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Distributed denial-of-service (DDoS) attacks are a grave and challenging problem.

Perpetration requires little effort on the attacker’s side, since a vast number of

insecure machines provides fertile ground for attack zombies, and automated

scripts for exploit and attack can easily be downloaded and deployed. On the

other hand, prevention of the attack or the response and traceback of perpetrators

is extremely difficult due to a large number of attacking machines, the use of

source-address spoofing and the similarity between legitimate and attack traffic.

Many defense systems have been designed in the research and commercial

communities to counter DDoS attacks, yet the problem remains largely unsolved.

This thesis explores the problem of DDoS defense from two directions: (1) it

strives to understand the origin of the problem and all its variations, and provides

a survey of existing solutions, and (2) it presents the design (and implementation)

of a source-end DDoS defense system called D-WARD that prevents outgoing at-

tacks from deploying networks. Source-end defense is not the complete solution

to DDoS attacks, since networks that do not deploy the proposed defense can still
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perform successful attacks. However, this thesis shows that a source-end defense

(implemented in the D-WARD system) can detect and prevent a significant num-

ber of DDoS attacks, does not incur significant cost for its operation, and offers

good service to legitimate traffic during the attack. By performing successful dif-

ferentiation between legitimate and attack traffic close to the source, source-end

defense is one of the crucial building blocks of the complete DDoS solution and

essential for promoting Internet security. The thesis also includes a description of

two joint projects where D-WARD has been integrated into a distributed defense

system, and extensively tested. In all of the experiments, the operation of the

system significantly improved with the addition of D-WARD.

xxviii



CHAPTER 1

Introduction

Distributed denial-of-service attacks (DDoS) attacks consist of an overwhelming

quantity of packets being sent from multiple attack sites to a victim site. These

packets arrive in such a high quantity that some key resource at the victim

(bandwidth, buffers, CPU time to compute responses) is quickly exhausted. The

victim either crashes or spends so much time handling the attack traffic that it

cannot attend to its real work. Thus legitimate clients are deprived of the victim’s

service for as long as the attack lasts.

Distributed denial-of-service attacks are widely regarded as a major threat

to the Internet. They have adversely affected service to individual machines,

major Internet commerce sites, and even core Internet infrastructure services.

Occasionally, a very large-scale DDoS attack occurs (usually as the byproduct of

a virus or worm spread), crippling Internet-wide communications for hours. While

services are restored as soon as the attack subsides, the incidents still create a

significant disturbance to the users and costs victim sites millions of dollars in lost

revenue. Furthermore, the Internet is used daily for important communications

such as stock trades, financial management and even some infrastructure services.

Many of these transactions must be processed in a timely manner and can be

seriously delayed by the onset of a DDoS attack. The seriousness of the threat

is further increased by the ease om which these attacks are performed. Any

unsophisticated user can easily locate and download DDoS tools and engage

1



them to perform successful, large-scale attacks. The attacker runs almost no

risk of being caught. All of these characteristics have contributed to a wide-

spread incidence of DDoS attacks ([MVS01] reports more than 12,000 attacks

per week).

The first large-scale appearance of distributed denial-of-service (DDoS) at-

tacks occurred in mid-1999. Today, four years later, researchers are still struggling

to devise an effective solution to the DDoS problem. Although many commercial

and research defenses have appeared, none of them provide complete protection

from the threat. Rather, they detect a small range of attacks that either use

malformed packets or create severe disturbances in the network; and they handle

those attacks by non-selectively dropping a portion of the traffic destined for the

victim. Clearly this strategy relieves the victim from the high-volume attack, but

also inflicts damage to legitimate traffic that is erroneously dropped.

There are two DDoS attack features that hinder the design of more effective

defenses:

1. DDoS traffic is highly similar to legitimate traffic. The attack usu-

ally consists of legitimate packets, generated in high quantity. They blend

completely with the small amount of legitimate client traffic, so no dif-

ferentiation can be made on a packet-by-packet basis. To perform traffic

separation, the defense system must group all packets targeting the victim

into higher-semantic structures (such as “all traffic exchanged between two

IP addresses,” “all HTTP traffic,” “all traffic generated from a given source

IP address,” etc.), then keep many statistics on the dynamics of those struc-

tures to detect high-volume or anomalous communications. Packets that

belong to suspect structures will then be policed, while packets belonging

to structures that exhibit legitimate behavior will be forwarded.
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2. DDoS traffic is distributed. Attack streams are generated from numer-

ous attack machines spread all over the Internet and converge only in the

proximity of the victim. The defense system must control a large portion of

the total attack to alleviate the denial-of-service effect on the victim. This

indicates that a system must either be a single-point system located near

the victim or a distributed system whose defense nodes cover a significant

portion of the Internet.

These two features create contradictory requirements for DDoS defense. In

order to perform accurate traffic separation, the defense system requires a lot of

resources for record-keeping. Therefore, it can only handle small to moderate

traffic volumes. On the other hand, the need to control a large portion of the

attack traffic requires placement at points that relay a high traffic volume. Those

two requirements can hardly be satisfied at a single deployment point. A majority

of DDoS defense systems sacrifice the first goal — traffic separation — to achieve

the second goal — control of a large portion of the attack traffic. Those systems

are located at or near the victim site, which enables them to detect and control

the majority of DDoS attacks, but also places the defense system on the path of

high-volume traffic, which impairs its selectiveness.

This thesis takes a different approach. It proposes a source-end defense sys-

tem, called D-WARD, located at networks that are hosting some of the attack

machines. D-WARD monitors and polices the outgoing traffic from those net-

works, thus controlling attacks. Placing the defense at the source-end exposes

the defense system to low-to-moderate traffic volumes, thus enabling sophisti-

cated profiling and traffic separation. The system thus provides a highly selective

response to DDoS attacks, inflicting almost no damage to legitimate traffic.

Source-end defense is not a complete answer to DDoS attacks. Clearly, it
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can control only the traffic from the networks that deploy the proposed defense

system. If the critical mass1 of the attack machines is located in unprotected

networks, the attacker will still successfully deny service to legitimate clients of

the victim. On the other hand, source-end defense provides two very important

features:

• It places the response close to the sources, thus relieving shared Internet

resources from the attack as soon as possible.

• It provides a selective response, minimizing collateral damage to legitimate

traffic.

Both of these features make source-end defense highly attractive for integra-

tion with other DDoS defense systems that are placed closer to the victim. As

those systems police all incoming traffic to the victim, they can improve their

response selectiveness by detecting and forwarding packets already policed by a

source-end defense. This approach creates a dedicated channel to the victim for

those legitimate clients that deploy a source-end defense. They feel no denial-of-

service effect and communicate unhindered with the victim.

1.1 Key Contributions

This thesis makes several key contributions to the DDoS defense field:

1. It demonstrates the feasibility of autonomous source-end DDoS detection.

D-WARD detects a broad range of attacks using simple traffic models while

keeping a reasonable amount of traffic statistics.

1The smallest number of attack machines that can overwhelm the targeted resource

4



2. It proposes a new approach to traffic profiling that successfully separates

legitimate from attack traffic. This separation enables D-WARD to apply

a selective attack response, thus inflicting almost no collateral damage to

legitimate traffic.

3. It proposes a dynamic rate-limit assignment that quickly adjusts the sys-

tem’s response to observed traffic changes. This enables the system to

promptly constrain the attack traffic, and to remove rate limits shortly

after the attack has subsided.

4. It provides detailed analysis and classification of current DDoS attack and

defense mechanisms, thus improving an understanding of the problem and

current solutions.

1.2 Roadmap of the Dissertation

This thesis is organized in the following manner. Chapter 2 provides a detailed

analysis of the DDoS threat. Chapter 3 provides an overview of DDoS defense

challenges and current solutions. Chapter 4 organizes the information presented

in Chapters 2 and 3 and structures it into DDoS attack and DDoS defense tax-

onomies. This facilitates a global view of the problem and solution space. Chap-

ter 5 discusses benefits and challenges of source-end defense. Chapter 6 presents

the philosophy and design of the D-WARD system. It discusses our motivation

for the current design and also presents in great detail key components of the

system. Chapter 7 provides a highly detailed overview of D-WARD implemen-

tation in a Linux router. Chapter 8 discusses the problem of evaluating DDoS

defense systems and presents the experiment setup that will be used for D-WARD

evaluation. Chapter 9 presents extensive performance results that demonstrate
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D-WARD effectiveness in numerous attack scenarios. Chapter 10 describes co-

operation efforts with three other DDoS defense projects: COSSACK, DefCOM

and DDoS-DATA. Chapter 11 provides an overview of the related work. Chap-

ter 12 discusses new directions for DDoS research that have been opened with

D-WARD. We conclude the thesis in Chapter 13.
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CHAPTER 2

Distributed Denial-of-Service Attacks

Denial-of-service (DoS) and distributed-denial-of-service (DDoS) attacks pose a

grave danger to Internet operation. They are, in essence, resource overloading

attacks. The goal of the attacker is to tie up a chosen key resource at the vic-

tim, usually by sending a high volume of seemingly legitimate traffic requesting

some service from the victim. The overconsumption of the resource leads to

degradation or denial of the victim’s service to its legitimate clients.

In the absence of effective defense mechanisms, the denial-of-service effect

lasts for the entire duration of the attack (i.e., as long as key resources are being

tied with malicious traffic), and vanishes quickly once the attack is aborted. Since

machine resources are usually shared among many applications, the DoS effect

inflicts significant damage — not only on client transactions with the victim, but

on the victim’s total operation. The victim experiences a significant slowdown

in all applications sharing the targeted resource, and frequently also connectivity

disruption.

Both DoS and DDoS attacks are seemingly simple in design and operate with-

out requiring any special skill or resource for their perpetration. The attack tools

can be obtained easily online and the attack goal (resource exhaustion) is attained

whenever a sufficiently large amount of malicious traffic is generated. The tar-

geted resource dictates the type and contents of attack packets, e.g. exhaustion

of CPU resources requires computation-intensive packets such as CGI or authen-
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tication requests, while network resources can be exhausted by any high-volume

traffic.

The main difference between DoS and DDoS attacks is in scale — DoS attacks

use one attack machine (to generate malicious traffic) while DDoS attacks use

large numbers of attack machines. The scale difference also invokes differences in

operation modes. The large number of attack machines allows DDoS perpetra-

tors a certain recklessness — they frequently trade sophistication for brute force,

using simple attack strategies and packet contents to overload victim resources.

However, the simplicity in both attack types arises from convenience, not neces-

sity. The lack of effective defense mechanisms, even for simple attacks, offers

no motivation for perpetrators to design more sophisticated ones. Once defenses

successfully counter one attack class (e.g., like ingress filtering [FS00] has coun-

tered random IP source spoofing), attackers quickly deploy slight modifications

in their attacks to bypass defensive actions.

There are many attack variations and many dimensions in which attacks can

still evolve while preserving the ability to inflict damage on the victim. This

feature makes it very challenging to design successful defenses. Due to attack

variety, defense systems must maintain a volume of statistical data in order to

detect attacks and sieve legitimate from attack traffic. This incurs high operation

costs. On the other hand, attackers can easily bypass or trick defenses with slight

modifications to their attacks. Any such modifications require added complexity

in defense mechanisms (in order to handle the new attack class), thus skyrocketing

the cost.

This chapter explains details of the denial-of-service phenomena.
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Figure 2.1: Denial-of-service attack scenario

2.1 Denial-of-Service Attacks

A denial-of-service (DoS) attack occurs when the victim receives a malicious

stream of packets that exhausts some key resource; this results in denial-of-service

to the victim’s legitimate clients. Figure 2.1 depicts a typical denial-of-service

attack scenario in which an attacking machine A sends a stream of malicious

packets to victim V, denying its service to legitimate clients C1 and C2. Attackers

rarely use their own machines to perform attacks, so machine A is, in fact, an

agent machine, an unwitting participant subverted by the attacker.

The attack may exhaust a key resource by misusing some vulnerability in

the software running at the victim (vulnerability attacks) or by simply sending

a higher volume of traffic than the victim is provisioned to handle (flooding at-

tacks). Vulnerability attacks usually contain packets of a special type or content

to perform the exploit. As vulnerabilities can frequently be exploited by a few

packets, vulnerability attacks are of a low-volume. Both of these features (special

type packets and low volume) simplify handling of vulnerability attacks — the
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Figure 2.2: Distributed denial-of-service attack scenario

victim can either patch its vulnerability or detect the special-type packets and

handle them separately. Flooding attacks overwhelm the victim’s resource by

sheer volume. This strategy is more difficult to counter, as malicious packets can

be of any type or content and the high volume hinders detailed traffic analysis.

As DoS attacks involve only one attacking machine, a common approach to de-

fending against flooding attacks is to equip the victim with abundant resources.

The attacker then needs to find and subvert a better-provisioned machine to per-

form a successful attack. The difficulty of the attacker’s task to find the adequate

agent machine increases with the amount resources allocated to the victim.

2.2 Distributed Denial-of-Service Attacks

Distributed denial-of-service (DDoS) attacks are simply denial-of-service attacks

performed from multiple subverted machines (agents). In the strawman and

most frequently used scenario, all machines are engaged simultaneously and start

generating as many packets as they can toward the victim. A large number of

10



participating agents enable the attacker to overload resources of very highly pro-

visioned victims, with modest capabilities of agent machines. Figure 2.2 depicts

a simple distributed denial-of-service attack scenario in which attacking machines

A and B send streams of malicious packets to victim V, denying its service to

legitimate clients C1 and C2.

There are several features of DDoS attacks that severely challenge the design

of successful defenses:

• Use of IP source spoofing. Attackers frequently use source address

spoofing during the attack — they fake information in the IP source ad-

dress field in attack packet headers. One benefit attackers receive from

IP spoofing is that it is extremely difficult to trace the agent machines.

This, in turn, brings several dire consequences. Since agent machines run

a very low risk of being traced, information stored on them (i.e., access

logs) cannot help to locate the attacker himself. This greatly encourages

DDoS incidents. Furthermore, hiding the address of agent machines en-

ables the attacker to reuse them for future attacks. Last, as attack packets

carry a wide variety of addresses, they appear as if they come from many

disparate sources; this defeats fair-sharing techniques that are a straight-

forward solution to resource overloading problems. The other advantage

that IP spoofing offers to the attackers is the ability to perform reflec-

tor attacks [Pax01]. The attacker requests (in the victim’s name) a public

service that generates large replies to specific small-size requests (amplifi-

cation effect). The attacker generates as many requests for service as his

resources permit, faking the victim’s source address, and sends them to

public servers. These servers direct a manyfold volume of replies to the

victim (thus reflecting and multiplying the attack force) and overload its
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resources. A common case of reflector attack is described in [CERe]. The

attacker sends a large number of UDP-based DNS requests to a nameserver

using a spoofed source IP address of a victim. Any nameserver response is

sent back to the spoofed IP address as the destination. Because nameserver

responses can be significantly larger than DNS requests, there is potential

for bandwidth amplification. Even if the traceback problem1 were solved,

it would not help to address reflector attacks. The public servers are unwit-

ting participants whose legitimate service is misused in the attack. They

possess no information about the attacker. Also, their service cannot be

disabled (i.e., to stop the attack) as this would inflict damage on numerous

other clients. Depending on these servers’ resources and the request volume,

they could prevent reflector attacks by limiting the number of replies they

are willing to generate to a particular IP address. This approach would

require servers to cache requesting addresses, thus potentially consuming

significant memory resources.

• Large number of agent machines. Even if traceback could be suc-

cessfully performed in the face of IP spoofing, it is difficult to say what

actions could be taken against hundreds or thousands of agent machines.

Such a large number prevents any but crude automated responses aimed at

stopping attack flows close to the sources.

• Similarity of attack to legitimate traffic. Any type of traffic can be

used to perform a successful denial-of-service attack. Some traffic types

require a higher attack volume for success than others, and attack packets

of different types and contents target different resources. However, if the

1The goal of traceback approaches is to locate those machines that generate packet streams
overwhelming the victim. In the case of reflector attacks, traceback can only locate intermediate
parties that unwittingly participated in the attack.
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goal is simply to cripple the victim’s operation, it can be met by sending

sufficiently large volumes of any traffic and clogging the victim’s network.

Attackers tend to generate legitimate-like packets to perform the attack, ob-

scuring the malicious flow within legitimate traffic. Since malicious packets

do not stand out from legitimate ones, it is impossible to sieve legitimate

from attack traffic based purely on examination of individual packets. A

defense system must keep a volume of statistical data in order to extract

transaction semantics from packet flows and thus differentiate some legiti-

mate traffic (e.g. belonging to lengthy well-behaved transactions) from the

attack traffic.

2.3 Origin of Denial-of-Service Phenomenon

Denial-of-service is not simply another weak spot in the Internet, a slip that

can be mended with slight protocol changes or by deployment of sophisticated

defenses at potential target sites. The origin of denial-of-service lies in the very

core of the Internet architecture. Design decisions reached several decades ago,

that brought us connectivity and information wealth beyond our wildest dreams,

carry within their key concepts the root of the DDoS threat.

The Internet was designed with functionality, not security, in mind, and it has

been very successful in reaching its goal. It offers participants fast, simple and

cheap communication mechanisms at the network level that provide “best effort”

service to a variety of protocols. The only claim made is that the Internet will

make a best attempt to move packets from a sender to a destination. Packet loss,

reorder or corruption, sharing of Internet resources, different service levels for

different traffic types and similar performance issues are handled by higher-level
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transport protocols deployed at the end hosts — the sender and the receiver.

These two principles, best-effort service and the end-to-end paradigm are the

cornerstones upon which the Internet was built. Simple basic service provided by

the IP protocol and the “best effort” principle enabled the building of numerous

transport protocols on top of the IP to provide various performance guarantees:

TCP for reliable delivery, RTP, RTCP and RTSP for streaming media, ICMP

for control, etc. The end-to-end paradigm enabled end users to manage their

communication any way they desired, adding complexities such as encryption and

authentication, while the intermediate network remained simple and efficient.

Problems arise when one of the parties in the end-to-end model becomes mali-

cious and acts to damage the other party. In that scenario, end-to-end protocols

are violated and provide no more guarantees. At the same time, the end-to-

end paradigm prevents the intermediate network from stepping in and policing

the violator’s traffic. Instead, it continues passively forwarding packets to their

destination, where they overwhelm the victim’s resources.

This problem first became evident in October 1986 when the Internet suf-

fered a series of congestion collapses [Nag84]. Although the problem was quickly

addressed by the design and deployment of several TCP congestion control pro-

tocols [Flo00], end-to-end flow management was unable to ensure a fair allocation

of resources in the presence of aggressive flows (i.e., those that would not deploy

congestion control). This problem was recognized and finally handled by enlist-

ing the help of intermediate routers to monitor and police bandwidth allocation

among flows to ensure fairness. There are two major mechanisms deployed in

today’s routers for congestion avoidance purposes — active queue management

and fair scheduling algorithms [BCC98]. A similar approach that engages in-

termediate routers in flow management may be needed to completely solve the
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DDoS problem. We explore this idea further in Section 3.4.

The following list summarizes several features of Internet design that open

security issues and create opportunities for denial-of-service attacks:

1. Internet security is highly interdependent. DDoS attacks are com-

monly launched from systems that are subverted through security-related

compromises. Regardless of how well secured the victim system may be, its

susceptibility to DDoS attacks depends on the state of security in the rest

of the global Internet[CER01].

2. Internet control is distributed. Internet management is distributed,

and each network is run according to local policies defined by its owners.

The implications of this are many. There is no way to enforce global de-

ployment of a particular security mechanism or security policy, and due to

privacy concerns, it is often impossible to investigate cross-network traffic

behavior.

3. Internet resources are limited. Each Internet entity (host, network,

service) has limited resources that can be consumed by too many users.

This means that every DDoS attempt will be successful (in absence of

defenses) if it acquires a sufficiently large pool of agent machines.

4. The power of many is greater than the power of few. Coordinated

and simultaneous malicious actions by some participants will always be

detrimental to others if the resources of the attackers are greater than the

resources of the victims.

5. Intelligence and resources are not collocated. An end-to-end commu-

nication paradigm led to storing most of the intelligence needed for service
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guarantees with end hosts, limiting the amount of processing in the interme-

diate network so that packets could be forwarded quickly and at minimal

cost. At the same time, a desire for large throughput led to the design

of high bandwidth pathways in the intermediate network, while the end

networks invested in only as much bandwidth as they thought they might

need. Thus, malicious clients can misuse the abundant resources of the

unwitting intermediate network for delivery of numerous messages to a less

provisioned victim.

6. Accountability is not enforced. The source address field in an IP packet

is assumed to carry the IP address of the machine that originates the packet.

This assumption is not generally validated or enforced at any point on

route from the source to the destination. This creates the opportunity for

source address spoofing — the forging of source address fields in packets.

Source address spoofing gives attackers a powerful mechanism to escape ac-

countability for their actions, and sometimes even the means to perpetrate

attacks (reflector attacks, such as the Smurf [CERj] attack).

2.4 Attacker Goals

The goal of a DDoS attack is to inflict damage on the victim. Frequently the

ulterior motives are personal reasons (a significant number of DDoS attacks are

perpetrated against home computers, presumably for purposes of revenge), or

prestige (successful attacks on popular Web servers gain the respect of the hacker

community). However, it is not unlikely that some DDoS attacks are performed

for material gain (damaging competitor’s resources, such as the recent case of

Linux fans attacking SCO [Sha03] because of its lawsuit against IBM) or for
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political reasons (a country at war could perpetrate attacks against its enemy’s

critical resources, potentially enlisting a significant portion of the entire country’s

computing power for this action). In some cases, the true victim of the attack

might not be the actual target of the attack packets, but others who rely on the

target’s correct operation. For example, in September 2002 there was an onset of

attacks that overloaded the Internet infrastructure rather than targeting specific

victims [Nar02].

It also frequently happens that a DDoS attack is perpetrated accidentally, as

a byproduct of another malicious activity, such as worm spread [Moo, Sym]. Inef-

ficient worm-spreading strategies create massive traffic that congests the Internet

and creates a denial-of-service effect to numerous clients.

While ordinary home users are less likely to become victims of DDoS attacks

than large corporate networks, no one is free from the DDoS threat. The next

attack may target AOL servers, denying service to many home users, or the next

worm may congest the Internet so severely that no one can receive service. DDoS

is an Internet-wide problem and all parties should cooperate to find a suitable

solution.

2.5 Modus Operandi

A distributed denial-of-service is carried out in several phases. The attacker first

recruits multiple agent (slave) machines. This process is usually performed au-

tomatically: the attacker downloads a scanning tool and deploys it from other

compromised machines under its command (masters). The tool scans remote

machines, probing for security holes that will enable subversion. Vulnerable ma-

chines are then exploited — broken into using the discovered vulnerability. They
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are subsequently infected with the attack code. The exploit/infect phase is also

automated, and the infected machines can be used for further recruitment of new

agents.

Attackers attempt to cover the fact that agent machines have been compro-

mised. They erase all logs showing malicious activity to destroy evidence that

could incriminate them. They also hide attack scripts under system directories

and give them obscure, non-suspicious names so they will not attract a user’s

attention and be erased. Sometimes they patch the vulnerability used for the

exploit, to prevent other hackers from taking over the machine. Current ex-

ploit/infection scripts contain automated tools for covering tracks, so even inex-

perienced attackers do not leave much evidence of the subversion.

During a DDoS attack, agent machines are engaged to send the attack pack-

ets to the victim. The attacker orchestrates the onset of the attack, and scenario

details such as the desired type and duration and the target address from the

master to the agent machines. Agent machines usually fire out the packets at

a maximum possible rate to increase the attack’s chances of success. However,

there have been attacks where agents were generating packets at a small rate (to

prevent agent discovery) or where agent machines were periodically pausing the

attack to avoid detection (pulsing attacks). Attackers usually hide the identity

of subverted machines during the attack through spoofing of the source address

field in attack packets. Note, however, that spoofing is not always required for a

successful DDoS attack. With the exception of reflector attacks that use spoofing

as an attack tool, all other attack types use spoofing only to hinder detection and

discovery of agent machines.

Figure 2.3 illustrates the recruitment, exploitation, infection and engagement

phases, depicting also the master/slave architecture of compromised machines.
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Figure 2.3: Distributed denial-of-service attack: modus operandi
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2.6 Commonly Observed Attacks

While there are many ways to create the denial-of-service effect, there are a

handful of attacks that have been commonly observed in the majority of DDoS

incidents.

UDP flooding attack. During this attack the victim is flooded by numerous

UDP packets that overwhelm its network bandwidth. To fully exploit bandwidth

resources, packets usually have a large size. This attack is very simple to perpe-

trate, as the attacker need not discover (and take advantage of) any vulnerability

at the victim. Simply by deploying a large number of agents, he can ensure the

attack’s success. On the other hand, many victim sites do not regularly receive

incoming UDP traffic and can discard attack packets by deploying simple filtering

rules. If filters are deployed at a high bandwidth point (e.g., an upstream router),

this attack can be handled successfully.

TCP SYN flooding attack (open port). An attacker takes advantage of

a vulnerability in the TCP protocol design to perpetrate a TCP SYN flooding

attack. A TCP session starts with negotiation of session parameters between a

requesting party — a client and a server. The client sends a TCP SYN packet

to the server, requesting some service. In the SYN packet header, the client

provides his initial sequence number, a unique per-connection number that will

be used to keep count of data sent to the server (so the server can recognize

and handle missing, reordered or repeated data). Upon SYN packet receipt, the

server allocates a connection buffer record, storing information about the client.

He then replies with a SYN-ACK, informing the client that its service request will

be granted, acknowledging the client’s sequence number and sending information

about the server’s initial sequence number. The client, upon receipt of the SYN-

ACK packet, allocates a connection buffer record. The client then replies with an
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Figure 2.4: Opening of TCP connection: three-way handshake

ACK to the server which completes the opening of the connection. This message

exchange is called a three-way handshake and is depicted in Figure 2.4.

The potential for abuse lies in the early allocation of the server’s resources.

When the server allocates his connection buffer space and replies with a SYN-

ACK, the connection is said to be half-open. The server’s allocated resources will

be tied up until the client sends an ACK packet, closes the connection (by sending

an RST packet) or until a timeout expires and the server closes the connection,

releasing the buffer space. During a TCP SYN flooding attack, the attacker

generates a multitude of half-open connections by using IP source spoofing. These

requests quickly exhaust the server’s connection buffer space, and the server can

accept no more incoming connection requests. Established TCP connections

usually experience no degradation in service. In rare cases, the server machine

crashes, exhausts its memory or is otherwise rendered inoperative. In order to

keep buffer space occupied for the desired time, the attacker needs to generate a

steady stream of SYN packets toward the victim (to reserve again those resources

that have been freed by timeouts).
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The TCP SYN flooding attack is described in detail in [CERk, SKK97]. This

is an especially vicious attack, as servers expect to see large numbers of legitimate

SYN packets and cannot easily tell apart the legitimate from the attack traffic. No

simple filtering rule can handle the TCP SYN flooding attack because legitimate

traffic will suffer collateral damage. Several solutions for TCP SYN flooding have

been proposed and their detailed description is given in [SKK97]. We also revisit

the discussion of potential solutions in Section 6.4.3.

In order to perform a successful TCP SYN flooding attack, the attacker needs

to locate an open TCP port at the victim. Then he generates a relatively small

volume packet stream — as few as ten packets per minute[SKK97] can effectively

tie up victim’s resources. Another version of the TCP SYN flooding attack —

random port TCP SYN flooding — is much less common. In it, the attacker gen-

erates a large volume of TCP SYN packets targeting random ports at the victim,

with the goal of overwhelming the victim’s network resources. Because TCP SYN

packets are small, this is a very inefficient way of exhausting bandwidth, and is

thus an unlikely attack.

ICMP flooding attack. During an ICMP flooding attack, the attacker gen-

erates a flood of ICMP ECHO packets directed at the victim. The victim replies

to each ICMP request, consuming its CPU resources (for reply generation) and

network resources. This attack is as simple to perpetrate as a UDP flooding

attack. As machines usually receive a very low volume of incoming ICMP pack-

ets, they can substantially defend against ICMP flooding attacks by deploying a

simple rate-limiting rule at a high-bandwidth point (e.g., an upstream router),

at the cost of dropping a few legitimate ICMP requests in the process.

Smurf attack. The Smurf attack[CERj] is a reflector attack. The attacker

directs a stream of ICMP ECHO requests to broadcast addresses in intermediary
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networks, spoofing the victim’s IP address in their source address fields. A multi-

tude of machines then reply to the victim, overwhelming its network. This attack

is easily countered either at the source network (generating forged ICMP ECHO

requests) by deploying ingress filtering [FS00] or at the intermediary network by

ignoring/filtering out ICMP ECHO requests targeting broadcast addresses.

Domain Name Service (DNS) reflector attack. This attack sends a

stream of DNS requests to multiple nameservers, spoofing the victim’s address in

their source address fields [CERe]. Because nameserver responses can be signifi-

cantly larger than DNS requests, there is potential for bandwidth amplification.

Attackers usually request the same valid DNS record from multiple nameservers.

If the target nameserver allows the query and is configured to be recursive or

to provide referrals, the response could contain significantly more data than the

original DNS request, resulting in a higher degree of bandwidth amplification. A

target nameserver configured without restrictions on DNS query sources may not

log malicious queries at all. An available defense at the source side (the network

generating spoofed DNS requests) is to deploy ingress filtering. As intermediary

servers receive legitimate-like requests, they cannot detect and prevent the attack

(unless they exchange statistics on requesting addresses, or limit the number of

responses to a given address).

2.7 Commonly Used Attack Tools

While there are numerous scripts that are used for scanning, compromise and

infection of vulnerable machines, there are only a handful of DDoS attack tools

that have been used to carry out the engagement phase. A detailed overview of

these tools, along with a timeline of their appearance, is given in [CER01]. DDoS

attack tools mostly differ in the communication mechanism deployed between
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masters and slaves, and in the customizations they provide for attack traffic

generation. The following paragraphs provide a brief overview of these popular

tools. The reader should bear in mind that features discussed in this overview

are those that have been observed in instances of attack code detected on some

infected machines. Many variations may (and will) exist that have not yet been

discovered and analyzed.

Trinoo[Dita] deploys a master/slave architecture, where an attacker sends

commands to the master via TCP and masters and slaves communicate via UDP.

Both master and slaves are password protected to prevent them from being taken

over by another attacker. Trinoo generates UDP packets of a given size to random

ports on one or multiple target addresses, during a specified attack interval.

Tribe Flood Network (TFN) [Ditc] also deploys a master/slave archi-

tecture. Agents can wage a UDP flood, TCP SYN flood, ICMP ECHO flood

and Smurf attacks at specified or random victim ports. The attacker communi-

cates with masters using any of a number of connection methods (e.g., remote

shell bound to a TCP port, UDP based client/server remote shells, ICMP-based

client/server shells such as LOKI[rou97], SSH terminal sessions, or normal ”tel-

net” TCP terminal sessions.) Remote control of TFN agents is accomplished via

ICMP ECHOREPLY packets. All commands sent from master to slaves through

ICMP packets are coded, not cleartext, which hinders detection.

Stacheldraht[Ditb] (German for “barbed wire”) combines features of Trinoo

and TFN tools and adds encrypted communication between the attacker and

the masters. Stacheldraht uses TCP for encrypted communication between the

attacker and the masters, and TCP or ICMP for communication between master

and agents. Another added feature is the ability to perform automatic updates

of agent code. Available attacks are UDP flood, TCP SYN flood, ICMP ECHO
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flood and Smurf attacks.

Shaft[SD00] is a DDoS tool similar to Trinoo, TFN and Stacheldraht. Added

features are the ability to switch master servers and master ports on the fly (thus

hindering detection by intrusion detection systems), a ”ticket” mechanism to link

transactions, and a particular interest in packet statistics. Shaft uses UDP for

communication between masters and agents. Remote control is achieved via a

simple telnet connection from the attacker to the master. Shaft uses ”tickets” for

keeping track of its individual agents. Each command sent to the agent contains

a password and a ticket. Both passwords and ticket numbers have to match for

the agent to execute the request. A simple letter-shifting (Caesar cipher) is used

to obscure passwords in sent commands. Agents can generate a UDP flood, TCP

SYN flood, ICMP flood, or all three attack types. The flooding occurs in bursts

of 100 packets per host (this number is hard-coded), with the source port and

source address randomized. Masters can issue a special command to agents to

obtain statistics on malicious traffic generated by each agent. It is suspected that

this is used to calculate the yield of a DDoS network.

Tribe Flood Network 2000 (TFN2K)[CERd] is an improved version of

the TFN attack tool. It includes several features designed specifically to make

TFN2K traffic difficult to recognize and filter, to remotely execute commands, to

obfuscate the true source of the traffic, to transport TFN2K traffic over multiple

transport protocols including UDP, TCP, and ICMP, and features to confuse

attempts to locate other nodes in a TFN2K network by sending “decoy” packets.

TFN2K obfuscates the true traffic source by spoofing source addresses. Attackers

can choose between random spoofing and spoofing within a specified range of

addresses (to defeat ingress filtering [FS00]). In addition to flooding, TFN2K

can also perform some vulnerability attacks by sending malformed or invalid
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packets, as described in [CERl, CERg].

mstream[DWD] generates a flood of TCP packets with the ACK bit set.

Masters can be controlled remotely by one or more attackers using a password-

protected interactive login. The communications between attacker and masters,

and a master and agents, are configurable at compile time and have varied signif-

icantly from incident to incident. Source addresses in attack packets are spoofed

at random. The TCP ACK attack exhausts network resources and will likely

cause a TCP RST to be sent to the spoofed source address (potentially also

creating outgoing bandwidth consumption at the victim).

Trinity is the first DDoS tool that is controlled via IRC or ICQ. Upon com-

promise and infection by Trinity, each machine joins a specified IRC channel and

waits for commands. Use of legitimate (IRC or ICQ) service for communication

between attacker and agents eliminates the need for a master machine and ele-

vates the level of the threat, as explained in Section 4.1. Trinity is capable of

launching several types of flooding attacks on a victim site, including UDP, IP

fragment, TCP SYN, TCP RST, TCP ACK, and other floods.

2.8 Summary

Distributed denial-of-service are simple attacks. They rarely use any sophisti-

cated mechanism or complicated and covert actions (like viruses, worms or in-

trusion tools do). Instead they attack with brute force, gathering resources of

numerous agents to overwhelm the victim. The difficulty in handling DDoS at-

tacks lies exactly in their simplicity. Because they misuse legitimate protocols

to perform denial-of-service, it is extremely difficult to separate attack traffic

from legitimate traffic; this hinders both detection and response. IP spoofing
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additionally complicates the problem.

This section has provided an overview of attack methods, most frequently seen

incidents and popular attack tools. However, DDoS attacks are adversarial and

constantly evolving. Once a particular kind of attack is successfully countered,

a slight variation is designed that bypasses the defense and still performs an

effective attack. DDoS attacks can afford to vary many of their features, such

as IP header values, deployed protocols, agent sending rate, etc. As long as

the victim receives a flood of packets that overwhelms its resources, the attack

succeeds. This high variability needs to be sufficiently understood to design

effective defenses. Chapter 4 provides a taxonomy of DDoS attacks (designed as

part of this thesis work) with exactly this goal in mind.
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CHAPTER 3

DDoS Defenses

The seriousness of the DDoS problem and the increased frequency, sophistication

and strength of attacks have led to the advent of numerous defense mechanisms.

Yet, although it has been several years since the first distributed attacks were

perpetrated,1 and many solutions have been developed since then, the problem

is hardly dented, let alone solved. Why is this so?

3.1 Defense Challenges

The challenges to designing DDoS defense systems fall roughly into two cate-

gories: technical challenges and social challenges. Technical challenges encom-

pass problems associated with the current Internet protocols and characteristics

of the DDoS threat. Social challenges, on the other hand, largely pertain to the

manner in which a successful technical solution will be introduced to Internet

users, and accepted and widely deployed by these users.

The main problem that permeates both technical and social issues is the

problem of large scale. DDoS is a distributed threat that requires a distributed

solution. Attacking machines may be spread all over the Internet. Clearly, attack

streams can only be controlled if there is a point of defense between the agents

1In [CER01] authors report that the first wide-spread incidences of DDoS attacks occurred
in July 1999.
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and the victims. One approach is to place one defense system close to the victim

so that it monitors and controls all of the incoming traffic. This approach has

many deficiencies (see Section 3.4), the main one being that the system must be

able to efficiently handle and process huge traffic volumes. The other approach

is to divide this workload by deploying distributed defenses. Defense systems

must then be deployed in a widespread manner to ensure effective action for any

combination of agent and victim machines. As widespread deployment cannot be

guaranteed, the technical challenge lies in designing effective defenses that can

provide reasonable performance even if they are sparsely deployed.

The social challenge lies in designing an economic model of a defense system

in a manner that facilitates large-scale deployment in the Internet.

