palo Alto Res. Cent.

Hatch, M. J., Katz, M . , Rees, J. 1 985.
AT&T's RFS and Sun's NFS. Unix/ World
II I I : 38-52

Howard, J. H., Kazar, M. L., Menees, S.
G., Nichols, D. A., Satyanarayanan, M . ,
Sidebotham, R. N . , West, M. J. 1 988.
Scale and performance in a distributed file
system. A CM Trans. Comput. Syst. 6(1) :
5 1-8 1

IBM Corporation. 1983. Disk Operating
System, Version 2.1. 1 502343

IBM Corporation. 1 987. The remote virtual
disk subsystem. In Academic Operating
System, Vol. III. Palo Alto, CA: IBM

Kleiman, S. R. 1986. Vnodes: an architecture
for multiple file system types in Sun
UNIX. Proc. Summer Usenix Conf.,
Atlanta

Lampson, B. W. 1 983. Hints for computer
system designers. Proc. 9th ACM Symp.
Operating System Principles, Bretton
Woods

Lazowska, E. D., Zahorjan, J., Cheriton,
D. R., Zwaenepoel, W. 1986. File access
performance of diskless workstations.
A CM Trans. Comput. Syst. 4(3): 238-
68

Leach, P. J., Stumpf, B. L., Hamilton, J.
A., Levine, P. H. 1 982. UIDs as internal
names in a distributed file system. Proc.
Symp. Principles of Distributed Comput­
ing, Ottawa

Leach, P. J., Levine, P. H., Douros, B. P.,
Hamilton, J. A., Nelson, D. L., Stumpf, B.
L. 1 983. The architecture of an integrated
local network. IEEE 1. Selected Areas in
Communications 1 (5): 842-57

Leach, P. J., Levine, P. H., Hamilton, J. A.,
Stumpf, B. L. 1 985. The file system of an
integrated local network. Proc. ACM
Comput. Sci. Conf., New Orleans

Letwin, G. 1988. Inside OS/2. Seattle, WA:
Microsoft Press

Levine, P. H. 1987. The Apollo DOMAIN
distributed file system. In NA TO ASI
Series: Theory and Practice of Distributed
Operating Systems, ed. Y. Paker, J.-P.
Banatre, M. Bozyigit. New York: Spring­
er-Verlag

Levitt, J. 1 987. The IBM RT gets connected.
Byte 12(12)

Lindsay, B. G., Haas, L. M., Mohan, C. ,
Wilms, P. F., Yost, R. A. 1984. Com­
putation and communication in R *: a dis­
tributed database manager. ACM Trans.
Comput. Syst. 2(1)

Lorence, M . , Satyanarayanan, M . 1 988.
IPWatch: a tool for monitoring network
locality. Proc 4th Int. Conf. Modelling
Techniques and Tools for Computer Per­
formance Evaluation, Mallorca. Also
available as Tech. Rep. CMU-CS-88- 1 76,
Dep. Comput. Sci., Carnegie Mellon
Univ.

Mace, S. 1 988. Oracle, Fox, XDB detail stra­
tegies for database servers. Infoworld
November 21

Majumdar, S., Bunt, R. B. 1986. Measure­
ment and analysis of locality phases in file
referencing behaviour. Proc. Performance
'86 and ACM Sigmetric 1 986, Raleigh

Marill, T., Stern, D. 1 975. The Data­
computer�a network data utility. Proc.
AFIPS Natl. Compu!. Conf.

Marzullo, K., Schmuck, F. 1 987. Supplying
high availability with a standard network
file system. Proc. 8th Int. Conf. Dis­
tributed Computing Systems, San Jose,
June 1988. Dep. Comput. Sci . , Cornell
Univ.

