
Lecture 8
Page 1

CS 111
Summer 2015

Memory Management: Paging
and Virtual Memory

CS 111
Operating System Principles

Peter Reiher

Lecture 8
Page 2

CS 111
Summer 2015

Outline
•  Paging
•  Swapping and demand paging
•  Virtual memory

Lecture 8
Page 3

CS 111
Summer 2015

Paging

•  What is paging?
– What problem does it solve?
– How does it do so?

•  Paged address translation
•  Paging and fragmentation
•  Paging memory management units
•  Paging and segmentation

Lecture 8
Page 4

CS 111
Summer 2015

Segmentation Revisited
•  Segment relocation solved the relocation

problem for us
•  It used base registers to compute a physical

address from a virtual address
– Allowing us to move data around in physical

memory
– By only updating the base register

•  It did nothing about external fragmentation
–  Because segments are still required to be

contiguous
•  We need to eliminate the “contiguity

requirement”

Lecture 8
Page 5

CS 111
Summer 2015

The Paging Approach
•  Divide physical memory into units of a single

fixed size
– A pretty small one, like 1-4K bytes or words
– Typically called a page frame

•  Treat the virtual address space in the same way
•  For each virtual address space page, store its

data in one physical address page frame
•  Use some magic per-page translation

mechanism to convert virtual to physical pages

Lecture 8
Page 6

CS 111
Summer 2015

Paged Address Translation

CODE DATA STACK

process virtual address space

physical memory

Lecture 8
Page 7

CS 111
Summer 2015

Paging and Fragmentation

•  A segment is implemented as a set of virtual
pages

•  Internal fragmentation
−  Averages only ½ page (half of the last one)

•  External fragmentation
−  Completely non-existent
−  We never carve up pages

Lecture 8
Page 8

CS 111
Summer 2015

How Does This Compare To
Segment Fragmentation?

•  Consider this scenario:
–  Average requested allocation is 128K
–  For segmentation, 256K fixed size segments available
–  In the paging system, 4K pages

•  For segmentation, average internal fragmentation is 50%
(128K of 256K used)

•  For paging?
–  Only the last page of an allocation is not full
–  On average, half of it is unused, or 2K
–  So 2K of 128K is wasted, or around 1.5%

•  Segmentation: 50% waste •  Paging: 1.5% waste

Lecture 8
Page 9

CS 111
Summer 2015

Providing the Magic
Translation Mechanism

•  On per page basis, we need to change a virtual
address to a physical address

•  Needs to be fast
– So we’ll use hardware

•  The Memory Management Unit (MMU)
– A piece of hardware designed to perform the magic

quickly

Lecture 8
Page 10

CS 111
Summer 2015

Paging and MMUs

page # page # offset offset

Virtual address Physical address

page #

page #

page #

page #

page #

page #

Page Table

V
V
V

V

V
V
0

0

Virtual page number is
used as an index into

the page table

Selected entry contains
physical page number

Offset within page
remains the same

Valid bit is checked to
ensure that this virtual
page number is legal

Lecture 8
Page 11

CS 111
Summer 2015

Some Examples

0004 041F 1C08 1C08

Virtual address Physical address

0C20

0105

00A1

041F

0D10

0AC3

Page Table

V
V
V

V

V
V
0

0

0000 0100 0C20 0100 0005 3E28

Hmm, no address
Why might that
happen?
And what can we do
about it?

Lecture 8
Page 12

CS 111
Summer 2015

The MMU Hardware
•  MMUs used to sit between the CPU and bus
–  Now they are typically integrated into the CPU

•  What about the page tables?
– Originally implemented in special fast registers
– But there’s a problem with that today
–  If we have 4K pages, and a 64 Gbyte memory, how

many pages are there?
– 236/212 = 224
– Or 16 M of pages
– We can’t afford 16 M of fast registers

Lecture 8
Page 13

CS 111
Summer 2015

Handling Big Page Tables
•  16 M entries in a page table means we can’t use

registers
•  So now they are stored in normal memory
•  But we can’t afford 2 bus cycles for each memory

access
–  One to look up the page table entry
–  One to get the actual data

•  So we have a very fast set of MMU registers used as
a cache (Translation Lookaside Buffers, or TLB)
–  Which means we need to worry about hit ratios, cache

invalidation, and other nasty issues
–  TANSTAAFL

Lecture 8
Page 14

CS 111
Summer 2015

The MMU and Multiple Processes

•  There are several processes running
•  Each needs a set of pages
•  We can put any page anywhere
•  But if they need, in total, more pages than

we’ve physically got,
•  Something’s got to go
•  How do we handle these ongoing paging

requirements?