3.1.1 Technical Challenges

The distributed nature of DDoS attacks and use of legitimate traffic models and

IP spoofing represent the main technical challenges to designing effective DDoS

defense systems. In addition to that, the advance of DDoS defense research is

hindered by the lack of attack information and absence of standardized evaluation

and testing approaches. The following list summarizes and discusses technical

challenges for DDoS defense:

1. Need for a distributed response at many points on the Internet.

Section 9.1 elaborates on the fact that there are many possible DDoS at-

tacks, very few of which can be handled only by the victim. Thus it is

necessary to have a distributed, possibly coordinated, response system. It

is also crucial that the response be deployed at many points on the Internet

to cover diverse choices of agents and victims. Since the Internet is admin-

istered in a distributed manner, wide deployment of any defense system (or
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even various systems that could cooperate) cannot be enforced or guaran-

teed. This discourages many researchers from even designing distributed

solutions.

2. Lack of detailed attack information. It is widely believed that report-

ing occurrences of attacks damages the business reputation of the victim

network. Therefore, very limited information exists about various attacks,

and incidents are reported only to government organizations under obliga-

tion to keep them secret. It is difficult to design imaginative solutions to

the problem if one cannot become familiar with it. Note that the attack

information should not be confused with attack tool information, which

is publicly available at many Internet sites. Attack information would in-

clude the attack type, time and duration of the attack, number of agents

involved (if this information is known), attempted response and its effec-

tiveness, damages suffered, etc.

3. Lack of defense system benchmarks. Many vendors make bold claims

that their solution completely handles the DDoS problem. There is cur-

rently no standardized approach for testing DDoS defense systems that

would enable their comparison and characterization. This has two detri-

mental influences on DDoS research: (1) since there is no attack bench-

mark, defense designers are allowed to present those tests that are most

advantageous to their system, and (2) researchers cannot compare actual

performances of their solutions to the existing defenses; instead they can

only comment on design issues.

4. Difficulty of large-scale testing. DDoS defenses need to be tested in a

realistic environment. This is currently impossible due to the lack of large-

scale testbeds, safe ways to perform live distributed experiments across
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the Internet, or detailed and realistic simulation tools that can support

several thousands of nodes. Claims about defense system performance are

thus made based on small-scale experiments and simulations, and are not

credible.

3.1.2 Social Challenges

Many DDoS defense systems require certain deployment patterns to be effective.

Those patterns fall into several categories:

1. Complete deployment

2. Contiguous deployment

3. Large-scale, widespread deployment

4. Complete deployment at specified points in the Internet

5. Modification of widely deployed Internet protocols, such as TCP, IP or

HTTP

6. All (legitimate) clients of the protected target deploy defenses

None of the above requirements are practical for general purposes (although

they may work well to protect an important server or application that commu-

nicates with a selected set of clients). The Internet is extremely large and is

managed in a distributed manner. No solution, no matter how effective, can be

deployed simultaneously in hundreds of millions of disparate places. On the other

hand, there have been quite a few cases of an Internet product (a protocol, an

application or a system) that has become so popular after release that it was
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very widely deployed within a short time. Examples include Kazaa, SSH (Se-

cure Shell) protocol , Internet Explorer, Windows OS, etc. The following factors

determine a product’s chances for wide deployment:

1. Good performance. A product must meet the needs of customers.

2. Good economic model. A customer must gain direct economic benefit,

or at least reduce the risk of economic loss, by deploying the product. Al-

ternately, the customer must be able to charge others for improved services

resulting from deployment.

3. Incremental performance. As the degree of deployment increases, cus-

tomers might experience increased benefits. However a product must offer

considerable benefit to its customers even under sparse partial deployment.

3.2 Defense Goals

The primary goal of DDoS defense is to provide good service to a victim’s legiti-

mate clients during the attack, thus cancelling the denial-of-service effect. Ideally,

clients should perceive little or no service degradation while the attack is ongoing.

The secondary goal is to alleviate the effect of the attack on the victim so that

its resources can be dedicated to legitimate clients or preserved. Last, attack

attribution (locating with high accuracy agent machines and perpetrators of the

attack) will serve as a strong deterrent to DDoS incidents, as attackers could face

the risk of discovery and punishment.
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3.3 Defense Approaches

DDoS defense approaches can roughly be divided into three categories: preven-

tive, survival and responsive approaches.2

Preventive approaches introduce changes into Internet protocols, applica-

tions and hosts, in order to patch existing vulnerabilities and reduce the incidence

of intrusions and exploits. Their goal is to prevent vulnerability attacks, and to

impede the attacker’s attempts to gain a large agent army. While preventive ap-

proaches are necessary for improving Internet security, they need to be deployed

widely to constrain the DDoS threat. As long as large numbers of machines are

insecure, attackers can still wage large-scale attacks. There is no reason to believe

that preventive approaches will successfully undermine the power of the DDoS

threat in the foreseeable future.

Survival approaches enlarge a victim’s resources, enabling it to serve both

legitimate and malicious requests during the attack, thus cancelling the denial-

of-service effect. The enlargement is achieved either statically — by purchasing

more resources, or dynamically — by acquiring resources at the sign of possible

attack from a set of distributed public servers and replicating the target service.

Enlargement approaches can significantly enhance a target’s resistance to DoS.

Replication approaches offer successful DDoS protection (and also load balancing)

to static Internet content. The disadvantage is that not all public services (those

that may be subject to the DDoS attacks) are replicable. For instance, dynamic

Web pages, databases, remote login services, etc., can be replicated only with

a great effort invested into synchronization and emulation. The effectiveness of

survival approaches is limited to cases in which enlarged resources are greater

2In Section 4.2, preventive and survival approaches are both classified into the preventive
category, while responsive approaches are classified into the reactive category.
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than the attack volume. As an attacker can easily gather hundreds of thousands

of agent machines, survival approaches are not likely to offer a complete solution

to DDoS problem.

Responsive approaches detect the occurrence of the attack and respond to

it (“fight back”) either by controlling attack streams, or by attempting to locate

agent machines and invoking human action. In order to be successful, response

approaches must meet following requirements:

1. Accurate detection. The system must be able to detect all attacks that

inflict damage at the victim.

2. Effective response. The system must stop the attack flows, regardless of

their volume or distribution. Alternately, in the case of response by agent

identification, the system must be able to accurately identify the majority

of attack machines regardless of their distribution. This identification must

be prompt so that the action can be taken while the attack is on-going.

Ideally, identification responses should identify not only the agent machines,

but also the master and the attacker machines.

3. Selective response. The system must differentiate between legitimate

and attack packets, and ensure good service to legitimate traffic during

the attack. Collateral damage due to the response must be lower than

the damage suffered by legitimate clients in the absence of response. This

requirement does not pertain to agent identification approaches.

We call these requirements responsive defense requirements. The remainder of

this chapter will discuss only responsive approaches that react to incidents by

controlling attack streams.
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3.4 Points of Defense

A DDoS defense system can either be deployed as an autonomous (single-point)

system or as a distributed system. Autonomous systems consist of a single defense

node that observes the attack and applies the response. Distributed systems

consist of multiple defense nodes (frequently with same functionality) that are

deployed at various locations and organized into a network. Nodes communicate

through the network and coordinate their actions to achieve a better overall

defense.

3.4.1 Autonomous Defense

DDoS attack streams originate from distributed attack machines, are forwarded

by core routers and converge at the victim network or some nearby core router.

We observe this process as an interaction of three types of networks: source

networks that unwittingly host attack machines, several intermediate networks
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that forward attack traffic to the victim, and the victim network that hosts the

target. Figure 3.1 depicts this interaction. Each of the involved networks (source,

intermediate, or victim) can host DDoS defense systems. We now observe how

responsive defense requirements are met by an autonomous system deployed at

only one of these points.

3.4.1.1 Victim-End Defense

Historically, the majority of DDoS defense systems have been designed for victim-

end deployment. This is understandable since the victim suffers the largest dam-

age from a DDoS attack and is therefore motivated to invest in a defense system.

A victim-end DDoS defense system facilitates easy detection because it can closely

observe the victim, model its behavior and notice any anomalies. However, the

range of response is limited. The defense system is on the path of the full-force

attack, and may be overwhelmed by a large traffic volume. The point of failure is

then simply moved from the target to the DDoS defense system. Alternately, the

attacker may send enough traffic to overwhelm the victim’s network connection

in front of the defense system. The point of DoS is then beyond the defense

system’s scope. The other consequence of a large traffic volume is the limited

amount of processing and storage that defense system can commit to. The differ-

entiation of legitimate streams from attack streams is complex at this point, since

they have been heavily aggregated by the time they reach the victim network.

To perform sophisticated traffic profiling a system needs a large amount of stor-

age and computational power to store and examine statistics on each stream. In

the presence of IP spoofing, this is infeasible as each packet will appear to come

from a different source. Poor traffic separation, in turn, leads to large collateral

damage during a response.
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3.4.1.2 Intermediate-Network Defense

The danger of a DDoS attack on network resources that is still present in victim-

end defense was addressed by moving the defense further upstream, into the

intermediate network. An intermediate-network defense system, usually installed

at a core router, detects the attack through anomalies observed at this router.

As core routers handle large-volume, highly aggregated traffic, they are likely

to overlook all but large-scale attacks. Victim resources are frequently severely

depleted by attacks that look like small glitches in the busy buffer of a core

router. Detected attacks can be quickly suppressed, thanks to abundant network

resources. However, response is likely to inflict collateral damage as core routers

can only accommodate simple rate-limiting requests and cannot dedicate memory

or processor cycles to traffic profiling.

3.4.1.3 Source-End Defense

As DDoS defense is pushed further from the victim to the source, detection

capability diminishes. A source-end defense system can no longer easily observe

the effect of incoming traffic on the victim. Further, as it may monitor only

a small portion of the attack, the defense system has difficulties in detecting

anomalies. On the other hand, response effectiveness increases with proximity to

the sources. A small attack volume enables an effective response as it is unlikely

to overwhelm the defense system. The small volume and degree of aggregation

also facilitates complex profiling that, in turn, minimizes collateral damage.
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3.4.2 Distributed Defense

Distributed systems for DDoS defense combine actions of victim-end, source-end

and sometimes of intermediate-network defense systems. Victim-end defenses

detect the attack and deliver the alert to other participants, who then cooperate

to suppress attack streams. The goal is to install responses as close to the sources

as possible, thus minimizing collateral damage.3

Distributed defenses are likely to be the proper solution for handling the DDoS

threat. However, they are infrastructural solutions—they span multiple networks

and administrative domains and represent major undertakings of many Internet

participants. Such systems are difficult to deploy and maintain. Further, the

required cooperation of defenses is hard to achieve due to distributed Internet

management and strictly autonomous operation of administrative domains. Se-

curing and authenticating the communication channels also incurs a high cost if

the number of participants is large.

3.4.3 Where Does D-WARD Fit?

D-WARD is a source-end DDoS defense system. It is designed to operate both

as an autonomous system and as a part of larger, distributed defense. As an

autonomous system, it detects a wide range of attacks and controls them within

seconds. The control is selective, thus enabling legitimate clients to receive good

service from the victim during the attack. As part of a distributed system,

D-WARD can receive an attack alert and rate-limiting directives, and apply a

dynamic, effective and selective response. Its main feature, dynamic selective

3If a response inflicts collateral damage, i.e., it is not sufficiently selective, the effect will
be imposed only on legitimate traffic coming from the source networks that also host attack
machines. Thus, at least “purely legitimate” networks can deliver their traffic to the victim
unimpeded.
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response, greatly enhances the performance of any distributed defense system.

While D-WARD is not a complete solution to DDoS attacks, it promotes Internet

security, and is a valuable building stone for the complete solution.

3.5 Commonly Deployed Defenses

The commonly deployed approach to DDoS defense is to secure the potential

victim so as to reduce the probability of denial-of-service effects for all but the

very high-volume or stealthy DDoS attacks. This is done in the following manner:

• Keep all protocols and applications at the potential target up to date. Apply

security updates and patches.

• Close all unused ports.

• Rate-limit, or filter, at the upstream router all incoming UDP and ICMP

traffic that is not in reply to the requests issued from the target network.

• Purchase a large amount of network resources.

• If the target network provides a service (e.g., Web service), create a server

pool and place the servers behind a load balancer.

• In the case of DDoS attack, devise the attack signature and ask the admin-

istrator of the upstream network to deploy the appropriate filters.

In addition to this, some networks use commercial solutions such as Mananet

[Cs3] sold by CS3, Inc., PowerSecure [Maz] sold by Mazu Networks, PeakFlow

[Arb] sold by Arbor Networks, Vantage System [Ast] sold by Asta Networks, etc.,

to protect themselves from DDoS attacks. Those solutions are deployed across

the target network. They can usually identify (using proprietary techniques)

39



the ingress points that deliver a large portion of the attack traffic. Filtering or

rate-limiting rules are then placed only at the identified ingress points.

3.6 Summary

The DDoS defense community faces technical and social challenges that hinder

the design of effective and widely deployed defenses. Technical challenges lie in

the design of defenses that detect a wide range of attacks, inflict small collateral

damage to legitimate traffic and are effective in sparse deployment. The social

challenge lies in the design of a good economic model of DDoS defense so that it

can be widely deployed.

Defense approaches aim to prevent denial-of-service attacks (preventive ap-

proaches), to enable the victim to survive the attack without denying service to

legitimate clients (survival approaches) or to detect and respond to the attack by

selectively dropping attack traffic (responsive approaches). Preventive and sur-

vival approaches improve the security and raise the bar for DDoS attack success,

but they cannot completely handle DDoS attacks. Responsive approaches show

promise for complementing the action of preventive and survival approaches and

completely addressing the DDoS problem.

To provide an effective defense, responsive approaches must accurately detect

a wide range of attacks, effectively respond to detected attacks by stopping a large

portion of the attack traffic, and apply selective response — thus inflicting low

collateral damage to legitimate traffic. Attack detection is easiest at the victim

network: a high-volume of incoming traffic or disturbed operation can be readily

used as a sign of DDoS attack. Effective response, however, depends on the

attack volume and victim network resources. No victim-end defense is possible
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against sufficiently high-volume attacks — they overwhelm network resources

even before they reach the defense system, leaving legitimate clients without

service. Additionally, their high level of traffic aggregation hinders differentiation

between legitimate and attack flows, leading to a non-selective response. Thus,

while protecting the victim, the response penalizes some legitimate traffic, still

leading to denial-of-service.

The selectiveness and effectiveness of response improve as the defense system

is moved from the victim closer to the sources of the attack, but the detection

accuracy deteriorates. Response is most effective at the source-end network, as

attack streams can be stopped before they enter the Internet. Also, sophisticated

profiling can be done to facilitate selectiveness of the response, since the attack

traffic at the source is not highly aggregated. However, attack machines can be

distributed among many source networks, thus each source network only observes

a small amount of attack traffic that may appear legitimate, hindering detection.

Because none of the individual defense points can meet all three requirements

of an effective defense, a distributed defense system presents itself as a likely

solution.
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CHAPTER 4

A Taxonomy of DDoS Attack and DDoS

Defense Mechanisms

As previous chapters have discussed, the distributed denial-of-service attacks pose

an immense threat to the Internet, and many defense mechanisms have been

proposed to combat the problem. Attackers constantly modify their tools to

bypass these security systems, and researchers in turn modify their approaches

to handle new attacks. The DDoS field is quickly becoming more and more

complex, and has reached the point where it is difficult to see the forest for the

trees. On one hand, this hinders an understanding of the distributed denial-of-

service phenomenon. Multitudes of known attacks create the impression that

the problem space is vast, and hard to explore and address. On the other hand,

existing defense systems deploy various strategies to counter the problem, and

it is difficult to assess their effectiveness and cost, and to compare them to each

other.

This chapter proposes a taxonomy of DDoS attacks and a taxonomy of DDoS

defense systems. Together, they structure the DDoS field and facilitate a global

view of the problem and solution space. By setting apart and emphasizing crucial

features of attack and defense mechanisms, while abstracting detailed differences,

these taxonomies can be used by researchers to answer many important questions:

• What are the different ways of perpetrating a DDoS attack? Why is DDoS
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a difficult problem to handle?

• What attacks have been handled effectively by existing defense systems?

What attacks still remain unaddressed and why?

• Given two defense mechanisms, A and B, how would they perform if attack

C occurred? What is their deployment cost? What are their vulnerabilities?

Can they complement each other and how? Are there some deployment

points that are better suited for A than B and vice versa?

• What are the unsolved problems and how can one contribute to the field?

The proposed taxonomies are complete in the following sense: the attack tax-

onomy covers known attacks and also those which have not yet appeared but

are potential threats that would affect current defense mechanisms; the defense

system taxonomy covers not only published approaches but also some commer-

cial approaches that are sufficiently documented to be analyzed. Along with

classification, we provide representative examples of existing mechanisms.

We do not claim that these taxonomies are as detailed as possible. Many

classes could be divided into several deeper levels. Also, new attack and defense

mechanisms are likely to appear, thus adding new classes to the ones we propose.

Our goal was to select several important features of attack and defense mecha-

nisms that might help researchers design innovative solutions, and to use these

features as classification criteria. It was also important not to confuse the reader

with a too elaborate and detailed classification. It is our hope that our work will

be further extended by other researchers.

We also do not claim that classes divide attacks and defenses in an exclusive

manner, i.e., that an instance of an attack or a particular defense system must be

classified into a single class based on a given criterion. It is possible for an attack
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to be comprised of several mechanisms, each of them belonging to a different

class.

The depth and width of the proposed taxonomies are not suitable for a tra-

ditional numbering of headings — numbers would quickly become too elaborate

to follow. We therefore introduce a customized marking (numbering) of subsec-

tion headings in Sections 4.1 and 4.2. Each classification criterion is marked by

abbreviating its name. Attack classes under this criterion are further marked by

criterion abbreviation and an arabic number, connected by a dash. To indicate

depth of a specific criterion or a class in the taxonomy, the complete mark of a

subsection is generated by traversing the taxonomies depicted in Figure 4.1 and

Figure 4.2, from root to the object in question, concatenating levels with a colon.

For example: if an attack classification criterion is degree of automation, it will

bear the mark DA. The second attack class under this criterion, semi-automatic

attacks, will bear the mark DA-2. One level below, semi-automatic attacks are

divided according to communication mechanism (heading mark DA-2:CM ) into

attacks with direct communication (heading mark DA-2:CM-1 ) and attacks with

indirect communication (heading mark DA-2:CM-2 ). To keep the heading names

short, some words are omitted. In the previous example, the subsection describ-

ing division by degree of automation will bear the heading DA: Degree of Au-

tomation, whereas the complete heading should be DA: Attack Classification by

Degree of Automation. The subsection describing attacks with indirect communi-

cation will bear the heading DA-2:CM-2: Indirect Communication, whereas the

complete heading should be DA-2:CM-2: Semi-Automatic Attacks with Indirect

Communication.
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4.1 Taxonomy of DDoS Attacks

In order to devise a taxonomy of distributed denial-of-service attacks, we observe

the means used to prepare and perform the attack (recruit, exploit and infect

phases), the characteristics of the attack itself (use phase) and the effect it has

on the victim. Figure 4.1 summarizes the taxonomy. In the remainder of this

section we discuss each of the proposed criteria and classes.

DA: Degree of Automation

Each of the recruit, exploit, infect and use phases can be performed manually or

can be automated. Based on the degree of automation, we differentiate between

manual, semi-automatic and automatic DDoS attacks.

DA-1: Manual

Only the early DDoS attacks belonged to the manual category. The attacker

scanned remote machines for vulnerabilities, broke into them, installed attack

code, and then commanded the onset of the attack. All of these actions were

soon automated.

DA-2: Semi-Automatic

In semi-automatic attacks, the DDoS network consists of handler (master) and

agent (slave, daemon) machines. The recruit, exploit and infect phases are auto-

mated. In the use phase, the attacker specifies the attack type, onset, duration

and the victim via the handler to agents, who send packets to the victim.
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Figure 4.1: Taxonomy of DDoS attack mechanisms
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DA-2:CM: Communication Mechanism

Based on the communication mechanism deployed between agent and handler

machines, we divide semi-automatic attacks into attacks with direct communica-

tion and attacks with indirect communication.

DA-2:CM-1: Direct Communication

During attacks with direct communication, the agent and handler machines need

to know each other’s identity in order to communicate. This is usually achieved

by hard-coding the IP address of the handler machines in the attack code that

is later installed at the agent machine. Each agent then reports its readiness

to the handlers, who store its IP address for later communication. The obvious

drawback of this approach is that discovery of one compromised machine can

expose the whole DDoS network. Also, since agents and handlers listen to network

connections, they are identifiable by network scanners.

DA-2:CM-2: Indirect Communication

Attacks with indirect communication deploy a level of indirection to increase the

survivability of a DDoS network. Recent attacks provide the example of using

IRC channels [CER01] for agent/handler communication. Further, the attack

code can be changed over time. For instance, the W32/leaves worm [Nat01]

used for automatic propagation can receive and interpret commands through

an IRC service which enables dynamic updates of the attack code. The use of

IRC services replaces the function of a handler, since the IRC channel offers

sufficient anonymity to the attacker. Since DDoS agents establish outbound

connections to a standard service port used by a legitimate network service,
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agent communications to the control point may not be easily differentiated from

legitimate network traffic. The agents do not incorporate a listening port that is

easily detected by network scanners. An attacker controls the agents using IRC

communications channels. Thus, discovery of a single agent may lead no further

than the identification of one or more IRC servers and channel names used by the

DDoS network. From there, identification of the DDoS network depends on the

ability to track agents currently connected to the IRC server. To avoid discovery,

attackers frequently deploy channel-hopping, using any given IRC channel for

short periods of time. The IRC service is maintained in a distributed manner,

and the IRC server hosting a particular IRC channel may be located on a home

computer or in a different country. This makes it hard to prevent inappropriate

use of IRC functionality. Although the IRC service is the only current example

of indirect communication, there is nothing to prevent attackers from subverting

other legitimate services for similar purposes.

DA-3: Automatic

Automatic DDoS attacks automate the use phase in addition to the recruit,

exploit and infect phases, and thus avoid the need for communication between

attacker and agent machines. The start time of the attack, attack type, duration

and victim are preprogrammed in the attack code. Deployment mechanisms of

this attack class offer minimal exposure to the attacker, since he is only involved

in issuing a single command – the start of the attack script. The hardcoded

attack specification suggests a single-purpose use of the DDoS network, or the

inflexible nature of the system. However, the propagation mechanisms usually

leave a backdoor to the compromised machine open, enabling easy future access

and modification of the attack code. Further, the code that controls all phases can
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be arbitrarily complex and adaptive, checking for updates at prearranged places.

The drawback of automated attacks is that all flexibility must be designed in

advance and built into the code.

DA-2 and DA-3:SS: Scanning Strategy

Both semi-automatic and automatic attacks recruit the agent machines by de-

ploying automatic scanning and propagation techniques, usually through use of

worms. The goal of the scanning strategy is to locate as many vulnerable ma-

chines as possible while creating a low traffic volume to escape detection. Based

on the scanning strategy, we differentiate between attacks that deploy random

scanning, hitlist scanning, signpost scanning, permutation scanning and local sub-

net scanning. We give a brief description of these scanning techniques here and

refer the reader to [Wea] for a detailed description and performance compari-

son. Attackers usually combine the scanning and exploit phases, thus gaining

a larger agent population, and our description of scanning techniques relates to

this model.

DA-2 and DA-3:SS-1: Random Scanning

During random scanning, each compromised host probes random addresses in the

IP address space, using a different seed. Code Red (CRv2) performed random

scanning [Moo]. Random scanning potentially creates a high traffic volume since

many machines are likely to probe the same addresses. The probability for colli-

sion increases as a larger portion of total address space gets infected. The high

traffic volume can lead to attack detection.
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DA-2 and DA-3:SS-2: Hitlist Scanning

A machine performing hitlist scanning probes all addresses from an externally

supplied list. When it detects a vulnerable machine, it sends a portion of the

initial hitlist to the recipient and keeps the rest. Hitlist scanning allows for great

propagation speed and no collisions during the scanning phase. The disadvantage

is that the hitlist needs to be assembled in advance. The information contained

in the list is not likely to be gathered through scanning (since it would duplicate

the effort) but rather collected over time through some less conspicuous tech-

niques. For instance, the hitlist could be assembled using information published

at netscan.org related to domains that still support directed IP broadcast and can

thus be used for a Smurf attack [CERj]. The hitlist also needs to be transmitted

to machines that are being infected. If the list is too large, this traffic might be

of high volume and lead to attack detection; if it is too small, it will generate a

small agent population.

DA-2 and DA-3:SS-3: Signpost Scanning

Signpost scanning (also called topological scanning in [Wea]) uses information on

the compromised host to select new targets. E-mail worms use signpost scanning,

exploiting the information from address books of compromised machines for their

spread. A Web-server-based worm could spread by infecting each vulnerable Web

browser of clients that click on the server’s Web page, and then further infect

servers of subsequent Web pages visited by these clients. Signpost scanning does

not generate a high traffic load and thus reduces chances of attack detection. The

drawback is that the spreading speed depends on agent machines and their user

behavior, i.e. it is not controllable by the attacker. The agent mobilization may

be slower and less complete than with other scanning techniques.
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DA-2 and DA-3:SS-4: Permutation Scanning

During permutation scanning, all compromised machines share a common pseudo-

random permutation of the IP address space; each IP address is mapped to an

index in this permutation. Permutation scanning is preceded by small hitlist

scanning during which an initial population of agents is formed. A machine in-

fected during this initial phase begins scanning through the permutation by using

the index computed from its IP address as a starting point. Whenever it sees

an already-infected machine, it chooses a new random start point. A machine

infected by permutation scanning always starts from a random point in the per-

mutation. Permutation scanning has the effect of providing a semi-coordinated,

comprehensive scan while maintaining the benefits of random probing. This

technique is described in [Wea] as not yet deployed. The analysis provided there

shows that the spreading speed could be on the order of several minutes, while a

small number of collisions should not lead to attack detection.

DA-2 and DA-3:SS-5: Local Subnet Scanning

Local subnet scanning can be added to any of the previously described techniques

to preferentially scan for targets that reside on the same subnet as the compro-

mised host. Using this technique, a single copy of the scanning program can

compromise many vulnerable machines behind a firewall. Code Red II [CERc]

and Nimda Worm [CERh] used local subnet scanning.

DA-2 and DA-3:PM: Propagation Mechanism

After the recruit and exploit phases, the agent machine is infected with the attack

code. Based on the attack code propagation mechanism during the infect phase,
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we differentiate between attacks that deploy central source propagation, back-

chaining propagation and autonomous propagation, building on the propagation

models described in [CER01].

DA-2 and DA-3:PM-1: Central Source Propagation

During central source propagation, the attack code resides on a central server or

set of servers. After compromise of the agent machine, the code is downloaded

from the central source through a file transfer mechanism. The 1i0n [CERf] worm

operated in this manner. Central source propagation imposes a large burden on

a central server, generating high traffic and possibly leading to attack discovery.

The central server is also a single point of failure; its removal prohibits further

agent mobilization.

DA-2 and DA-3:PM-2: Back-Chaining Propagation

During back-chaining propagation, the attack code is downloaded from the ma-

chine that was used to exploit the system. The infected machine then becomes

the source for the next propagation step. The Ramen worm [CERi] and Mor-

ris Worm [HM91] used back-chaining propagation. Back-chaining propagation is

more survivable than central-source propagation since it avoids a single point of

failure (central server).

DA-2 and DA-3:PM-3: Autonomous Propagation

Autonomous propagation avoids the file retrieval step by injecting attack instruc-

tions directly into the target host during the exploit phase. Code Red [CERa],

Warhol Worm [Wea] and numerous E-mail worms use autonomous propagation.
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Autonomous propagation reduces the frequency of network traffic needed for

agent mobilization, and thus further reduces chances of attack discovery.

Note that one could easily imagine an attack that would not fall into any of

the proposed manual, semi-automatic and automatic classes. For instance, just

the recruit and use phases of the attack could be automated, and the exploit

and infect phases could be performed manually. Generating classes to accommo-

date all combinations of automated and non-automated phases would introduce

unnecessary complexity since most of these attacks are not likely to occur. We

therefore limited our attention to known and probable combinations.

EV: Exploited Vulnerability to Deny Service

Distributed denial-of-service attacks exploit different strategies to deny the ser-

vice of the victim to its clients. Based on the vulnerability that is exploited to

deny service, we differentiate between semantic and brute-force attacks.

EV-1: Semantic

Semantic attacks exploit a specific feature or implementation bug of some pro-

tocol or application installed at the victim in order to consume excess amounts

of its resources. For example, in the TCP SYN attack, the exploited feature is

the allocation of substantial space in a connection queue immediately upon re-

ceipt of a TCP SYN request. The attacker initiates multiple connections that

are never completed, thus filling up the connection queue. In the CGI request

attack, the attacker consumes the CPU time of the victim by issuing multiple

CGI requests. In the authentication server attack, the attacker exploits the fact

that the signature verification process consumes significantly more resources than

bogus signature generation. He sends numerous bogus authentication requests
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to the server, tying up its resources. The NAPTHA [SAN00] attack is an espe-

cially powerful attack on the TCP protocol. It initiates and establishes numerous

TCP connections that consume the connection queue at the victim. NAPTHA

bypasses the TCP protocol stack on the agent machine, not keeping the state for

connections it originates. Instead it participates in the connection, inferring its

attributes from received packets. Thus a single agent machine can easily deplete

the resources of any victim.

EV-2: Brute-Force

Brute-force attacks (or, as they are frequently called, flooding attacks) are per-

formed by initiating a vast amount of seemingly legitimate transactions. Since

an upstream network can usually deliver higher traffic volume than the victim

network can handle, a high number of attack packets can exhaust the victim’s

resources.

There is a thin line between semantic and brute force attacks. Semantic at-

tacks also overwhelm a victim’s resources with excess traffic, and badly designed

protocol features at remote hosts are frequently used to perform “reflector” brute-

force attacks, such as the DNS request attack [CERe] or the Smurf attack [CERj].

The difference is that the victim can usually substantially mitigate the effect of

semantic attacks by modifying the misused protocols or deploying proxies. How-

ever, it is helpless against brute-force attacks due to their misuse of legitimate

services (filtering of the attack packets would also mean filtering legitimate re-

quests for service) or due to its own limited resources (a victim cannot handle

an attack that swamps its network bandwidth). Countering semantic attacks by

modifying the deployed protocol or application pushes the corresponding attack

mechanism into the brute-force category. For example, if the victim deploys TCP
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SYN cookies [CERk] to combat TCP SYN attacks, it will still be vulnerable to

TCP SYN attacks that generate more requests than its network can accommo-

date. Classification of the specific attack needs to take into account both the

attack mechanisms used, and the victim’s configuration and deployed protocols.

It should be noted that brute-force attacks need to generate a much higher vol-

ume of attack packets than semantic attacks to inflict damage on the victim. So

by modifying the deployed protocols, the victim pushes its vulnerability limit

higher. It is interesting to note that the variability of attack packet contents

is determined by the exploited vulnerability. Packets comprising semantic and

some brute force attacks must specify some valid header fields and possibly some

valid contents. For example TCP SYN attack packets cannot vary the protocol

or SYN flag field, and HTTP flood packets must belong to an established TCP

connection and therefore cannot spoof source addresses.

SAV: Source Address Validity

Source address spoofing plays a crucial role in denial-of-service, since malicious

packets cannot be traced to the source, and responsibility for actions cannot

be assigned. If source address spoofing were eliminated, many denial-of-service

attacks could be thwarted through resource management techniques – giving the

fair share of host or network resources to each source IP address. Based on the

source address validity, we distinguish between spoofed source address and valid

source address attacks.

SAV-1: Spoofed Source Address

This is the prevalent type of attack since it is always to the attacker’s advantage

to spoof the source address, avoid accountability, and possibly create more noise
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for detection.

SAV-1:AR: Address Routability

We further divide spoofed source address attacks based on the address routability

into routable source address and non-routable source address attacks.

SAV-1:AR-1: Routable Source Address

Attacks that spoof routable addresses take over the IP address of another ma-

chine. This is sometimes done, not to avoid accountability, but to perform a

reflection attack on the machine whose address was hijacked. During a reflec-

tion attack many requests for some service are made using the spoofed address

of the victim machine, and multiple replies are then sent back to the victim,

overwhelming it. One example of a reflection attack is a Smurf attack.

SAV-1:AR-2: Non-Routable Source Address

Attackers can spoof non-routable source addresses, some of which can belong to

a reserved set of addresses (such as 192.168.0.0/16) or be part of an assigned

but not used address space of some network. Attack packets carrying reserved

addresses can be easily detected and discarded, while those packets carrying non-

used addresses are significantly harder to detect.

SAV-1:ST: Spoofing Technique

Spoofing technique defines how the attacker chooses the spoofed source address

in its attack packets. Based on the spoofing technique, we divide spoofing attacks

into random, subnet and en route spoofed source address attacks.
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SAV-1:ST-1: Random Spoofed Source Address

Many attacks spoof random source addresses in the attack packets, since this can

simply be achieved by generating random 32-bit numbers and stamping packets

with them. Recent attempts to prevent spoofing using ingress filtering [FS00] and

route-based filtering [LMW02, PL01] force attackers to devise more sophisticated

techniques, such as subnet and en route spoofing that can avoid current defense

approaches.

SAV-1:ST-2: Subnet Spoofed Source Address

In subnet spoofing, the attacker spoofs a random address from the address space

assigned to the agent machine’s subnet. Since machines at a subnet share the

medium (Ethernet) to reach the exit router (first hop en route to the outside

world), spoofing can be detected by this router (e.g., if the attacker does not

use ARP spoofing, the router can detect conflicting associations of MAC and IP

addresses on the Ethernet). It is impossible to detect it anywhere between the

exit router and the victim.

SAV-1:ST-3: En Route Spoofed Source Address

An en route spoofed source address attack would spoof the address of a machine

or subnet that is en route from the agent machine to the victim. There are no

known instances of attacks that use en route spoofing, but this potential spoofing

technique could affect route-based filtering [LMW02, PL01] and is thus discussed

here.
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SAV-2: Valid Source Address

Attackers benefit from source address spoofing and are likely to deploy it when-

ever possible. Valid source address attacks frequently originate from agent ma-

chines running Windows, since all Windows versions prior to XP do not export

user-level functions for packet header modification. Those attacks that target

specific applications or protocol features must use valid source addresses if the

attack strategy requires several request/reply exchanges between an agent and

the victim machine. One example of such an attack is NAPTHA [SAN00]. While

spoofing is desirable for the attacker, effective attacks are generally possible with-

out spoofing.

ARD: Attack Rate Dynamics

During the attack, each participating agent machine sends a stream of packets

to the victim. Depending on the attack rate dynamics of an agent machine, we

differentiate between constant rate and variable rate attacks.

ARD-1: Constant Rate

The majority of known attacks deploy a constant rate mechanism. After the

onset is commanded, agent machines generate attack packets at a steady rate,

usually as many as their resources permit. The sudden packet flood disrupts

the victim’s services quickly. This approach provides the best cost-effectiveness

to the attacker since he can deploy a minimal number of agents to inflict the

damage. On the other hand, the large, continuous traffic stream can be detected

as anomalous and arouse suspicion in the network hosting an agent machine, thus

provoking attack discovery.
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ARD-2: Variable Rate

Variable rate attacks vary the attack rate of an agent machine to delay or avoid

detection and response.

ARD-2:RCM: Rate Change Mechanism

Based on the rate change mechanism, we differentiate between increasing rate

and fluctuating rate attacks.

ARD-2:RCM-1: Increasing Rate

Attacks that have a gradually increasing rate lead to a slow exhaustion of the

victim’s resources. A victim’s services could degrade slowly over a long time

period, thus substantially delaying detection of the attack.

ARD-2:RCM-2: Fluctuating Rate

Attacks that have a fluctuating rate adjust the attack rate based on the victim’s

behavior or preprogrammed timing, occasionally relieving the effect to avoid de-

tection. A pulsing attack provides one example of a fluctuating rate attack.

During a pulsing attack, agent hosts periodically abort the attack and resume it

at a later time. If this behavior is simultaneous for all agents, the victim expe-

riences periodic service disruptions. If, however, agents are divided into groups

that coordinate so that one group is always active, then the victim experiences

continuous denial-of-service while the network hosting agent machine may not

notice any anomalous traffic.
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PC: Possibility of Characterization

Looking at the content and header fields of attack packets, it is sometimes pos-

sible to characterize the attack. Based on the possibility of characterization, we

differentiate between characterizable and non-characterizable attacks.

PC-1: Characterizable

Characterizable attacks are those that target specific protocols or applications

at the victim and can be identified by a combination of IP header and protocol

header values, or maybe even packet contents. Examples include the TCP SYN

attack (only packets with SYN bit set in the TCP header can potentially be part

of the attack), ICMP ECHO attack, DNS request attack, etc.

PC-1:RAVS: Relation of Attack to Victim Services

Characterizable attacks are further divided, based on the relation of attack to

victim services, into filterable and non-filterable attacks.