Meyer, C. H . , Matyas, S. M. 1 982. Cryp­
tography: A New Dimension in Computer
Data Security. New York: Wiley

Mitchelll, J. G., Dion, J. 1 982. A comparison
of two network-based file servers. Com­
mun. A CM 25(4): 233-45

Morris, J. H. , Satyanarayanan, M. , Conner,
M. H . , Howard, J. H. , Rosenthal, D. S.,
Smith, F. D. 1986. Andrew: a distributed
personal computing environment. Com­
mun. A CM 29(3): 1 84-20 1

Mullender, S. J., Tanenbaum, A. S. 1985. A
distributed file service based on optimistic
concurrency control. Proc. 1 0th ACM
Symp. Operating System Principles, Orcas
Island

Mullender, S. J., Tanenbaum, A. S. 1986.
The design ofa capability-based operating
system. Comput. 1. 29(4): 289-99

Needham, R. M., Schroeder, M . D. 1 978.
Using encryption for authentication in
large networks of computers. Commun.
A CM 2 1 (1 2) : 993-99

Nelson, M. N., Welch, B. B. , Ousterhout, J.
K. 1 988. Caching in the Sprite network file
system. ACM Trans. Comput. Syst. 6(1) :
1 34-54

Olander, D. J., McGrath, G. J., Israel, R.
K. 1 986. A framework for networking in
System V. Proc. Summer Usenix Conf.,
Atlanta

Ousterhout, J., Da Costa, H., Harrison, D.,

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Kunze, J., Kupfer, M . , Thompson, J.
1985. A trace-driven analysis of the Unix
4.2 BSD file system. Proc. 1 0th ACM
Symp. Operating System Principles, Orcas
Island

Ousterhout, J. K., Cherenson, A. R.,
Gouglis, F., Nelson, M . N., Welch, B. B.
1 988. The Sprite network operating sys­
tem. Computer 2 1 (2): 23-36

Pato, J. N., Martin, E., Davis, B. 1 988. A
user account registration system for a
large (heterogeneous) UNIX network.
Proc. Winter Usenix Conf., Dallas

Pinkerton, C B., Lazowska, E. D., Notkin,
D., Zahorjan, J. 1 988. A heterogeneous
remote file system. Tech. Rep. 88-08-08,
Dep. Comput. Sci., Univ. Washington

Popek, G., Walker, B., Chow, J., Edwards,
D., Kline, C., Rudisin, G., Thiel, G. 1 98 1 .
LOCUS, a network transparent, high
reliability distributed system. Proc. 8th
ACM Symp. Operating System Principles,
Asilomar

Presotto, D. L. 1988. Plan 9 from Bell
Labs-the network. Proc. European Unix
User Group Conf., London

Raper, L. K. 1 986. The CMU PC server
project. Tech. Rep. CMU-ITC-OS 1 , Inf.
Tech. Cent., Carnegie Mellon Univ.

Rees, J., Levine, P. H., Mishkin, N., Leach,
P. J. 1 986. An extensible I/O system. Proc.
Summer Usenix Conf., Atlanta

Revelle, R. 1 975. An empirical study of file
reference patterns. Tech. Rep. RJ 1 557,
IBM Res. Div.

Rifkin, A. P., Forbes, M. P., Hamilton, R.
L. , Sabrio, M., Shah, S., Yueh, K. 1986.
RFS architectural overview. Proc. Sum­
mer Usenix Conf., Atlanta

Ritchie, D. M. , Thompson, K. 1 974. The
Unix time sharing system. Commun. A CM
1 7(7): 365-75

Rosen, M. B., Wilde, M. J., Fraser­
Campbell, B. 1986. NFS portability. Proc.
Summer Usenix Conf., Atlanta

Rowe, L. A., Birman, K. P. 1982. A local
network based on the Unix operating
system. IEEE Trans. Software Eng. SE-
8(2): 1 37-46

Sandberg, R., Goldberg, D., Kleiman, S.,
Walsh, D., Lyon, B . 1 985. Design and
implementation of the Sun network
filesystem. Proc. Usenix Conf., Port­
land

Satyanarayanan, M. 1 98 1 . A study of file
sizes and functional lifetimes. Proc. 8th
ACM Symp. Operating System Principles,
Asilomar

Satyanarayanan, M. 1 984. A synthetic driver
for file system simulations. Proc. Int.
Conf. Modelling Techniques and Tools
for Performance Analysis, Paris