Lecture 8
Page 15

CS 111
Summer 2015

Ongoing MMU Operations

•  What if the current process adds or removes pages?
–  Directly update active page table in memory
–  Privileged instruction to flush (stale) cached entries

•  What if we switch from one process to another?
–  Maintain separate page tables for each process
–  Privileged instruction loads pointer to new page table
–  A reload instruction flushes previously cached entries

•  How to share pages between multiple processes?
–  Make each page table points to same physical page
–  Can be read-only or read/write sharing

Lecture 8
Page 16

CS 111
Summer 2015

So Is Paging Perfect?
•  Pages are a very nice memory allocation unit
– They eliminate internal and external fragmentation
– They require a very simple but powerful MMU

•  They are not a particularly natural unit of data
– Programmers don’t think in terms of pages
– Programs are comprised of, and operate on,

segments
– Segments are the natural “chunks” of virtual

address space
•  E.g., we map a new segment into the virtual address

space
– Each code, data, stack segment contains many

pages

Lecture 8
Page 17

CS 111
Summer 2015

Paging and Segmentation
•  We can use both segments and pages
•  Programs request segments
– Each code, data, stack segment contains many

pages
•  Requires two levels of memory management

abstraction
– A virtual address space is composed of segments
– Relocation & swapping is done on a page basis
– Segment based addressing, with page based

relocation
•  User processes see segments, paging is

invisible

Lecture 8
Page 18

CS 111
Summer 2015

Relationships Between
Segments and Pages

•  A segment is a named collection of pages
•  Operations on segments:
– Create/open/destroy
– Map/unmap segment to/from process
– Find physical page number of virtual page n

•  Connection between paging & segmentation
– Segment mapping implemented with page

mapping
– Page faulting uses segments to find requested page

Lecture 8
Page 19

CS 111
Summer 2015

Segmentation on Top of Paging
Process virtual address space

cs

ss

Segment base
registers

ds

es

Process physical address space

Lecture 8
Page 20

CS 111
Summer 2015

Swapping

•  Segmented paging allows us to have non-
contiguous allocations

•  But it still limits us to the size of physical
RAM

•  How can we avoid that?
•  By keeping some segments somewhere else
•  Where?
•  Maybe on a disk

Lecture 8
Page 21

CS 111
Summer 2015

Swapping Segments To Disk

•  An obvious strategy to increase effective
memory size

•  When a process yields, copy its segments to
disk

•  When it is scheduled, copy them back
•  Paged segments mean we need not put any of

this data in the same place as before yielding
•  Each process could see a memory space as big

as the total amount of RAM

Lecture 8
Page 22

CS 111
Summer 2015

Downsides To Segment Swapping

•  If we actually move everything out, the costs
of a context switch are very high
– Copy all of RAM out to disk
– And then copy other stuff from disk to RAM
– Before the newly scheduled process can do

anything
•  We’re still limiting processes to the amount of

RAM we actually have

Lecture 8
Page 23

CS 111
Summer 2015

Demand Paging

•  What is paging?
– What problem does it solve?
– How does it do so?

•  Locality of reference
•  Page faults and performance issues

Lecture 8
Page 24

CS 111
Summer 2015

What Is Demand Paging?

•  A process doesn’t actually need all its pages in
memory to run

•  It only needs those it actually references
•  So, why bother loading up all the pages when a

process is scheduled to run?
•  And, perhaps, why get rid of all of a process’

pages when it yields?
•  Move pages onto and off of disk “on demand”

Lecture 8
Page 25

CS 111
Summer 2015

How To Make Demand
Paging Work

•  The MMU must support “not present” pages
– Generates a fault/trap when they are referenced
– OS can bring in page and retry the faulted

reference
•  Entire process needn’t be in memory to start

running
– Start each process with a subset of its pages
– Load additional pages as program demands them

•  The big challenge will be performance

Lecture 8
Page 26

CS 111
Summer 2015

Returning to Our Paging Example

0005 1C08

Virtual address Physical address

0C20

0105

00A1

041F

0D10

0AC3

V
V
V

V

V
V
0

0

Hmm, no address
Now we know why it
might happen – we
have the page stored
on disk.
And we know what
to do about it – fetch
the page from disk!