PC-1:RAVS-1: Filterable

Filterable attacks are those that use malformed packets or packets for non-critical

services of the victim’s operation. These can thus be filtered by a firewall. Exam-

ples of such attacks are a UDP flood attack or an ICMP ECHO flood attack on

a Web server. Since a Web server only needs TCP traffic and some DNS traffic

(which can be characterized as permitting only those inbound UDP packets that

are DNS replies to previous outbound DNS requests), it can easily block all other

inbound UDP traffic and all ICMP traffic, and still operate correctly.
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PC-1:RAVS-2: Non-Filterable

Non-filterable attacks use well-formed packets that request legitimate services

from the victim. Thus, filtering all packets that match the attack characterization

would lead to an immediate denial of the specified service to both attackers and

legitimate clients. Examples are HTTP requests flooding a Web server or a DNS

request flood targeting a name server. In the case of non-filterable attacks, the

contents of an attack packet are indistinguishable from the contents of packets

originating from a legitimate client.

PC-2: Non-Characterizable

Non-characterizable attacks attempt to consume network bandwidth using a va-

riety of packets that engage different applications and protocols. Sometimes

packets will even be randomly generated using reserved protocol numbers.

Note that classification of attack as characterizable or not depends strongly

on the resources that can be dedicated to characterization and the level of char-

acterization. For instance, an attack using a mixture of TCP SYN, TCP ACK,

ICMP ECHO, ICMP ECHO REPLY and UDP packets would probably be char-

acterizable, but only after considerable effort and time, and only if one had access

to a sophisticated characterization tool. Also, an attack using a mixture of TCP

packets with various combinations of TCP header fields can be characterized as a

TCP attack, but finer characterization would probably fail. So, when performing

classification of attacks into characterizable or non-characterizable, a lot is left

to interpretation, and ease of characterization should be taken into account.
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PAS: Persistence of Agent Set

Attacks have been known to vary different features: type of traffic and attack

packets’ headers and contents can be varied during the attack, decoy packets

can be interleaved with attack packets, attack rate can be adjusted dynamically,

etc. All these techniques hinder attack detection. Recently there were occur-

rences of attacks that varied the set of agent machines active at any one time,

further avoiding detection and hindering traceback. We regard this technique as

important since it invalidates assumptions underlying many defense mechanisms

— that agents are active throughout the attack and can thus be traced back fol-

lowing the path of the attack traffic. We divide attacks, based on the persistence

of the agent set, into attacks with constant agent set and attacks with variable

agent set.

PAS-1: Constant Agent Set

During attacks with a constant agent set, all agent machines act in a similar

manner, taking into account resource constraints. They receive the same set of

commands and are engaged simultaneously during the attack. Examples are an

attack in which all agents start sending attack traffic simultaneously,1 or they

engage in a pulsing attack, but the “on” and “off” periods for pulses match over

all agent machines.

1The definition of a “simultaneous start” is somewhat relaxed in this context since the
attacker’s command travels to the agents with a variable delay. Further, because agent machines
are under different loads, they do not start sending at the exact same moment.
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PAS-2: Variable Agent Set

During attacks with a variable agent set, the attacker divides all available agents

into several groups and engages only one group of agents at any one time —

like the army general who deploys his battallions at different times and places.

A machine could belong to more than one group, and groups could be engaged

again after a period of inactivity. One example attack of the variable agent set

type is an attack in which several agent groups take turns pulsing, thus flooding

the victim with a constant flow of packets.

VT: Victim Type

Attacks need not be perpetrated against a single host machine. Depending on the

type of victim, we differentiate between application, protocol, operating system,

host, network and infrastructure attacks.

VT-1: Application

Application attacks exploit some feature of a specific application on the victim

host, thus disabling legitimate client use of that application and possibly tying up

resources of the host machine. If the shared resources of the host machine are not

completely consumed, other applications and services should still be accessible to

the users. For example, a bogus signature attack on an authentication server ties

up resources of the signature verification application, but the target machine will

still reply to ICMP ECHO requests, and other applications that do not require

authenticated access should still work.2

Detection of application attacks is challenging because other applications on

2This example assumes that CPU time is shared in a fair manner between all active
applications.
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the attacked host continue their operations undisturbed, and the attack volume is

usually small enough not to appear anomalous. The attack packets are virtually

indistinguishable from legitimate packets at the transport level (and frequently

at the application level), and the semantics of the targeted application must be

heavily used for detection. Since there are typically many applications on a host

machine, each application would have to be modelled in the defense system and

then its operation monitored to account for possible attacks. Once detection is

performed, the host machine has sufficient resources to defend against these small

volume attacks, provided that it can separate packets that are legitimate from

those that are part of the attack.

VT-2: Protocol

Protocol attacks misuse a vulnerability in a specific version of a protocol on the

target machine to consume some critical resource. An example of this attack is

a TCP SYN flooding attack [CERk]. As with application attacks, the rest of

the applications and protocols that do not use overloaded resources continue to

operate unhindered, delaying attack detection.

VT-3: Operating System

Operating system attacks misuse a vulnerability in a specific version of an op-

erating system installed at the target machine. One example of such an attack

would be a flood of incoming packets that causes fast process forking until the

process table is overloaded. Although such flooding would misuse an application

or a protocol to invoke process forking, the targeted vulnerability (e.g., small pro-

cess table) is part of the operating system. Operating system attacks completely

freeze or slow down the operation of the target machine.
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VT-4: Host

Host attacks disable access to the target machine completely by overloading or

disabling its communication mechanism. Examples of this attack are a TCP

SYN attack [CERk] and attacks that overload the network interface or network

link of the target machine. All attack packets carry the destination address of

the target host. If protocols running on the host are properly patched, the host

attacks likely to be perpetrated against it are reduced to attacks that consume

network resources. The high packet volume of such attacks facilitates detection.

Since its network resources are consumed, the host cannot defend against these

attacks alone, but can usually request help from some upstream machine (e.g.,

an upstream firewall).

VT-5: Network

Network attacks consume the incoming bandwidth of a target network with at-

tack packets whose destination address can be chosen from the target network’s

address space. These attacks can deploy various packets (since it is volume and

not content that matters) and are easily detected due to their high volume. The

victim network must request help from upstream networks for defense since it

cannot handle the attack volume itself.

VT-6: Infrastructure

Infrastructure attacks target some distributed service that is crucial for global

Internet operation or operation of a subnetwork. Examples include the recent

attacks on domain name servers [Nar02], large core routers, routing protocols,

certificate servers, etc. The key feature of these attacks is not the mechanism they
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deploy to disable the target (e.g., from the point of view of a single attacked core

router, the attack can still be regarded as a host attack), but the simultaneity of

the attack on multiple instances of a critical service in the Internet infrastructure.

Infrastructure attacks can only be countered through the coordinated action of

multiple Internet participants.

IV: Impact on the Victim

Depending on the impact of a DDoS attack on the victim, we differentiate between

disruptive and degrading attacks.

IV-1: Disruptive

The goal of disruptive attacks is to deny the victim’s service to its clients. All

currently known attacks belong to this category.

IV-1:PDR: Possibility of Dynamic Recovery

Depending on the possibility of dynamic recovery during or after the attack, we

differentiate between recoverable and non-recoverable attacks.

IV-1:PDR-1: Recoverable

In the case of recoverable attacks, the victim recovers as soon as the influx of

attack packets is stopped, or shortly afterwards. For example, if the attack is a

UDP flooding attack, tying up the victim’s network resources, the victim will be

able to use these resources as soon as the attack is stopped. In the case of a TCP

SYN flooding attack, the connection table space is freed shortly after the attack

has stopped, when the half-open connection records expire.
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IV-1:PDR-2: Non-Recoverable

A victim of a non-recoverable attack cannot automatically recover after the attack

is stopped, but requires some human intervention (e.g., rebooting the victim

machine or reconfiguring it). For example, an attack that causes the victim

machine to crash, freeze or reboot would be classified as a non-recoverable attack.

IV-2: Degrading

The goal of degrading attacks is to consume some (presumably constant) portion

of a victim’s resources. Since these attacks do not lead to total service disruption,

they could remain undetected for a significant time period. On the other hand,

damage inflicted on the victim’s business could be immense. For example, an

attack that effectively ties up 30% of the victim’s resources would lead to a

denial-of-service to some percentage of customers during high load periods, and

possibly slower average service. Some customers, dissatisfied with the quality,

would consequently change their service provider, and the attack victim would

lose income. Alternately, the false load could result in the victim spending money

to upgrade its servers and networks. The addition of new resources would easily

be countered by the attacker through more powerful attacks. Almost all existing

proposals to counter DDoS attacks would fail to address degrading attacks.

4.2 Taxonomy of DDoS Defenses

Some DDoS defense mechanisms address a specific kind of DDoS attack — such

as attacks on Web servers or authentication servers. Other approaches attempt

to be effective against a wider range of attacks. Most of the proposed approaches

require certain features to achieve peak performance, and will perform quite dif-
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ferently if deployed in an environment where these requirements are not met. As

is frequently pointed out, there is no “silver bullet” against DDoS attacks. There-

fore we need to understand not only each existing DDoS defense approach, but

also how those approaches might be combined together to effectively and com-

pletely solve the problem. The proposed taxonomy, shown in Figure 4.2 should

help us reach this goal. The remainder of this section will discuss each of the

proposed classes of defense mechanisms.

AL: Activity Level

Based on the activity level of DDoS defense mechanisms, we differentiate between

preventive and reactive mechanisms.

AL-1: Preventive

Preventive mechanisms attempt either to eliminate the possibility of DDoS at-

tacks altogether or to enable potential victims to endure the attack without deny-

ing services to legitimate clients.

AL-1:PG: Prevention Goal

According to the prevention goal, we further divide preventive mechanisms into

attack prevention and denial-of-service prevention mechanisms.

AL-1:PG-1: Attack Prevention

Attack prevention mechanisms modify systems and protocols on the Internet to

eliminate the possibility of a DDoS attack. The history of computer security

suggests that a prevention approach can never be 100% effective, since global
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Figure 4.2: Taxonomy of DDoS defense mechanisms
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deployment cannot be guaranteed. However, doing a good job here will certainly

decrease the frequency and strength of DDoS attacks. Deploying comprehensive

prevention mechanisms can make a host completely resilient to protocol attacks.

Also, these approaches are inherently compatible with and complementary to all

other defense approaches.

AL-1:PG-1:ST: Secured Target

Based on the secured target, we further divide attack prevention mechanisms into

system security and protocol security mechanisms.

AL-1:PG-1:ST-1: System Security

System security mechanisms increase the overall security of Internet hosts and

routers, guarding against illegitimate accesses to a machine, removing application

bugs and updating protocol installations to prevent intrusions and misuse of the

system. DDoS attacks owe their power to large numbers of subverted machines

that cooperatively generate attack streams. If these machines were secured, the

attackers would lose their army, and the DDoS threat would then disappear. On

the other hand, systems vulnerable to intrusions can themselves become victims

of denial-of-service attacks in which the attacker, having gained unlimited ac-

cess to the machine, deletes or alters its contents. Potential victims of DDoS

attacks can be easily overwhelmed if they deploy vulnerable protocols. Examples

of system security mechanisms include monitored access to the machine [Tri],

applications that download and install security patches, firewall systems [McAa],

virus scanners [McAb], intrusion detection systems [Axe00], access lists for criti-

cal resources [Cisb], capability-based systems [SH02] and client-legitimacy-based

systems [OB].
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AL-1:PG-1:ST-2: Protocol Security

Protocol security mechanisms address the problem of a bad protocol design. For

example, many protocols contain operations that are cheap for the client but

expensive for the server. Such protocols can be misused to exhaust the resources

of a server by initiating large numbers of simultaneous transactions. Classic mis-

use examples are the TCP SYN attack, the authentication server attack, and

the fragmented packet attack (in which the attacker bombards the victim with

malformed packet fragments, forcing it to waste its resources on reassemble at-

tempts). IP source address spoofing is another important example. Examples of

protocol security mechanisms include guidelines for a safe protocol design in which

resources are committed to the client only after sufficient authentication is done

[LNA00, Mea99] or the client has paid a sufficient price [ANL01], deployment of a

powerful proxy server that completes TCP connections [SKK97], protocol scrub-

bing that removes ambiguities from protocols that can be misused for attacks

[MWJ00], or the approaches that eliminate spoofing [PL01, LMW02, FS00], etc.

AL-1:PG-2: DoS Prevention

Denial-of-service prevention mechanisms enable the victim to endure attack at-

tempts without denying service to legitimate clients. This is done either by en-

forcing policies for resource consumption or by ensuring that abundant resources

exist so that legitimate clients will not be affected by the attack.

AL-1:PG-2:PM: Prevention Method

Based on the prevention method, we divide DoS prevention mechanisms into

resource accounting and resource multiplication mechanisms.
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AL-1:PG-2:PM-1: Resource Accounting

Resource accounting mechanisms police the access of each user to resources based

on the privileges of the user and his behavior. The user in this case might be

a process, a person, an IP address, or a set of IP addresses having something

in common. Resource accounting mechanisms guarantee fair service to legiti-

mate well-behaved users. In order to avoid user identity theft, they are usually

coupled with legitimacy-based access mechanisms that verify the user’s identity.

Approaches proposed in [JB99, ZL97, SP99, GR02, LRS00] illustrate resource

accounting mechanisms.

AL-1:PG-2:PM-2: Resource Multiplication

Resource multiplication mechanisms provide an abundance of resources to counter

DDoS threats. The straightforward example is a system that deploys a pool of

servers with a load balancer and installs high bandwidth links between itself

and upstream routers. This approach essentially raises the bar on how many

machines must participate in an attack to be effective. While not providing

perfect protection, for those who can afford the costs this approach has often

proved sufficient. For example, Microsoft has used it to weather large DDoS

attacks. Another approach is the use of Akamai services for distributed Web site

hosting. User requests for a Web page hosted in such a manner are redirected

to an Akamai name server, which then distributes the load among multiple,

geographically distributed Web servers hosting replicas of the requested page.
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AL-2: Reactive

Reactive mechanisms strive to alleviate the impact of an attack on the victim.

To attain this goal they need to detect the attack and respond to it. The goal of

attack detection is to detect every attempted DDoS attack as early as possible

and to have a low degree of false positives. Upon attack detection, steps can be

taken to characterize the packets belonging to the attack stream and provide this

characterization to the response mechanism.

AL-2:ADS: Attack Detection Strategy

We classify reactive mechanisms based on the attack detection strategy into mech-

anisms that deploy pattern detection, anomaly detection, and third-party detec-

tion.

AL-2:ADS-1: Pattern Detection

Mechanisms that deploy pattern detection store the signatures of known attacks

in a database. Each communication is monitored and compared with database

entries to discover occurrences of DDoS attacks. Occasionally the database is

updated with new attack signatures. The obvious drawback of this detection

mechanism is that it can only detect known attacks, and it is usually helpless

against new attacks or even slight variations of old attacks that cannot be matched

to the stored signature. Also, the attacks generating legitimate-like packets with

sufficient randomness of packet fields do not trigger this type of detection. On the

other hand, known attacks are easily and reliably detected, and no false positives

are encountered. Snort [Sou] provides one example of a DDoS defense system that

uses pattern attack detection. A similar approach has been helpful in controlling
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computer viruses. As in virus detection programs, signature databases must be

regularly updated to account for new attacks.

AL-2:ADS-2: Anomaly Detection

Mechanisms that deploy anomaly detection have a model of normal system be-

havior, such as normal traffic dynamics or expected system performance. The

current state of the system is periodically compared with the models to detect

anomalies. Approaches presented in [YEA00, MBF02, Infb, GP01, Cs3, Maz,

Arb, BBNa, BBNb, MPR02] provide examples of mechanisms that use anomaly

detection. The advantage of anomaly detection over pattern detection is that

previously unknown attacks can be discovered. The caveat is that anomaly de-

tectors must trade off their ability to detect all attacks against their tendency to

misidentify normal behavior as an attack.

AL-2:ADS-2:NBS: Normal Behavior Specification

Based on a normal behavior specification, we divide anomaly detection mecha-

nisms into standard and trained mechanisms.

AL-2:ADS-2:NBS-1: Standard

Mechanisms that use standard specifications of normal behavior rely on some

protocol standard or a set of rules to specify this behavior. For example, the TCP

protocol specification describes a three-way handshake that has to be performed

for TCP connection setup. An attack detection mechanism can make use of

this specification to detect half-open TCP connections and delete them from the

queue, or it can use TCP SYN cookies to defend against TCP SYN attacks. The
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advantage of a standard-based specification is that it generates no false positives;

all legitimate traffic must comply to the specified behavior. The disadvantage is

that attackers can still perform sophisticated attacks which, on the surface, seem

compliant to the standard and thus pass undetected.

AL-2:ADS-2:NBS-2: Trained

Mechanisms that use trained specifications of normal behavior monitor network

traffic and system behavior and generate threshold values for different traffic

parameters. All traffic exceeding these values is regarded as anomalous. This

approach catches a broad range of attacks, but it has following disadvantages:

1. Threshold setting. Anomalies are detected when the current system state

differs from the model by a certain threshold. The setting of a low threshold

leads to many false positives, while a high threshold reduces the sensitivity

of the detection mechanism.

2. Model update. Systems and communication patterns evolve with time,

and models need to be updated to reflect this change. Trained specification

systems usually perform automatic model update using statistics gathered

at a time when no attack was detected. This approach makes the detection

mechanism vulnerable to slowly increasing rate attacks that can, over a long

period of time, mistrain models and delay or even avoid attack detection.

AL-2:ADS-3: Third-Party Detection

Mechanisms that deploy third-party detection do not handle the detection pro-

cess themselves, but rely on an external message that signals the occurrence

of the attack and provides attack characterization. Examples of mechanisms
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that use third-party detection are easily found among traceback mechanisms

[BLT01, SWK00, DFS01, SP01, SPS01].

AL-2:ARS: Attack Response Strategy

The goal of the attack response is to relieve the impact of the attack on the

victim while imposing minimal collateral damage to legitimate clients. We classify

reactive mechanisms, based on the response strategy, into mechanisms that deploy

agent identification, rate-limiting, filtering and reconfiguration.3

AL-2:ARS-1: Agent Identification

Agent identification mechanisms provide the victim with information about the

identity of the machines that are performing the attack. This information can

then be combined with other approaches to alleviate the impact of the attack.

Agent identification examples include numerous traceback techniques [BLT01,

SWK00, DFS01, SP01, SPS01]. One frequently mentioned motivation for de-

ployment of defense mechanisms by intermediate and source networks is possible

enforcement of liability for attack traffic. A successful mechanism for reliable

agent identification would be necessary for liability enforcement.

AL-2:ARS-2: Rate-Limiting

Rate-limiting mechanisms impose a rate limit on a stream that has been char-

acterized as malicious by the detection mechanism. Examples of rate-limiting

mechanisms are found in [MBF02, GP01, Cs3, MPR02, Arb]. Rate-limiting is a

3One possible defense approach not discussed here is retribution. The defense system may
attempt to locate agent machines and launch counterattacks against them. However, this action
is illegal and is therefore out of this dissertation’s scope.
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lenient response technique that is usually deployed when the detection mecha-

nism has a high level of false positives or cannot precisely characterize the attack

stream. The disadvantage is that such an approach will allow some attack traffic

through, so extremely high-scale attacks might still be effective even if all traffic

streams are rate-limited.

AL-2:ARS-3: Filtering

Filtering mechanisms use the characterization provided by detection mechanisms

to filter out the attack streams completely. Examples include dynamically de-

ployed firewalls [DO], and also a commercial system, TrafficMaster [Maz]. Unless

the detection strategy is very reliable, filtering mechanisms run the risk of ac-

cidentally denying service to legitimate traffic. Worse, clever attackers might

leverage them as denial-of-service tools.

AL-2:ARS-4: Reconfiguration

Reconfiguration mechanisms change the topology of the victim or the intermedi-

ate network to either add more resources to the victim or to isolate the attack

machines. Examples include reconfigurable overlay networks [ABK01, Infb], re-

source replication services [YEA00], attack isolation strategies [Ast, BBNa], etc.

CD: Cooperation Degree

DDoS defense mechanisms can perform defensive measures either alone or in co-

operation with other entities in the Internet. Based on the cooperation degree, we

differentiate between autonomous, cooperative and interdependent mechanisms.
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CD-1: Autonomous

Autonomous mechanisms perform independent defense at the point where they

are deployed (a host or a network). Firewalls and intrusion detection systems

provide easy examples of autonomous mechanisms. Even if a defense system

performs its function in a distributed manner, it would still be considered au-

tonomous if it can be completely deployed within the network it protects (like a

network intrusion detection system).

CD-2: Cooperative

Cooperative mechanisms are capable of autonomous detection and response, but

can achieve significantly better performance through cooperation with other en-

tities. The aggregate congestion control (ACC) system [MBF02] deploying a

pushback mechanism [IB02] provides an example. ACC detects the occurrence

of a DDoS attack by observing congestion in a router’s buffer, characterizes the

traffic that creates the congestion, and acts locally to impose a rate limit on that

traffic. However, it achieves significantly better performance if the rate-limit re-

quests can be propagated to upstream routers that otherwise may be unaware of

the attack.

CD-3: Interdependent

Interdependent mechanisms cannot operate autonomously at the deployment

point; they rely on other entities either for attack prevention, attack detection

or for efficient response. Traceback mechanisms [BLT01, SWK00, DFS01, SP01,

SPS01] provide examples of interdependent mechanisms. A traceback mecha-

nism deployed at a victim site would provide no benefit. Secure overlay services
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[KMR02] are another example of an interdependent mechanism. They provide

successful protection to the victim, rerouting legitimate traffic through the Inter-

net, but only if victim’s clients are aware of and cooperate with the mechanism.

DL: Deployment Location

With regard to deployment location, we differentiate between mechanisms de-

ployed at the victim, intermediate, or source network.

DL-1: Victim Network

DDoS defense mechanisms deployed at the victim network protect this network

from DDoS attacks and respond to detected attacks by alleviating the impact on

the victim. Historically, most defense systems were located at the victim since it

suffered the greatest impact of the attack and was therefore the most motivated

to dedicate some resources to security mechanisms. Resource accounting [JB99,

ZL97, SP99, GR02, LRS00] and protocol security mechanisms [LNA00, Mea99,

ANL01, SKK97] provide examples of these systems.

DL-2: Intermediate Network

DDoS defense mechanisms deployed at the intermediate network provide infras-

tructural protection service to a large number of Internet hosts. Victims of DDoS

attacks can contact the infrastructure and request the service, possibly provid-

ing adequate compensation. Pushback [MBF02] and traceback [BLT01, SWK00,

DFS01, SP01, SPS01] techniques are examples of intermediate network mecha-

nisms. Such mechanisms are not yet widely deployed, and many of them can only

be effective in wide deployment.
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DL-3: Source Network

The goal of DDoS defense mechanisms deployed at the source network is to pre-

vent network customers from generating DDoS attacks. Such mechanisms are

necessary and desirable, but motivation for their deployment is low since it is

unclear who would pay the expenses associated with this service. Mechanisms

proposed in [GP01, Cs3, MPR02] provide examples of source network mecha-

nisms.

4.3 Using the Taxonomies

In designing the above taxonomies, we selected those features of attack and de-

fense mechanisms that, in our opinion, offer critical information regarding seri-

ousness and type of threats, and effectiveness and cost of defenses. Some attack

features, such as damage inflicted, duration, number of agents involved, etc.,

were not included as criteria. Although these are critical when investigating or

understanding the incident, there is currently no publicly available information

base that would allow us to design meaningful classifications. A standardized

incident-reporting system would greatly improve that. Some defense mechanism

characteristics, such as timeliness of response, level of false positives, collateral

damage, etc., were also not included as criteria. We believe that these are impor-

tant, but they must be strictly measured in a controlled and realistic environment

using a widely accepted benchmark suite. Without meeting these requirements,

we felt that any classification on these criteria that we could design would be

uninformed and likely unjust to some mechanisms.

In attack taxonomy design, the selected criteria cover various preparatory

phases that preceed the attack (degree of automation, scanning and propagation
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strategy, communication mechanism), the organization of agent machines (persis-

tence of the agent set), the way the attack is perpetrated (exploited vulnerability),

the attack packet contents (source address validity, address routability, spoofing

technique, possibility of characterization, relation of attack to victim services),

behavior of the individual agent streams (attack rate dynamics, rate change mech-

anism), and the victim (victim type, impact on the victim, possibility of dynamic

recovery). In defense taxonomy design, the selected criteria covers the defense

goal (activity level), how it is achieved (prevention goal, secured target, prevention

method, attack detection strategy, normal behavior specification, attack response

strategy), where the system should be deployed (deployment location), and what

the requirements are for deployment scope (cooperation degree).

We provide here an example case analysis of how these taxonomies could

be used. Let us assume that we want to protect our medium-size Web server

from attacks that deplete server resources only, and do this in a manner that

guarantees continued good service to legitimate clients. Based on an analysis

of attacks suffered so far, we are convinced that we will not be the subject of

attacks that deplete network resources and we decide not to protect against those.

First, using the attack taxonomy, we conclude that the attacks from which we

want protection can be both semantic (EV-1, e.g., malformed packets or misuse

of faulty server protocols) and brute force (EV-2, e.g., too many legitimate-like

requests). These attacks are likely to be characterizable (PC-1) but non-filterable

(RAVS-2, since we host a Web server and are likely to receive many legitimate

requests that obscure the attack). They are application (VT-1, Web server)

and host (VT-2, machine hosting the server) attacks, and they are likely to be

disruptive recoverable (IV-1, PDR-1) and degrading (IV-2) attacks. We have

no information about degree of automation (DA), source address validity (SAV),

attack rate dynamics (ARD) or persistence of agent set (PAS), so we assume that
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the attack can belong to any of corresponding classes.

Next, using the defense taxonomy, we would like to choose effective protec-

tion measures. To prevent semantic attacks we need to apply attack prevention

measures (PG-1) which include system and protocol security measures (ST-1 and

ST-2). Semantic attacks are likely to target Web server software, the TCP imple-

mentation and the HTTP/CGI protocol. As defense measures, we need to update

our software regularly and deploy TCP SYN cookies [CERk]. Additionally, we

will close all unused ports to prevent intrusions and install a firewall that protects

from semantic attacks that use malformed packets. To defend against brute force

attacks that consume more resources than a Web server has (once all its protocols

have been updated and protected), we can either use DoS prevention measures

(PG-2) to help us sustain the attack (PM-1 and PM-2), or deploy reactive defense

systems (AL-2) that detect the attack and recognize and preferentially serve le-

gitimate requests. Since the attack is recoverable, a reactive defense should lead

to continued good service to legitimate clients. However, since the attack is likely

to be non-filterable, differentiating the legitimate from the attack packets may

be impossible. Our best option is to resort to DoS prevention measures: deploy

resource accounting (PM-1) and purchase resource multiplication services from

another organization (PM-2).

4.4 Summary

Distributed denial-of-service attacks are a complex and serious problem, and con-

sequently numerous approaches have been proposed to counter them. However,

the multitude of current attack and defense mechanisms obscures a global view

of the DDoS problem. These taxonomies are a first attempt to cut through the

obscurity and achieve a clear view of the problem and the existing solutions.

82



They are intended to help the community think about the threats we face and

the measures we can use to counter those threats.

One benefit we foresee from the development of DDoS taxonomies is that of

fostering easier cooperation among researchers developing DDoS defense mech-

anisms. Attackers cooperate to exchange attack code and information about

vulnerable machines, and to organize their agents into coordinated networks

to achieve immense power and survivability. The Internet community must be

equally cooperative within itself to counter the DDoS threat. Good taxonomies

for DDoS attack and defense mechanisms will facilitate communications and of-

fer the community a common language for discussing solutions. They will also

clarify how different mechanisms are likely to work in concert, and identify areas

of remaining weaknesses that require additional mechanisms. Similarly, the re-

search community needs to develop common metrics and benchmarks to evaluate

the efficacy of DDoS defense mechanisms, and these taxonomies can be helpful

in shaping those tasks, as well.

We do not claim that these taxonomies are complete and all-encompassing.

We must not be deceived by the simplicity of the current attacks. For the at-

tackers, this simplicity arises more from convenience than necessity. As defense

mechanisms are deployed to counter simple attacks, we are likely to see more

complex attack scenarios. Many more attack possibilities exist and must be ad-

dressed before we can completely handle the DDoS threat; some of these are

likely to be outside the current boundaries of the taxonomies presented here.

Thus, these taxonomies are likely to require expansion and refinement as new

threats and defense mechanisms are discovered. The DDoS attack taxonomy and

DDoS defense taxonomy outlined in this chapter are useful to the extent that

they clarify our thinking and guide us to more effective solutions to the problem
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of distributed denial-of-service. The ultimate value of the work described here

will thus lie in the degree of discussion and future research that it provokes.
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CHAPTER 5

Source-End Defense

Ideally, distributed denial-of-service attacks should be stopped as close to the

sources as possible. Source-end DDoS defense has several advantages over intermediate-

network and victim-end defense approaches:

• Congestion avoidance. Restraining attack streams near the source pre-

serves Internet resources that are usually overwhelmed by the attack traffic.

This reduces overall congestion and increases resources available to legiti-

mate users.

• Small collateral damage. Many DDoS defense systems respond to the

attack by filtering or rate-limiting all traffic to the victim. Legitimate traffic

thus suffers collateral damage. Moving DDoS defense closer to the sources

reduces the range of legitimate traffic adversely affected by the response,

as the traffic from uncompromised source networks proceeds to the victim

unhampered.

• Easier traceback. Being close to the source facilitates easier attack

traceback and investigation. Administrators can receive attack alerts from

source-end defense systems and examine all the machines in the protected

source network in order to detect those that are compromised.
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• Sophisticated detection strategies. Routers closer to the sources are

likely to relay less traffic than intermediate routers and can dedicate more

of their resources to DDoS defense. This facilitates use of more complex

detection and response strategies.

However, source-end defense faces also faces hard challenges with regard to

detection and response selectiveness.

Attack detection at the source-end is hindered by attack distribution. In a

highly distributed attack, each source network may observe only a small portion

of the attack, which is unlikely to generate anomalous statistics. An attack can

be conducted through legitimate requests; thus, observation of outgoing packets

will not raise suspicion. Alternately, the source-end defense may try to detect

the denial-of-service effect on the victim by observing its behavior. Under au-

tonomous operation, the source-end defense is not permitted to contact the vic-

tim and inquire about its state. Therefore it can only speculate about a victim’s

condition based on partial observation.

Response selectiveness is an imperative for source-end defense. Networks

hosting source-end defense do not experience a direct benefit from the defense

system’s operation and are thus poorly motivated to deploy it. In order to provide

deployment incentive, a system must not only successfully detect and restrain

many attacks but also: (a) provide good service to legitimate traffic between the

deploying network and the victim, (b) have a low level of false positives, and (c)

have a low deployment cost.
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5.1 Source-End Detection

There are several approaches that can be used either separately or jointly for

source-end DDoS detection:

• Source-end firewall. Firewalls perform attack detection using known

attack signatures. This detection has a low level of false positives and

can successfully be used to filter out malformed packets that are used for

protocol attacks.

• Threshold anomaly detection. Each source-end network can define a

set of thresholds for various traffic types, describing expected values for a set

of parameters, such as average packet rate per connection, average number

of outgoing UDP packets per destination, outgoing packet size distribution

given time of the day, etc. These threshold values can be obtained through

extensive training, guaranteeing low levels of false positives, and can detect

a wide range of attacks. However, traffic patterns change and models need

to be retrained. If the retraining is automatic (i.e. system adjusts its

models to slow-changing traffic trends), attackers can misuse this to avoid

detection.

• Two-way traffic dynamics. Since outgoing attack streams appear legit-

imate at the source network, just observation of the outgoing traffic alone

cannot provide sufficient information for detecting anomalous behavior and

raising the alarm. However, it is generally the case that attack streams are

unresponsive to congestion signals—i.e., the outgoing attack stream to the

victim will not reduce its rate if notified of congestion through reduction in

the number of peer responses. A source-end system can use this observation

to detect DDoS attacks misusing inherently responsive transport protocols
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such as TCP.

• Spoofing detection. Attack packets frequently spoof source IP addresses

to avoid detection and accountability. Therefore, the occurrence of aggres-

sive spoofing in the outgoing flow can be a likely sign of a DDoS attack.

In order to detect aggressive spoofing, the system can: (a) enforce ingress

filtering on all outgoing packets, thus preventing random spoofing, and (b)

restrict the number of outgoing connections for a single destination. These

steps help detect those attacks that are performed through inherently non-

responsive transport protocols, such as UDP, in those cases where aggressive

spoofing is employed.

• Connection semantics. Sophisticated attacks can be performed while

preserving correct two-way traffic dynamics and avoiding aggressive spoof-

ing. It is much more difficult to preserve correct connection semantics, since

this requires an attacker to store state per connection, thus putting more

burden on the attacking machine. If system can afford to monitor, or even

sample, per-connection state, this will enhance its ability to detect subtle

attacks that preserve two-way dynamics, such as degrading attacks, slowly

increasing rate attacks, small rate attacks and pulsing attacks.

5.2 Source-End Response

The source-end response to a detected DDoS attack must take into account the

complexity of source-end detection which results in a low level of confidence in

the attack signal. Since detection is unreliable, response must be liberal to

minimize damage to legitimate traffic inflicted by false detections. Response

must also be selective, i.e., the system must be able to detect and preserve
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legitimate traffic to the alleged victim. The selectiveness of the response plays a

crucial role in defining deployment incentive. If the system were not selective in

constraining outgoing traffic to the victim, legitimate packets from a deploying

network would be regularly dropped whenever the attack was detected. In this

scenario, a network would be worse off deploying a source-end DDoS defense,

because its legitimate packets, that otherwise might get some responses, would be

dropped. This negative feature, along with the fact that the victim, not the source

network deploying the defense system, harvests the benefit of DDoS defense,

seems to be a strong argument against the source-end defense. On the other

hand, a selective response that favors legitimate traffic will provide better service

to legitimate clients of the source network during the attack, as their packets

will not compete with the attack packets for the limited bandwidth. Instead,

the legitimate packets receive preferential treatment and are sent promptly to

the victim. Finally, response must be dynamic, it must adjust based on the

attack detection signal and attack force, providing a stricter response to high-rate

attacks, and a more lenient response to low-rate ones, and aborting all response

promptly after the attack has subsided.

5.3 Deployment Incentive

A source-end defense system faces a hard deployment incentive challenge. Its

cost is sustained by the deploying network, which does not receive substantial

benefit from its operation. Furthermore, a victim cannot be asked to compensate

for this cost, as being payed to not participate in an attack would create an

opportunity for extortion. On the other hand, source-end defenses are necessary

to stop Internet misuse, as all other points of defense (intermediate and victim

networks) do not prevent attack traffic from congesting shared Internet resources.
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Historically, similar problems have been solved by legislation. It is possible that

in the future, through contracted or legislative action, those who do not take

reasonable steps to secure their system will be held liable for damages inflicted

by attackers misusing their machines. In that case, a source-end defense system

would become part of an established security practice, and therefore a network

deploying the system could not be held liable if its machines were misused for an

attack.

Many people have concluded that stopping attacks completely is impossible,

since there is a vast number of machines whose owners are unaware of security

holes or are unwilling to fix them. A single source-end defense system installed at

the network’s exit router would prevent DDoS attacks originating from anywhere

in the network, in spite of unsecured machines within.

Good performance characteristics, such a low false alarm rate, high effective-

ness of attack response, a service guarantee to legitimate traffic, and low deploy-

ment cost would further strengthen the motivation for deployment of source-end

DDoS defenses.

5.4 Summary

A source-end DDoS defense has many advantages over defenses deployed at other

places. It provides effective response, facilitates traceback, and may deploy so-

phisticated detection and traffic profiling due to low volume of traffic. On the

other hand, a source-end defense faces many challenges in order to be widely de-

ployed. Attack detection is difficult and unreliable, and response has to be flexible

and selective to compensate for poor detection and to offer deployment incentive.

A successful source-end defense system must therefore provide accurate detection
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and a selective, dynamic response.
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CHAPTER 6

D-WARD

D-WARD (DDoS Network Attack Recognition and Defense) is a DDoS defense

system deployed at a source-end network. Its goal is twofold:

1. Detect outgoing DDoS attacks and stop them by controlling outgoing traffic

to the victim.

2. Provide good service to legitimate transactions between the deploying net-

work and the victim while the attack is on-going.

D-WARD can operate either as an autonomous system or as a participant in

a distributed defense system. In autonomous operation, D-WARD detects at-

tacks and responds to them without communication with any other entity. In

distributed cooperative operation, D-WARD enhances its detection by receiv-

ing attack alerts from other participants. D-WARD can also accept and grant

some response requests from others. More details about cooperative operation

are provided in Sections 10.1 and 10.2.

D-WARD polices only the outgoing traffic from its network. Any traffic orig-

inating in other domains being relayed by D-WARD is not policed.
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6.1 Terminology and Assumptions

The D-WARD system is installed at the source router that serves as a gateway

between the deploying network (source network) and the rest of the Internet.