Satyanarayanan, M. 1 989. Integrating secur-

DISTRIBUTED FILE SYSTEMS 103

ity in a large distributed environment.
ACM Trans. Comput. Syst. 7(3): 247-80

Satyanarayanan, M . 1988. On the influence
of scale in a distributed system. Proc. 1 0th
Int. Conf. Software Eng., Singapore

Satyanarayanan, M. , Howard, J. H. ,
Nichols, D. N., Sidebotham, R. N. , Spec­
tor, A. Z., West, M. J. 1985. The ITC
distributed file system: principles and
design. Proc. 1 0th ACM Symp. Operating
System Principles, Orcas Island

Sauer, C. H. 1988. Presenting a single system
image with fine granularity mounts. Login
1 3(4)

Sauer, C H., Johnson, D. W., Loucks, L.
K., Shaheen-Gouda, A. A., Smith, T. A.
1 987. RT PC distributed services over­
view. Op. Syst. Rev. 2 1 (3): 1 8-29

Sauer, C H., Johnson, D. W., Loucks, L.
K., Shaheen-Gouda, A. A., Smith, T. A.
1988. Statelessness and statefulness in dis­
tributed services. Proc. UniForum 1988,
Dallas

Schroeder, M. D., Gifford, D. K., Needham,
R. M. 1 985. A caching file system for
a programmer's workstation. Proc. 1 0th
ACM Symp. Operating System Principles,
Orcas Island

Sidebotham, R. N. 1 986. Volumes: the
Andrew file system data structuring primi­
tive. Proc. European Unix User Group
Conf. Also available as Technical Rep.
CMU-ITC-OS3, Inf. Tech. Cent., Carnegie
Mellon Univ.

Smith, A. J. 1 98 1 . Analysis of long term file
reference patterns for application to file
migration algorithms. IEEE Trans. Soft­
ware Eng. 7(4) : 403- 1 8

Spector, A . Z., Kazar, M . L . 1 989. Wide
area file service and the AFS experimental
system. Unix Rev. 7(3): 000-000

Steiner, 1. G., Neuman, C, Schiller, 1. I.
1988. Kerberos: an authentication service
for open network systems. Proc. Winter
Usenix Conf., Dallas

Stritter, E. P. 1 977. File migration. PhD
thesis, Stanford Univ.

Stroud, G. 1 988. Introduction to TOPS. Sun­
Technology 1 (2): 50-53

Svobodova, L. 1 98 1 . A reliable object­
oriented data repository for a distribu­
ted computer system. Proc. 8th ACM
Symp. Operating System Principles, Asilo­
mar

Svobodova, L. 1984. File servers for
network-based distributed systems. Com­
put. Surv. 1 6(4): 353-98

Taylor, B. 1986. Secure networking in the
Sun environment. Proc. Summer Usenix
Conf., Atlanta

Taylor, B. 1988. A framework for network
security. Sun Technology 1 (2) : 47-49

Terry, D. B. 1 987. Caching hints in dis-

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

1 0 4 SATYANARAYANAN

tributed systems. IEEE Trans. Software
Eng. SE- 1 3(1) : 48-54

Thacker, C. P., McCreight, E. M . , Lampson,
B. W., Sproull, R. F., Boggs, D. R. 1 98 1 .
Alto: a personal computer. In Computer
Structures: Principles and Examples, ed.
D. P. Siewiorek, C. G. Bell, A. Newell.
New York: McGraw-HilI

Voydock, V. L., Kent, S. T. 1983. Security
mechanisms in high-level network pro­
tocols. Comput. Surv. 1 5 (2): 1 35-7 1

Walker, B., Popek, G., English, R., Kline,
c., Thiel, G. 1983. The LOCUS dis­
tributed operating system. Proc. 9th ACM
Symp. Operating System Principles, Bret­
ton Woods

Walsh, D., Lyon, B., Sager , G., Chang, J.