Lecture 8
Page 27

CS 111
Summer 2015

Achieving Good Performance for
Demand Paging

•  Demand paging will perform poorly if most
memory references require disk access
– Worse than bringing in all the pages at once,

maybe
•  So we need to be sure most references don’t
•  How?
•  By ensuring that the page holding the next

memory reference is already there
– Almost always

Lecture 8
Page 28

CS 111
Summer 2015

Demand Paging and
Locality of Reference

•  How can we predict which pages we need in
memory?
– Since they’d better be there when we ask

•  Primarily, rely on locality of reference
– Put simply, the next address you ask for is likely to

be close to the last address you asked for
•  Do programs typically display locality of

reference?
•  Fortunately, yes!

Lecture 8
Page 29

CS 111
Summer 2015

Instruction Locality of Reference

•  Code usually executes sequences of
consecutive instructions

•  Most branches tend to be relatively short
distances (into code in the same routine)

•  Even routine calls tend to come in clusters
– E.g., we’ll do a bunch of file I/O, then we’ll do a

bunch of list operations

Lecture 8
Page 30

CS 111
Summer 2015

Stack Locality of Reference

•  Obvious locality here
•  We typically need access to things in the

current stack frame
– Either the most recently created one
– Or one we just returned to from another call

•  Since the frames usually aren’t huge, obvious
locality here

Lecture 8
Page 31

CS 111
Summer 2015

Heap Data Locality of Reference

•  Many data references to recently allocated
buffers or structures
– E.g., creating or processing a message

•  Also common to do a great deal of processing
using one data structure
– Before using another

•  But more chances for non-local behavior than
with code or the stack

Lecture 8
Page 32

CS 111
Summer 2015

Page Faults
•  Page tables no longer necessarily contain

pointers to pages of RAM
•  In some cases, the pages are not in RAM, at

the moment
– They’re out on disk

•  When a program requests an address from such
a page, what do we do?

•  Generate a page fault
– Which is intended to tell the system to go get it

Lecture 8
Page 33

CS 111
Summer 2015

Handling a Page Fault
•  Initialize page table entries to “not present”
•  CPU faults if “not present” page is referenced
– Fault enters kernel, just like any other trap
– Forwarded to page fault handler
– Determine which page is required, where it resides
– Schedule I/O to fetch it, then block the process
– Make page table point at newly read-in page
– Back up user-mode PC to retry failed instruction
– Return to user-mode and try again

•  Meanwhile, other processes can run

Lecture 8
Page 34

CS 111
Summer 2015

Pages and Secondary Storage
•  When not in memory, pages live on secondary

storage
–  Typically a disk
–  In an area called “swap space”

•  How do we manage swap space?
–  As a pool of variable length partitions?

•  Allocate a contiguous region for each process

–  As a random collection of pages?
•  Just use a bit-map to keep track of which are free

–  As a file system?
•  Create a file per process (or segment)
•  File offsets correspond to virtual address offsets

Lecture 8
Page 35

CS 111
Summer 2015

Swap Space and Segments
•  Should the swap space be organized somehow by

segments?
•  A paging MMU eliminates need to store consecutive

virtual pages in contiguous physical pages
•  But locality of reference suggests pages in segments

are likely to be used together
•  Disk pays a big performance penalty particularly for

spreading operations across multiple cylinders
•  Well-clustered allocation may lead to more efficient

I/O when we are moving pages in and out
•  Organizing swap by segments can help

Lecture 8
Page 36

CS 111
Summer 2015

Demand Paging Performance
•  Page faults may result in shorter time slices
– Standard overhead/response-time tradeoff

•  Overhead (fault handling, paging-in and out)
– Process is blocked while we are reading in pages
– Delaying execution and consuming cycles
– Directly proportional to the number of page faults