Figure 6.1 depicts D-WARD deployment. In basic deployment, the source router

is assumed to be the only connection point between the source network and the

rest of the Internet. D-WARD can thus observe every packet exchanged between

source network and the outside world. In another scenario, there are many gate-

way routers on the source network border, but each gateway is a default exit and

entry point for a set of foreign addresses. Thus, an instance of the D-WARD

system can be deployed at each gateway and observe every packet exchanged be-

tween the source network and its assigned set of foreign addresses. Alternately,

some gateway routers host D-WARD systems, and partially police the source net-

work’s outgoing traffic only to certain destinations. The last scenario, in which

multiple gateway routers exist and there is asymmetric routing of incoming and

outgoing packets (i.e., it may happen that an outgoing packet to destination X

traverses a different gateway than an incoming packet from source X) is unfavor-

able for D-WARD since it cannot form complete traffic observations. Asymmetric

routing is discussed in more detail in Section 6.9.

D-WARD is configured with a set of local addresses whose outgoing traffic it

polices — its police address set. This set identifies, for example, all machines in

the stub network or all customers of an ISP. We assume that D-WARD is able to

identify the police address set, either through some protocol or through manual

configuration.

D-WARD observes total traffic between its police address set and the rest

of the Internet, at flow and connection granularity. A flow is defined as the

aggregate traffic between the police address set and one foreign host (i.e., one
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Figure 6.1: D-WARD deployment

foreign IP address). A connection is defined as the aggregate traffic between a

pair of IP addresses and port numbers, where one address belongs to the police

address set and the other is a foreign address. Figure 6.2 illustrates the notions

of a flow and a connection.

D-WARD applies ingress filtering to the outgoing traffic, thus combating ran-

dom spoofing. However, no assumptions are made with regard to subnet spoofing,

and D-WARD is capable of handling attacks that use subnet spoofing.

6.2 Philosophy

Due to the similarity of attack to legitimate traffic, it is unwise to base any de-

fensive action on per-packet observations. D-WARD bases most of its decisions

on flow and connection monitoring over time. Rather than establishing the legiti-

macy of individual packets, D-WARD observes flow and connection behavior and

classifies the complete flow or connection as legitimate or attack. It adjusts its

operation dynamically to match the classifications. D-WARD further observes
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Figure 6.2: Flows and connections

how its actions affect flows and connections and uses this additional information

for future classifications.

D-WARD detects outgoing DDoS attacks by monitoring two-way traffic be-

tween the source network and the rest of the Internet. The system looks for the

following anomalies in traffic dynamics that may be signs of a DDoS attack:

1. Non-responsive foreign host: Aggressive sending rate coupled

with low response rate. This anomaly pertains only to two-way commu-

nications that follow a request/response paradigm such as TCP, some types

of ICMP traffic, DNS traffic, NTP traffic, etc. In these communications,

one party sends one or several packets to the other party, and waits for a

reply (either confirmation of receipt or a response) before sending any more

packets. For such communications it is anomalous to observe an aggres-

sive sending rate coupled with a low response rate. A low response rate is

perceived by D-WARD as an indication that the foreign host may be over-

whelmed by the attack and cannot reply, while an aggressive sending rate
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indicates that local hosts are likely participants in the attack. By detecting

non-responsive foreign hosts, D-WARD actually aims to detect the occur-

rence of the denial-of-service effect. This is a very reliable attack signal,

as an attacker must create the denial-of-service effect to inflict damage on

the victim. On the other hand, coupling detection to denial-of-service may

lead to “after-the-fact” detection, once damage has been done. It would

be better if detection could be performed in the early stages of the attack,

thus preserving more of the victim’s resources. We discuss techniques for

early attack detection in Section 6.7.

2. Presence of IP spoofing. D-WARD deploys ingress filtering and dis-

cards, at all times, outgoing packets that do not carry local addresses. In

addition, D-WARD monitors the number of simultaneous connections be-

tween the source network and each foreign host. Those foreign hosts that

are engaged in a suspiciously high number of connections with the victim are

deemed to be part of a subnet spoofing attack (where the agent machine

spoofs addresses local to its own subnetwork). This form of IP spoofing

detection is not quite accurate, since it may happen that a destination be-

comes so popular that numerous local hosts initiate legitimate connections

with it (thus forming a “flash crowd” effect). Therefore, an incidence of a

large number of connections per foreign address is perceived as an attack

signal only if there are no better anomaly models. This, for instance, is

done for UDP-based attack detection but not for TCP and ICMP attacks.

Once the attack has been detected, D-WARD responds by rate-limiting the

total outgoing flow from the source network to the victim, and thus relieves the

victim of a heavy traffic volume. As a liberal response, rate-limiting is chosen

instead of filtering. Since the attack detection may be inaccurate, rate-limiting
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allows some packets to reach the victim and possibly correct the future detection.

Instead of deploying a fixed rate limit, D-WARD attempts to determine (guess)

the maximum sending rate that the foreign host can handle. The problem of

regulating the sending rate of a one-way flow to the level manageable by the

receiver (or the route to the receiver) has been recognized and addressed by the

TCP congestion control mechanism.1 D-WARD strives to solve a similar problem

at a more aggregated scale. It needs to control the total flow to the foreign host,

or the portion of that flow that has been characterized as troublesome, and it

infers the foreign host’s state from the attack detection signal.

D-WARD’s rate-limiting strategy applies modified TCP congestion control

ideas to this problem. A fast exponential decrease of the sending rate is performed

when the attack is detected to quickly relieve the victim of high-volume traffic.

Once the attack subsides, D-WARD performs a slow recovery of rate-limited

flows, linearly increasing the sending rate. This is done to probe the state of

the receiver, and to reevaluate its ability to handle traffic. After a while, if

the attack is not repeated, D-WARD performs a fast recovery of rate-limited

flows. The sending rate is increased exponentially to provide fast recovery and

subsequent removal.

In addition to the attack signal, D-WARD also bases its rate-limit settings

on the observed flow behavior. If the flow is compliant and does not continue

to send aggressively, its rate limit will be decreased more slowly and increased

more rapidly than if it is misbehaving. This policy facilitates fast recovery of

misclassified legitimate flows while severely limiting ill-behaved aggressive flows

that are likely part of the attack.

While imposing a rate limit on total outgoing flow to the victim, D-WARD

1In TCP terminology, a flow has the same meaning as a connection in D-WARD.
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attempts to detect those connections within the flow that are likely to be legit-

imate. Packets belonging to legitimate connections will be forwarded to their

destination regardless of the rate limit, thus providing good service to legitimate

traffic during the attack. Differentiation of legitimate from attack connections is

a very difficult problem in DDoS defense. D-WARD performs this differentiation

in two ways:

1. It monitors connections at all times, and uses legitimate connection models

to detect legitimate connections. Once detected, those connections are

recorded in the Legitimate Connection List. When the attack is detected,

packets belonging to connections from the Legitimate Connection List are

deemed legitimate, and are not subject to rate-limiting. As the connection

state is reevaluated periodically, malicious connections that wiggle their

way onto the Legitimate Connection List gain little advantage. They will

be promptly detected and removed from the list.

2. During the attack, D-WARD uses a set of models to evaluate legitimacy

of packets initiating new connections. Those packets that pass the match

are subject to separate rate-limiting. This technique increases the chances

of successful connection origination during the attack, while limiting the

amount of damage that a stealthy attacker can do (an attacker that can

generate packets that pass the legitimacy test). This is the only per-packet

classification that D-WARD performs, and it is described in Section 6.4.3.

In order to detect both attack flows and legitimate connections, D-WARD

uses a set of legitimate traffic models. In the flow classification case, those

flows that clearly mismatch the corresponding models are deemed attack flows.

In the connection classification case, those connections that clearly match the
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model are deemed legitimate. This technique minimizes the possibility of errors

for the following reasons:

• It is difficult to model malicious behavior as there is high variability in an

attack’s features. On the other hand, legitimate traffic models can be con-

structed by observing protocol specifications and common traffic patterns.

• In the flow classification case, legitimate traffic models are designed to en-

sure that no legitimate flow is likely to violate them. A mismatch is then

a likely sign of an attack. On the other hand, a model match may not

guarantee the absence of the attack. To address this, D-WARD uses traffic

models that severely constrain the attack variability (e.g., spoofing, dynam-

ics, or sending rate). If the attacker generates malicious traffic to match the

model, he may avoid source-end detection. However, constrained malicious

traffic will either not be very successful in performing the attack (small

rate, infrequent traffic), will be subject to conventional traffic control ap-

proaches (such as fair resource sharing, in the case of limited spoofing) or

will facilitate traceback (in the case of no spoofing).

• In the connection classification case, legitimate connection models are de-

signed to ensure that no legitimate connection is likely to violate them.

However, there may be situations when D-WARD does not have enough

information to classify a connection, e.g., when a connection has just been

initiated and only one packet has been sent. If this connection is deemed

legitimate, then all malicious connections in the spoofed attack case will be

deemed legitimate. If it is deemed an attack, then many legitimate con-

nections will be misclassified. To address this, D-WARD introduces the

notion of transient classification, indicating that there is not enough data
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Figure 6.3: D-WARD architecture

to perform classification. Transient connection traffic will be subject to

per-packet classification and rate-limiting.

6.3 Architecture

D-WARD is a self-regulating reverse-feedback system. It consists of observation,rate-

limiting and traffic-policing components. The traffic-policing component must be

part of the source router, while the observation and rate-limiting components can

be part of a self-contained unit that interacts with the source router to obtain

traffic statistics and install rate-limiting rules. Figure 6.3 depicts the D-WARD

architecture.
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The observation component monitors all packets passing through the source

router and gathers statistics on two-way communications between the police ad-

dress set and the rest of the Internet, recording the flow and connection granu-

larity. This monitoring can be performed, for example, by sniffing the traffic at

the source router interfaces. Periodically, statistics are compared to models of

legitimate traffic, and flows and connections are classified. Classification results

are passed to the rate-limiting component, which adjusts the rate limit rules.

Both the Legitimate Connection List and rate limit rules are communicated to

the traffic-policing component, which then enforces rate limits and ensures for-

warding of legitimate packets. The imposed rate limits modify associated traffic

flows and thus affect future observations, closing the feedback loop.

6.4 Observation Component

The observation component gathers statistics and monitors them at flow and con-

nection granularity. Flow statistics are stored in the Flow Table while connection

statistics are stored in the Connection Table. As spoofed attacks may generate

a large number of records in these tables, table size is limited to avoid excessive

memory consumption. To accommodate all relevant information in limited-size

tables, the observation component cleans the tables: (1) periodically expelling

all records that are stale, and (2) on overflow, expelling those records that are

deemed less useful than others.

The observation component periodically classifies flows and connections. Flow

classification is used to detect occurrences of a DDoS attack, while connection

classification is used to identify legitimate connections that should receive good

service in case the associated flow becomes rate-limited. The connection profiling

is performed continuously (as opposed to on-demand profiling once the attack
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is detected). The advantage of this approach is that the Legitimate Connection

Table is already populated when the attack occurs. D-WARD uses this knowledge

to provide continued good service to connections in the table, thus they suffer

no damage because of the attack. If D-WARD were using on-demand profiling,

a delay would exist between the attack detection signal and the populating of

the Legitimate Connection Table. During this time, legitimate connection traffic

would be damaged by the attack.

6.4.1 Flow Statistics and Flow Classification

Each outgoing and incoming packet modifies one record in the Flow Table. As

an outgoing flow may contain a mixture of many transport protocols and appli-

cations, the flow record consists of several fields dedicated to specific protocol

statistics. D-WARD currently keeps separate statistics on three types of traffic

within the flow: TCP, UDP, and ICMP. Which statistics will be kept on protocol

traffic depends on the legitimate flow models. Section 7.2 contains more details

on statistics content.

Flow classification is performed each Flow Observation Interval seconds. Dur-

ing classification, D-WARD compares flow statistics for each protocol field with

corresponding legitimate flow models. A flow will be classified as:

1. Attack if at least one field’s statistics do not match the corresponding

model.

2. Suspicious if the statistics or all fields match their corresponding models,

but the flow has recently been classified as attack.

3. Normal if if the statistics or all fields match their corresponding models,

and the flow has not been recently classified as attack.
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The above list is given in chronological order. When an attack occurs, a

change in traffic statistics will first lead to attack classification of the associated

flow. The attack classification lasts as long as at least one of two conditions is

met:

1. The attack-detected signal is positive.

2. There are packet drops on the flow, due to rate-limiting

The reason for the dual condition is the following: the attack-detected signal is

generated based solely on the flow’s traffic forwarded by D-WARD to the victim,

and thus expresses the measure of “how well can the victim handle this flow’s

traffic.” It may well be the case that D-WARD is severely dropping a flow’s

packets, thus producing a low outgoing rate which results in a negative attack-

detected signal. This indicates that D-WARD is doing a good job of controlling

the traffic and need not decrease the rate limit further, but does not mean that

the rate limit should be lifted. Therefore, D-WARD will maintain the attack

classification for as long as a flow is generating packet drops, even if the attack-

detected signal is negative.

Once the attack has subsided, the flow will be first classified as suspicious for

Compliance Period seconds. Suspicious classification leads to a cautious, slow

increase of the rate limit. If the attack repeats before Compliance Period has

expired, the flow will be classified as an attack again. Otherwise, the flow will

be classified as normal. The distinction between suspicious and normal flows is

made to minimize damage from recurring attacks. Attacks that repeat with an

interval shorter than Compliance Period will achieve their full force only in the

first attempt. Since their repetitions will happen during suspicious classification,

the imposed rate limit will constrain the outgoing flow, preventing further damage
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to the victim. Attacks repeating with an interval longer than Compliance Period

are likely to achieve their full force for a few seconds in every cycle (until they

have been detected and stopped). Larger Compliance Period values prevent more

recurring attacks, but also constrain traffic from transient connections longer.2

The following models are used in flow classification.

Legitimate TCP flow model. A large percentage of traffic in the Internet

(about 90%) is TCP traffic. The TCP protocol [Ins81] uses a two-way commu-

nication paradigm to achieve reliable delivery. During a TCP session, the data

flow from the source to destination host is controlled by the constant flow of ac-

knowledgments in the reverse direction. If the flow of acknowledgments subsides,

this is regarded as sign of congestion [Jac88] and the sending rate is promptly

reduced. Thus, normal TCP communication can be modelled by the ratio of the

number of packets sent to and received from a specific destination. Ideally, this

ratio should be one, but network congestion and different TCP implementations

using delayed and selective acknowledgments push it to slightly higher values.

D-WARD’s legitimate TCP flow model defines TCPrto as the maximum allowed

ratio of the number of packets sent and received on the flow.3 The flow is clas-

sified as an attack flow if its packet ratio is above the threshold. The observed

packet ratio is smoothed before classification to avoid noise in the measurements.

Legitimate ICMP flow model. ICMP messages are used as out-of-band

control messages to report some network error or to assist network troubleshoot-

ing. Unfortunately, they have also been successfully used for various attacks. The

ICMP protocol [Pos81] specifies many different message types. During normal

operation the “timestamp,” “information request,” and “echo” messages should

2Legitimate connection traffic is not subject to rate-limiting and is thus not affected by the
Compliance Period value.

3D-WARD uses 3 for the TCPrto value.
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be paired with the corresponding reply. Using this observation, the normal ICMP

flow model defines ICMPrto as the maximum allowed ratio of the number of echo,

timestamp, and information request and reply packets sent and received on the

flow. The frequency of other ICMP messages, such as destination unreachable,

source quench, redirect, etc., is expected to be so small that a predefined rate

limit can be used to control that portion of the traffic.

Legitimate UDP flow model. The UDP protocol [Pos80] is used for un-

reliable message delivery and in general does not require any reverse packets

for its proper operation. Many applications that use UDP generate a relatively

constant packet rate, but the maximum rate depends heavily on the underlying

application. UDP-based applications exhibit different dynamics, ranging from

the low-frequency request/response of Network Time Protocol, to the steady

rate of Real Audio, to the high-rate satellite data streaming. Additionally, users

may write custom applications that use UDP traffic, which further hinders defini-

tion of UDP traffic models. D-WARD thus defines a very broad legitimate UDP

flow model, attempting to detect only those UDP attacks that use heavy subnet

spoofing or that send at a very high rate. An alternate approach is to build a le-

gitimate flow model for each application that uses UDP, and detect attacks when

unknown UDP traffic is observed. This approach is partially used for generation

of legitimate UDP connection models. It would likely detect more UDP-based

attacks, but it would be prohibitively expensive as many more statistics would

have to be stored. Additionally, as users may define new UDP applications, mod-

els would have to be constantly updated. On the other hand, it is fairly simple

to defend against UDP-based attacks close to the victim. Many Internet hosts

do not normally receive heavy inbound UDP traffic and may place appropriate

filters at upstream ISPs to completely deny UDP traffic. Clients that receive

streaming media can install firewall rules that permit only inbound UDP traffic
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on connections initiated by the client.

The legitimate UDP flow model is defined as two thresholds: nconn — an

upper bound on the number of allowed connections per destination, and pconn —

a lower bound on the number of allowed packets per connection. The thresholds

help identify a UDP attack through spoofed connections, detecting the occurrence

of many connections with very few packets per connection. The model classifies

a flow as an attack when both of these thresholds have been breached.

6.4.2 Connection Statistics and Connection Classification

Each outgoing and incoming packet modifies one record in the Connection Table.

A connection can only carry traffic from one protocol and one application. Le-

gitimate connection models define statistics contents. Section 7.2 contains more

details on connection statistics contents.

Connection classification is performed each Connection Observation Interval

seconds. During classification, D-WARD compares connection statistics with

corresponding legitimate connection models. A connection will be classified as:

1. Good if its statistics match the corresponding model.

2. Bad if its statistics do not match the corresponding model.

3. Transient if there is not enough data to perform classification.

Good connections receive guaranteed good service during the rate-limit phase,

while bad and transient connections have to compete for the rate-limited band-

width. The difference in handling bad and transient connections is present only

in connection table record handling. Bad connection records never expire,4 while

4A bad connection record will be deleted only after the connection has stopped sending
traffic and is classified as good.
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transient connection records expire after a very short interval.

Legitimate TCP connection model. D-WARD’s legitimate TCP connec-

tion model is similar to its legitimate TCP flow model. It uses the same value of

TCPrto — the maximum allowed ratio of the number of packets sent and received

on the connection. The connection is classified as good if its packet ratio is be-

low the threshold. The observed packet ratio is smoothed before classification to

avoid noise in the measurements.

Legitimate ICMP connection model. D-WARD does not deploy legiti-

mate ICMP connection models.5 ICMP traffic rarely has connection semantics

— it is issued infrequently to diagnose network problems, contains very few clus-

tered packets, and comprises a very small percentage of total Internet traffic.

Legitimate ICMP connection models would be of little use to legitimate ICMP

traffic, as short, infrequent connections would not be able to take advantage of

priority status — they would terminate shortly after being validated. On the

other hand, it is likely that dropping legitimate ICMP traffic during an attack

will not produce great damage to legitimate clients.

A set of legitimate ICMP connection models resembling the legitimate ICMP

flow models was deployed in D-WARD, and the above claims were proved cor-

rect in experiments. Further, spoofed ICMP attacks generated an abundance

of records in the Legitimate Connection List, resulting in deletion of legitimate

connection records and worse service to legitimate traffic. This effect was noticed

only at very high spoofed packet rates, and did not generate a noticeable decrease

in the service level perceived by legitimate clients. However, the number of le-

gitimate packet drops by D-WARD was increased (due to missing records in the

5ICMP is a connectionless protocol, and it does not use port numbers. D-WARD observes
all ICMP communication between two hosts as one connection, assigning zero values to port
numbers.
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Legitimate Connection List), resulting in retransmissions and connection delays.

Hence, the attempt to detect legitimate ICMP connections was abandoned.

Legitimate UDP connection model. D-WARD builds per-application

models for UDP traffic. We identified the main categories of applications that

use UDP, which are:

1. Domain Name Service (DNS)

2. Network Time Protocol (NTP)

3. multimedia streaming

4. voice over IP (VoIP)

5. Internet multi-player games

6. Network File System (NFS)

7. chat applications

We compared the selected categories with statistics from the Cooperative

Association for Internet Data Analysis (CAIDA) Web site [CAI] which shows the

top 25 applications (regardless of underlying transport protocol). There are only

a few UDP applications among the top 25 since UDP traffic occupies a small

proportion of all network traffic (around 3%). All of these are on our list of

selected UDP applications.

The following models were designed (and a subset of these was implemented):

• Domain Name Service (DNS). DNS can be implemented over TCP or UDP,

but UDP is more common. Under normal operation, DNS connection traffic

will exhibit a 1:1 ratio of packets sent to packets received. If the response
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packet is lost, the DNS client typically repeats its request to another server

before retrying the same server. The retransmission interval is between 2

to 5 seconds, and the message size is 46 to 512 bytes (not including UDP

and IP headers). DNS packets are identified according to the application

field in the IP header which carries the value 17, and according to a port

number 53 in the UDP header. Request and response packets are identified

according to the first bit of the third byte of the DNS header, which is 0 for

a query packet, 1 for a response packet. A legitimate DNS connection model

is defined by a finite state machine shown in Figure 6.4. The connection

starts from NO STATE. When a DNS request is sent to a foreign host the

connection goes to the DNS REQ state and when a reply is received the

connection goes to the DNS REP state. The connection can accommodate

repeated requests only if their frequency is lower than DNS EXPIRY, which

is set to 1 second. Any violation of the model brings the connection into

the ERROR state, which leads to bad classification.

• Network Time Protocol (NTP). In NTP there are three main methods or as-

sociation modes in which a system can synchronize with other hosts: client

mode, broadcast or multicast client mode, and symmetric active mode. In

client mode, a host polls one or more hosts to get the current time, and pro-

cesses replies as received. In broadcast and multicast modes, a host does not

poll. Instead, it listens for NTP packets that are broadcast or multicast over

the local network. In symmetric active mode, a host polls other hosts and

responds to polls from those hosts. In addition, hosts retain time-related

information about the hosts with which they are communicating. Hence,

there are three possible UDP connection models for NTP. Under normal

operation NTP connection traffic will exhibit a 1:1 ratio of packets sent to
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Figure 6.4: DNS finite state machine

packets received. If the response packet is lost, the NTP client typically

repeats its request to another server before retrying the same server. The

polling interval ranges from 64 to 1024 seconds. Message sizes range from

44 to 56 bytes. D-WARD only designs and implements client NTP con-

nection models. A legitimate NTP connection model is defined by a finite

state machine shown in Figure 6.5. The connection starts from NO STATE.

When an NTP request is sent to a foreign host, the connection goes to the

NTP SENT state; and when a response is received, the connection goes to the

NTP REC state. The connection can accommodate repeated requests only if

their frequency is lower than NTP EXPIRY, which is set to 60 seconds. Any

violation of the model brings the connection into the ERROR state, which

leads to bad classification.

• Multimedia streaming. The most common application programs used for

audio and video streaming are RealPlayer, Windows Media Player, Quick-
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time, and Shoutcast mp3 streaming. Quicktime and Real Player use the

Real-time Transport Protocol (RTP) over UDP for data delivery and the

Real-time Streaming Protocol (RTSP) over TCP for control. Windows Me-

dia Player uses the Microsoft Media Server (MMS) protocol — Microsoft’s

proprietary network streaming protocol over TCP and UDP which contains

both data delivery and control mechanisms. D-WARD only provides mod-

els for multimedia streaming applications that use RTP and RTSP (because

MMS is a proprietary protocol, applications using this protocol cannot be

modelled). The streaming data is sent from server to client in small, equally

spaced RTP packets, ranging in size from 12 to 72 bytes. For every few re-

ceived RTP packets, the client sends one RTP packet back to the server.

RTSP traffic is sent via TCP at the beginning of the session and every 1 to

2 seconds to deliver reports about the session condition. D-WARD models

legitimate streaming media connections by correlating the behavior of RTP

and RTSP connection traffic, and by using a streaming media finite state
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machine shown in Figure 6.6. When an RTP packet is sent or received,

D-WARD checks to see if the related RTSP connection exists. The RTSP

connection is located by searching for a connection with the same source and

destination IP address as the RTP connection, and the foreign port number

554, which is the RTSP port number. If the RTSP connection exists and

it is not stale (it has been active in last RTSP ACTIVE seconds, currently

set to value 5), the RTP connection goes to STREAMING state. Otherwise it

goes to ERROR state. When the connection classification is performed, RTP

connections in the STREAMING state will also be checked for high values of

RTP sent to the received packet ratio. If this ratio is lower than RTPrto

(currently set to 20), the RTP connection will be classified as good. If the

ratio is higher than RTPrto or the connection is in ERROR state, then it

will be classified as bad. By performing live tests we have observed that

streaming media servers will continue to generate RTP traffic toward the

client in the absence of reverse RTP and RTCP packets (as might occur in

the case of DDoS attack). Such behavior will be tagged by D-WARD as

illegitimate, and the connection will be classified as bad.

Models for voice over IP, Internet multi-player games, Network File System

(NFS) and chat applications’ traffic are not provided in current D-WARD version

but they could be built similar to the DNS, NTP or streaming media models.

As new uses of UDP become popular, new connection models will need to be

generated and added to D-WARD. Past experience suggests that this will happen

infrequently.
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6.4.3 First Packet Classification

A difficult problem that D-WARD faces in connection separation is the problem

of classifying connections based on the first outgoing packet. This problem oc-

curs when a connection attempts to start during the attack. The first outgoing

packet seen by D-WARD cannot be recognized as legitimate, since legitimate

connection models require more data to perform classification. It is thus likely

that this connection will be regarded as transient and its traffic will be subjected

to rate-limiting. During rate-limiting, these first packets will likely lose the com-

petition against aggressive attack traffic, and will be dropped. Dropping those

first packets on a connection may severely discourage connection setup (this is

especially the case with TCP connections) and thus will result in poor service to

new connections during the attack. The likely outcome is that no new connection

traffic will be allowed to pass during the attack.

The following example, depicted in Figure 6.7, illustrates an especially severe

113



A


V


C1


D-WARD


C2


C3


SYN


SYN


SYN


DATA
 DATA


DATA


DATA


ACK


ACK


SYN


NetS
 Internet
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case of the first packet classification problem: new TCP connection setup during

a TCP SYN flood attack.

Source network NetS is protected by D-WARD. A TCP SYN flood using sub-

net spoofing is generated from subverted host A to victim V. D-WARD detects

this attack and imposes a rate limit on the outgoing flow from NetS to V. Legit-

imate clients C1 and C2 have previously established connections to V, and these

connections will be identified as legitimate and protected from rate-limiting. Dur-

ing the attack, legitimate client C3 attempts to connect to victim V. D-WARD

observes a multitude of attack TCP SYN packets and one legitimate TCP SYN

packet. There is no information in the packet that the attacker cannot spoof.

The only difference between those two packet classes is in future behavior: the

legitimate client will complete the three-way handshake and continue to gener-

ate traffic on the connection, while the attacker will not. Therefore, those two

packet classes are indistinguishable by D-WARD. Both a legitimate connection

and all attack connections will be classified as transient and will be subject to
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rate-limiting. During rate-limiting, aggressive attack traffic is more likely to win,

resulting in legitimate TCP SYN packet drops. The problem is actually more

severe than this, as not only the first packets but all packets on new connections

will likely be dropped until the Connection Observation Interval expires and the

connection can be validated.

While persistent packet drops will hurt any connection performance, they are

especially detrimental to TCP connections. The TCP protocol perceives packet

loss as a sign of congestion and slows down its sending rate. Each consecutive

packet loss leads to the exponential decrease in control window size (the param-

eter determining the amount of traffic to be sent between acknowledgments). As

losses start occurring from the very beginning of the connection, when the control

window is already quite small, further decreases quickly bring it to its minimum

value. The parallel adverse effect is the exponential increase of the retransmission

interval when retransmitted packets are also lost. Jointly, these two mechanisms

are very successful in relieving and adapting to temporary congestion, but they

also make TCP non-competitive against aggressive attack traffic. A new connec-

tion will send less traffic and do so more reluctantly as each packet is lost. Over

time, it will either either terminate or be severely delayed by D-WARD’s action.

There are several possible strategies to ameliorate this situation:

1. Assume TCP SYN cookie deployment by the victim. The TCP SYN

flood attack can be successfully handled up to very high rates by using TCP

SYN cookies [SKK97]. This approach handles the half-open connection

problem by replacing server state with cryptographic information. SYN

cookies are particular choices of initial TCP sequence numbers by TCP

servers. In response to a received TCP SYN packet, the server chooses its

initial sequence number as a function of: time when request was received,
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the server’s maximum segment size (MSS), a server-selected secret function

of the client IP address and port number, the server IP address and port

number, and time. This choice of sequence number complies with the basic

TCP requirement that sequence numbers increase slowly; the server’s initial

sequence number increases slightly faster than the client’s initial sequence

number. A server then sends a SYN ACK with a chosen initial sequence

number, but does not reserve a record in its connection queue. When the

server receives an ACK completing the three-way handshake, it checks that

the secret function works for a recent value of time, and then rebuilds the

connection queue entry from the encoded MSS. D-WARD can assume use

of TCP SYN cookies by the victim and always forward TCP SYN packets.

Unfortunately, many hosts do not deploy TCP SYN cookies, so D-WARD

would fail to protect such hosts from the TCP SYN flood attack. Also, this

approach would not solve the problem of subsequent outgoing packets on

this connection that may arrive before the connection has been validated.

These packets will be subject to rate-limiting and will likely be dropped.

2. Proxy TCP connections. D-WARD can choose to handle TCP SYN

flood attacks by deploying TCP SYN cookies itself and performing the

three-way handshake instead of the victim. This approach is taken by nu-

merous defense systems. A defense system intercepts TCP SYN packets

and replies, instead of the server, using TCP SYN cookies. Once the client

completes the three-way handshake, the defense system replays the TCP

SYN to the server and acts as the client to complete connection setup.

The problem arises because each party must independently choose an ini-

tial sequence number in its packets. Thus, the server’s initial sequence

number which is chosen first by defense system (in the server’s name) will
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not match the initial sequence number chosen by the server. The defense

system cannot change sequence number information at either party. It is

therefore left with two choices: (1) proxy the complete connection, rewrit-

ing sequence numbers appropriately, or (2) drop the connection by sending

a RST packet to the client, remembering that it was legitimate so that on

retry its TCP SYN packets will be allowed to reach the server directly. As

a connection retry must be initiated by the application, a connection drop

is a bad choice. Thus, the majority of defense systems decide to proxy

the complete TCP connection. This choice would impose a heavy burden

on D-WARD since it would have to keep even more connection state and

modify each packet on legitimate connections during the attack.

3. Introduce modifications to TCP to specify desired ISN. One possi-

ble approach to proxy only the three-way handshake and not the complete

connection would be to add a new option to the TCP protocol — desired

ISN. This option would be used by the defense system in the replayed TCP

SYN packet, requiring the server to choose a specific value of its initial se-

quence number. This modification would require TCP protocol changes at

all servers in the source network and would likely introduce many security

problems.

4. Reset half-open connections. D-WARD can initially forward all TCP

SYN packets, but keep track of half-open connections. If they are not

completed within a certain time interval, D-WARD can issue a RST packet

to the server, freeing its resources. This approach is also taken by many

defense systems. Its drawback is that D-WARD would have to keep state on

half-open connections, thus becoming a potential victim of denial-of-service

attack itself.
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5. Reject randomly spoofed packets. The value prediction technique as-

sumes that the defense system can know or accurately predict a range of

valid values for certain TCP or IP header fields in the first connection pack-

ets (the predicted value range). The prediction function must be accurate

enough so that legitimate packets will always be detected and validated.

The predicted value range must also be relatively small so that packets

that randomly spoof header values have a low probability of being vali-

dated as legitimate. D-WARD uses the value prediction technique to rec-

ognize legitimate packets at TCP connection startup. A stealthy attacker

can still learn the predicted value range and adequately spoof his packets

to guarantee that they will be identified as legitimate. To counter this,

D-WARD introduces a special fixed Early Packet Rate Limit that applies

to packets that match the predicted value range. The overall outcome is

that legitimate clients’ traffic will receive good service during a randomly

spoofed TCP SYN flood attack, while it will still likely be dropped during

a stealthy TCP SYN flood attack. Since the stealthy attack traffic is still

subject to rate-limiting with Early Packet Rate Limit, the attacker cannot

misuse the value prediction technique to perform successful attacks. Thus,

the value prediction technique significantly ameliorates the situation in a

randomly spoofed attack case, and does not make it any worse in a stealthy

attack case.

D-WARD uses the value prediction technique to predict sequence number

values in TCP packets on new connections. As a TCP connection is set up, each

party chooses an initial sequence number (ISN) for this connection. This number

is used by the other party to keep count of received bytes, to perform reordering

of packets that come out of order and to request retransmissions of lost content.
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Each outgoing TCP packet is marked by a sequence number value that is derived

from ISN in the following manner: for packets carrying bytes [N, N +1..N +K] on

a connection, the sequence number value will be ISN + N + K. So the sequence

number value increases slowly within the connection.

The ISN value was initially designed as a time-driven, linearly increasing

value [Ins81]. It was generated based on a clock that was incremented each 4

microseconds, so that ISN = T , where T is the clock value at connection setup

time. This approach generated a security hole and the opportunity for TCP

connection hijacking attacks as explained in [Bel96]. Let us assume that machines

A and B have formed a trusted relationship so that users from A can execute

commands at B without supplying a password, through rsh (remote shell). In

a connection hijacking attack, the attacker impersonates A to execute malicious

commands at B. He first contacts B by sending a SYN packet and receiving a SYN

ACK, with B’s ISN. As ISN is increased linearly, the attacker can now predict all

future ISN values. He then impersonates A and sends a TCP SYN packet with

A’s spoofed address to B. B replies with a SYN ACK packet to A. The attacker

cannot see this packet but, as he can guess B’s ISN, he has enough information

to generate an ACK and complete the three-way handshake in A’s name. The

attacker then has unlimited access to B and can execute malicious commands.

To counter this attack, the ISN generation process was altered to include a

small amount of randomness so that the ISN value cannot be guessed by the

attacker. It is recommended in [Bel96] that the ISN be generated as a sum of

timer value and a cryptographic function on the connection identifier. Therefore,

ISN is calculated as: ISN = T + f(localIP, localport, foreignIP, foreignport).

In order to devise an ISN prediction function, we first examine how differ-

ent operating systems choose their initial sequence numbers. We initiate TCP
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Figure 6.8: Sequence number space of Windows 2000

connections sequentially to three machines, one running Windows 2000, another

running Linux 2.4.9, and the third running FreeBSD 4.8. We then plot the initial

sequence number space in Figures 6.8, 6.9 and 6.10, respectively.

As we can see, FreeBSD generates purely random initial sequence numbers6

while Windows and Linux generate initial sequence numbers that slowly increase

with time. On closer observation, as depicted in Figures 6.11 and 6.12 that are

zoomed-in segments of Figures 6.8 and 6.9, we conclude that Windows chooses

its initial sequence numbers purely as a function of time (ISN = T ) while Linux

introduces a small amount of randomness (ISN = T + rnd) as suggested in

6This approach is not compliant with [Bel96], but the complete randomization of the se-
quence number space minimizes the possibility of connection hijacking attacks.
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Figure 6.9: Sequence number space of Linux 2.4.9
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Figure 6.10: Sequence number space of FreeBSD 4.8
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Figure 6.11: A closer look at sequence number space of Windows 2000

[Bel96].

D-WARD aims to predict a range of possible initial sequence number values

in TCP packets from a given source address. In order to do so, D-WARD builds

an Initial Sequence Number Model for each source address. The model records

the last sequence number and the time it was seen for the two most recently vali-

dated connections. The choice of last sequence number instead of initial sequence

number is necessary, since the connection is validated after the setup phase when

only its current sequence number can be observed. This will introduce a small

error in prediction. However, as D-WARD predicts only a range of legitimate

values, and not the exact value, this error is well within the margin.7

7Note that the degree of the ISN prediction that is sufficient for D-WARD purposes is not
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Figure 6.12: A closer look at sequence number space of Linux 2.4.9
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D-WARD periodically examines the two recorded sequence numbers and clas-

sifies machine as Windows, Linux or FreeBSD. More details about this classifi-

cation are given in Section 7.4.2. During an attack, D-WARD will attempt to

validate each outgoing TCP packet from transient connections using the Initial

Sequence Number Model for its source address. If the sequence number from the

packet is within the error margin of the predicted value, the packet will be subject

to Early Packer Rate Limit ; otherwise it will be subject to regular rate-limiting.

6.5 Rate-Limiting Component

The rate-limiting component adjusts rate limit values every Flow Observation

Interval. It receives classification results from the observation component and

flow behavior history from the traffic policing component and devises a rate-limit

value for each active flow.

Flow behavior history is expressed through two metrics: the byte amount of

flow traffic forwarded to the victim — Bsent, and the byte amount of flow traffic

dropped due to rate limiting — Bdropped. Both values are measured within the

Flow Observation Interval. Together they define the Flow Compliance Factor

— a measure of how well a flow complies to the imposed rate limit. The Flow

Compliance Factor is calculated as:

fcf =
Bsent

Bsent + Bdropped

(6.1)

Flow Compliance Factor values range from 0 to 1, where higher values indicate

better compliance with the imposed rate limit.

sufficient to carry out connection hijacking attacks.
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6.5.1 Exponential Decrease

When the flow is classified as an attack flow for the first time after a long period

of being normal, its rate is limited to a fraction of the offending sending rate.

The size of the fraction is specified by the configuration parameter fdec.

rl =
Bsent

Flow Observation Interval
∗ fdec (6.2)

Subsequent classification of a flow as an attack restricts the rate limit further,

applying exponential decrease according to the formula:

rl = min(rl,
Bsent

Flow Observation Interval
) ∗ fdec ∗ fcf (6.3)

where rl is the current rate-limit. The Flow Compliance Factor — fcf — de-

scribes the degree of misbehavior of the flow, and defines the restrictiveness of

the rate-limit. Flows that have worse behavior (fcf ¿ 1) are quickly restricted

to very low rates, whereas this restriction is more gradual for better-behaving

flows (fcf ∼ 1). The lowest rate limit that can be imposed is defined by the

MinRate configuration parameter, so that at least some packets can reach the

destination and trigger a recovery phase.

6.5.2 Linear Increase

When the attack-detected signal becomes negative, the associated flow will be

classified as suspicious, at which point the recovery mechanism is triggered. The

recovery phase is divided into slow-recovery and fast-recovery. During the slow-

recovery phase, a flow is penalized for having been classified as an attack flow by

a linear increase in the allowed rate according to the formula:

rl = rl + rateinc ∗ fcf (6.4)
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The speed of the recovery is defined by the rateinc parameter and the duration

of the slow-recovery phase is defined by the Compliance Period.

6.5.3 Exponential Increase

When the flow has been classified as normal, the fast-recovery phase is triggered.

During the fast-recovery phase the rate is increased exponentially according to

the formula:

rl = rl ∗ (1 + finc ∗ fcf) (6.5)

The speed of the recovery is defined by the finc parameter, and the rate increase

is limited by the MaxRate configuration parameter. As soon as the rate limit

becomes greater than MaxRate, the recovery phase is finished, and the rate limit

is removed.

Figure 6.13 depicts rate-limit values and classification results for a sample

flow.

6.6 Traffic-Policing Component

The traffic-policing component periodically receives rate-limited flow information

from the rate-limiting component (every Flow Observation Interval) and connec-

tion classification information from the observation component (every Connection

Observation Interval). It uses this information to reach a decision whether to for-

ward or drop each outgoing packet in the following manner:

• If the packet belongs to a non-limited flow, forward it, else

• If the packet belongs to a good connection, forward it, else
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• If the packet is TCP and its sequence number matches the predicted value

and the Early Packet Rate Limit for the flow is not exhausted, forward it,

else

• If the flow rate limit is not exhausted, forward the packet, else

• Drop the packet.

6.7 Stealthy Attackers

The attacker may resort to stealthy techniques to avoid attack detection or to

trick D-WARD into classifying malicious connections as legitimate. In the fol-

lowing sections we discuss each of these strategies and offer possible approaches

to detect and counter them.

6.7.1 Small-Rate Attacks

The legitimate TCP and ICMP flow models will work well for high-volume at-

tacks, when the attack creates a large disturbance in the flow statistics. However,

a stealthy attacker may try to avoid detection by distributing attack traffic over

multiple source networks so that each network observes only a small portion of

the attack. If the amount of attack traffic is much smaller than the amount of

legitimate traffic sent to the victim, then the victim responses to legitimate traffic

may maintain a low sent-to-received packet ratio, hindering detection. In the case

of small-rate attacks that aim merely to degrade the victim’s resources, detection

will be completely avoided. In the case of TCP attacks that severely damage

the victim’s operation, the stealthy attacker will not be able to completely avoid

detection. Once the victim is severely overloaded, it will stop generating a suffi-
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cient amount of replies. Legitimate TCP traffic will then back off (and become

smaller than the amount of attack traffic), thus exposing the attack and inducing

detection. However, this detection comes after the fact. A significant portion

of legitimate traffic has already been dropped and legitimate connections have

likely suffered a large delay.

In order to improve detection time and accuracy for small-rate attacks, D-

WARD introduces the non-validated residue detection method. This method

amends flow classification and attempts to detect attacks based on the steady

backlog of transient connection traffic. The flow statistics are extended to keep

track of the amount of traffic belonging to transient connections at each Flow Ob-

servation Interval. We shall call this value non-validated traffic. Under normal

system operation the amount of non-validated traffic is zero, since all connections

within the outgoing traffic are classified as good. When new connections are initi-

ated, they create short-lived peaks of non-validated traffic that are soon brought

to zero in subsequent classification steps. Under normal load these peaks are far

apart. Under the attack, assuming that the connection classification mechanism

has a low level of false negatives, the amount of non-validated traffic will exhibit

prolonged bursts.

Figure 6.14 depicts the amount of non-validated traffic during normal oper-

ation and during the attack in a sample experiment. Each peak represents the

initiation of a new connection to the victim. The tests involved intensive and fre-

quent file transfers between our test network and the victim, thus the frequency

of peaks is much higher than should be expected in the real network. It can be

observed that under normal load the width of the peaks is small (2 to 3 seconds).

Between peaks the amount of non-validated traffic returns to zero. In the attack

case, the amount of non-validated traffic is positive for the whole duration of the
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attack, following the shape of the attack traffic.

D-WARD detects prolonged bursts by calculating the minimum amount nvmin

of observed non-validated traffic in the previous Nburst classification intervals.

Attack detection is triggered if nvmin is greater than zero. From the above de-

scription, it is evident that successful detection does not depend on the volume of

the attack but purely on whether its duration is longer than Nburst intervals. We

call this method continuous non-validated residue detection. Detection of small-

rate attacks is tested in experiments, and the results are presented in Section

9.5.

6.7.2 Small-Rate, Infrequent, Pulsing Attacks

A sophisticated attacker could further attempt to avoid detection by performing

pulsing attacks. He would send the attack traffic during Ton intervals (where

Ton < Nburst) to avoid continuous non-validated residue detection), and pause

during the next Toff intervals, then repeat the cycle. Note that the rate of the

pulsing attack must be small to avoid detection by legitimate flow models. One

sample pulsing attack and the disturbances it invokes in non-validated traffic

statistics are shown in Figure 6.15.

To counter this type of attack, D-WARD samples the amount of non-validated

traffic in each interval with probability psample. Collected samples are stored in

a first-in-first-out (FIFO) queue of size Nq. Attack detection is triggered if at any

observation interval the minimum element in this queue has a non-zero value. The

size of the queue Nq determines the probability that the attack will be detected;

a shorter queue increases the chances of detection, but also may increase the

number of false positives. Sampling probability psample defines the speed of

filling the queue and thus affects the detection. We call this detection method
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Figure 6.14: The amount of non-validated traffic during normal operation and

attack
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Figure 6.15: Pulsing attack and the amount of non-validated traffic that it pro-

duces
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pulsing attack detection. Detection of pulsing attacks is tested in experiments

and the results are presented in Section 9.5.

6.7.3 Spoofing Acknowledgments

When classifying TCP and ICMP connections and flows, D-WARD relies on re-

turn packets from the destination to determine whether this host is under attack.

If an attacker could spoof these reply packets, then D-WARD would believe that

it was seeing legitimate traffic. The attacker would have to gather twice the num-

ber of slave machines, half within the D-WARD network for the actual attack

and half on the outside for spoofed reply generation. He would further have to

carefully plan the attack and synchronize output of inside and outside slaves, in

order to generate appropriate acknowledgements for current outgoing packets.

One possible solution for detecting this attack would be to allow communi-

cation between the victim and D-WARD. Since the victim would issue explicit

notifications of the attack false replies could not delay detection. However, attack

connections would still be falsely classified as legitimate.

The other approach is to have D-WARD allocate a small set of records and

delay some outgoing TCP packets, storing their contents in these records. Each

outgoing and incoming TCP packet is then matched against these records. If

an outgoing match is found (i.e., connection data and sequence numbers match

those in the records), the duplicate packet is dropped. If an incoming match is

found, (i.e., connection data and acknowledgment numbers match the connection

data and sequence numbers from the records), attack detection is triggered and

the associated connection is invalidated.

The current D-WARD implementation does not contain any of the above

methods for detection of spoofing acknowledgements. However, the communica-
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tion of D-WARD system with the victim was enabled and tested in the COSSACK

and DefCOM integration efforts, described in Sections 10.1 and 10.2.

6.8 Security

Security protocols are sought-after targets because their compromise often gives

a good deal of power and prestige to the attacker. Special care must be taken

to secure D-WARD against intrusion, misuse and attacks that deny service to

legitimate clients.

Compromising a D-WARD router would allow an attacker to apply rate limits

on any packets flowing out of the domain. However, the attacker can do much

more damage with full control of the router, so adding D-WARD functionality

makes the situation no worse.

D-WARD is unlikely to make it easier for the attacker to break into the router,

since it exchanges no messages with other entities. D-WARD nodes were specifi-

cally designed to operate autonomously from other D-WARD nodes. In general,

more complex systems are less secure than simple systems, so removing commu-

nication is a benefit. The autonomous operation removes the problems associated

with securing communication sessions among a large number of participants and

relying on potentially subverted hosts. Furthermore, in the unlikely event that a

D-WARD node is compromised, it cannot be used to compromise other nodes.

Clever attackers will try to disguise attack traffic as normal traffic so that

D-WARD will not filter it. The attackers do not have much room to maneuver

because the attack must mimic the congestion control mechanisms found in the

protocols. Since the attackers want to degrade performance through congestion,

obeying congestion-avoidance mechanisms is contradictory. The attacker would
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be forced to employ many more machines to get the same effect at the victim.

UDP traffic poses a special problem for D-WARD. D-WARD recognizes only

UDP attacks that use spoofed connections. An attacker could choose to consis-

tently spoof a few addresses and thus avoid detection while still getting a suffi-

ciently high volume of packets to the victim. This problem is discussed at length

in Section 6.4.1. Extending D-WARD with a resource-sharing mechanism would

enable detection and control of a few high-volume UDP connections, and counter

this attack. The other approach is to incorporate D-WARD into a distributed

DDoS defense system and thus complement its detection with victim-end detec-

tion. Two projects that combine D-WARD with a distributed defense system are

described in Sections 10.1 and 10.2.

The attacker could aim its attack, not at a particular target machine, but

at an incoming link to a target network. He would divide the attack so that

a stream to each individual machine seems normal and is not detected by D-

WARD, but the aggregate flow to the target network overwhelms its input link.

D-WARD bases the detection of TCP and ICMP attacks on the ratio of number

of sent and received packets, rather than on the stream size. We expect that

in the case of incoming link overload, some target machines would not generate

sufficient responses and their streams would be tagged as attacks. The current

implementation of D-WARD could not correlate these attacks, but such a feature

could be added. Communication with the victim network would also be helpful

in detecting of this type of attack.

D-WARD is a DDoS defense system, and it would be highly undesirable if

attackers were able to leverage it to deny service to legitimate traffic. Since D-

WARD examines traffic on a connection granularity, an attacker who can spoof

a currently active connection or soon-to-be-active connection can:
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• “Smuggle” its packets among legitimate packets, if he is not sending ag-

gressively, or

• Deny service to legitimate packets if his aggressive traffic leads to rate-

limiting and classification of a given connection as bad.

TCP and ICMP connections could not be spoofed before they were set up

because the victim would not respond correctly. UDP connections are more

problematic, because a source can decide to send large amounts of data with-

out a destination requesting it. An attacker could hijack legitimate connections

from the source network to a given destination port running a UDP application

by spoofing traffic to this port with a source address of a legitimate client. If

the attacker generates an excess amount of UDP traffic, the attack would be de-

tected and the connection would be classified as bad. Thus, the legitimate traffic

to the victim on this connection would be subject to rate-limiting and some le-

gitimate packets would be dropped. The hijacking of connections is possible in

networks today and D-WARD does not offer any feature to make this easier for

the attacker. Additionally, the hijacked connection is likely to lead to interrupted

communication between the legitimate client and the attacker, since inserted bo-

gus packets confuse the end hosts and lead one side to close the connection. The

possible legitimate packet drops due to rate-limiting only speed up this process.

D-WARD operation is based on statistics and classifications stored in flow

and connection tables. Since these tables are of limited capacity, they could

overflow if the attacker generates a large amount of spoofed packets. D-WARD

performs emergency clean-up of tables in case of overflow. We expect that flow

table overflow would not affect the system performance, whereas connection table

overflow would lead to degraded service to those legitimate connections that have

been expelled from the table. Better emergency cleanup strategies would amend
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this.

An attacker could perform a denial-of-service attack on the source network

by preventing the response packets from reaching the D-WARD system. Seeing

the reduced number of response packets, D-WARD could reach the conclusion

that the source network is generating a DDoS attack and place a rate limit on

outgoing flows. Thus the attacker denies the outgoing bandwidth to legitimate

clients from the source network. There are two aspects to be noted here:

• Well-behaved flows will back off themselves in the absence of response pack-

ets, which will lead to their classification as “good,” so they will not be

affected by the rate limit.

• In the case where most reverse traffic does not reach the source network,

legitimate communication from the source network is difficult or impossible.

The reverse traffic will also confuse most protocols, and they will probably

reduce their sending rates or shut down the connections entirely. Fake

replies cause the same problem in today’s networks, so adding D-WARD

preserves the status quo.

D-WARD’s deployment should not introduce additional security problems

into the network. While D-WARD operation could lead to a few legitimate packet

drops during some attacks (hijacked connections, connection table overflow and

DoS on the D-WARD router), its good detection and fast response should make

the benefits outweigh the costs.
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6.9 Deployment

D-WARD faces two deployment challenges: (1) motivation for deployment and (2)

asymmetric traffic. We discuss each of those challenges in the following sections

and offer possible solutions.

6.9.1 Deployment Motivation

In addition to stopping outgoing DDoS attacks, D-WARD provides better service

to a source network’s legitimate clients during an attack. Thus, D-WARD brings

direct benefit to the source network, in addition to relieving the victim of the

attack traffic and improving Internet security. We expect that this will be a

major motivation for deployment.

Cooperation formed the basis of the original ARPANET, and this is still seen

in the Internet protocols of today. Different sessions of TCP, for instance, will

fairly share bandwidth on a link, and new protocols are often judged on whether

they are “TCP friendly.” D-WARD operates in much the same way by protecting

against DDoS attacks originating from a D-WARD protected network. The site

deploying D-WARD benefits by not losing bandwidth to outgoing attacks (for

sites who pay by usage, this could represent a significant benefit) and not having

to deal with the social implications of hosting DDoS slaves.

Currently, the only results of unknowingly hosting a DDoS attack are annoy-

ing calls to system administrators and misuse of resources. In the future, it is

possible that contracted or legislative action will hold those who do not take rea-

sonable steps to secure their system liable for damages inflicted by attacks that

misuse their machines. In this case, a corporation deploying D-WARD could ar-

gue that it had followed current security practices and therefore cannot be held
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liable if DDoS attacks originate on its networks.

Many people have concluded that stopping attacks completely is impossible,

since there is a vast number of machines whose owners are unaware of security

holes or unwilling to fix them. For example, despite the best efforts to eradicate

worms like Code Red [CERc] and Nimda [CERb], these still control a massive

number of machines on the Internet. D-WARD brings this problem to a level of

ISP or stub networks. Their administrators are likely to be security-conscious,

and a single D-WARD system installed at their exit router would prevent DDoS

attacks from the whole network.

D-WARD is unlikely to completely handle the DDoS threat in sparse deploy-

ment. If an attacker compromises only machines from networks not protected by

D-WARD, their attack traffic will reach the victim unimpeded. Legitimate clients

from D-WARD protected networks will not receive any benefit from D-WARD’s

operation during this attack, but will not suffer any harm either. However, if

D-WARD is incorporated into a distributed defense system, such as DefCOM,

it will significantly improve the quality of service perceived by legitimate clients

even in sparse deployment. More details are given in Section 10.2.

6.9.2 Asymmetric Traffic

If a source network has several gateway routers (some or all of which are coupled

with D-WARD) it may happen that some flow and connection traffic will exhibit

asymmetric behavior, traversing different gateways in incoming and outgoing di-

rections. This will cause problems to D-WARD’s statistic gathering, creating

incomplete observations and resulting in misclassifications. There are two possi-

ble solution to this problem:
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1. D-WARD instances at different gateways communicate to exchange traffic

statistics prior to classification. This would enable each D-WARD system

to form a complete view of the traffic, but would create a lot of commu-

nication overhead as statistics would have to be exchanged prior to every

classification. Alternately, classification periods (Flow Observation Interval

and Connection Observation Interval) could be prolonged, thus reducing

communication overhead but increasing detection delay and classification

inaccuracy.

2. D-WARD instances could be installed within the source network at connec-

tion points between stub subnetworks and the rest of the source network.

Thus D-WARD would have a complete view of the subnetwork traffic and

police it appropriately. One such deployment is illustrated in Figure 6.16.
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Figure 6.16: Deployment of D-WARD within source network in asymmetric traffic

case
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CHAPTER 7

Linux Router Implementation

D-WARD is implemented in a Linux router and in an IXP router. The Linux

router implementation was done as a part of this thesis, whereas the IXP router

implementation was done as a part of Gregory Prier’s master’s thesis [Pri03].

The Linux router implementation consists of two parts:

1. The user-level implementation of the monitoring and rate-limiting compo-

nents

2. The loadable kernel module implementation of a traffic-policing component

This division of functionalities between user and kernel levels emerged after two

prior versions of the D-WARD code had been modified to achieve better perfor-

mance and greater ease of deployment.

The traffic-policing component decides whether to forward or drop packets

in a unique manner. It could not have been implemented using Linux firewall

functionality, so it was written from scratch. The customized implementation

was also beneficial for evaluation of numerous traffic shaping approaches. The

observation and rate-limiting components were also written from scratch.

D-WARD 1.0 was implemented purely at the user level. Since the traffic-

policing component needs direct access to packets being relayed by the router to

execute forwarding or dropping decisions, packets needed to be captured as they
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pass through the kernel and copied to the user level. This was performed using

the IP queue functionality in the Linux kernel and userspace packet queuing.

Netfilter provides a mechanism for passing packets out of the stack for queue-

ing to userspace, then receiving these packets back into the kernel with a verdict

specifying what to do with the packets (such as ACCEPT or DROP). These pack-

ets may also be modified in userspace prior to reinjection back into the kernel.

For each supported protocol, a kernel module called a queue handler may register

with netfilter to perform the mechanics of passing packets to and from userspace.

The standard queue handler for IPv4 is ip queue. It is provided as an experi-

mental module with 2.4 kernels, and uses a Netlink socket for kernel/userspace

communication.

Once ip queue is loaded, IP packets may be selected with iptables and queued

for userspace processing via the QUEUE target. For example, running the following

commands:

# modprobe iptable filter

# modprobe ip queue

# iptables -A OUTPUT -p icmp -j QUEUE

will cause any locally generated ICMP packets (e.g., ping output) to be sent to

the textitip queue module, which will then attempt to deliver the packets to a

userspace application. If no userspace application is waiting, the packets will be

dropped. An application may receive and process these packets via libipq library.

Once processed (examined and/or modified), packets are returned to the ker-

nel space along with the decision: NF ACCEPT to accept the packet or NF DROP

to silently drop the packet. More information on IP queue functionality can be

obtained by looking at libipq man pages.

IP queue provides all the functionality necessary for the traffic-policing com-
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ponent. However, copying packets (header and data) to userspace adds a large

overhead that becomes critical as the packet rate increases. D-WARD 1.0 could

only handle up to 1000 packets per second, thus prohibiting realistic DDoS attack

tests. The decision was thus reached to move the traffic-policing functionality into

the kernel space.

D-WARD 2.0 implemented the traffic-policing component inside the kernel

and the observation and rate-limiting components at the user level. Communi-

cation between the two parts was achieved using Linux system calls.

The rate-limiting component was implemented as a loadable Kernel module.

At the kernel level, packet capture was achieved using netfilter hooks. Netfilter

[net] is a framework for packet mangling, outside the normal Berkeley socket

interface. Each packet handing protocol (such as IPv4 or IPv6) defines “hooks”

which are well-defined points in a packet’s traversal of that protocol stack. As a

packet reaches each of these points, the protocol will call the netfilter framework

with the packet and the hook number. Kernel modules can register to listen to

the different hooks for each protocol. When a packet is passed to the netfilter

framework (upon encountering one of the hooks), netfilter checks to see if anyone

has registered for that protocol and hook. If so, each registered kernel module

gets a chance to examine (and possibly alter) the packet in the order in which

they have registered the hook. Upon processing, the kernel module can discard

the packet (returning NF DROP to the framework), allow it to pass (returning

NF ACCEPT), tell netfilter to forget about the packet (returning NF STOLEN), ask

netfilter to queue the packet for userspace (returning NF QUEUE) or repeat this

hook (returning NF REPEAT). Part of this functionality was used in D-WARD 1.0

through iptables rules to intercept packets and send them to userspace.

User level modules (observation and rate-limiting component) delivered the
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Legitimate Connection List and Rate Limit Rules to the kernel using newly added

system calls. The observation module received packet statistics using a modified

tcpdump code. tcpdump uses the Berkeley Packet Filter (BPF) utility and pcap

library to capture the header (and partially the content) of packets matching the

given filter expression. The observation component modified the code so that

the information is not printed but instead input into the statistics processing

function.

D-WARD 2.0 could handle high packet rates (up to 10000 packets per sec-

ond) but it had the following limitations. The libpcap utility copies packet header

(and content) on a per-packet basis. This incurs overhead that becomes critical

as packet rates increase. At packet rates higher than 1000 packets libpcap was

unable to capture information on all passing packets. While D-WARD was still

operational, there was a possibility that missing information would contain le-

gitimate packet information and thus affect D-WARD performance. The other

limitation was the ease of deployment. As D-WARD 2.0 added new system calls

to the Linux kernel, it required kernel modification for deployment — a difficult

undertaking that can frequently get very long and complicated. Furthermore,

addition of new system calls or modification of old ones is a security hole in the

Linux kernel and is forbidden in some releases.

D-WARD 3.0 implemented the traffic-policing component inside the kernel

and the observation and rate-limiting components at the user level, just like

D-WARD 2.0. However, communication between the two parts was achieved

using ioctl calls. This enabled easy two-way communication between user and

kernel processes and a seamless installation process. Installation requires that

two devices be created:

1. The dward device is used for two-way communication between the obser-
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vation and rate-limiting components on one side, and the traffic-policing

component on the other, and

2. The sniff device is used for sniffing packet information and delivering it to

the observation component.

The kernel processes then gather necessary information and store it, while the

observation and rate-limiting components perform ioctl calls to pull this infor-

mation when needed. The following sections will provide a detailed description

of this architecture. The addition of customized packet-sniffing code enables ef-

ficient statistics gathering and copying to userspace, thus providing support for

high packet rates.

D-WARD 3.1 adds two important features that affect system performance:

1. Initial sequence number prediction. None of versions 1.0, 2.0 and

3.0 included value prediction technique. Those versions were thus dropping

new connection packets during the attack, and their performance depended

directly on frequency of connection initiation and connection length. To

correct this problem, the initial sequence number prediction technique was

developed and implemented in D-WARD 3.1, which is the current version

of D-WARD code.

2. Legitimate UDP connection models. Legitimate UDP connection

models are implemented only in D-WARD 3.1. The earlier versions may

thus inflict collateral damage on legitimate UDP traffic.

The following sections provide more details about the D-WARD 3.1 version.
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7.1 Architecture

The architecture of the D-WARD 3.1 implementation is shown in Figure 7.1. The

ovals framed with the solid line depict parallel processes in D-WARD. The ovals

framed with the dotted line depict devices created for communication between

user and kernel processes. Dashed lines with arrows illustrate ioctl calls that

facilitate information exchange between user and kernel processes via created de-

vices. Small squares at the bottom of ovals depicting kernel processes indicate the

order in which those processes have registered to listen to the forwarding netfilter

hook. Thus, the packets pass (and are handled) first by the gst module and then

by the rl module. Dashed rectangles show grouping of processes and data within

the three D-WARD components: observation, rate-limiting and traffic-policing.

7.2 Observation Component

The observation component stores flow and connection statistics in hash tables,

for fast access.

7.2.1 Flow Hash Table

The flow hash table is indexed by the IP address of the foreign destination and

contains the following fields:

• number of sent and received packets per protocol (TCP, ICMP, UDP, other

and total)

• number of sent and received bytes per protocol (TCP, ICMP, UDP, other

and total)
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Figure 7.1: Architecture of D-WARD 3.1 implementation
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• number of dropped bytes

• smoothed TCP packet ratio (number of sent divided by number of received

packets)

• smoothed ICMP packet ratio (number of sent divided by number of received

packets)

• timestamp of the last reset

• timestamp of the last activity (a packet sent or received)

• flow classification

• number of active connections for UDP protocol

• minimum value of non-validated traffic per protocol (TCP and ICMP only)

in a given window

• number of recent consecutive suspicious classifications

These fields are depicted in Figure 7.2 (shaded fields are not present in the struc-

ture, e.g., active connection count is kept only for UDP statistics).

7.2.2 Connection Hash Table

The connection hash table is indexed by the key containing IP addresses and

ports of the local and foreign hosts. A connection table record is depicted in

Figure 7.3 and contains the following fields:

• number of sent and received packets

• number of sent and received bytes
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Figure 7.2: Flow table record

• connection protocol (TCP, UDP, ICMP or other)

• timestamp of the last reset

• timestamp of the last activity (a packet sent or received)

• connection classification

• application state (for UDP connections)

• application state expiry

• flag denoting whether this is a new connection

As the hash table size is much smaller than the number of possible entries,

some entries will collide on insertion. The hash tables use double hashing to

reduce the probability of collisions. Double hashing uses two functions: h1(x)

and h2(x) to calculate the index for a given key x. The first index that will

be accessed is calculated as: index = h1(x). If the collision occurs, subsequent
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Figure 7.3: Connection table record

indexes will be calculated as index = h1(x) + trial ∗ h2(x), where trial denotes

the number of collisions encountered so far. The idea of this approach is that

even if two items hash to the same value of h1, they will have different values

of h2, so that different probe sequences will be followed, resulting in better hash

occupancy.

Flow hash indexes are calculated using the following hash functions:

k = foreignIP

h1(k) = k % size

h2(k) = 1 + (k % (size − 1)) (7.1)

Connection hash indexes are calculated using the following hash functions:

k = foreignIP + localIP + foreignport + localport

h1(k) = k % size

h2(k) = 1 + (k % (size − 1)) (7.2)
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To avoid an extensive search for the item in the hash tables (or for the empty

slot to insert the item) the number of trials was limited to three. If after three

trials an item (or empty slot) is not found, the search (or insertion) is aborted.

This optimization significantly increases efficiency while not inflicting large infor-

mation loss. As hash accesses occur at each packet passing, reducing hash access

overhead greatly improves performance.

Hash overflows are checked at record insertion time. If the hash is close to

being full (90% full), an emergency cleanup will be invoked to free space for

new records. During emergency cleanup, each record is examined to determine

whether it can be deleted. If, after the first pass, the hash occupancy is not

reduced below Rehash load factor high (this is a configuration parameter, usu-

ally set at 75%), subsequent passes are initiated using laxer criteria for record

deletion. The following criteria is used to decide whether a record should be

deleted:

• For a flow record: delete the record if the number of sent packets is less

than SP and the number of sent bytes is less than SB. SP and SB are

doubled in every pass.

• For a connection record: delete the record if the number of sent packets

is less than SP and the number of sent bytes is less than SB and the

connection is classified as transient. SP and SB are doubled in every pass.

For performance reasons, no rehashing is allowed, and dynamic memory allo-

cation is deployed only when necessary.
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7.2.3 Obtaining Packet Information

The process get packet info continuously requests packet information from the

kernel module gst. However, for performance reasons, the incidence of copy-

ing the data between kernel and userspace should be minimized. Therefore, the

packet information is only copied when the kernel buffer is more than one-third

full or after a number of copy requests (a value of 1000 has been chosen empiri-

cally) have been refused. When get packet info receives packet data it parses

information in each packet and updates corresponding entries in the flow and

connection hash tables.

7.2.4 Classifying Flows and Connections

The function process periodically classifies flows and connections and calls the

rate limit function to determine the appropriate rate limits. A flow will be clas-

sified as an attack if at least one of the following conditions is met:

• Its smoothed TCP ratio is greater than TCPrto.

• Its smoothed ICMP ratio is greater than ICMPrto.

• The number of UDP connections is greater than nconn and the ratio of

number of UDP packets sent over number of UDP connections is lower

than pconn.

• Non-validated residue detection is used and the minimum value of non-

validated TCP traffic is greater than zero.

• Non-validated residue detection is used and the minimum value of non-

validated ICMP traffic is greater than zero.
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If none of the above conditions is met, the flow will be classified as suspicious

if its number of consecutive compliant classifications is lower than Compliance

Period or the amount of dropped bytes is greater than zero. Otherwise the flow

will be classified as normal.

A connection will be classified as transient if: (1) it is a TCP connection and

less than 3 packets were sent from its setup, or (2) it is an ICMP connection and

less than 2 packets were sent from its setup, or (3) it is a UDP connection and it

has no application-level models. A connection will be classified as good if exactly

one of the following conditions is met:

• It is a TCP connection and its TCP ratio (ratio of number of packets sent

over number of packets received) is greater than TCPrto.

• It is an ICMP connection and its ICMP ratio is greater than ICMPrto. Note

that legitimate ICMP connections will be used for non-validated residue

detection but will not be inserted into Legitimate Connection List.

• It is a UDP connection and it has an application level model and it is in

a valid (non-error) state.

Otherwise, a connection will be classified as bad. All TCP and UDP connections

that have been classified as legitimate are inserted into the Legitimate Connection

List that is delivered to kernel module rl through ioctl calls.

After connections have been classified, connection packet and byte statis-

tics are reset. The connection is further checked for inactivity by comparing

its last activity timestamp with Good Inactive Period for good connections, or

Transient Inactive Period for transient connections. Bad connections are not

tested for inactivity as they will be eventually classified as good (and shortly
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thereafter inactive) once they have stopped participating in the attack. Inactive

connections will be deleted.

7.3 Rate-Limiting Component

The rate-limiting component is invoked from the process function, after flows

and connections have been classified. It obtains flow drop information from the

rl module using ioctl calls and defines the appropriate flow rate limits according

to formulas 6.2, 6.3, 6.4, and 6.5. Rate-limited flows are inserted into the Rate

limit hash table which is indexed by the IP address of the foreign destination

and only contains information about the current rate limit. The contents of this

table are then delivered to the rl module using ioctl calls.

After the rate limit has been defined, flow packet and byte statistics are

reset. A flow is further checked for inactivity by comparing the last activity

timestamp with Flow Inactive Period for normal flows. Information on attack

and suspicious flows is not tested for inactivity as they will be eventually classified

as normal after being inactive. Inactive flows will be deleted.

7.4 Traffic-Policing Component

Traffic-policing is implemented within the rl module, using netfilter hooks. The

rl module stores information about rate-limited flows in its Limited flow hash

table and information about good connections in its Good connection hash

table. Those hash tables are organized similarly to the flow and connection

tables within the observation component. A limited flow hash record is depicted

in Figure 7.4 and contains the following fields:
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sent Bytes


sent good Bytes

sent predicted Bytes


estimated good traffic load


dropped Bytes


rate limit


Figure 7.4: Limited flow table record

• number of bytes sent

• number of bytes sent within good connections

• number of bytes sent because they matched the predicted sequence number

range

• number of bytes dropped

• current rate limit

• estimated good traffic load

A good connection hash record does not contain any additional data — just

the connection key.

7.4.1 Traffic-Policing Process

Traffic-policing is performed on each outgoing packet in the following manner:

1. If packet is randomly spoofed (its address is not within Police Address Set),

drop it.

2. If the associated flow is not in the Limited Flow Hash Table, forward the

packet.
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3. If the associated connection is in the Good Connection Hash Table, forward

the packet and update sent good bytes within the associated flow record in

Limited Flow Hash Table.

4. If the packet is TCP, it matches the predicted sequence number range and

the sum of sent predicted bytes, and packet length is not greater than Early

Packet Rate Limit, forward the packet and update sent predicted bytes.

5. If the sum of sent bytes and the packet length is not greater than the

rate limit and there is still enough space for the estimated good traffic

load within the rate limit, forward the packet and update sent bytes. The

estimated good traffic load is calculated as the maximum value of sent good

bytes on the associated flow, exponentially aged.

Packet statistics are reset every second. Figure 7.5 depicts the traffic policing

process.

7.4.2 Machine Models

As discussed in Section 6.4.3, D-WARD performs sequence number range pre-

diction for TCP connections. To predict the sequence number range, a model

is built for each address from the police address set. This model contains the

sequence number information from two recently established TCP connections —

s1 and s2, along with their timestamps t1 and t2 and the machine classification.

The classification is performed by calculating a prediction: sp = predict(s1, t1, t2)

and validating sp against s2 for different operating system models.

The Windows OS model expresses the sequence number dependency as:

sp = s1 + (t2 − t1) ∗WIN FACTOR + WIN CONSTANT (7.3)
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Figure 7.5: Traffic-policing process
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If sp is within WIN ERROR MARGIN from s2, the machine is classified as

Windows. The Windows model is more stringent than the Linux model, so this

classification is performed first.

The Linux OS model expresses the sequence number dependency as:

sp = s1 + (t2 − t1) ∗ LIN FACTOR + LIN CONSTANT (7.4)

If sp is within LIN ERROR MARGIN from s2, the machine is classified as

Linux.

If the machine does not pass either the Windows or the Linux OS test, the

machine is then classified as “other”, and no prediction can be done.

The validation process for TCP packets during rate-limiting is the same as

the validation process for machine classification. The recent sequence number

information (s1 and s2) is updated only from connections inserted into the good

connection hash table.

7.5 Traffic-Sniffing

Traffic-sniffing is implemented within the gst module, using netfilter hooks. The

gst module simply collects a specified number of bytes from the packet (header

and data) and stores them in a buffer. If the buffer overflows, the subsequent

packets will be passed without information gathering.
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CHAPTER 8

Experiment Setup

To capture the variety of possible attacks and to fairly evaluate the D-WARD

system, we must allow variations in a number of different dimensions: (1) test

topology, (2) background workload of legitimate traffic, and (3) attack character-

istics. We also must define metrics that will be used to measure system perfor-

mance. The following sections give more details about the test methodology and

the chosen metrics.

8.1 Environment

The test topologies used in experiments must resemble realistic DDoS network

topology. This requirement is hard to meet as the scale of a DDoS network is

too large to be recreated in a testbed. In order to test D-WARD with topolo-

gies as large as possible, the Emulab [WLS02] test facility was chosen for the

experiments.

Emulab started as a moderate-scale (just under 300) isolated testbed consist-

ing of real machines at University of Utah that could be shared among researchers.

It has recently been augmented to include simulated and wide-area nodes that

are all seamlessly integrated into one test framework. D-WARD tests use only

real machines.

The Emulab real-machine testbed is a universally-available time- and space-
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shared network emulator. Several hundred PCs in racks, combined with secure,

user-friendly, web-based tools, and driven by ns-compatible scripts or a Java

GUI, allow users to remotely configure and control machines and links down to

the hardware level. Packet loss, latency, bandwidth, queue sizes — all can be

user-defined. Even the OS disk contents can be fully and securely replaced with

custom images by any experimenter.

University of Utah’s local installation currently features high-speed Cisco

switches connecting five 100Mbit interfaces on each of 168 PCs. The Univer-

sity of Kentucky’s installation contains 48 similarly networked PCs. The PC

nodes can be used as edge nodes running arbitrary programs, simulated routers,

traffic-shaping nodes, or traffic generators. While an ”experiment” is running,

the experiment (and its associated researchers) get exclusive use of the assigned

machines, including root access.

8.2 Legitimate Traffic

The goal of DDoS defense mechanisms is to allow normal network operations

to proceed despite DDoS attacks. Since the method of attack on those normal

operations works on network traffic, proper evaluation of defense mechanisms

requires capturing realistic characteristics of normal network traffic. Legitimate

traffic during the experiments must be representative of legitimate traffic pat-

terns one expects to encounter in real networks. To meet this requirement we

designed a trace reconstruction tool, called tracegen that produces live legitimate

traffic whose characteristics resemble those from a supplied tcpdump file. The

trace reconstruction tool consists of a profiling program and a script generation

program.
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A profiling program is first invoked on the tcpdump file containing traffic

traces, and supplied with the specification of local subnet prefix. The program

profiles trace data on connection granularity (communication between two IP ad-

dresses and ports) observing only communications between hosts with addresses

within local subnet prefix, and the outside world. The following information is

extracted on each connection, and stored in the connection profile file:

• Beginning time — connection origination time, measured from the trace

start

• Duration

• Type — TCP, UDP or ICMP

• Application — Telnet, FTP, DNS or NTP. TCP connections are observed

as generating either Telnet-like or FTP-like traffic, based on their dynamics.

During Telnet-like connections, connection data is exchanged in small-size

packets over a long time period (more than 5 seconds), whereas during

FTP-like connections, connection data is exchanged in bursts over a short

time period (less than 5 seconds). UDP connections are classified as DNS,

NTP or other. In the tests, only DNS and NTP traffic are reconstructed.

• Total amount of traffic sent from the server to the client — each

connection is observed as communication between a server and a client.

Only server-side data will be reconstructed, and the client will issue live

requests to obtain it.

• Direction — within the connection, assignment of server/client roles is

done based on the amount of traffic sent from one party to the other. The

party that sends a larger amount of data to its peer is considered to be a
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server. Based on its IP address and local subnet prefix, we can determine

whether this is a local or a foreign server. If the server is a local host, the

connection will have IN direction. This means that it will be initiated from

the foreign client. Otherwise, the connection will have OUT direction, and

it will be initiated from the local client.

In addition to TCP, ICMP, NTP and DNS traffic models, D-WARD also builds

streaming media traffic models. These models cannot be verified at Emulab,

since Emulab machines do not have sound cards and cannot generate or receive

streaming media traffic. Thus a separate set of tests will be performed to verify

D-WARD’s behavior towards streaming media traffic. Those tests will be run in

our small-scale testbed in the LASR group at UCLA.

A script generation program takes as input:

• the connection profile file generated by the profiling program

• two files containing IP addresses of local and foreign hosts that will perform

live trace reconstruction

• frequency of reconstruction N — this option allows for the possibility that

only each Nth connection will be reconstructed if we cannot obtain sufficient

resources to reconstruct each connection

• frequency of additional DNS queries

• frequency of additional NTP queries

• frequency of additional ICMP messages

The script generation program then parses the connection profile file and,

based on connection direction, assigns each connection to one of the local (or for-

eign) hosts that is this connection’s client in round-robin fashion. The connection
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server is randomly chosen from the set of foreign (or local) hosts. If frequencies of

additional messages are non-zero, then additional DNS, NTP or ICMP messages

will be generated. DNS messages can be generated both as outside queries (from

the foreign client to the local server) and as inside queries (from the local client

to the foreign server). NTP and ICMP messages are only generated as inside

queries. The output of the script generation program is a set of bash scripts that

will initiate connections assigned to each of the local and foreign machines. In

addition to this, the duration of each connection will be measured using the time

command.

For telnet connection reconstruction, a custom program, run telnet, is writ-

ten that takes as input connection duration and amount of data to be transferred.

This program is invoked by the connection’s client remotely at the connection’s

server. The program calculates a unit of data to be transfered each second as

ratio of total amount of traffic and connection duration. The program then flips

a coin each second, randomly selecting the value from 0 to 3 times the calcu-

lated unit, and transfers this amount of data to the client. This approach creates

pseudo-uniform communication similar in dynamics to telnet traffic.

For FTP connection reconstruction, a file of a size specified in the connection

profile is generated at the server using a custom-written gen ftp program. This

file is then copied to the client during the test, thus reconstructing the given

connection.

For DNS query reconstruction, a simple DNS network is set up in which all

foreign hosts are authoritative servers for one namespace, and all local hosts are

authoritative servers for another namespace. The nslookup command is then

invoked with the set server option specifying the server to be queried. The

command requests the address from the local or foreign namespace, according to
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 0  13   TELNET IN 12135


 4    7   FTP OUT 21823278


 8    0    DNS IN


13   0    NTP OUT

15   2   ICMP OUT


Connection profile file


cpf.txt


1.1.1.1


1.1.1.2


local hosts file


lhfile


5.1.1.1


5.1.2.1


5.1.2.2


foreign hosts file


fhfile


ltgen  lhfile  fhfile  cpf.txt   1


ssh -C 1.1.1.1 "run_telnet 13 12135"


sleep 4


scp 5.1.2.1:/tmp/file-1 /tmp


sleep 11


ping -c 10 5.1.2.1


gen_ftp /tmp/file-1 21823278


sleep 8

nslookup a.b.c.d set server 1.1.1.1


sleep 13


ntpdate 5.1.2.2


script for 1.1.1.1


script for 1.1.1.2


script for 5.1.1.1

script for 5.1.2.1


Figure 8.1: Sample connection profile and script files

connection direction.

For NTP query reconstruction, the ntpdate command is invoked at the local

client specifying the server to be queried.

For ICMP query reconstruction, the ping -c 10 command is invoked at the

local client specifying the server to receive ten successive ICMP ECHO requests.

Figure 8.1 depicts a sample connection profile file and script files.

We then select a five-minute long segment from a tcpdump file capturing

traffic traces between the UCLA Computer Science Department and the rest of

the Internet. Legitimate traffic from this segment will be reconstructed during

test runs. One test run lasts for 300 seconds.

Figures 8.2 and 8.3 show the moving average of the amount of traffic sent and

received (in packets and bits) in the chosen trace and in the reconstructed traffic.

The solid line represents trace statistics and the dotted line represents the recon-

structed traffic statistics. We see that all reconstructed traffic measures closely
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Figure 8.2: Sent traffic in packets and bytes
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Figure 8.3: Received traffic in packets and bytes

resemble the measures in the real trace, which indicates that the reconstruction

strategy generates realistic network traffic.

8.3 Attack Traffic

In order to test different attack scenarios, we developed a customizable DDoS

attack tool, called cleo. It uses a master-slave architecture to coordinate at-

tacks among multiple slaves. Attack traffic mixture (relative ratio of TCP SYN,
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Parameter Value Description

Packet Type pt pu pi Mixture of TCP, UDP, and ICMP in relative ratios pt, pu, and pi

Dynamics ON Maximum rate

ONOFF po pf Maximum rate intervals of po seconds separated by intervals of pf

seconds

GON go Maximum rate is achieved through a gradual increase during go

seconds.

GOFF go po gf pf Maximum rate is achieved through a gradual increase during go

seconds and it is held for po seconds. The rate is decreased gradu-

ally over gf seconds and remains zero for pf seconds.

Spoofing NONE No spoofing

RANDOM Random address is spoofed

SUBNET prefix Only addresses from specified prefix are spoofed

Packet size ps All attack packets have ps bytes

VAR pmin pmax Packet size is picked randomly between pmin and pmax

Target ports RANDOM Random ports are targeted

FIX portfile Only ports specified in portfile are targeted

Rate rate Maximum attack rate in Bps

Table 8.1: Attack tool customization options.

ICMP ECHO and UDP packets), packet size, attack rate, target ports, spoofing

techniques and attack dynamics can be customized. Table 8.1 gives the available

choices for each of these parameters.

In the experiments, attacks will last 100 seconds, starting at 27 seconds and

ending at 127 seconds from the beginning of the run.
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Figure 8.4: Topology 1 for basic D-WARD evaluation

8.4 Topologies

In order to obtain comparable results over various tests, we limited the variety

of topologies used in the experiments. For basic D-WARD evaluation testing the

performance of one D-WARD system, we use Topology 1, depicted in Figure 8.4.

The topology consists of 6 local hosts and 8 foreign hosts, which are sufficient

to recreate the total traffic in the trace. Local hosts are divided into two source

networks — Net1 and Net2 — for the following reasons:

1. In order to create a denial-of-service effect at the victim, a sufficiently strong

(high volume) attack must be generated. If this attack is created only from

one source network, the volume may be too large for the D-WARD system
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to handle.

2. In order to reproduce the distributed nature of the attack, we must engage

at least two attack machines

Each source network also hosts one attacker. Networks reach the outside world

via routers. Source routers — routerNet1 and routerNet2 host D-WARD systems

that are activated when necessary. As each machine has four available network

interfaces (the fifth is used for control traffic), hosts are connected to routers in

several stages using intermediate switches — ethNet1, ethNet2,eth1Netv, eth2Netv

and eth3Netv. All links in the network are 100Mbps links, except the link between

eth1Netv and server1Netv which is 10 Mbps. This link will be a critical resource

that is targeted by some attacks.

For evaluation of stealthy attacks and interactions between D-WARD systems,

we use Topology 2 depicted in Figure 8.5.

The topology consists of 10 local hosts and 10 attackers divided into 10 iden-

tical source networks — Net1 through Net10. The victim (foreign) network is the

same as in Topology 1. Source routers — routerNet1 through routerNet10, host

D-WARD systems that are activated when necessary. Intermediate switches —

hub1, hub2, hub3, hub4, eth1Netv, eth2Netv and eth3Netv, are used to connect all

nodes while satisfying the four network interface limit. All links in the network

are 100Mbps links, except the link between eth1Netv and server1Netv which is

10 Mbps. This link will be a critical resource that is targeted by some attacks.

For evaluation of streaming media models, we use Topology 3 depicted in

Figure 8.6.

As the Emulab machines do not have sound cards they cannot run streaming

media applications and therefore cannot be used to test D-WARD streaming
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Figure 8.5: Topology 2 for D-WARD evaluation in large-scale network
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Figure 8.6: Topology 3 for evaluation of D-WARD streaming media models

media models. We tested these models in our testbed, at the UCLA Laboratory

for Advanced Systems Research (LASR). Topology 3 consists of four machines:

client, attacker, router and server. All links in the network are 100Mbps links,

except the link between the router and the client which is 56 Kbps. This link

will be a critical resource targeted by the attack. During the test run, legitimate

traffic is generated by streaming a file in Real Audio format from the server

(deploying a Helix Universal Server [Reaa] application) to the client (running

Real Player 8[Reab]). During this communication, a high-rate, UDP attack is

generated from the attacker to the client. The network hosting the attacker and

the server is protected by D-WARD, residing on the router.

8.5 Metrics

Performance metrics used in evaluation of DDoS defense systems should clearly

describe how well the system combats DDoS attacks. We use the following metrics

to capture defense performance:

Legitimate Traffic Service Level. The ultimate goal of DDoS defense is

to avoid the denial-of-service effect and provide good service to legitimate traffic

during an attack. Thus the most important metric of success is the level of

service that legitimate traffic receives during an attack. We calculate this level
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as the total amount of legitimate traffic that reaches the victim while the attack

is ongoing. This amount is expressed as a percentage of the amount received in

the baseline case, when no attack is present.

Figure 8.7 depicts the meaning of this measure. Experiment time, in seconds,

is given on x-axis while the total amount of legitimate traffic that the victim has

received from the experiment’s start until a given time is shown on the y-axis. The

figure represents the baseline case, when only legitimate traffic is present and no

defense is engaged, and the moderate-rate UDP attack case when both attack and

legitimate traffic are present and no defense is engaged. The solid line represents

the baseline case, and the dashed line represents a moderate-attack case. The

denial-of-service effect manifests itself in the discrepancy between the dashed and

the solid line, and is caused by the attack traffic taking over network resources

from the legitimate traffic. When the attack subsides, legitimate clients’ TCP

mechanisms retransmit some quantity of the lost traffic, allowing for the dashed

line to meet the solid line. Some connections will thus recover from the attack

and experience the denial-of-service effect only as temporary loss of service and

communication delay, while other connections will fail to complete their transfer

until the experiment ends. In Figure 8.7 service level would be calculated as a
b
.

Ideally the service level in the case where the defense is engaged should be

1. Care must be taken to include in the evaluation only those experiments that

clearly create a denial-of-service effect when no defense is deployed, as only those

represent a relevant baseline for comparison.

The denial-of-service effect is not deterministic, which produces a significant

amount of variability in all measures. Figure 8.8 shows the amount of the legiti-

mate traffic received by the victim in three experiment runs, featuring the same

UDP flooding attack and same legitimate traffic. No defense is engaged in any of
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Figure 8.7: Service level calculation
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Figure 8.8: Variability of DoS effect

these runs. The variability stems from packet interactions in competition for a

limited resource. Even though the same traffic is generated in each run, packets

from various connections, interleaved with attack packets, arrive at the bottle-

neck link in different order. This leads to different packets being dropped in each

run, thus affecting in different manners the TCP mechanism for each legitimate

connection that has experienced packet drops.

To capture this variability, we ran each experiment ten times and presented

each metric with boxplots. A boxplot produces a rectangular box encompassing

the lower quartile, and upper quartile values. Median value is depicted with a
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dot inside the box. Service level is shown on a 0 to 1 scale, where 0 means that

no legitimate traffic is reaching the victim during the attack, and 1 means that

all legitimate traffic is reaching the victim during the attack.

Connection Delay and Connection Failure. The amount of legitimate

traffic delivered does not completely capture the attack effect on legitimate traffic,

as some of the legitimate packets received during the attack may be retransmis-

sions. Therefore, we complement the legitimate traffic service level measure with

connection delay and connection failure metrics. These measures capture the

user’s experience of the attack.

Both the connection delay and connection failure measures are calculated

only for those connections whose duration overlaps the attack. As connections

originate independently from one another, only those connections that send their

traffic while the attack is ongoing will experience adverse effects. Connection

delay is given as set of three measures:

• total delay, representing the sum of all connection delays in the test run

• maximum per connection delay, representing the largest connection

delay in the test run

• median per connection delay, representing the most-likely connection

delay in the test run

Connection failure is expressed as number of failed connections in the test run.

Each test run is repeated ten times and presented with boxplots.

In order to present comparable graphs over multiple experiments, we scale

y-axis in the following manner. For total connection delay, y-axis runs from 0 to

5000 seconds. For maximum per connection delay, y-axis runs 0 to 300 seconds,
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thus encompassing the duration of the test run. For median per connection delay

y-axis runs 0 to 1 second. For number of failed connections, y-axis runs 0 to 100

connections.

Attack Detection Time. The important effectiveness measure is the time

needed for attack detection. This time is measured from the start of the attack.

Each test run is repeated ten times and presented with boxplots. We scale y-axis

from 0 to 100 seconds, encompassing the duration of the attack.

Attack Response Time. Although the attack may be detected early, the

defense becomes effective only when the attack traffic starts to be dropped. This

metric is captured through attack response time, which is the time of the dropping

of the first attack packet. This time is measured from the start of the attack.

Each test run is repeated ten times and presented with boxplots. We scale y-axis

from 0− 100 seconds encompassing the duration of the attack.

Attack Level. To express how well the defense controls the attack, we

measure the total amount of attack traffic delivered to the victim. This amount

is compared to the attack traffic amount that reaches the victim when defense is

inactive, and is expressed as a percentage. Ideally this level should be 0. However,

since typically the only bad effect of DDOS traffic is interfering with legitimate

traffic, reducing the attack level to 0 is of secondary importance to increasing

the legitimate traffic sevice level to 1. Each test run is repeated ten times and

presented with boxplots. We scale y-axis from 0 to 100%.

Legitimate Drops. To express the selectiveness of the defense and measure

collateral damage to legitimate traffic, we measure the total amount of legitimate

traffic dropped by the defense system. This amount is compared to the legitimate

traffic amount that reaches the victim during baseline runs and is expressed as

a percentage. Ideally this measure should be 0. Each test run is repeated ten
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times and presented with boxplots. We scale y-axis from 0 to 1%.
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CHAPTER 9

Performance Results

D-WARD has many configurable parameters that guide its operation. Some of

these parameters are set based on the examination of legitimate traffic seen in

our network (such as tcprto), while others are set empirically to satisfy the trade-

off between high effectiveness and low per-packet overhead (such as hash table

sizes). Table 9.1 summarizes parameter values used in the following experiments.

In order to measure defense performance, we first examine attack rates that

create a denial-of-service effect at the victim. Section 6.2 depicts the effect of

these attacks on the victim’s service and on legitimate connections. The following

sections present defense performance in various settings.

9.1 Attack Effect

Different levels of UDP, TCP and ICMP attacks are tested in Topology 1 (shown

in Figure 8.4) to determine the minimum attack rates that create the denial-of-

service effect. In the case of UDP and ICMP attacks, the targeted resource is the

10Mbps link between eth1Netv and server1Netv. In the case of TCP attacks, the

targeted resource is the victim’s connection buffer.
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Parameter Value

Flow Hash Size 1003 records

Flow Inactive Period 360 seconds

Connection Hash Size 50003 records

Good Inactive Period 360 seconds

Transient Inactive Period 5 seconds

Rate Limit Hash Size 1003 records

Limited Flow Hash Size 103 records

Good Connection Hash Size 2003 records

Flow Observation Interval 1 second

Connection Observation Interval 1 second

Compliance Period 20 seconds

Min Rate 16 Kbps

Max Rate 80Mbps

rateinc 4 Kbps

fdec 0.5

finc 1

Early Packet Rate 800 Kbps

tcprto 3

icmprto 1.1

nconn 100

pconn 3

Nburst 5

Nqueue 4

psample 0.6

Table 9.1: D-WARD configuration parameter values
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9.1.1 UDP Flooding Attack

We generate UDP flooding attacks with 1KB-long packets, thus maximizing the

chance of bandwidth consumption. Both source networks host attackers that

produce the same attack rates.

9.1.1.1 Service Level

Figure 9.1 depicts the service level in a case of UDP attack. The x-axis shows the

total amount of attack traffic flooding the critical link, and the y-axis shows the

measured service level. Service starts degrading when the attack traffic exceeds

link capacity — 10Mbps. It degrades severely as the attack rate increases. The

service level measure exhibits significant variability for attack rates lower than

80Mbps. We believe that this occurs because the attack rate is not high enough

to severely overwhelm the link, so ocassionaly some legitimate traffic succeeds in

reaching the victim machine.

9.1.1.2 Connection Delay

Figures 9.2, 9.3 and 9.4 depict total delay for all connections and maximum

and median per connection delays. We observe that total and maximum delay

increase rapidly as soon as rate increases above 10Mbps. Meanwhile, median

connection delay increases slightly due to attack, but remains quite small (at

most 300ms). This indicates that delay distribution over impacted connections

has a heavy tail — several connections are severely delayed (around 190 seconds)

while the majority of connections suffer only a slight delay.
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Figure 9.1: Service level in the case of a UDP flooding attack, no defense
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Figure 9.2: Total connection delay in the case of a UDP flooding attack, no

defense
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Figure 9.3: Maximum per-connection delay in the case of a UDP flooding attack,

no defense
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Figure 9.4: Median per-connection delay in the case of a UDP flooding attack,

no defense
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Figure 9.5: Number of failed connections in the case of a UDP flooding attack,

no defense

9.1.1.3 Connection Failure

Figure 9.5 depicts the number of failed connections. We observe that this number

increases rapidly around 10Mbps attack rate, and reaches values from 25 to 45

failed connections. Since there are 433 connections whose durations overlap the

attack, this indicates a connection failure of around 10% .

9.1.2 ICMP Flooding Attack

We generate ICMP flooding attacks with 1KB-long packets, thus maximizing the

chance of bandwidth consumption. Both source networks host attackers that
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Figure 9.6: Service level in the case of an ICMP flooding attack, no defense

produce the same attack rates. Because the ICMP attack also targets network

bandwidth just like the UDP attack, we expect similar results.

9.1.2.1 Service Level

Figure 9.6 depicts the service level in the case of an ICMP attack. Just like the

case of a UDP flooding attack, service starts degrading when the attack traffic

exceeds link capacity — 10Mbps. It degrades severely as the attack rate increases.

The service level measure exhibits a large variability for attack rates lower than

80Mbps.
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Figure 9.7: Total connection delay in the case of an ICMP flooding attack, no

defense

9.1.2.2 Connection Delay

Figures 9.7, 9.8 and 9.9 depict total delay for all connections and maximum and

median per-connection delays. We observe that all delays behave as they did in

the UDP attack case. Total and maximum delays increase rapidly as the rate

increases above the 10Mbps attack rate; the median connection delay increases

slightly, but remains quite small (less than 300ms).
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Figure 9.8: Maximum per-connection delay in the case of an ICMP flooding

attack, no defense
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Figure 9.9: Median per-connection delay in the case of an ICMP flooding attack,

no defense
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Figure 9.10: Number of failed connections in the case of an ICMP flooding attack,

no defense

9.1.2.3 Connection Failure

Figure 9.10 depicts the number of failed connections. Again, the behavior is simi-

lar to that in UDP attack case. The number of failed connections increases rapidly

for rates above 10Mbps, and reaches values from 20 to 42 failed connections.

9.1.3 TCP Flooding Attack

We generate TCP SYN flooding attacks, targeting SSH port 22. The critical

resource targeted with a TCP attack is the connection buffer at the victim. The

attack spoofs random source addresses and ports in order to generate many con-
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nection records and quickly exhaust the buffer space. As the number of generated

connections is proportional to the packet rate, this rate is shown at x-axis.

9.1.3.1 Service Level

Figure 9.11 depicts the service level in the case of a TCP attack. Service is quickly

reduced to 90% when the attack traffic exceeds 100 packets per second. However,

unlike previous attack cases, service level is not affected by a TCP attack rate

increase. A TCP SYN attack exhausts connection buffer space, prohibiting setup

of new connections, but it does not affect the already established connections.

As soon as the connection buffer is exhausted (at 100 packets per second), the

effect is visible. The service will be degraded by the amount of traffic belonging

to new connections that attempt to be established while the attack is ongoing. In

our tests, this amount is around 10%. Generally, the level of service degradation

in the case of a TCP SYN attack will be a function of the amount of traffic

belonging to new connections that originate during the attack.

9.1.3.2 Connection Delay

Figures 9.12, 9.13 and 9.14 depict the total delay for all connections and maximum

and median per-connection delays. Total and maximum delay increase rapidly at

the very beginning and they do not change with the attack rate. This behavior is

expected based on the above analysis of the TCP SYN attack. Median connection

delay remains quite small (below 200ms).
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Figure 9.11: Service level in the case of a TCP flooding attack, no defense
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Figure 9.12: Total connection delay in the case of a TCP flooding attack, no

defense
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Figure 9.13: Maximum per-connection delay in the case of a TCP flooding attack,

no defense
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Figure 9.14: Median per-connection delay in the case of a TCP flooding attack,

no defense
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Figure 9.15: Number of failed connections in the case of a TCP flooding attack,

no defense

9.1.3.3 Connection Failure

Figure 9.15 depicts the number of failed connections. This number rises promptly

to values from 14 to 17 and does not change with the attack rate, as expected.

9.1.4 Maximum Attack Rate

D-WARD can handle up to 12,000 packets per second, assuming that all packets

belong to spoofed connections. Since every packet in this case results in a hash

traversal to find the appropriate record, this maximizes per-packet overhead.

At higher rates, packet handling will interfere with forwarding, causing severe
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Attack Min. pps Min. bps Max. pps Max. bps

UDP flood 600 4.5 M 12 000 90 M

ICMP flood 600 4.5 M 12 000 90 M

TCP flood 25 8000 12 000 3.6 M

Table 9.2: Relevant attack ranges

packet loss. This figure defines the maximum packet rate per one source network.

Additionally, the link bandwidth can support up to 100 Mbps. Any higher attack

rates will potentially create congestion upstream of D-WARD, at a point that is

beyond the defense system’s control. Thus in all tested attacks, the attack rate

per source network will be kept below 100 Mbps and below 120 kpps.

Table 9.2 summarizes the relevant ranges of attack rates that will be used to

evaluate D-WARD performance.

9.2 UDP Attacks

In order to test D-WARD’s performance with UDP attacks, we generate a UDP

flooding attack targeting random ports, using subnet spoofing of IP addresses

and random spoofing of source ports. These spoofing techniques will generate a

large number of UDP connections, thus exerting stress on D-WARD’s connection

hash table. All packets are 1KB long, maximizing the chance of bandwidth

consumption. We test the whole range of attack rates that produce a denial-of-

service effect. As there are two source networks generating the attack traffic, the

tested range is from 9 Mbps to 183 Mbps.
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9.2.1 Service Level

Figure 9.16 shows the service level perceived by legitimate clients during the

attack. The case when the defense is engaged is compared to the case when

the defense is not present. D-WARD successfully relieves the denial-of-service

effect at the victim, providing a 100% service level to legitimate clients during

the attack.

9.2.2 Connection Delays

Figure 9.17 depicts total legitimate connection delay during the attack. D-WARD

successfully maintains total connection delay around 50 seconds, regardless of the

attack rate. This is less than 3% of the total connection delay in the attack-only

case.

Figure 9.18 depicts the maximum legitimate connection delay during the at-

tack. We observe that D-WARD successfully controls connection delay, keeping

maximum delay per connection below 40 seconds. While 40 seconds represent

quite a long delay, this delay is much worse when the defense is not engaged

(around 200 seconds). The reason why some connections experience such a se-

vere delay even when D-WARD is present lies in the TCP congestion control

mechanism. A few connections whose packets are dropped due to congestion in

the few seconds after the start of the attack and before the defense is engaged,

back off severely and reduce their sending rate. Even though these (and other le-

gitimate) connections are treated favorably later on, this initial setback manifests

itself in a long delay until these connections are completed.

Figure 9.19 depicts median legitimate connection delay during the attack.

Median delay was already small in the attack-only case, so we do not expect
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Figure 9.16: Service level in the case of a UDP flooding attack, with and without

defense 200
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Figure 9.17: Total connection delay in the case of a UDP flooding attack, with

and without defense
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Figure 9.18: Maximum per-connection delay in the case of a UDP flooding attack,

with and without defense 202
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Figure 9.19: Median per-connection delay in the case of a UDP flooding attack,

with and without defense 203



significant improvement from D-WARD deployment. Still, D-WARD manages to

keep median delay at a very low level (around 100ms) and stable, in spite of the

increasing attack rate.

9.2.3 Connection Failure

Figure 9.20 depicts the total number of failed connections during the attack. D-

WARD maintains very low levels of failed connections — less than 4 regardless of

the attack rate. This is around 1% of the total legitimate connections. Without

D-WARD, the connection failure is much worse, around the values from 25 to 45

failed connections for strong attacks.

9.2.4 Defense Performance

Figures 9.21 and 9.22 depict D-WARD detection and response times for the UDP

flooding attack. We observe that detection occurs in the first second of the attack,

and the response starts 3 to 4 seconds later. This is a very prompt reaction to

the attack.

Figure 9.23 depicts the percentage of legitimate traffic dropped by D-WARD.

As we can observe, this value is around zero.1 This indicates that no collateral

damage is inflicted on legitimate traffic due to D-WARD operation.

Figure 9.24 depicts the percentage of attack traffic forwarded. This value is

between 3% to 4% which agrees with our expectations. As D-WARD imposes

very strict rate limits on detected attacks, the largest portion of the attack traffic

reaches the victim in the short interval before the response has been activated.

In this test response takes place after 3 to 4 seconds, and the attack lasts for

1Upon examining the raw data, we learned that occasionally, a maximum of 100 bytes will
be dropped in the whole test run.
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Figure 9.20: Number of failed connections in the case of a UDP flooding attack,

with and without defense 205
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Figure 9.21: D-WARD attack detection time in the case of UDP flooding attack
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Figure 9.22: D-WARD response detection time in the case of UDP flooding attack
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Figure 9.23: Percentage of legitimate traffic dropped by D-WARD in the case of

UDP flooding attack
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Figure 9.24: Percentage of attack traffic forwarded by D-WARD in the case of

UDP flooding attack

100 seconds, so the expected percentage of attack traffic that reaches the victim

should be 3% to 4%.

9.3 ICMP Attacks

In order to test D-WARD’s performance with ICMP attacks, we generate an

ICMP flooding attack using subnet spoofing of IP addresses. These spoofing

techniques will generate a large number of ICMP connections, thus exerting stress

on D-WARD’s connection hash. All packets are 1KB long, maximizing the chance

of bandwidth consumption. We test the whole range of attack rates that produce
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a denial-of-service effect. As there are two source networks generating the attack

traffic, the tested range is from 9Mbps to 180 Mbps.

9.3.1 Service Level

Figure 9.25 depicts service level perceived by legitimate clients during the attack.

Just like the case of the UDP flooding attack, D-WARD successfully relieves the

denial-of-service effect at the victim, providing a 100% service level to legitimate

clients during the attack.

9.3.2 Connection Delays

Figure 9.26 depicts total legitimate connection delay during the attack. D-WARD

successfully maintains a total connection delay of around 70 seconds, regardless

of the attack rate. This value is less than 5% of the total connection delay in the

attack-only case, for all but the lowest attack rates.

Figure 9.27 depicts maximum legitimate connection delay during the attack.

We observe that D-WARD successfully controls connection delay, keeping the

maximum delay per connection below 20 seconds. As explained in Section 9.2.2,

the reason for such a long delay lies in the TCP congestion control mechanism

that is activated by legitimate packet drops due to congestion in the short period

(2 to 5 seconds) while D-WARD is being activated.

Figure 9.28 depicts median legitimate connection delay during the attack.

Median delay was already small in the attack-only case. D-WARD manages to

control median delay, maintaining the low level of around 100ms regardless of

attack rate.
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Figure 9.25: Service level in the case of ICMP flooding attack, with and without

defense 211
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Figure 9.26: Total connection delay in the case of ICMP flooding attack, with

and without defense
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Figure 9.27: Maximum per-connection delay in the case of ICMP flooding attack,

with and without defense 213
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Figure 9.28: Median per-connection delay in the case of ICMP flooding attack,

with and without defense 214



9.3.3 Connection Failure

Figure 9.29 depicts the total number of failed connections during the attack. D-

WARD maintains very low levels of failed connections — less than 2 regardless

of the attack rate. This is around 0.5% of the total legitimate connections.

9.3.4 Defense Performance

Figures 9.30 and 9.31 depict D-WARD detection and response times for an ICMP

flooding attack. We observe that detection occurs within 1 to 2 seconds after the

attack starts, and the response starts 2 to 3 seconds later.

Figure 9.32 shows the percentage of legitimate traffic dropped. As we can

observe, this value is around zero.

Figure 9.33 depicts the percentage of attack traffic forwarded. For small attack

rates, this value goes up to 100%. We attribute this to the fact that small attack

rates do not produce a strong denial-of-service attack. Thus the response will

not severely limit the attack traffic, reducing the attack’s sending rate only so

much as to alleviate the denial-of-service effect. At higher rates, the percentage

of attack traffic forwarded drops to values from 3% to 4%, which agrees with our

expectations.

9.4 TCP Attacks

In order to test D-WARD’s performance with TCP attacks, we generate a TCP

SYN flooding attack targeting the SSH port (22), using subnet spoofing of IP

addresses and random spoofing of source ports. These spoofing techniques will

generate a large number of TCP connections, thus exerting stress on D-WARD’s
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Figure 9.29: Number of failed connections in the case of ICMP flooding attack,

with and without defense 216
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Figure 9.30: D-WARD attack detection time in the case of a ICMP flooding

attack
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Figure 9.31: D-WARD response detection time in the case of ICMP flooding

attack
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Figure 9.32: Percentage of legitimate traffic dropped by D-WARD in the case of

ICMP flooding attack
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Figure 9.33: Percentage of attack traffic forwarded by D-WARD in the case of

ICMP flooding attack
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connection hash. Further, as all transactions use SSH and port 22, we maximize

the attack effect on legitimate traffic. We test the whole range of attack rates that

produce a denial-of-service effect. As there are two source networks generating

the attack, the tested range is from 50 pps to 24Kpps. Both source networks host

attackers that produce the same attack rates.

9.4.1 Service Level

Figure 9.34 depicts service level perceived by legitimate clients during the attack.

As in the previous tests, D-WARD successfully relieves the denial-of-service effect

at the victim, providing a 100% service level to legitimate clients during the

attack.

9.4.2 Connection Delays

Figure 9.35 depicts total legitimate connection delay during the attack. D-WARD

successfully maintains a total connection delay of around 200 seconds, regardless

of the attack rate. This value is larger than the total connection delay in the

UDP and ICMP attack cases, but it is still less than 20% of the total connection

delay in the attack-only case.

Figure 9.36 depicts maximum legitimate connection delay during the attack.

We observe that D-WARD successfully controls connection delay, keeping maxi-

mum delay per connection lower than 40 seconds. As explained in Section 9.2.2,

the reason for such a long delay lies in the TCP congestion control mechanism

that is activated by legitimate packet drops due to congestion in the short period

(2 to 5 seconds) while D-WARD is being activated.

Figure 9.37 depicts median legitimate connection delay during the attack. Me-
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Figure 9.34: Service level in the case of a TCP SYN flooding attack, with and

without defense 222
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Figure 9.35: Total connection delay in the case of a TCP SYN flooding attack,

with and without defense
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Figure 9.36: Maximum per-connection delay in the case of TCP SYN flooding
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Figure 9.37: Median per-connection delay in the case of TCP SYN flooding

attack, with and without defense 225



dian delay was already small in the attack-only case, and D-WARD just maintains

this level.

9.4.3 Connection Failure

Figure 9.38 depicts total number of failed connections during the attack. D-

WARD maintains low levels of failed connections — less than 7 regardless of the

attack rate. This is less than 2% of the total legitimate connections.

9.4.4 Defense Performance

Figures 9.39 and 9.40 depict D-WARD detection and response times for UDP

flooding attack. We observe that detection takes up to 20 seconds for the smallest

attack rate (100 pps) but becomes prompt for higher attack rates (around 1

to 2 seconds). The response starts around 5 seconds after the detection. The

detection delay for small attacks occurs because small attack rates do not create

the denial-of-service effect promptly, but rather do so after some time. Thus

detection cannot observe any anomalous events until connection buffer fills up;

it therefore lags after the actual onset of the attack.

Figure 9.41 depicts percentage of legitimate traffic dropped. As we can ob-

serve, this value is around zero.

Figure 9.42 depicts percentage of attack traffic forwarded. For small attack

rates, this value goes up to 20%. Small attack rates do not produce a strong

denial-of-service attack, which delays detection and response. At higher rates,

the percentage of attack traffic forwarded drops to values from 5% to 10% which

agrees with our expectations, based on attack detection and response times.
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Figure 9.38: Number of failed connections in the case of a TCP SYN flooding

attack, with and without defense 227



0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Attack rate (Kpps)

D
et

ec
tio

n 
tim

e 
(s

ec
)

Attack detection time

Figure 9.39: D-WARD attack detection time in the case of TCP SYN flooding

attack
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Figure 9.40: D-WARD response detection time in the case of TCP SYN flooding

attack
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Figure 9.41: Percentage of legitimate traffic dropped by D-WARD in the case of

TCP SYN flooding attack
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Figure 9.42: Percentage of attack traffic forwarded by D-WARD in the case of

TCP SYN flooding attack
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9.5 Detection Limits

In order to measure D-WARD’s sensitivity for attack detection, we use Topology

1 (shown in Figure 8.4). We generate very small rate attacks from both source

networks. We also turn on non-validated residue detection, thus enabling D-

WARD to detect TCP and ICMP attacks early. While none of the generated

attacks should cause a denial-of-service effect, our measurements show that we

can still successfully detect and stop these attacks.

The smallest TCP attack detected by D-WARD is an one-packet-per-second

attack. It is detected after 7 seconds. The smallest ICMP attack detected by

D-WARD is also an one-packet-per-second attack. It is detected after 8 seconds.

Both of these results are expected. As the non-validated residue detection only

looks at the continued presence of non-validated traffic, it should detect a very

small rate attack easily. The detection time depends only on the Nbursts con-

figuration parameter and should be between Nbursts and 2 ∗ Nbursts observation

intervals. In our tests this produces a 5 to 10 second detection range.

The smallest UDP attack detected by D-WARD depends on the level of IP

spoofing and new connection generation.2 When the attacker deploys random

spoofing, the smallest UDP attack detected by D-WARD is a 100-packet-per-

second attack.

The attacker may also try to generate pulsing attacks to avoid detection.

Large-rate pulsing attacks will be detected by observing resulting anomalies in

TCP and ICMP flow statistics. Small-rate pulsing attacks with an active interval

2Recall that non-validated residue detection is not engaged for UDP traffic, as legitimate
UDP connection models do not cover all possible UDP connections. Thus it is likely that non-
validated traffic in the UDP case belongs to legitimate connections whose legitimate models do
not exist in D-WARD. The UDP attack detection is only done based on the legitimate UDP
flow models.
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Figure 9.43: Detection time in pulsing attack case

larger than Nbursts will also be detected using continuous non-validated residue

detection. Therefore, the attacker can only try to avoid detection by using small-

rate pulsing attacks with an active interval shorter than Nbursts.

We ran a set of experiments to determine D-WARD detection performance for

this type of attack. The duration of active periods, Ton, was fixed at Nbursts−1,

i.e., 4 seconds, while the duration of inactive periods, Toff, was varied from 4 to

14, effectively changing the ratio Ton

Ton+Toff
from 0.5 to 0.2.

Figure 9.43 shows the detection time for pulsing attacks. The detection time

depends exponentially on the ON/OFF period ratio but is reasonably small even

for very small ratios (e.g., for an attack whose inactive intervals last five times its

active intervals, the detection time was 18 seconds). This means that the attacker
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who would like to avoid detection will have to perform small-rate, small-duration,

repetitive attacks with large inactive periods, which forces him to subvert a much

larger number of machines than before.

9.6 Synchronization Effects

In order to examine whether D-WARD encounters some synchronization issues

when widely deployed, we constructed a large-scale experiment with the Topology

2 (shown in Figure 8.5). We now repeat the above experiments (UDP, ICMP and

TCP SYN flood) with this topology. We generate the same amount of legitimate

traffic, now spread over 10 source networks. We also generate the same sets of

attacks as in Sections 9.2, 9.3 and 9.4, in the sense that the victim receives the

same level of attack traffic as in the small-scale tests. The attack force is now

spread over all ten networks, so that each network generates 1
10

of the attack.

9.6.1 Large-Scale UDP Attacks

Figure 9.44 depicts service level values for the large-scale UDP attack case (the

left graph). We also repeat the Figure 9.16 on the right, for comparison. As

we can observe these two graphs are almost identical. The attack curve has a

slightly different shape which we attribute to attack synchronization effects due

to distribution. However, the defense curve is still the same, providing 100%

service level to legitimate traffic.

Figures 9.45, 9.46 and 9.47 depict total connection delay and maximum and

median per-connection delays for the large-scale UDP attack case. We also repeat

Figures 9.17, 9.18 and 9.19 for comparison. Figures depicting total connection

delay differ in the shape of the attack curve. Total delay is larger in the large-scale
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Figure 9.44: Service level in the case of large- and small-scale UDP flooding

attack

235



0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Attack rate (Mbps)

T
ot

al
 c

on
ne

ct
io

n 
de

la
y 

(s
ec

)

Attack−only case, large−scale

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Attack rate (Mbps)

T
ot

al
 c

on
ne

ct
io

n 
de

la
y 

(s
ec

)

Attack with defense, large−scale

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Attack rate (Mbps)

T
ot

al
 c

on
ne

ct
io

n 
de

la
y 

(s
ec

)

Attack−only case

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Attack rate (Mbps)

T
ot

al
 c

on
ne

ct
io

n 
de

la
y 

(s
ec

)

Attack with defense

Figure 9.45: Total connection delay in the case of large- and small-scale UDP

flooding attack

experiments. However, defense performance remains the same, keeping the total

connection delay at a very low level. Figures depicting median and maximum

per-connection delay are almost identical. Defense performance is even better in

the large-scale experiment. We attribute this to the fact that each source network

carries a smaller traffic load in the large-scale than in the small-scale experiment,

thus D-WARD can better profile the traffic (legitimate connection records can be

kept in hash tables) and control the attack.

Finally, Figure 9.48 depicts the number of failed connections for the large-scale

UDP attack case. We also repeat the Figure 9.20 next to this for comparison.

Again number of failed connections rises more rapidly for the attack-only case in
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Figure 9.46: Maximum per-connection delay in the case of large- and small-scale

UDP flooding attack
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Figure 9.47: Median per-connection delay in the case of large- and small-scale

UDP flooding attack
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Figure 9.48: Number of failed connections in the case of large- and small-scale

UDP flooding attack

the large-scale experiments. However, defense performance is comparable to, and

even slightly better than performance in the small-scale experiments, keeping the

number of failed connections at a very low level.

9.6.2 Large-Scale ICMP Attacks

Figure 9.49 depicts service level values for the large-scale ICMP attack case. We

also repeat Figure 9.25 next to this for comparison. These two figures are almost

identical. The shape of the attack curve again shows more variability in the

large-scale experiments due to agent synchronization. The defense successfully
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Figure 9.49: Service level in the case of large- and small-scale ICMP flooding

attack

controls the attack, bringing a 100% service level to legitimate clients.

Figures 9.50, 9.51 and 9.52 depict the total connection delay and maximum

and median per-connection delays for the large-scale ICMP attack case. We

also repeat Figures 9.26, 9.28 and 9.27 for comparison. Figures depicting total

connection delay show the same phenomenon as in large-scale UDP experiments

— total delay in the attack-only case is larger in the large-scale than in the small-

scale experiments. The defense performance is comparable, and even slightly

better, in large-scale experiments. Figures depicting maximum and median per-

connection delay are almost identical.

Finally, Figure 9.53 depicts number of failed connections for the large-scale
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Figure 9.50: Total connection delay in the case of large- and small-scale ICMP

flooding attack
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Figure 9.51: Maximum per-connection delay in the case of large- and small-scale

ICMP flooding attack
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Figure 9.52: Median per-connection delay in the case of large- and small-scale

ICMP flooding attack
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Figure 9.53: Number of failed connections in the case of large- and small-scale

ICMP flooding attack

ICMP attack case. We also repeat the Figure 9.29 next to this for comparison.

Just like the large-scale UDP attack case, the number of failed connections rises

more rapidly for the attack-only case in the large-scale experiments. Defense

performance remains comparable, keeping the number of failed connections at a

very low level.

9.6.3 Large-Scale TCP Attacks

When testing large-scale TCP SYN attacks we observed that D-WARD does not

manage to alleviate the denial-of-service effect even though it correctly detects

244



the attack and installs appropriate rate limits. Closer observation revealed that

this effect is due to the high value of the Min Rate parameter. Because D-WARD

will never attempt to reduce the rate limit below Min Rate, in the distributed

attack case this may be sufficient for the attacker to get through and still perform

a successful attack. To obtain meaningful results for the TCP SYN attack case

in large-scale experiments we modify Min Rate parameter to 160 Bps. Note

that this parameter change does not affect all the results shown previously. As

the denial-of-service effect in the previous experiments is alleviated using the

higher Min Rate value, lowering this value will not change measured performance

results.

Figure 9.54 depicts the service level values for the large-scale TCP attack case.

We also repeat the Figure 9.34 next to this for comparison. The attack curves

differ due to agent synchronization effects. However, D-WARD still successfully

provides a 100% service level to legitimate clients, both in the large-scale and in

the small-scale experiments.

Figures 9.55, 9.56 and 9.57 depict the total connection delay and maximum

and median per-connection delays for the large-scale TCP attack case. We also

repeat Figures 9.35, 9.36 and 9.37 for comparison. Figures depicting total con-

nection delay show the same phenomenon as in the large-scale UDP and ICMP

experiments — total delay in the attack-only case is larger in the large-scale than

in the small-scale experiments. Maximum and median per-connection delays are

comparable in the attack-only case in both experiment sets.

Finally, Figure 9.58 depicts the number of failed connections for the large-scale

TCP attack case. We also repeat the Figure 9.38 next to this for comparison. Just

like the large-scale UDP and ICMP attack case, the number of failed connections

rises more rapidly for the attack-only case in the large-scale experiments. Defense
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Figure 9.54: Service level in the case of large- and small-scale TCP flooding attack
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Figure 9.55: Total connection delay in the case of large- and small-scale TCP

flooding attack
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Figure 9.56: Maximum per-connection delay in the case of large- and small-scale

TCP flooding attack
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Figure 9.57: Median per-connection delay in the case of large- and small-scale

TCP flooding attack
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Figure 9.58: Number of failed connections in the case of large- and small-scale

TCP flooding attack

performance remains comparable, and even better, keeping the number of failed

connections at a very low level.

9.7 Pulsing Attacks

The attacker can attempt to avoid D-WARD detection and response by perform-

ing pulsing attacks. There are two possible strategies:

1. Generate small-rate pulsing attacks with an active interval shorter than

Nbursts and a long inactive interval.
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2. Generate large-rate pulsing attacks with an active interval shorter than 3

seconds to avoid response. Even though detection will be performed, the

attacker still has 2 to 3 second window to pass the full force of the attack

before response takes place.

The second strategy is much more fruitful to the attacker, especially if he

interleaves his agent actions so that the victim experiences a continuous flow of

the attack packets, while each agent remains active only for a short time. We

generated a set of experiments to test D-WARD performance in this scenario.

We used Topology 2 (shown in Figure 8.5) for these experiments and generated

a pulsing TCP SYN attack. Each attacker is active for 3 seconds and inactive

for a period varied in the experiments. The attackers get activated in sequential

order, keeping the victim under a more-or-less constant flood of attack traffic.3

The maximum attack traffic that reaches the victim ranges from 125 Kpps in the

case of an one-second inactive interval to 19 Kpps in the case of inactive intervals

of 27 second and higher.

Figure 9.59 depicts service level for this attack case. The x-axis shows the

duration of the inactive period.

We observe that service level in the case when defenses are deployed re-

mains around 1 until the inactive interval reaches 20 seconds and then declines

to values between 92% and 95% This decline depends directly on the value of

Compliance Period parameter. As detection is performed in every attack pe-

riod, the rate limit is successfully installed. However, after Compliance Period

intervals expire and no attack traffic is observed, the rate limit is removed, thus

creating an opportunity for a new wave of attack traffic to go past D-WARD.

3For inactive periods longer than 9 ∗ Ton = 27 seconds, this flood will be interspersed with
short pauses in attack flow at the victim.
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Figure 9.59: Service level in the TCP SYN pulsing attack case
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The service level in the attack-only case increases as the inactive period reaches

15 seconds. This is because of the attack distribution design. Since we only have

ten source networks to distribute the attack, at inactive period durations smaller

than 9 ∗ Ton = 27 seconds, the attack traffic will overlap — causing a stronger

denial-of-service effect. At longer durations there will be short periods of in-

activity when the victim network does not receive attack traffic, thus allowing

legitimate connections to recover.

Figures 9.60, 9.61 and 9.62 depict total delay for all connections and max-

imum and median per-connection delays. We observe that in all cases the de-

fense performance declines only after the inactive period increases more than

Compliance Period.

Lastly, Figure 9.63 depicts the total number of failed connections. Just like

the other metrics, the defense performance declines after the inactive period

increases to more than Compliance Period. It is also interesting to note that at

smaller inactive periods, the number of failed connections in the attack-only case

is extremely high — 160 connections out of 433 fail to complete until the end of

the test run if the attack is inactive for only 1 second.

9.8 Streaming Media Models

To test D-WARD’s streaming media models we use Topology 3 (shown in Figure

8.6). To create legitimate traffic we stream one Real Audio file from the server

to the client. This transfer lasts 190 seconds. Around 40 seconds from the test

start, we generate an 8 Mbps UDP flooding attack from the attacker to the client.

Since the client has a 56 Kbps link to the router, this attack severely overloads

this resource.
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Figure 9.60: Total connection delay in the case of TCP SYN pulsing attack
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Figure 9.61: Maximum per-connection delay in the case of TCP SYN pulsing

attack 255
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Figure 9.62: Median per-connection delay in the case of TCP SYN pulsing attack
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Figure 9.63: Number of failed connections in the case of TCP SYN pulsing attack
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Figure 9.64: Steaming media traffic, shown in the three cases: (1) baseline, (2)

attack without defense, and (3) attack with defense

Figure 9.64 shows the legitimate traffic throughput in three cases:

1. Baseline case when no attack is present and no defense is engaged

2. Attack case when the defense is not present

3. Attack case when the defense is present

In the attack-only case, the legitimate traffic exhibits a lot of jitter due to the

packet loss on the congested link. When the defense is present, the legitimate

traffic receives the same service as in the baseline case. Thus D-WARD success-

fully detects and protects streaming media traffic.

Figure 9.65 shows the attack traffic throughput in two cases:
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Figure 9.65: Attack traffic, shown in the two cases (1) attack without defense,

and (2) attack with defense

1. Attack case when the defense is not present

2. Attack case when the defense is present

D-WARD detects and suppresses the attack traffic within 7 seconds from the

attack start, thus releasing network resources from the overload.

9.9 False Alarm

We test D-WARD behavior in the case of flash crowd events on Topology 2.

In addition to legitimate traffic generated in previous tests, we also generate

simultaneous FTP requests for a same file, residing on server1Netv, from all ten
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Figure 9.66: False detection time in the flash crowd case

legitimate clients. In each run a client generates N requests for a given file,

spaced 1 second apart. The file is 1 MB large thus requests and replies easily

overwhelm the bottleneck link. We vary N from 1 to 100, thus overwhelming the

target machine by 10 to 1000 simultaneous requests.

Figures 9.66 and 9.67 show the time when D-WARD falsely detects the attack

and the amount of legitimate traffic dropped due to this detection. The detection

occurs between 13 and 26 seconds from the start of the FTP request series. The

amount of legitimate traffic drops is now given in bytes, instead of percentage.

We can observe that the highest drop is 305 bytes which is negligible compared

to the 112 MB to 1.1 GB of legitimate traffic being transferred during test runs.
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Figure 9.67: Legitimate traffic drops in the flash crowd case
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9.10 False Positives

In order to test D-WARD’s performance with realistic traffic, we modified the

system to read packet header data from a tcpdump-generated trace file instead

of sniffing it from the network. We used packet traces gathered from the UCLA

Computer Science network during August 2001. The network has approximately

800 machines and experiences an average of 5.5 Mbps (peak 20Mbps) of outgoing

traffic and 5.8Mbps (peak 23Mbps) of incoming traffic. We assume that no attack

has occurred during the trace-gathering process.

We define the following metrics for measuring the level of false positives:

1. The number of unique flows that were misclassified as attack or suspicious.4

We report this number relative to the total number of unique flows in the

trace.

2. The number of unique connections that were misclassified. We report this

number relative to the total number of unique connections in the trace.

3. The number of times any flow is misclassified as attack or suspicious. We

report this number relative to the total number of flow classifications per-

formed during the trace.

4. The number of times when any connection was misclassified as bad. We

report this measure relative to the total number of connection classifications

performed during the trace.

Metrics 1 and 2 show what portion of the traffic will be affected by a bad

decision. Metrics 3 and 4 show how good the detection process is. These are two

4Note that whenever the flow is misclassified, the rate limit will be imposed by D-WARD.
We cannot estimate the damage that will consequently be inflicted on the flow, since any packet
drops will affect the behavior of TCP connections in the flow and alter the trace.
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Trace

Number

Unique

Misclassified

Flows

Unique

Misclassified

Connections

Flow Misclassifi-

cations

Connection Mis-

classifications

1 0.28% 0.77% 0.43% 0.085%

2 0.33% 0.41% 0.06% 0.003%

3 0.23% 0.60% 0.11% 0.016%

4 1.00% 0.50% 0.10% 0.011%

5 0.63% 0.61% 0.36% 0.010%

6 1.36% 0.42% 0.14% 0.004%

7 1.29% 0.46% 0.11% 0.003%

8 1.10% 0.64% 0.18% 0.013%

9 0.97% 0.58% 0.13% 0.010%

Table 9.3: Percentage of false positives.

different things. For example, consider a case in which D-WARD sees 100 unique

flows over 10 seconds, and each second it performs 10 classifications. Metric 1

reports the number of flows misclassified at any point in their lifetime. If only

one flow was continually misclassified in every classification period, this metric

would be 1%. Metric 3, in contrast, would be 10%, since our classification process

reached a wrong decision in 10% of all classification attempts. 10% might seem

rather high, but metric 1 shows that very few flows are actually affected. Table

9.3 presents the results for several traces.

As we can observe, all false positive measures are very low. A false positive

measure in the flow classification case indicates that D-WARD is very unlikely

to perform false detection and inflict damage on legitiamte traffic. Furthermore,

even if false detection occurs, D-WARD will preserve correctly classified legiti-

mate connections, thus further minimizing the damage.
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9.11 Deployment Cost

We measure deployment cost as memory cost (for D-WARD statistics storage)

and the packet handling overhead. Hash table sizes are configured by D-WARD

configuration parameters. The size of the record in the flow hash table is 332

bytes. As the flow hash table size in our experiment runs was set to 1003 records,

the total memory cost for the flow hash table was 333 KB. The size of the record

in the connection hash table is 128 bytes. The connection hash table size in

our experiment runs was set to 50003 records, so the total memory cost for the

connection hash table was 6.4 MB. The size of the record in the rate limit hash

table is 32 bytes. Since the rate limit hash table size in our experiment runs was

set to 1003 records, the total memory cost for the rate limit hash table was 32

KB. The user-level memory cost is thus 6.7 MB.

The size of the record in the limited flow hash table is 132 bytes. The limited

flow hash table size in our experiment runs was set to 103 records, so the memory

cost for the limited flow hash table was 13.6 KB. The size of the record in the

good connection hash table is 84 bytes. The good connection hash table size in

our experiment runs was set to 2003 records, so the total memory cost for the

good connection hash table was 168 KB. The kernel-level memory cost is thus

around 182 KB.

Packet handling overhead under normal operation is measured using the ping

utility in Topology 2 (shown in Figure 8.5). A total of 1000 ICMP ECHO packets

is sent from clientNet1 to server1Netv. We compare the case when D-WARD is

engaged at routerNet1 to the case when D-WARD is not engaged. We measure

the average round-trip delay of 12µsec and infer from that the average one-way

delay of 6µsec.

264



The kernel-level incurs additional overhead for spoofed packet handling. This

overhead becomes critical at rates higher than 12, 000 packets per second.
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CHAPTER 10

Cooperation Efforts

D-WARD has been integrated into two distributed DDoS defense systems: COS-

SACK and DefCOM. It has also been independently evaluated in the DDoS-

DATA project. Each of these cooperation efforts is described in the following

sections.

10.1 COSSACK

COSSACK [Infa] is a distributed DDoS defense system developed under DARPA’s

Fault Tolerant Networking (FTN) program at Information Sciences Institute

(ISI). COSSACK was integrated with D-WARD 3.0 (D-WARD without sequence

number prediction and without legitimate UDP models) with the goal of enhanc-

ing performance of both systems by complementing their respective strengths.

The integrated system was evaluated independently within a DARPA Red Team

Experiment. This section provides details about the integrated system, the

achieved synergy and an overview of preliminary experiment results.

10.1.1 COSSACK Overview

COSSACK is a distributed approach to DDoS detection and response. COS-

SACK components, located at the edge networks of the Internet, coordinate with
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Figure 10.1: COSSACK architecture

other edge networks to collectively combat DDoS attacks.

In the COSSACK architecture, as shown in Figure 10.1, the principal ele-

ment is a watchdog, a software subsystem that resides at an edge network egress

point. Watchdogs communicate over multicast channels using YOID [Infc], an

application-level multicast protocol. Each watchdog monitors its own network

and shares information with other watchdogs. Localized information can be

gleaned using a variety of collection tools, such as SNMP statistics, Cisco Net-

Flow, and IDS tools such as Snort. The current implementation of COSSACK

uses Snort with a customized plug-in. This plug-in was developed specifically for

DDoS detection and provides dynamically selectable functionality that can be

controlled by the watchdog.
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The watchdog performs DDoS detection, coordination with other networks

originating an attack, and response. The following example outlines the operation

of COSSACK in response to a typical DDoS flooding attack. Figure 10.2 shows

the onset of an attack and Figure 10.3 suppression by COSSACK watchdogs.

The attack is launched from a large number of machines located throughout the

Internet, and their combined output overwhelms the capacity of the ingress link

of the victim’s network. The following operations take place:

1. The watchdog at the victim edge network detects the flooding attack at the

ingress point.

2. The watchdog instructs the IDS (Snort) to compile source address informa-

tion and attack signature data (rates, type of attack, etc.).

3. The watchdog multicasts an attack notification to other watchdogs in the

network indicating the attacking source networks. This communication

is facilitated by YOID [Infc], and application-level multicast mechanisms

developed at Information Sciences Institute. It also advertises an attack-

specific multicast group that will be used for subsequent coordination.

4. Watchdogs representing the implicated source networks join the coordina-

tion multicast group.

5. After receiving attack information hints, each source network watchdog

performs an in-depth analysis of particular outgoing flows to determine if

zombies exist within its infrastructure.

6. Source networks that identify zombies deploy countermeasures to prevent a

continuance of the attack. Local responses will be dictated by a combination

of local response policy and the policy information received from the victim-

side watchdog
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Figure 10.2: Onset of attack in watchdog protected network

Currently, it is assumed that watchdogs can figure out how to contact the

source networks that are hosting the attack. At this stage of COSSACK research,

random source address spoofing is not addressed. Therefore, the victim watchdog

locates source watchdogs from the addresses in attack packets that are assumed

to be correct.

10.1.1.1 Watchdog Overview

The watchdog is the main analysis, decision, and coordination element in the

COSSACK architecture. It accepts input from one or more data sensors, analyzes

the data, shares information with other watchdogs and makes decisions on how

to respond to attacks. The components of the watchdog are shown in Figure
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Figure 10.3: Suppression of attack by COSSACK watchdogs
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Figure 10.4: Components of COSSACK watchdog

10.4.

The core of the watchdog is implemented in the Java programming language,

which allows for portability to many operating systems. No performance prob-

lems have been experienced with the watchdogs, as they deal mostly with high-

level events rather than per-packet events which are handled by the sensors. In

the current implementation, watchdogs accept input from one or more Snort plug-

ins (see Section 10.1.1.2). Upon startup, each plug-in creates a TCP connection

with its associated watchdog and begins sending flow statistics. The watchdog

may control the flow of this information by supplying filtering rules to the Snort
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plug-in. The watchdogs currently have an interface to control Cisco and Linux

routers. Through this interface, the watchdogs may set filtering or blocking rules

in response to attacks.

10.1.1.2 Snort Plug-in Overview

As mentioned earlier, COSSACK watchdogs rely on an existing IDS to detect

attacks. Snort [Sou] was selected for use in COSSACK experiments. Snort has a

number of desirable characteristics. It is open source, it has an established user

community, and it is actively supported. In addition, there has been significant

effort to optimize Snort to support traffic capture and analysis at fairly high data

rates.

The internal architecture of Snort is very modular, and easily accommodates

the COSSACK extensions. Packets captured by Snort are guided through a series

of processing steps, one of which is filtering against a rule database containing

known attack patterns that are matched against the header and payload infor-

mation. Currently, the rule base is static during a Snort execution. COSSACK

uses the rule database in two ways. First, it is used as a fast pre-filter, to pass

only packets belonging to flows of interest to COSSACK. Here Snort is used to

break up packets into different protocol groupings to keep statistics on each in-

dividual grouping. This information helps the watchdog diagnose an attack, but

also allows the watchdog to define a more specific filter to install in a router to

stop the attack.

The second use of the Snort database is to define specific patterns that identify

individual, possibly malformed packets that attempt to exploit known flaws in

software implementations. These packets are directly reported to the watchdog

without being aggregated.
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Figure 10.5: Current implementation of Snort plug-in
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The current implementation of the Snort plug-in is shown in Figure 10.5. Dur-

ing normal operation, the plug-in keeps packet rate statistics for different flows

grouped by address prefix. The plug-in constructs a prefix tree data structure,

which allows for quick aggregation of prefix information. To keep the tree from

growing unbounded, the plug-in performs periodic garbage collection after state

expires or the tree grows beyond a certain size. The plug-in supports hundreds

of simultaneous packet flows by dynamically building an aggregation tree based

on packet rate.

In addition to the destination network prefix tree, the plug-in is capable of

maintaining a source prefix tree. The source tree is constructed on demand,

when instructions are received from the watchdog. The watchdog issues such

commands if, after monitoring packet rate reports from Snort, it determines that

a host may be under attack. The watchdog then asks the plug-in to construct the

source prefix tree for that destination. The tree is finally reported back to the

watchdog, which then contacts the watchdogs monitoring the source network(s).

10.1.1.3 Watchdog Algorithm Description

The following actions take place during COSSACK attack detection and suppres-

sion:

1. The COSSACK watchdog loads a list of detection-level thresholds from a

configuration file. These rates are determined based on background traffic

levels, traffic mix, types of servers being used, and connection bandwidth.

2. The COSSACK watchdog receive periodic reports from Snort on packet

rates and bandwidth for destination address aggregates. Currently, these

rates are reported every 30 seconds. Rates are aggregate rates of traffic at
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varying prefix levels. Traffic information is sorted into different categories

using Snort rules.

3. At the victim watchdog, if a bit or packet rate threshold is exceeded in the

detector, which was configured by the rules in (1), the victim watchdog will

ask Snort to provide source address aggregate rates for specific destinations

that violated the threshold.

4. The victim’s watchdog distills the aggregate information to determine the

most specific address/netmask ranges, ports, and protocol numbers that

are being used in an attack. The convergence tolerance is specified in the

configuration file.

5. After receiving the source address aggregate rates from Snort, the victim

watchdog will announce the attack to the global multicast group and create

an attack-specific multicast group. Both of these actions are facilitated by

YOID application-level multicast. The announcement contains the name

of the attack-specific group.

6. Source network watchdogs will check the attack announcement messages

from the global group to see if their network is participating in the attack.

If a watchdog sees its network in the messages, it will join the attack-specific

group. The list of source networks for which a watchdog is responsible is

specified in a configuration file.

7. If a source network watchdog joins a specific attack group it will announce

its outgoing packet rate statistics information to other group members.

These announcements are stored in a blackboard data structure at each

watchdog.
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8. The source network watchdogs request source aggregate information with

respect to the victim address.

9. The source network watchdogs also distill the aggregate information and

determine the most specific address/address ranges, ports, and protocol

numbers that are being used in an attack.

10. Each source watchdog will sum up other source watchdogs’ traffic rates

toward the victim and compare the sum to the total packet rate that the

victim is reporting. This check it used to verify that the victim really has

a problem and is not sending out false information.

11. If the packet rates agree within a margin of rounding error, the watchdog

will install rules to block traffic from the attacking machines to the victim.

The margin of error is configured in a configuration file and currently set

to 80%. The source watchdog will try to be as specific as possible with its

traffic blocking rules. These include source address, destination address,

source port, destination port and protocol.

12. Source watchdogs will continue monitoring the traffic to the victim. When

the attack from this source has stopped, the watchdog will remove the

blocking rules.

13. In the case of a pulsing attack detection, the local watchdog decides when

to stop blocking. In a flooding attack, each source watchdog must compare

its traffic rates to the whole. The rates from other source networks are

shared using the attack-specific group.
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10.1.2 Overview of an Integrated COSSACK and D-WARD System

D-WARD is integrated with the COSSACK system as a source-end defense sys-

tem that interfaces with local watchdogs. In the integrated system, COSSACK

victim-end detection complements D-WARD source-end detection. This is ben-

eficial for those types of attacks that D-WARD is unlikely to detect, such as

non-spoofing UDP attacks. COSSACK performance is also improved by use

of D-WARD’s selective and dynamic response instead of COSSACK’s signature

packet filtering.

COSSACK and D-WARD both perform detection of distributed denial-of-

service attacks in the integrated system, but only D-WARD performs responses

to the attacks. The COSSACK and D-WARD detection mechanisms remain the

same as described in the previous sections on the individual systems, but COS-

SACK never invokes a response itself, unlike its normal stand-alone operation.

When COSSACK detects an attack at the victim end, it will send a signal

to other COSSACK nodes close to the sources of the attack, using its multicast

mechanism. Local COSSACK watchdogs will then determine if they believe that

the local network is contributing to the attack and, if so, will signal the local

D-WARD software. D-WARD then performs a secondary check to verify that

the COSSACK alert pertains to current source network communications. Upon

successful verification, D-WARD modifies its rate-limiting. If D-WARD does

not receive a COSSACK message for COSSACK Timeout seconds, it falls back

to autonomous operation as if COSSACK were not present. Any subsequent

message received from COSSACK by D-WARD reestablishes cooperation.

Figure 10.6 shows the format of the message that the local COSSACK watch-

dog sends to D-WARD. The message fields are the following:
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Type
 Target IP
 Suspect Source Networks
 Rate Limit
 Flag


Figure 10.6: COSSACK alert message format

• Type indicates the type of attack — TCP, UDP, ICMP, flooding, etc.

• Target IP contains the address of the machine under attack.

• Suspect Source Networks field indicates the ranges of networks that

COSSACK believes are sources of the attack.

• Rate Limit is a suggested rate limit for D-WARD to impose.

• Flag indicates whether this is a message alerting D-WARD of a new or

ongoing attack, or whether COSSACK has determined that the attack has

ended. This flag value allows COSSACK to signal to D-WARD that rate

limits put in place earlier may now be relaxed.

When a D-WARD node receives such a message with the flag indicating a new

or ongoing attack, it treats it as advisory, not as a command. How the message is

handled depends on the type of attack and any existing response to the signaled

attack.

D-WARD detects few UDP attacks, so it will regard a COSSACK signal of

a UDP attack as authoritative, and will impose the requested rate limit on the

attack. This rate limit will not be changed by D-WARD’s throttling mechanism.

It will be changed only upon receipt of another message from COSSACK that

modifies the limit, or after the timeout for the COSSACK message expires and

D-WARD falls back to autonomous operation. Similar behavior is triggered for

attacks using other traffic types (not belonging to TCP, UDP or ICMP).
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In the case of a TCP-based attack, D-WARD might already have detected

the attack, in which case the message is ignored and D-WARD continues with

its normal activities to throttle the attack. If D-WARD has not already detected

the TCP-based attack, the incoming message is regarded as a signal of an attack

similar to D-WARD’s own detection. D-WARD ignores the rate limit specified

in the message and invokes its own normal throttling on traffic being sent to the

target IP address.

ICMP traffic will be treated the same as TCP traffic. Traffic that is not UDP,

TCP, or ICMP will be treated in the same manner as UDP traffic, assuming that

it is IP traffic. Non-IP traffic is out of bounds for the current integration effort.

When D-WARD receives a message with the flag indicating that the attack

has stopped, it will verify that it has indeed rate-limited the associated flow. If

D-WARD has deployed a rate limit for the attack, but has not yet started its

slow recovery, slow recovery is started, permitting more traffic to flow toward

the previous target. If slow recovery is already ongoing, the message is ignored.

Exceptionally, for UDP attacks and attacks through other traffic types (non-TCP,

non-UDP and non-ICMP) D-WARD lifts the rate limit immediately upon receipt

of a message with a flag indicating that the attack has ended.

Because individual COSSACK messages might be lost in the network, COS-

SACK will resend its control messages to D-WARD periodically. In particular,

the message indicating the end of an attack will be sent several times, with a

delay of two to three seconds between each sending.

The COSSACK/D-WARD integration and defense strategy described in this

section has been uniquely tuned/optimized for the DARPA Red Team Experi-

ment in which: (1) the edge-networks have a single point of ingress/egress, (2)

the border router at that ingress/egress point is defended, (3) the expected at-
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tacks are limited to DDoS attacks, and (4) attacks on an edge network can only

be mounted from outside that edge network.

10.1.3 DARPA Red Team Experiment

The COSSACK and D-WARD technology has been developed and tested in the

laboratory and successfully demonstrated under controlled circumstances. In or-

der to better understand the strengths and weaknesses of the technology, and to

support the FTN program goal of technology transition to an operational environ-

ment, more extensive assessment and stress testing is required. This assessment

and testing needs to be conducted outside of the development laboratory, by an

independent group, and should focus on the central assumptions and claims of

the technology. This is accomplished in the DARPA Red Team Experiment ef-

fort using a paradigm of experimentation, which includes well-posed hypotheses,

well-defined metrics, and carefully controlled environments.

The goal of the Red Team Experiment is to investigate and quantify the

ability of an integrated defensive system, comprised of COSSACK and D-WARD

together, to provide effective mitigation of DDoS attacks in a representative,

realistic, dynamic, environment.

10.1.3.1 Experiment Methodology

The experiment involves a network of networks, consisting of nine disjoint edge

networks containing routers and clients which are interconnected by a core net-

work of routers without clients (which is simulated by a multi-ported Cisco

router). The architecture of this network is depicted in Figure 10.7

Both COSSACK watchdogs and D-WARD systems protect each edge net-
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Figure 10.7: Network topology for Red Team Experiment
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work’s border router, connecting with the core network. COSSACK watchdogs

reside at machines COSS1 to COSS9, while D-WARD systems reside at gateway

routers GWD1 to GWD9. COSSACK performs detection on incoming traffic to

each edge network (e.g., detecting whether it is a victim of an attack), and per-

forms coordination and communication between all distributed components of

both DDoS defensive systems. D-WARD performs detection on outgoing traffic

from each edge network (e.g., detecting whether it is a source of an attack), and

provides all responses by selectively throttling outgoing traffic from its own edge

network. In cases of conflicting input, each D-WARD system acts in response to

its own detections, rather than the broadcast warnings from COSSACK.

Based on the particulars of the scenario, representative traffic is generated to

traverse the core network between the multiple edge sub-networks. This traffic,

between the various clients on the edge networks, consists of both legitimate

messages and DDoS attacks. The legitimate traffic is provided by three traffic

generators (TG) residing on machines TG1 to TG3. There are three mixtures of

legitimate traffic in the experiment: high, low and mixed. They are described

in more detail in Section 10.1.3.2. TG outputs are dynamically varied to provide

a realistic background in which the attacks can hide, and are employed during the

baseline runs for determining both the false positive and false negative rates of

the defensive system’s detectors. In addition to traffic generators, some legitimate

traffic is created live using Web server and streaming media applications deployed

at machines SHOST1 to SHOST6. Those applications are invoked by clients

at machines FHOST1 to FHOST20.

The attacks are developed and scripted by the Red Team in advance, and the

individual attack runs are executed by the experimenters. To ensure a realistic

experiment, the Red Team has the complete knowledge of the strategies and
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source code of the defensive systems, but the Blue Team only has the knowledge

of the Red Team’s general strategy, not of the actual attacks and their order of

presentation. In addition, the particular release of the defensive system’s software

code that is actually employed in the experiment is frozen during the period of

experiment execution to avoid the problem of any changes nullifying previous

results.

Because some security aspects of the existing COSSACK and D-WARD soft-

ware, which are not relevant to their ability to detect and respond to DDoS

attacks, have not yet been implemented (e.g., such as protecting themselves from

attack), those capabilities are assumed for the duration of the experiment. The

objective of the experiment is not to assess the robustness of these defensive sys-

tems in the wild, but to better understand (and communicate in the final report)

the intricacies of DDoS defense.

10.1.3.2 Baseline Runs

As discussed in the above section, there are three baseline legitimate traffic mixes,

referred to as high, low and mixed. Figures 10.8, 10.9 and 10.10 depict traffic

levels at the victim for these three baseline traffic mixes. Triangles denote UDP

traffic levels, squares denote TCP traffic levels and diamonds denote total traffic

levels. Just as in the real Internet, TCP traffic is the largest portion of the total

traffic.

Figures 10.11, 10.12 and 10.13 depict the false positives generated by the inte-

grated system, when only baseline traffic is run. For each false-positive instance,

D-WARD’s observation component will detect the attack. In the subsequent

intervals, the rate-limiting component will adjust rate limit rules on the misclas-

sified flow. The allowed rate will first be exponentially decreased, then linearly
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Figure 10.8: Baseline traffic — low level
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Good Traffic Levels at Victim
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Figure 10.9: Baseline traffic — high level
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Figure 10.10: Baseline traffic — mixed level
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increased once the detection becomes negative. After the Compliance Period

the rate will be exponentially increased until it reaches Maximum Rate when

it will be removed. Figures 10.11, 10.12 and 10.13 show each of these events

during a test run. Diamonds denote attack detection instances, squares denote

moments when the exponential decrease of the rate limit is started, stars denote

moments when the linear increase of the rate limit is started, x-signs denote mo-

ments when the exponential increase is started, triangles denote time when the

maximum rate limit MaxRate is reached and crosses denote moments when the

rate limit is removed. The values on the y-axis are omitted as they only denote

incidence of the above events. Test run time is shown on the x-axis.

The level of false positives is low for low levels of baseline traffic, and it is

slightly higher for high levels of baseline traffic. The highest incidence of false

positives is for mixed levels of baseline traffic.

The appearance of false positives during baseline runs indicates that some

collateral damage may be inflicted, on legitimate traffic by the defensive system.

To examine this, the percentage of legitimate traffic (sent to the victim) that

arrives at the victim is measured for two source networks during these baseline

runs, and depicted in Figures 10.14, 10.15 and 10.16.

Triangles denote UDP traffic levels, squares denote TCP traffic levels and

diamonds denote total traffic levels. We observe that the percentage of legitimate

traffic received at the victim is close to 100%, this indicates that no significant

collateral damage is inflicted due to false positives.1

1The percentage dropoff at the end is the product of the measuring methodology and does
not indicate real traffic loss.
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Figure 10.11: False positives — low level
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Figure 10.12: False positives — high level
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Figure 10.13: False positives — mixed level
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Figure 10.14: Percentage of legitimate traffic received at the victim, depicted for

two source networks — low level
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Figure 10.15: Percentage of legitimate traffic received at the victim, depicted for

two source networks — high level
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Figure 10.16: Percentage of legitimate traffic received at the victim, depicted for

two source networks — mixed level
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10.1.3.3 Spoofing UDP Attack

The first type of attack tested is the spoofing UDP attack. Attackers from

FHOST4, FHOST7, FHOST10 and FHOST12 send UDP packets using sub-

net spoofing to the victim — SHOST1. The attack is run along with the high

baseline traffic. Four metrics are defined to measure the level of service that

legitimate clients perceive during the attack:

1. Ratio of sent to received legitimate traffic at the victim — measures the

legitimate traffic loss due to queuing and defense system action. Ideally it

should be 1.