M . , Goldberg, D., Kleiman, S., Lyon, T.,
Sandberg, R., Weiss, P. 1 985. Overview of
the Sun network file system. Proc. Winter
Usenix Conf., Dallas

Weinberger, P. J. 1984. The Version 8 net­
work file system. Proc. Summer Usenix
Conf., Salt Lake City

Welch, B. , Ousterhout, J. 1 986. Prefix tables:
a simple mechanism for locating files in a
distributed system. Proc. 6th Int. Conf.
Distributed Computing Systems, Cam­
bridge

Zayas, E. R., Everhart, C. F. 1 988. Design
and specification of the cellular Andrew
environment. Tech. Rep. C MU-ITC-070,
Inf. Tech. Cent., Carnegie Mellon Univ.

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Annual Review of Computer Science
Volume 4, 1989-1990

CONTENTS

REFLECTIONS ON COMPUTER SCIENCE, John E. Hopcroft 1

SUPERCOMPUTERS, Paul B. Schneck 13

REASONING UNDER UNCERTAINTY, Judea Pearl 37

A SURVEY OF DISTRIBUTED FILE SYSTEMS, M. Satyanarayanan 73

COMPLEXITY CLASSES, Neil Immerman 105

NUMBER THEORETIC ALGORITHMS, Eric Bach 119

INSTRUCTION SCHEDULING FOR SUPERSCALAR ARCHITECTURES,

Monica S. Lam 173

ENGINEERING COORDINATED PROBLEM SOLVERS, Les Gasser and

Randall W. Hill 203

MACHINE LEARNING, Thomas G. Dietterich 255

CHANNEL ROUTING FOR INTEGRATED CiRCUITS, Andrea La Paugh
and R. Pinter 307

SPECIAL TOPICS SECTION

VI

Connectionist Systems, Jerome Feldman, Leon Cooper, Christof

Koch, Richard Lippman, David Rumelhart, Daniel Sabbah,

and David Waltz 369

Intelligent Training Systems, Alan Lesgold, Susan Chipman,

John Seely Brown, and Eliot Soloway 383

Knowledge-Based Systems, Bruce Buchanan, Daniel Bobrow,

Randall Davis, John McDermott, and Edward Shortliffe 395

Machine Learning, Tom Mitchell, Bruce Buchanan, Gerald

Dejong, Thomas Dietterich, Paul Rosenbloom, and
Alex Waibel 417

Natural Language Processing, Ralph Weischedel, Jaime Carbonell,

Barbara Grosz, Wendy Lehnert, Mitchell Marcus,

Raymond Perrault, and Robert Wilensky 435

Proto typing, Robert Balzer, Frank Belz, Robert Dewar,

David Fisher, Richard Gabriel, John Guttag, Paul Hudak,

and Mitchell Wand 453

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

vii

Robotics, A Long-Range Plan to Maximize National Capabilities,

John E. Hopcroft, Mark Cutkosky, and Tomas Lozano-Perez 467

Spoken Language Systems, J. Makhoul, Fred Jelinek, Larry

Rabiner, Clifford Weinstein, and Victor Zue 481

Ultra-Dependable Architectures, Daniel P. Siewiorek, M. Y. Hsiao,

David Rennels, James Gray, and Thomas Williams 503

Vision, Takeo Kanade, Tom Binford, Tomaso Poggio, and

Azriel Rosenfeld 517

INDEXES

Subject Index 531
Cumulative Index of Contributing Authors, Volumes 1-4 537
Cumulative Index of Chapter Titles, Volumes 1-4 539

A
nn

u.
 R

ev
. C

om
pu

t.
Sc

i.
19

90
.4

:7
3-

10
4.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a
-

L
os

 A
ng

el
es

 -
 U

C
L

A
 D

ig
ita

l C
ol

l S
er

vi
ce

s
on

 0
5/

22
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Computer Science Online
	Most Downloaded Computer Science Reviews
	Most Cited Computer Science Reviews

	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Computer Science Online
	Most Downloaded Computer Science Reviews
	Most Cited Computer Science Reviews

	ar:
	logo:

