

Intel® Edison Tutorial: Timing Analysis and Synchronization 1

Intel® Edison Tutorial:
Timing Analysis and Synchronization

Intel® Edison Tutorial: Timing Analysis and Synchronization 2

Table of Contents

Introduction ... 3
Things Needed .. 3
Timestamps on Computers – Unix/Epoch/POSIX Time .. 4
Code Execution Time ... 5
Adding Precision .. 6
What is Synchronization? .. 7

Tasks ... 7
Cause of Drift .. 8
Editing the Clock Manually .. 10
Difference in Clocks ... 13

Tasks ... 19

Revision history

Version Date Comment

1.0 10/28/2015 Initial release

Intel® Edison Tutorial: Timing Analysis and Synchronization 3

Introduction
Timing is a very critical component for all engineering projects, and even more so for computers
and Internet of Things (IoT) applications. To quote an article from the National Institute of
Standards and Technology (NIST) “Our fast-approaching future of driverless cars and "smart"
electrical grids will depend on billions of linked devices making decisions and communicating
with split-second precision to prevent highway collisions and power outages”.

As such, this tutorial will go over some basic timing analysis to check execution time for code.
After the basic timing portion of this document, you will use two Intel Edison boards to see the
difference in clocks.

In this tutorial you will

1. Learn how to experimentally determine how long your code took to execute
2. Manually edit the software and hardware clocks on your Intel Edison
3. Naively compare timestamps between different IoT nodes
4. Think about how to compare timestamps in a more robust manner

Things Needed
1. 2x Intel Edison’s

2. A PC or a Mac

3. 2x Micro USB cables per Intel Edison

4. An internet connection

Intel® Edison Tutorial: Timing Analysis and Synchronization 4

Timestamps on Computers – Unix/Epoch/POSIX Time
Computers, much like humans, need to have a concept of “time” so that they can perform tasks.
However, as computers are much more suited to dealing with pure numbers than strings, they
need to have a different way of recording time than the Gregorian Calendar.

The method most widely used on Unix like systems is Epoch time. This representation of time is
defined as the number of seconds that have elapsed since 00:00:00, Thursday January 1st 1970
Coordinated Universal Time (UTC) not counting leap seconds. Since it does not account for
leap seconds, this is not a truly linear or true representation of UTC. But it works very well
for our purposes.

For example, the date January 1, 2016 00:00:00 UTC will have the Epoch timestamp of
1451606400.

Let’s examine what the UTC timestamp looks like, and how to access it through a C-program.

1. Log into your Intel Edison board via serial interface. You will be disabling the Wi-Fi for
a later portion of this tutorial, which will break the SSH pipe between your Intel Edison
and your personal machine.

2. Open a new C-file called “get_time.c”
3. Type the following code into the file

Figure 1: get_time.c

4. Save and quit the file
5. Compile the source code into an executable binary file

$ gcc –o get_time get_time.c

6. Run the executable

$./get_time

7. Examine the output. Record it, and convert it to a human readable timestamp
8. Does the human readable timestamp agree with what time you think it should be?
9. What are some reasons that the timestamp may not be aligned with the real world time?

Intel® Edison Tutorial: Timing Analysis and Synchronization 5

Code Execution Time
Now that we can get the current time, let’s try to see how long it takes to execute a code
segment.

1. Open a file

$ vi simple_timing_analysis.c

2. Type the following code into the file

NOTE: You can place any code you want between the markers /* A */ and /* B */

The reason we use usleep() is because we know that it should take approximately the
same amount of time to return as the requested sleep time. Please see the following link
for more information http://man7.org/linux/man-pages/man3/usleep.3.html

Figure 2: simple_timing_analysis.c

3. Save and quit the file
4. Compile the source code into an executable binary file

$ gcc –o simple_timing_analysis simple_timing_analysis.c

5. Run the executable

$./simple_timing_analysis

6. Edit the source code file such that the sleep function is now for 2,100,000 microseconds
7. Compile and run the code
8. What do you notice about how long it said to run between A and B from step 6 compared

to step 4?

Intel® Edison Tutorial: Timing Analysis and Synchronization 6

Adding Precision
The above example gave you a good way to find out how long your code took to execute at the
granularity level of a full second. However, this is not enough information in most applications.
Typically, you will need to see how many microseconds it takes to run a segment of code. As
such, we will need to use more precise data structures to check this time.

1. Open a new file

$ vi precise_timing_analysis.c

2. Type the following code into the file

Figure 3: precise_timing_analysis.c

3. Save and quit the file
4. Compile the source code into an executable binary file

$ gcc –o precise_timing_analysis precise_timing_analysis.c

5. Run the executable

$./precise_timing_analysis

6. Edit the source code file such that the sleep function is now for 2,100,000 microseconds
7. Compile and run the code
8. What do you notice about how long it said to run between A and B from step 6 compared

to step 4?

Intel® Edison Tutorial: Timing Analysis and Synchronization 7

What is Synchronization?
To understand the importance of synchronization, let’s first examine an application. Imagine you
are an engineer equipping a local high school with bells. The high school has four separated
buildings. Each of these buildings needs its own bell to indicate to students and teachers that the
current session of class is over. This high school is also very modern, and as such, the
administration would like to send a command to the bells with a time of day to ring. The school
has specified that the bell must ring at the specified time of day ± 1 minute.

Once you are done equipping the high school with bells, you test them by issuing a command to
ring the bells at 12pm in the GMT time zone. Your test equipment records the bells ringing at
the below times:

Bell Epoch

A 1423569654

B 1423569032

C 1423570217

D 1423569551

Tasks

1. Convert the above table from Epoch to GMT times
2. Record which bells are not ringing at the correct time

Intel® Edison Tutorial: Timing Analysis and Synchronization 8

Cause of Drift
Hopefully, the above example showed you how differences in clocks can cause a system to fail.
Now, let’s examine why the differences in clocks exist in the first place. To do this, we must
learn how clocks work.

First, let’s define an electronic oscillator as an electronic circuit or device that generates a
periodically oscillating signal. This signal is typically either a sine or a square wave. This signal
is then fed into a counter which counts each time the signal either crosses a pre-determined value
(for example, each time the wave hits ‘0’ on the y-axis). The counter then updates the clock
based on how many counts it receives.

Figure 4: sine and square waves

An electronic oscillator comprises of two main elements, an amplifier and a crystal. To
paraphrase a very understandable analogy from a user on Stack Exchange:

Think of a crystal as being a tiny bell made from a piezoelectric material. Piezoelectric stems
from the word piezo which is Greek for push and electric which is Greek for amber which was
an ancient source of electric charge. When you hit a bell, it makes a pure sound. Similarly, a
crystal makes electricity when you hit it and changes shape when you shock it with electricity.

The crystal is connected to an amplifier to continuously produce that pure “bell-like tone”. The
amplifiers job is similar to someone pushing you on a swing. When you get to just a little past the
peak of one swing they'll give you a push to make sure you come back for another one.

The piezoelectric nature of the crystal causes it to change shape when the amplifier output
"pushes" it with an electric signal. The amplifier then stops providing this “push”. In response,
the crystal “springs” back and generates its own electric signal. This signal is fed to the input of
the amplifier at just the right time for the amplifier to generate another push, thus regenerating
the cycle, forever.

It is important to note that the reason crystals are used in generating timing pulses is because
they can generate pulses at very specific and precise frequencies. For example, if a crystal is said
to oscillate at 32 kHz, its nominal frequency is very likely to be 32,000.000000 Hz. However,
there are external conditions that cause this frequency to change and drift.

Intel® Edison Tutorial: Timing Analysis and Synchronization 9

Figure 5: cause of time drift

One of these factors is temperature. To illustrate, consider a clock rated at 32,000.00Hz at room
temperature. If the temperature that the crystal operates in is above or below this value, the clock
frequency will now be slightly different. This relationship can be seen below:

𝑓 = 𝑓#×[1 − 𝐾× 𝑇 − 𝑇# *]
Where

𝑓 = 𝑟𝑒𝑎𝑙	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	
𝑓# = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	
𝐾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓𝑜𝑟	32𝑘𝐻𝑧	𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠	𝑖𝑡𝑠	𝑎𝑏𝑜𝑢𝑡	0.4	𝑝𝑎𝑟𝑡𝑠	𝑝𝑒𝑟	𝑚𝑖𝑙𝑙𝑖𝑜𝑛/°𝐶*	
𝑇 = 𝑟𝑒𝑎𝑙	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	
𝑇# = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

Consider a clock rated at 32MHz rated at standard room temperature (27C) operating at an actual
temperature of 17C

𝑓 = 32𝑘𝐻𝑧× 1 −
0.04

1,000,000× 17 − 27 * = 31,999.872𝐻𝑧

It also follows that for this difference in frequency at this temperature, we lose about 2 minutes
per year.

𝑡𝑖𝑚𝑒	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 1	𝑦𝑒𝑎𝑟 −	
31,999.872
32,000 ×1𝑦𝑒𝑎𝑟 365𝑑𝑎𝑦𝑠×24ℎ𝑜𝑢𝑟𝑠×60𝑚𝑖𝑛𝑢𝑡𝑒𝑠

= 2.1	𝑚𝑖𝑛𝑢𝑡𝑒𝑠

For further reading, please examine the below links

• http://electronics.stackexchange.com/questions/117624/how-does-a-crystal-work
• https://en.wikipedia.org/wiki/Crystal_oscillator
• https://www.edgefx.in/crystal-oscillator-circuit-working-applications/

Intel® Edison Tutorial: Timing Analysis and Synchronization 10

Editing the Clock Manually
To mitigate the problem of drift, we can align our clocks to some central clock that we know has
accurate time. Similar to a watch, you can edit the clock on your Intel Edison to make it align
with a more correct clock. Let’s try to set the date of the Intel Edison board to March 5th, 2015
1:37pm

1. Make sure your Intel Edison is connected to the internet
Type the following command

$ timedatectl set-time “2015-03-05 13:37:00”

Notice how you get the below error when trying to set the date using this method

Figure 6: error from attempting to change the clock manually

This is because the Intel Edison already has a service that synchronizes your device
across the internet

NOTE: The date format is by default: “YYYY-MM-DD hh:mm:ss”. The reasoning
behind this is that when you sort dates in strings, it is important to have the year first.

To illustrate, consider formatting the date string as the standard American definition
“MM-DD-YYYY”. Now, let’s examine the following array of strings:

[“03-05-2015”, “03-04-2014”, “02-06-2016”]

If we were to sort this lexicographically (by simply looking at each character and not
considering what the data actually represents), the order of the strings would be:

[“02-06-2016”, “03-04-2014”, “03-05-2015”]

The above output is clearly incorrect when looking at the data the strings represent

However, if you have the dates formatted as the following strings “YYYY-MM-DD”

[“2015-03-05”, “2014-03-04”, “2016-02-06”]

When they are sorted lexicographically, the output would be

[“2014-03-04”, “2015-03-05”, “2016-02-06”]

Which is the correct way to order the timestamps

Intel® Edison Tutorial: Timing Analysis and Synchronization 11

2. Now, let’s force change the clock. First we must to disable the automatic synchronization

$ timedatectl set-ntp false

3. Verify that the automatic synchronization has been disabled

$ timedatectl

The output should have the NTP enabled value as no

Figure 7: successfully disabling synchronization

4. Now that the NTP is disabled, let’s set the time

$ timedatectl set-time “2015-03-05 13:37:00”
$ timedatectl

The output should match the output below

Figure 8: clock after manual adjustment

Intel® Edison Tutorial: Timing Analysis and Synchronization 12

5. Let’s now re-enable time synchronization by issuing the following command

$ timedatectl set-ntp true

Wait about one minute and examine the output from timedatectl

It is critical to wait as if you check the output right away, the operating system may not
have queried the NTP server, so the clock may appear wrong.

Even if the Local and Universal time are correct, the RTC time may not be. RTC stands
for Real Time Clock, it is a module (usually a piece of hardware) that keeps track of time
with its own internal power source. This is so that when the overall system doesn’t lose
track of time when it has no power supplied to it. The RTC is usually updated more
slowly than the software clock

$ timedatectl

Figure 9: clock after enabling synchronization

Note: Check the Local, Universal and RTC time. They should all be the same, but they
will not agree with the above figure, since the screenshot was taken at the time of writing
this tutorial.

Intel® Edison Tutorial: Timing Analysis and Synchronization 13

Difference in Timestamps
Now that you understand that the timestamps can be different, let’s try and show that they are
different.

1. Connect your Intel Edison’s to the internet
2. Designate one Intel Edison as the server
3. Discover the IP address of your server Intel Edison

$ configure_edison --showWiFiIP

4. Push the file labelled “server.c” in the folder labelled “FILES/initial/” to your server Intel
Edison via SFTP

5. Compile the file

$ gcc –o server server.c

6. Designate the other Intel Edison as the client
7. Push the file labelled “client.c” in the folder labelled “FILES/initial/” to your client Intel

Edison via SFTP
8. Compile the file

$ gcc –o client client.c

9. Start the server on your server Intel Edison

$./server <PORT_NO>

10. Start the client on your client Intel Edison

$./client <IP_ADDR_SERVER> <PORT_NO>

11. Verify that the client and server are functioning correctly

Figure 10: client functioning correctly

Intel® Edison Tutorial: Timing Analysis and Synchronization 14

Figure 11: server functioning correctly

Now that we have verified that the server and client code works, let’s examine the difference
in timestamps

To do this, the client Intel Edison will generate the current time, and send this as a string to
the server Intel Edison. Once the server Intel Edison receives a message from the client, it
will generate its own timestamp.

The server Intel Edison will then compute the difference in timestamps

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑠𝑒𝑟𝑣𝑒𝑟	𝑡𝑖𝑚𝑒	𝑠𝑡𝑎𝑚𝑝 − 𝑐𝑙𝑖𝑒𝑛𝑡	𝑡𝑖𝑚𝑒	𝑠𝑡𝑎𝑚𝑝

Follow the below steps to generate a current timestamp with microsecond precision on the
client and send it to the server as a string

12. Open the client.c file on your client Intel Edison

$ vi client.c

13. Include the sys/time.h library and define MILLION

#include <sys/time.h>
#define MILLION 1000000.0 //1,000,000.0

Figure 12: including the "sys/time.h" library and defining MILLION

Intel® Edison Tutorial: Timing Analysis and Synchronization 15

14. Declare the variables now and now_epoch as follows

Figure 13: declaring now and now_epoch

15. Comment out the section that says “get user input”

Figure 14: commented out code

16. Add the following lines directly below

Figure 15: acquiring timestamp and placing in character buffer

17. Save and quit the file. Then compile the code

$ gcc –o client client.c

18. Run the code

$./client <SERVER_IP_ADDR> <PORT_NO>

Intel® Edison Tutorial: Timing Analysis and Synchronization 16

19. Repeat steps 9 and 10 above, the output at the server should look similar to below (but
with a different timestamp)

Figure 16: correct client-server behavior

Now that we have the client working, let’s modify the server in a similar fashion to generate the
timestamp directly after reading the message the client sent

20. Open the server.c file

$ vi server.c

21. Include the sys/time.h library and define MILLION

#include <sys/time.h>
#define MILLION 1000000.0 //1,000,000.0

Figure 17: including the "sys/time.h" library and defining MILLION

22. Declare the variables now, server_epoch, and client_epoch as follows

Figure 18: declaring now, server_epoch and client_epoch

23. Get the time of day directly after reading a message from the client

Edit the message the server displays when it has received a message to show the
timestamp received from the client, and the timestamp recorded by the server

Intel® Edison Tutorial: Timing Analysis and Synchronization 17

Figure 19: getting epoch and editing printf statement

24. Save and quit the file. Then compile the code

$ gcc –o server server.c

25. Repeat steps 9 and 10 above, the output at the server should look similar to below (but
with a different timestamp)

Figure 20: server output

26. Notice how it’s difficult to immediately see the difference in timestamps. Let’s try to get
the program to generate the difference automatically. For this, we must first convert the
message we received as a string to a double.

Edit the printf section of the code such that it matches the below screenshot

Figure 21: printing the difference in time stamps

Since we know the input will only ever be a floating point, we use the function sscanf to
extract the timestamp information. However, we should only use this function if we are
guaranteed to have input in the correct format. Please examine the below links if you
would like more information about how sscanf works

Intel® Edison Tutorial: Timing Analysis and Synchronization 18

https://linux.die.net/man/3/sscanf
https://www.tutorialspoint.com/c_standard_library/c_function_sscanf.htm
http://www.cplusplus.com/reference/cstdio/sscanf/

27. Save and quit the file. Then compile the code

$ gcc –o server server.c

28. Repeat steps 9 and 10 above, the output at the server should look similar to below (but
with differences in the highlighted boxes)

Figure 22: server output

29. Let’s simulate an event where the client’s clock drifts

Type the below commands to set the client’s clock back about 10 minutes

$ timedatectl set-ntp false
$ timedatectl set-time <TEN_MINUTES_AGO>

Figure 23: manually setting the time

30. Repeat steps 9-10 above, notice the timestamp difference is now much larger

Figure 24: server output

Intel® Edison Tutorial: Timing Analysis and Synchronization 19

31. Re-enable NTP on your client Intel Edison

$ timedatectl set-ntp true

Tasks
1. The cause of this timestamp difference has factors other than differences in internal

clocks. List two other possible reasons for the timestamps being different

HINT: (1) has your Wi-Fi ever been slow? (2) Do all the lines of code execute at the
same time?

2. Describe a strategy to try and find out how each the factors you have listed above the
difference in timestamps

3. Repeat steps 9-10 above, examine the value of DIFFERENCE. Notice that it changes.
Describe a method that would be a enable you to find the average clock difference

Figure 25: change in value of "difference" after successive code runs

4. EXTENSION

Implement your idea from tasks 2 and 3