•  Key is having the “right” pages in memory
– Right pages -> few faults, little paging activity
– Wrong pages -> many faults, much paging

•  We can’t control what pages we read in
– Key to performance is choosing which to kick out

Lecture 8
Page 37

CS 111
Summer 2015

Virtual Memory
•  A generalization of what demand paging

allows
•  A form of memory where the system provides

a useful abstraction
– A very large quantity of memory
– For each process
– All directly accessible via normal addressing
– At a speed approaching that of actual RAM

•  The state of the art in modern memory
abstractions

Lecture 8
Page 38

CS 111
Summer 2015

The Basic Concept
•  Give each process an address space of

immense size
– Perhaps as big as your hardware’s word size allows

•  Allow processes to request segments within
that space

•  Use dynamic paging and swapping to support
the abstraction

•  The key issue is how to create the abstraction
when you don’t have that much real memory

Lecture 8
Page 39

CS 111
Summer 2015

The Key VM Technology:
Replacement Algorithms

•  The goal is to have each page already in
memory when a process accesses it

•  We can’t know ahead of time what pages will
be accessed

•  We rely on locality of access
–  In particular, to determine what pages to move out

of memory and onto disk
•  If we make wise choices, the pages we need in

memory will still be there

Lecture 8
Page 40

CS 111
Summer 2015

The Basics of Page Replacement
•  We keep some set of all possible pages in

memory
– Perhaps not all belonging to the current process

•  Under some circumstances, we need to replace
one of them with another page that’s on disk
– E.g., when we have a page fault

•  Paging hardware and MMU translation allows
us to choose any page for ejection to disk

•  Which one of them should go?

Lecture 8
Page 41

CS 111
Summer 2015

The Optimal Replacement
Algorithm

•  Replace the page that will be next referenced
furthest in the future

•  Why is this the right page?
–  It delays the next page fault as long as possible
– Fewer page faults per unit time = lower overhead

•  A slight problem:
– We would need an oracle to know which page this

algorithm calls for
– And we don’t have one

Lecture 8
Page 42

CS 111
Summer 2015

Do We Require Optimal
Algorithms?

•  Not absolutely
•  What’s the consequence of the algorithm being

wrong?
– We take an extra page fault that we shouldn’t have
– Which is a performance penalty, not a program

correctness penalty
– Often an acceptable tradeoff

•  The more often we’re right, the fewer page faults we
take

Lecture 8
Page 43

CS 111
Summer 2015

Approximating the Optimal
•  Rely on locality of reference
•  Note which pages have recently been used
– Perhaps with extra bits in the page tables
– Updated when the page is accessed

•  Use this data to predict future behavior
•  If locality of reference holds, the pages we

accessed recently will be accessed again soon
•  Least recently used is the best algorithm,

lacking a true oracle

Lecture 8
Page 44

CS 111
Summer 2015

Candidate Replacement Algorithms
•  Random, FIFO
– These are dogs, forget ‘em

•  Least Frequently Used
– Sounds better, but it really isn’t

•  Least Recently Used
– Assert that near future will be like the recent past
–  If we haven’t used a page recently, we probably

won’t use it soon
– The computer science equivalent to the “unseen

hand”

Lecture 8
Page 45

CS 111
Summer 2015

Naïve LRU

•  Each time a page is accessed, record the time
•  When you need to eject a page, look at all

timestamps for pages in memory
•  Choose the one with the oldest timestamp
•  Will require us to store timestamps somewhere
•  And to search all timestamps every time we

need to eject a page

Lecture 8
Page 46

CS 111
Summer 2015

True LRU Page Replacement

a b c d a b d e f a b c d

Reference stream

Page table using true LRU

frame 0

frame 1

frame 2

frame 3

a e d

d

c

a

b

e

!

!

!

f

a

b

c

d

!

e

!

Loads 4
Replacements 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lecture 8
Page 47

CS 111
Summer 2015

Maintaining Information for LRU
•  Can we keep it in the MMU?

–  MMU notes the time whenever a page is referenced
–  MMU translation must be blindingly fast

•  Getting/storing time on every fetch would be very expensive
–  At best they will maintain a read and a written bit per page

•  Can we maintain this information in software?
–  Mark all pages invalid, even if they are in memory
–  Take a fault first time each page is referenced, note the time
–  Then mark this page valid for the rest of the time slice
–  Causing page faults to reduce the number of page faults???

•  We need a cheap software surrogate for LRU
–  No extra page faults
–  Can’t scan entire list each time, since it’s big

Lecture 8
Page 48

CS 111
Summer 2015

Clock Algorithms
•  A surrogate for LRU
•  Organize all pages in a circular list
•  MMU sets a reference bit for the page on access
•  Scan whenever we need another page
–  For each page, ask MMU if page has been referenced
–  If so, reset the reference bit in the MMU & skip this page
–  If not, consider this page to be the least recently used
–  Next search starts from this position, not head of list

•  Use position in the scan as a surrogate for age
•  No extra page faults, usually scan only a few pages

Lecture 8
Page 49

CS 111
Summer 2015

Clock Algorithm Page Replacement
a b c d a b d e f a b c d

Reference Stream

True LRU

LRU clock

frame 0
frame 1
frame 2
frame 3

frame 0
frame 1
frame 2
frame 3
clock
pos

a e d

d

c

a

b

e

d

a

b

f

a

b

c

d

a

e

d

loads 4, replacements 7

a

b

c

d

!

!

!

e

f

a

b

c

d

e

Loads 4
Replacements 7

0 1 2 3 0 0 0 0 3 1

!

!

3 1 1 0 2 3

! ! !

! !

! !

1 2 0

!

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lecture 8
Page 50

CS 111
Summer 2015

Comparing True LRU To Clock
Algorithm

•  Same number of loads and replacements
– But didn’t replace the same pages

•  What, if anything, does that mean?
•  Both are just approximations to the optimal
•  If LRU clock’s decisions are 98% as good as

true LRU
– And can be done for 1% of the cost (in hardware

and cycles)
–  It is a bargain!

Lecture 8
Page 51

CS 111
Summer 2015

Page Replacement and
Multiprogramming

•  We don’t want to clear out all the page frames
on each context switch

•  How do we deal with sharing page frames?
•  Possible choices:
– Single global pool
– Fixed allocation of page frames per process
– Working set-based page frame allocations

Lecture 8
Page 52

CS 111
Summer 2015

Single Global Page Frame Pool
•  Treat the entire set of page frames as a shared

resource
•  Approximate LRU for the entire set
•  Replace whichever process’ page is LRU
•  Probably a mistake
– Bad interaction with round-robin scheduling
– The guy who was last in the scheduling queue will

find all his pages swapped out
– And not because he isn’t using them
– When he gets in, lots of page faults

Lecture 8
Page 53

CS 111
Summer 2015

Per-Process Page Frame Pools
•  Set aside some number of page frames for each

running process
– Use an LRU approximation separately for each

•  How many page frames per process?
•  Fixed number of pages per process is bad
–  Different processes exhibit different locality

•  Which pages are needed changes over time
•  Number of pages needed changes over time

–  Much like different natural scheduling intervals
•  We need a dynamic customized allocation

Lecture 8
Page 54

CS 111
Summer 2015

Working Sets
•  Give each running process an allocation of page

frames matched to its needs
•  How do we know what its needs are?
•  Use working sets
•  Set of pages used by a process in a fixed length

sampling window in the immediate past1

•  Allocate enough page frames to hold each process’
working set

•  Each process runs replacement within its own set

1This definition paraphrased from Peter Denning’s definition

Lecture 8
Page 55

CS 111
Summer 2015

The Natural Working Set Size

Number
of page
faults

Working set size

The
sweet
spot

Insufficient space
leads to huge

numbers of page
faults

Little marginal benefit
for additional space

More, is just “more”.

And if you give page frames to
one process, you can’t give them

to another one

Lecture 8
Page 56

CS 111
Summer 2015

Optimal Working Sets
•  What is optimal working set for a process?
–  Number of pages needed during next time slice

•  What if we run the process in fewer pages?
–  Needed pages will replace one another

continuously
–  This is called thrashing

•  How can we know what working set size is?
–  By observing the process’ behavior

•  Which pages should be in the working-set?
–  No need to guess, the process will fault for them

Lecture 8
Page 57

CS 111
Summer 2015

Implementing Working Sets
•  Manage the working set size
–  Assign page frames to each in-memory process
–  Processes page against themselves in working set
–  Observe paging behavior (faults per unit time)
–  Adjust number of assigned page frames accordingly

•  Page stealing algorithms
–  Track last use time for each page, for owning process
–  Steal page least recently used (by its owner)

•  Approximately, for cost reasons

–  Processes that need more pages tend to get more
–  Processes that don't use their pages tend to lose them

Lecture 8
Page 58

CS 111
Summer 2015

Working Set Clock Algorithm

1

0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 1 0 0

page
frame

P0

15 51 65 80 15 70 72 54 23 45 25 47

referenced
process
last ref

Clock pointer

13 14

0 1 1 1 0

P0 P0 P0 P0 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

69 33 25

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

current execution times P0 = 55 P1 = 75 P2 = 80

P0 gets a fault
page 6 was just referenced

clear ref bit, update time
page 7 is (55-33=22) ms old

 P0 replaces his own page

0

75

0

t = 15

Lecture 8
Page 59

CS 111
Summer 2015

Stealing a Page
0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 0 0

P0

15 51 65 80 15 70 72 54 23 45 25 47

referenced
process
last ref

13 14

0 1 1 1 0

P0 P0 P0 P0 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

69 33 25

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

current execution times P0 = 55 P1 = 75 P2 = 80

P0 gets a fault
page 6 was just referenced
page 7 is (55-33=22) ms old
page 8 is (80-72=8) ms old
page 9 is (55-54=1) ms old
page 10 is (75-23=52) ms old

 P0 steals this page from P1

0

75

0 0

P0

t = 25

Page
frame

Clock pointer

P0 has been experiencing
too many page faults

recently

Lecture 8
Page 60

CS 111
Summer 2015

Thrashing
•  Working set size characterizes each process
–  How many pages it needs to run for τ milliseconds

•  What if we don’t have enough memory?
–  Sum of working sets exceeds available memory
–  We will thrash unless we do something

•  We cannot squeeze working set sizes
–  This will also cause thrashing

•  We can reduce the number of competing processes
–  Swap some of the ready processes out
–  To ensure enough memory for the rest to run

•  We can round-robin who is in and out

Lecture 8
Page 61

CS 111
Summer 2015

Pre-Loading
•  What happens when process comes in from

disk?
•  Pure swapping
–  All pages present before process is run, no page faults

•  Pure demand paging
–  Pages are only brought in as needed
–  Fewer pages per process, more processes in memory

•  What if we pre-loaded the last working set?
–  Far fewer pages to be read in than swapping
–  Probably the same disk reads as pure demand paging
–  Far fewer initial page faults than pure demand paging

Lecture 8
Page 62

CS 111
Summer 2015

Clean Vs. Dirty Pages
•  Consider a page, recently brought in from disk
–  There are two copies, one on disk, one in memory

•  If the in-memory copy has not been modified, there is
still a valid copy on disk
–  The in-memory copy is said to be “clean”
–  Clean pages can be replaced without writing them back to

disk

•  If the in-memory copy has been modified, the copy
on disk is no longer up-to-date
–  The in-memory copy is said to be “dirty”
–  If swapped out of memory, must be written to disk

Lecture 8
Page 63

CS 111
Summer 2015

Dirty Pages and Page Replacement
•  Clean pages can be replaced at any time
– The copy on disk is already up to date

•  Dirty pages must be written to disk before the
frame can be reused
– A slow operation we don’t want to wait for

•  Could only swap out clean pages
– But that would limit flexibility

•  How to avoid being hamstrung by too many
dirty page frames in memory?

Lecture 8
Page 64

CS 111
Summer 2015

Pre-Emptive Page Laundering
•  Clean pages give memory scheduler flexibility
– Many pages that can, if necessary, be replaced

•  We can increase flexibility by converting dirty
pages to clean ones

•  Ongoing background write-out of dirty pages
– Find and write-out all dirty, non-running pages

•  No point in writing out a page that is actively in use
– On assumption we will eventually have to page out
– Make them clean again, available for replacement

•  An outgoing equivalent of pre-loading