2. Ratio of good to total traffic over time — measures the bandwidth utiliza-

tion by legitimate traffic. Ideally it should be 1.

3. Traffic levels at the victim — measures the legitimate and attack traffic

levels at the victim over time. Ideally legitimate traffic levels should be

similar to those in baseline runs, while attack traffic levels should be close

to zero.

4. Good traffic levels at the victim — measures the TCP and UDP traffic levels

at the victim. Ideally these levels should be similar to those in baseline runs.

Figure 10.17 depicts these metrics when defenses are engaged during the at-

tack. Performance results are contrasted with the case in which no defenses are

present, depicted in Figure 10.18.

When defenses are present the ratio of sent to received legitimate traffic is

close to 1. This is contrasted to the 0.4 ratio measured during the attack when

no defenses are present. This metrics indicates that the integrated system suc-

cessfully relieves the victim from the denial-of-service effect and provides good
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Figure 10.17: Performance metrics — spoofing UDP attack with defense
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Figure 10.18: Performance metrics — spoofing UDP attack without defense

296



service to legitimate traffic during the attack. Similarly, the ratio of good to

total traffic received over time is close to 1 when defenses are present and close

to 0 when they are not present. This indicates that the integrated defense sys-

tem relieves congestion from the network and assigns resources only to legitimate

traffic. During defense engagement, legitimate traffic levels at the victim are sim-

ilar to those when only baseline traffic is run (high baseline), while attack traffic

levels are close to zero. This is contrasted to very low levels of legitimate traffic

(close to zero) and high (35000 packets in a 30-second interval) levels of attack

traffic when defenses are not engaged. The defense system successfully performs

selective dropping of the attack traffic, which results in good service offered to

legitimate traffic.

10.1.3.4 Spoofing TCP Attack

During a spoofing TCP attack, attackers from FHOST4, FHOST7, FHOST10

and FHOST12 send TCP SYN packets using subnet spoofing to the victim —

SHOST1. The attack is run along with high baseline traffic. Figure 10.19 depicts

the performance metrics in the case where defenses are engaged during the attack.

Performance results are contrasted with the case where no defenses are present

(depicted in Figure 10.20).

When defenses are present, the ratio of sent to received legitimate traffic is

close to 1. This is contrasted to a 0.4 ratio measured during the attack when

no defenses are present.2 This metric indicates that the integrated system suc-

cessfully relieves the victim from the denial-of-service effect and provides good

service to legitimate traffic during the attack. Similarly, the ratio of good to

2Note that this metric increases to values above 1 at three points. This indicates the arrival
of traffic sent at previous low-throughput intervals. This traffic was delayed in the network or
lost and retransmitted by the source.
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Figure 10.19: Performance metrics — spoofing TCP attack with defense

298



R
at

io
 o

f L
eg

it.
 A

ct
ua

l S
en

t t
o 

Le
gi

t. 
A

ct
ua

l R
cv

'd

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0
50

0
10

00
15

00
20

00
tim

e 
(s

ec
)

Ratio

to
ta

l
T

C
P

U
D

P
sp

f-
tc

p-
no

de
f R

at
io

 o
f G

oo
d 

to
 T

ot
al

 T
ra

ffi
c 

R
ec

ei
ve

d 
O

ve
r 

Ti
m

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0
50

0
10

00
15

00
20

00
tim

e 
(s

ec
)

Ratio

G
oo

d/
T

ot
al

sp
f-

tc
p-

no
de

f

Tr
af

fic
 L

ev
el

s 
at

 V
ic

tim

0.
0

50
00

.0

10
00

0.
0

15
00

0.
0

20
00

0.
0

25
00

0.
0

30
00

0.
0

35
00

0.
0

40
00

0.
0

45
00

0.
0

0
50

0
10

00
15

00
20

00
tim

e 
(s

ec
)

Number of Packets (30 sec)

G
O

O
D

T
O

T
N

um
B

ad
sp

f-
tc

p-
no

de
f

G
oo

d 
Tr

af
fic

 L
ev

el
s 

at
 V

ic
tim

0.
0

10
00

.0

20
00

.0

30
00

.0

40
00

.0

50
00

.0

60
00

.0

70
00

.0

80
00

.0

90
00

.0

10
00

0.
0

0
50

0
10

00
15

00
20

00
tim

e 
(s

ec
)

Number of Packets (30 sec)

G
O

O
D

T
O

T
G

-T
C

P
G

-U
D

P
sp

f-
tc

p-
no

de
f

Figure 10.20: Performance metrics — spoofing TCP attack without defense
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total traffic received over time is close to 1 when defenses are present and close

to 0 when they are not present. This indicates that the integrated defense sys-

tem relieves congestion from the network and assigns resources only to legitimate

traffic. During defense engagement, legitimate traffic levels at the victim are sim-

ilar to those when only baseline traffic is run (high baseline), while attack traffic

levels are close to zero. This is contrasted to very low levels of legitimate traffic

(close to zero) and high (40000 packets in a 30-second interval) levels of attack

traffic when defenses are not engaged. The defense system successfully performs

selective dropping of the attack traffic, which results in good service offered to

legitimate traffic.

10.1.3.5 Spoofing ICMP Attack

During a spoofing ICMP attack, attackers from FHOST4, FHOST7, FHOST10

and FHOST12 send ICMP packets using subnet spoofing to the victim —

SHOST1. The attack is run with high baseline traffic. Figure 10.21 shows the

performance metrics when defenses are engaged during the attack. Performance

results are contrasted with the case where no defenses are present (depicted in

Figure 10.22).

When defenses are present, the ratio of sent to received legitimate traffic is

close to 1. This is contrasted to a 0.2 ratio measured during the attack when no

defenses are present. This metric indicates that the integrated system successfully

relieves the victim from the denial-of-service effect and provides good service to

legitimate traffic during the attack. The ratio of good to total traffic received

over time is between 0.8 and 1 when defenses are present and close to 0 when

they are not present. This indicates that the integrated defense system relieves

congestion from the network and assigns resources more to legitimate than to
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Figure 10.21: Performance metrics — spoofing ICMP attack with defense
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Figure 10.22: Performance metrics — spoofing ICMP attack without defense
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attack traffic. Attack traffic still gets about 10% to 20% of resources. During

defense engagement, legitimate traffic levels at the victim are similar to those

when only baseline traffic is run (high baseline) while attack traffic levels are

below 2000 packets in a 30-second interval. This is contrasted to very low levels

of legitimate traffic (close to zero) and high (30000 packets in a 30-second interval)

levels of attack traffic when defenses are not engaged. In this experiment defense

system successfully performs selective dropping of the attack traffic, which results

in good service offered to legitimate traffic.

10.1.3.6 Spoofing-All Attack

During spoofing-all attack, attackers from FHOST4, FHOST7, FHOST10 and

FHOST12 send a mix of UDP, TCP SYN and ICMP packets using subnet spoof-

ing to the victim — SHOST1. The attack is run along with high baseline traffic.

Figure 10.23 depicts the performance metrics when defenses are engaged during

the attack. Performance results are contrasted with the case where no defenses

are present (depicted in Figure 10.24).

When defenses are present, the ratio of sent to received legitimate traffic is

close to 1. This is contrasted to a 0.2 ratio measured during the attack when no

defenses are present. This metric indicates that the integrated system successfully

relieves the victim from the denial-of-service effect and provides good service to

legitimate traffic during the attack. The ratio of good to total traffic received

over time is between 0.95 and 1 when defenses are present and close to 0 when

they are not present. This indicates that the integrated defense system relieves

congestion from the network and assigns resources more to legitimate than to

attack traffic. During defense engagement, legitimate traffic levels at the victim

are similar to those where only baseline traffic is run (high baseline), while attack
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Figure 10.23: Performance metrics — spoofing-all attack with defense
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Figure 10.24: Performance metrics — spoofing-all attack without defense
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traffic levels are below 1000 packets in a 30-second interval. This is contrasted to

very low levels of legitimate traffic (close to zero) and high (35000 packets in a

30-second interval) levels of attack traffic when defenses are not engaged. All of

the above metrics indicate that the defense system successfully performs selective

dropping of the attack traffic, which results in good service offered to legitimate

traffic.

10.1.3.7 Rolling Attack

During a rolling attack, attackers from FHOST3, FHOST4, FHOST7, FHOST10,

FHOST12, FHOST14 and FHOST16 send packets using subnet spoofing to

the victims — SHOST1 and SHOST2. This attack takes advantage of the

timing involved in the COSSACK/D-WARD system. Red Team trials indicated

that it took approximately 5 seconds to get throttled by D-WARD after contin-

uous flooding. It was also observed that it took approximately 60 seconds for a

machine to get its “bad” reputation cleared from COSSACK after launching a

flooding attack. The rolling attack coordinates several flooding agents to take

advantage of these timing characteristics. Each agent cycles through its targets,

flooding them for 5 or 6second periods, it then lies dormant for a 60 second pe-

riod. Except for timing characteristics, this scenario is almost identical to the

pulsing attack scenario described in section 9.7. The rolling attack is run along

with high baseline traffic. Figure 10.25 depicts the performance metrics when

defenses are engaged during the attack. Performance results are contrasted with

the case when no defenses are present (depicted in Figure 10.26).

When defenses are present the ratio of total sent to received legitimate traffic

is close to 1, while the ratio of UDP sent to received traffic is between 0.8 and

1. This is contrasted to the ratio measured during the attack when no defenses
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Figure 10.25: Performance metrics — rolling attack with defense
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Figure 10.26: Performance metrics — rolling attack without defense
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are present, which is between 0.8 and 1 both for TCP and for UDP traffic. The

attack-only metric indicates that the rolling attack does not inflict a significant

denial-of-service effect at the victim. This effect is successfully relieved with

defense system action. The defense system brings the TCP traffic ratio close

to 1. As the D-WARD 3.0 version does not deploy legitimate UDP connection

models, it cannot differentiate between legitimate UDP traffic and attack traffic.

This accounts for the drop in the UDP traffic ratio. This ratio is between 0.8 and

1 even in the presence of the defense system. The ratio of good to total traffic

received over time declines to 0.4 when the attack starts and recovers to values

close to 1 after 250 seconds in the case when defenses are present. This ratio

is close to 0.2 when defenses are not present. This indicates that the integrated

defense system relieves congestion from the network and assigns resources more

to legitimate than to attack traffic. The low values of the ratio of good to total

traffic that persist for 250 seconds indicate that the rolling attack can successfully

deny service to legitimate traffic, in spite of defense presence. As experiments in

section 9.7 suggest, this effect can be ameliorated by increasing the value of the

Compliance Period parameter in D-WARD.

During defense engagement, legitimate traffic levels at the victim are about

80% of those when only baseline traffic is run (high baseline), while attack traf-

fic levels are close to zero. This is contrasted to 50% levels of legitimate traffic

and high (15000 − 20000 packets in a 30-second interval) levels of attack traf-

fic when defenses are not engaged. The defense system successfully performs

selective dropping of the attack traffic which results in good service offered to

legitimate traffic. Selectiveness of response is lower than in previous tests which

is manifested in service level reduction to UDP traffic.
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10.1.3.8 HTTP Request Flood Combined with Rolling Attack

An HTTP request flood attack launches an unending stream of redundant HTTP

requests. This uses up the targets resources in generating responses. It has been

noted that two attacking FHOST machines were sufficient to degrade service from

a single SHOST machine. No spoofing was present. This attack is not interesting

by itself under the rules of engagement for COSSACK/D-WARD since they do not

defend against this type of attack. This attack is included by itself for engineering

purposes only, and is intended to be run in conjunction with other packet flooding

attacks to provide redeeming traffic.

In this test run, an HTTP request flood is combined with a rolling attack.

Attackers from FHOST2 and FHOST13 launch an HTTP request flood, target-

ing the victims SHOST1 and SHOST2, while FHOST3, FHOST4, FHOST7,

FHOST10, FHOST12, FHOST14 and FHOST16 launch rolling attack against

SHOST1 and SHOST2. The attack is run along with high baseline traffic. Fig-

ure 10.27 depicts the performance metrics when defenses are engaged during the

attack. Performance results are contrasted with the case where no defenses are

present (depicted in Figure 10.28).

When defenses are present, the ratio of total sent to received legitimate traffic

is close to 1, while the ratio of UDP sent to received traffic is between 0.8 and

1. This is contrasted to the ratio measured during the attack when no defenses

are present, which is between 0.8 and 1. Both metrics are similar to those in the

rolling attack case. They indicate that the HTTP/rolling attack does not inflict a

significant denial-of-service effect at the victim, and that this effect is successfully

relieved with defense system action. Low levels of UDP traffic ratio occur because

D-WARD 3.0 does not implement legitimate UDP connection models. The ratio

of good to total traffic received over time declines to 0.4 when the attack starts
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Figure 10.27: Performance metrics — HTTP/rolling attack with defense
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Figure 10.28: Performance metrics — HTTP/rolling attack without defense
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and recovers to values close to 1 after 250 seconds in the case when defenses are

present. This ratio is close to 0.2 when defenses are not present. This indicates

that the integrated defense system relieves congestion from the network and as-

signs resources more to legitimate than to attack traffic. The explanation for the

long delay in controlling the attack (250 seconds) is the same as in the case of the

rolling attack given in Section 10.1.3.7. During defense engagement, legitimate

traffic levels at the victim are about 80% of those when only baseline traffic is run

(high baseline), while attack traffic levels are close to zero. This is contrasted to

50% levels of legitimate traffic and high (20000 packets in a 30-second interval)

levels of attack traffic when defenses are not engaged. The defense system suc-

cessfully performs selective dropping of the attack traffic, which results in good

service offered to legitimate traffic. Selectiveness of response is lower than in

previous tests, which is manifested in a service-level reduction to UDP traffic.

10.1.3.9 Connection Request Flood Combined with Rolling Attack

All network-capable operating systems have a hard limit on the number of TCP

connections allowed per process. These connections are listed in a file descriptor

(FD) table of some sort. On virtually all operating systems, this table has a limit

of 1024 entries. It is possible to fill the FD table completely with spoofed connec-

tions to force the target machine to refuse all subsequent attempted connections.

This is an effective DOS against TCP traffic only. However, this does not dis-

count the attack’s significance, as the majority of network traffic is TCP. During

this attack, all ports on the target machine will be targeted by more than 1024

spoofed connections. This attack was included by the Red Team for engineering

purposes only and is intended to be run in conjunction with other packet flooding

attacks.
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In this test run, a connection request flood is combined with a rolling at-

tack. Attackers from FHOST2, FHOST5, FHOST13 and FHOST16 launch

an connection request flood, targeting the victims SHOST1 and SHOST2,

while FHOST3, FHOST4, FHOST7, FHOST10, FHOST12, FHOST14 and

FHOST16 launch rolling attack against SHOST1 and SHOST2. The attack

is run along with high baseline traffic. Figure 10.29 depicts the performance

metrics in the case where defenses are engaged during the attack. Those results

are contrasted with the case where no defenses are present (depicted in Figure

10.30).

When defenses are present, the ratio of total sent to received legitimate traffic

oscillates between 0.4 and 0.6 for the first 100 seconds of the attack, and is close

to 1 for the remainder of the attack. The ratio of UDP sent to received traffic

is between 0.6 and 0.8 for the entire duration of the attack. This is contrasted

to the ratio measured during the attack when no defenses are present. In this

case both UDP and TCP ratios are between 0.8 and 1. The attack-only metrics

indicates that the connection/rolling attack does not inflict a significant denial-

of-service effect at the victim. The low TCP traffic ratio for the first 100 seconds

when the defense is engaged occurs because of the dual negative effect of attack

and defense on legitimate TCP traffic. The attack fills up the FD table with

spoofed connections, denying the service to legitimate TCP traffic. Thus most

new TCP connections appear only as SYN packet retransmissions. On the other

hand, D-WARD 3.0 does not deploy initial sequence number prediction and thus

cannot classify first packets on new connections as legitimate. These packets

have a high probability of being dropped, increasing the denial-of-service effect.

The ratio of good to total traffic received over time declines to 0.4 when attack

starts and recovers to values between 0.6 and 1 after 50 seconds in the case where

defenses are present. This ratio is close to 0.2 when defenses are not present. This
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Figure 10.29: Performance metrics — connection/rolling attack with defense
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Figure 10.30: Performance metrics — connection/rolling attack without defense
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indicates that the integrated defense system relieves congestion from the network

and assigns resources more to legitimate than to attack traffic. During defense

engagement, legitimate traffic levels at the victim are about 70% of levels when

only baseline traffic is run (high baseline), while attack traffic levels are around

3000 packets in a 30-second interval. This is contrasted to 50% levels of legitimate

traffic and high (20000 packets in a 30-second interval) levels of attack traffic when

defenses are not engaged. It can be concluded that the connection/rolling attack

defense system does relieve congestion from the network by removing a significant

portion of the attack traffic. However, legitimate traffic receives slightly improved

service.

10.1.3.10 ACK Proxy Attack

The ACK proxy attack investigates the idea that the attack connections can be

validated by D-WARD, if for every TCP SYN packet sent to flood a target, an

ACK is spoofed back from an unprotected source as if it had come from the target.

This attack consists of several flooding agents. Each time an agent sends out a

packet, it makes a request to a dedicated ACK server via a socket connection.

The ACK server at the receiving end of this connection reads the desired packet

information from the socket and creates the ACK reply as if it were coming from

the target of the TCP flood.

Attackers from FHOST7, FHOST10, FHOST13 and FHOST15 launch a

TCP SYN flooding attack targeting the victim SHOST1, while proxies from

FHOST2, FHOST3, FHOST4 and FHOST17 send the acknowledgment traf-

fic back to D-WARD, spoofing the victims address. The attack is run along with

high baseline traffic. Figure 10.31 depicts the performance metrics when defenses

are engaged during the attack. These results are contrasted with the case where
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no defenses are present (depicted in Figure 10.32).

When defenses are present, the ratio of total sent to received legitimate traffic

is close to 1. This is contrasted to the ratio measured during the attack when no

defenses are present, which is close to 0. These metrics indicate that the ACK

proxy attack inflicts an enormous denial-of-service effect at the victim. This

effect is successfully relieved with defense system action. The ratio of good to

total traffic received over time declines to 0.7 when attack starts, but quickly

recovers to close to 1 in the case where defenses are present. This ratio is zero

when defenses are not present. This indicates that the integrated defense system

relieves congestion from the network and assigns resources more to legitimate

than to attack traffic. During defense engagement, legitimate traffic levels at

the victim are similar to those when only baseline traffic is run (high baseline),

while attack traffic levels are close to zero. This is contrasted to zero levels of

legitimate traffic and high (28000 packets in a 30-second interval) levels of attack

traffic when defenses are not engaged. The defense system successfully performs

selective dropping of the attack traffic which results in good service offered to

legitimate traffic.

10.2 DefCOM

The Defensive Cooperative Overlay Mesh (DefCOM) is a distributed DDoS de-

fense system being developed in our research group, the Laboratory for Advanced

Systems Research (LASR) at UCLA. DefCOM consists of heterogeneous de-

fense nodes organized into a peer-to-peer network. These nodes communicate

to achieve a dynamic cooperative defense. The high-level overview of DefCOM’s

operation is given in Figure 10.33. It shows the presence of legacy routers (white

circles), core defense nodes (black circles), alert generators (striped circles), clas-
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Figure 10.31: Performance metrics — ACK proxy attack with defense
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Figure 10.32: Performance metrics — ACK proxy attack without defense

320



Core

Legacy router
Physical network

Legitimate client

DDoS attacker

DDoS victim

Rate limit

1

2

3

4

5

X

Y

Z

Traffic Types

Unstamped
Classifier

Legitimate
Monitored

v

a

c

a

a

a

c

v

c

c

c

7

6 8 9

Alert generator

Defense nodes

Figure 10.33: DefCOM overview.

sifier nodes (grey circles) and the two types of traffic sources — legitimate clients

and attackers. Some traffic sources are behind classifier defense nodes, while oth-

ers are not. The following sections provide a description of the DefCOM system

and how it is integrated with D-WARD.
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10.2.1 DefCOM Overview

DefCOM defense nodes are organized in a peer-to-peer network whose topology

construction allows approximation of the underlying physical network.3 During

the attack they discover the victim-rooted traffic tree, thus identifying upstream-

downstream relationships between peers. DefCOM nodes then devise the appro-

priate rate limits to restrain the attack traffic and place them as close to source

networks as possible. At the same time, classifier nodes differentiate legitimate

from attack streams, and all nodes in the framework give preferential service to

legitimate traffic.

10.2.1.1 Traffic Tree Discovery

When a DDoS attack occurs, the alert generator node close to the victim detects

it and propagates an alert message to all nodes in the peer network. In Figure

10.33, alert generator node 4 detects a DDoS attack on victim V and informs

all other defense nodes through the DefCOM peer network. This process is op-

timized so that those nodes that do not forward any traffic to the victim do not

propagate the signal further; e.g., node 3 will receive the alert but will not send

it to its neighbors. Those nodes that observe traffic to the victim (1, 2, 4, 5, 6, 7,

8, and 9) are called activated nodes. They cooperate to trace out the topology of

the victim-rooted traffic tree by deploying secure traffic stamping. Tracing of the

tree structure enables each node to assign upstream or downstream classification

to its peers, thus defining its policy and the message types to be sent to these

peers. Secure packet stamping actually serves four purposes: (1) discovery of the

victim-rooted traffic tree topology, (2) differentiation of traffic types, (3) protec-

3Nodes can either start off by carefully constructing a peer network topology to resemble
the physical topology, or converge to it through reconfiguration guided by traffic observation.
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tion of legitimate traffic and (4) transparent operation through legacy routers.

Each activated defense node picks a stamp and communicates it securely to its

neighbors. The node places this stamp in the header of packets that it forwards

to the victim.4 It also observes packets that it receives from its neighbors, looking

for their stamps. A node becomes a parent of a neighbor whose stamped traffic

it observes. A parent sends an explicit message to its children to inform them of

their child status.

To protect the packet stamping mechanism from misuse, every pair of neigh-

boring nodes uses stamps unique to them, and changes the packet stamps on a

frequent basis, using the secured communication channel.

To detect and discard false alert messages, the DefCOM network only accepts

alarms from registered and authenticated alert generator nodes. Alert generator

nodes require the advance permission of a victim before they issue attack alerts.

Thus, each alert generator node may only raise alerts for a particular set of

victims with whom the alert generator node has established a trust relationship.

10.2.1.2 Distributed Rate-Limiting

Once the tree topology is determined, the nodes cooperate to deploy rate limits

that limit attack traffic while protecting and granting preferred service to legiti-

mate traffic. An optimal deployment puts the rate limits as close to the leaves of

the tree as possible. This relieves congestion higher up the tree near the victim-

root. In Figure 10.33, core defense nodes 1, 2, and 6 deploy rate limits to stop or

reduce attack traffic from attack nodes X, Y and Z to V.

The rate limit is initially propagated from the root of the tree (the node that

4For instance, the stamp could be placed in the IPv4 identifier field, or in the IPv6 flow
identifier field.
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has no parents) downstream. Each node assigns an equal share of its rate limit

to its children and communicates this through rate limit requests. The resource

division created through this initial rate limit process can be modified through

resource requests issued by the node to its parents.

Resource request functionality must be provided by the system, as some chil-

dren of a node may have a greater number of legitimate clients upstream than

other children. On the other hand, the resource request process is particularly

vulnerable to manipulation by malicious participants (who could request a large

amount of resources at the expense of others) and must be regulated. Generally,

the problem of having malicious participants exists in any distributed system

(such as routing and the DNS infrastructure), and is as yet unsolved. However,

we believe that by limiting the extent of trust between nodes we can limit the

amount of unfairness that the malicious participant can introduce in the frame-

work. Nodes should devise monitoring and policing functions to ensure that rate

requests are obeyed and resource requests are granted in accordance to negotiated

policy. Unreasonable requests should be dropped and trust should be reduced

for the requesting node. Subsequent requests from the untrusted node will have

a lower probability of being granted.

10.2.1.3 Differentiated Service for Legitimate Traffic

Defense nodes use secure packet stamping to provide different service levels, en-

suring that the policed traffic has priority in resource allocation.

Each defense node maintains a legitimate stamp and a monitored stamp. Clas-

sifier defense nodes profile the traffic originating from their networks, and securely

mark those packets that are deemed legitimate with a legitimate stamp. Each

core node then polices the traffic in the following manner:
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• The traffic bearing the legitimate stamp is forwarded to the victim (within

the rate limit) and restamped with the node’s legitimate stamp.

• The traffic bearing the monitored stamp is forwarded to the victim (within

the leftover resources from the legitimate traffic) and restamped with the

node’s monitored stamp.

• The unstamped traffic is forwarded to the victim only if there are leftover

resources from the legitimate and the monitored traffic. It is stamped with

the node’s monitored stamp.

In Figure 10.33, classifier nodes 1, 5 and 7 vouch for traffic from legitimate clients

C. Node 9 also rate-limits traffic from legitimate client C, if necessary. As this

client does not have a classifier node to vouch for it, it is an unknown source

and thus subject to rate-limiting. The traffic that passes a rate limit in a core

node will bear the monitored mark, informing downstream nodes that it has been

policed.

The rate limit algorithm in core nodes should provide preferential service

to marked traffic by apportioning its allowed resources first to legitimate traffic

(that has passed through a classifier node), then to monitored traffic (that has

passed through a core node and has been policed), and lastly to unstamped traffic

(containing an unknown mix of legitimate and attack traffic).

Figure 10.34 illustrates in more detail how preferred service for legitimate

traffic is achieved using the packet-stamping mechanism. This figure is, in fact,

a magnified lower branch of Figure 10.33.

A legitimate traffic flow originating in the 192 subnet is shown passing through

defense node 5 in Figure 10.34. Originally unstamped, it leaves defense node 5

bearing stamp 222, classified as legitimate traffic. Upon reaching defense node 6,
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Figure 10.34: Packet stamping and flow classification.

it is restamped with stamp 012. Upon reaching defense node 8, it is aggregated

with another incoming legitimate traffic flow (bearing stamp 002), and both flows

leave this node 8 bearing stamp 101 and continue toward the victim. In contrast,

attack traffic from the 126 subnet is rate-limited by defense node 6, and becomes

a monitored flow leaving this node with stamp 768. This monitored flow is

restamped at node 8 with stamp 999. Further aggregation of monitored flows is

shown in defense node 9, where fresh unstamped traffic from a legitimate client

enters, is rate-limited, and aggregated with the 999 flow. This example shows

how two stamps must be maintained between any two defense nodes. At this

snapshot in time, for defense node 8 and 9, the 999 stamp defines monitored

traffic, and the 101 stamp defines legitimate traffic.
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10.2.2 Overview of an Integrated DefCOM and D-WARD System

The D-WARD 3.1 system (D-WARD with sequence number prediction) is inte-

grated with DefCOM as a classifier node. It receives attack alerts and rate limit

requests from the DefCOM system, and regards them as authoritative. DefCOM

attack alerts are handled in the same manner as autonomous attack detections.

If a D-WARD system has information on the flow associated with the target from

an attack alert message, it will install a rate limit on this flow. The imposed rate

limit will be the rate limit requested in the DefCOM message. If for some reason

DefCOM messages do not arrive in time, D-WARD falls back to autonomous

operation.

D-WARD benefits from integration with DefCOM by improving its detection

mechanism with more accurate victim-end DefCOM detection. DefCOM also

benefits from integration effort, as D-WARD provides excellent classifier func-

tionality. It successfully separates legitimate from attack traffic, thus supporting

DefCOM’s goal of guaranteed good service to legitimate clients.

10.2.3 Experiments

DefCOM experiments are currently ongoing. Their results will be available soon

at the Web site: http://lasr.cs.ucla.edu/defcom. The preliminary results

indicate that legitimate service level in the integrated system is much higher

than the service level when D-WARD is not deployed. However, no performance

graphs are currently available.
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10.3 DDOS-DATA

The Johns Hopkins University Applied Physics Laboratory Distributed Denial

of Service Defense/Attack Tradeoff Analysis (DDOS-DATA) project, under the

sponsorship of DARPA’s FTN program, is currently analyzing DDOS attacks and

mitigation technologies. DDOS-DATA’s goal is to use analysis to quantify how

well mitigation technologies work, how attackers can adapt to defeat mitigation

technologies, and how different mitigation technologies can be combined. While a

variety of analysis approaches exist, DDOS-DATA is using modeling and simula-

tion. Modeling and simulation provide an approach with several advantages over

closed form and real world testbed analysis: the ability to vary key parameters

that may not be easily modifiable in a testbed, the ability to easily repeat a given

analysis scenario, and the use of models without debilitating simplifications.

Using modeling and simulation, the DDOS-DATA team has analyzed five

mitigation technologies (D-WARD, NetBouncer, Active Monitor, Rate Limiting,

and Proof-of-Work) to develop quantitative evidence regarding the mitigation

technologies operation both individually and when deployed in combinations. The

analysis results have provided insights into properties of mitigation technologies

that make them robust in the face of an adapting attacker and conditions that

must be satisfied for mitigation technologies to work together.

DDOS-DATA analysis begins with developing requirements and designs for

the necessary models. The requirements reflect the analysis goals while the de-

sign is based on all available information for the technology in question. Once the

models have been developed, verification and validation begins. Verification en-

sures that the model correctly implements the developer’s intent, while validation

compares the model to the real system ensuring correct model behavior.
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Once verified and validated, the mitigation technologies are deployed in a

500+ node target network based on a subset of the JHU/APL Intranet. DDOS-

DATA metrics examine the performance of each mitigation technology in several

attack scenarios.

DDOS-DATA experiments with D-WARD are currently ongoing. Their re-

sults will be available soon at the Web site: http://lasr.cs.ucla.edu/d-ward.
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CHAPTER 11

Overview of Related Work

There are numerous approaches to DDoS defense and network security in general.

Chapter 3 gave a thorough analysis of the DDoS defense problem and an overview

of the most commonly used approaches, and Section 4.2 provided a detailed tax-

onomy of DDoS defenses. In almost all cases, proposed DDoS defense systems

are compatible with D-WARD, and often the use of D-WARD with these other

systems could improve D-WARD or offer synergistic protection from DDoS at-

tacks. In the following sections we provide detailed descriptions and comparisons

with related DDoS defense approaches.

11.1 Protocol Security Mechanisms

Protocol security mechanisms address the problem of a bad protocol design by

changing and securing current protocols to eliminate the possibility of vulnera-

bility attacks.

TCP SYN cookies [SKK97] address the half-open connection problem in the

TCP protocol that is misused for TCP SYN flooding attacks. They modify

the TCP protocol at the protected target, replacing the server state (usually

instantiated after SYN packet receipt) with cryptographic information encoded

in SYN ACK packets. Once the final ACK is received and the connection has been

established, the server recreates the state from the ACK packet. This delayed
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commitment of resources successfully handles the TCP SYN attack and requires

no changes to the client’s TCP mechanism.

Delayed commitment of resources has also been explored in [LNA00, Mea99,

ANL01]. Those papers propose protocol designs in which a server allocates re-

sources for communication with the client only after sufficient authentication is

done [LNA00, Mea99], or the client has paid a sufficient price [ANL01]. Design-

ing a protocol along these guidelines will not completely remove the possibility of

DDoS attacks. The attacker can still acquire a large number of agent machines

and form an overwhelming number of legitimate connections, or he can generate

high-volume traffic that consumes a target’s network resources. However, these

guidelines prevent small-rate attacks that use spoofed addresses, thus forcing the

attacker to resort to cruder and easily detectable attack strategies. These ap-

proaches all have the disadvantage that they require changes in existing client

software.

Protocol and application scrubbing [MWJ00] (typically applied at the en-

try point to a victim network) has been proposed to remove ambiguities from

transport and application protocols. Scrubbing detects malformed or ambiguous

packets and modifies them to ensure proper operation. It can eliminate many

vulnerability attacks that misuse protocol ambiguities to bypass intrusion de-

tection systems. A protocol scrubber could be installed at the exit point of the

source network and thus prevent vulnerability-based attacks originating from this

network. This would nicely complement D-WARD’s defense, thus enabling it to

detect and handle vulnerability-based DDoS attacks.

Several filtering mechanisms have been proposed to prevent spoofing of source

addresses in IP packets ([FS00, LMW02, PL01]). While IP spoofing is not nec-

essary for DDoS attacks, it helps the attackers hide the identity of attacking
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machines so they can reuse them for future attacks. D-WARD and many other

DDoS prevention mechanisms would benefit from more reliable packet source ad-

dresses. Elimination of spoofing would reduce DDoS defense to a resource-sharing

problem where many known solutions can readily be deployed.

11.2 Victim-End Defense

Most systems for combating DDoS attacks work on the victim side. As discussed

before, victim-end defense cannot provide complete protection from DDoS at-

tacks because the defense system may itself be overwhelmed by the attack traffic.

Another possible approach would be to deploy a victim-end defense system at

the source-end, reversing its functions so that it examines and polices the outgo-

ing traffic. While attack traffic does not create the same set of anomalies at the

source-end as it does at the victim-end, it is likely that the sensitivity of most

victim-end defenses will be inappropriate for source-end defense. However, some

victim-end defenses can successfully be combined with D-WARD to achieve a

synergistic effect.

Intrusion detection systems such as NetRanger [Cisa], NID [Com], SecureNet

PRO [Mim], RealSecure [Int], and NFR-NID [NFR] use signature and anomaly

detection to detect all sorts of security breaches that may indicate intrusion

incidence. The EMERALD IDS [NP99] is particularly relevant, since it analyzes

TCP/IP packet streams to detect intrusions through anomalous behavior. Those

IDS systems could be used to detect anomalies and attack signatures in outgoing

traffic. While outgoing traffic at the source-end is of small volume and may

not exhibit the same level of anomalies as traffic near the victim, coupling IDS

systems with D-WARD would surely improve detection accuracy. As most IDS

systems do not take automated action to stop the attack, they would benefit,
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through a combining with D-WARD, by receiving an automated, selective and

dynamic response to the attack.

In [LXS00] Liu et al. propose to detect DDoS attacks at a router located close

to the victim. The router monitors its buffer queue size and starts throttling

incoming traffic once the queue size grows over a specified threshold. When

the queue size is reduced, throttling is stopped. This approach is similar to

the RED congestion control mechanism [FJ93]. Its application at the source

network is not likely to be very effective since the attack is usually sufficiently

distributed so that it does not create congestion. On the other hand, D-WARD

detection occurs promptly, even for small-rate attacks that do not create source-

end congestion. Further, the approach proposed in [LXS00] is not selective,

since it probabilistically drops any of the packets in the queue. While the high

amount of attack traffic ensures that attack packets will be dropped with a higher

probability than legitimate ones, collateral damage is still possible. As D-WARD

invests great effort in distinguishing between legitimate and attack traffic, its

response is more selective and thus promises smaller collateral damage.

Netbouncer [OB] establishes a list of legitimate clients (source IP addresses)

prior to the attack. The legitimacy of the client is established through “legitimacy

tests.” These tests send a request packet to the client and wait for the appropriate

response to include the client into the list of legitimate clients. The sent requests

can be ICMP ECHO packets testing to see if the IP address belongs to a real

machine, client puzzles or more complicated requests (such as Turing tests) that

test whether a live user is generating the traffic. Under attack, Netbouncer

forwards only those packets that come with source addresses from the legitimate

client list, and drops everything else. This approach is likely to accurately detect

legitimate clients, but it can be easily tricked into forwarding the attack packets,

333



if the attacker can fake addresses from the legitimate client list.

Resource accounting mechanisms police the access of each user to resources

based on the privileges of the user and his behavior. The user in this case might

be a process, a person, an IP address, or a set of IP addresses having something

in common. Resource accounting mechanisms guarantee fair service to legitimate

well-behaved users. In order to avoid user identity theft, they are usually coupled

with legitimacy-based access mechanisms that verify the user’s identity, such as

client puzzles [JB99]. Approaches proposed in [JB99, ZL97, SP99, GR02, LRS00]

illustrate resource accounting mechanisms. As DDoS is in fact a resource over-

loading problem, resource accounting approaches are well suited to address it.

One drawback of these mechanisms is that clients must be aware of the defense

and install special software, enabling them to reply to legitimacy tests. Another

drawback is that resource accounting requires keeping state per user, thus storage

requirements grow with the number of legitimate users. This indicates that the

system must be installed at the end network and not in the core. As discussed be-

fore, victim-end defense cannot handle high-volume attacks that overwhelm the

defense system. On the other hand, a source-end defense that deploys resource

accounting would be beneficial to D-WARD. As D-WARD establishes connection

legitimacy regardless of the spoofed addresses, no other legitimacy test would

be required. A resource accounting approach could then divide resources fairly

among legitimate connections, preventing subtle attacks that do not deploy spoof-

ing and that create legitimate-like connections.

Several DDoS defense systems [Maz] and [Arb] perform anomaly detection

(usually at the victim network) by observing numerous traffic parameters and

defining a range of allowed values based on the analysis of packet trace data. The

attack response is to impose a non-selective fixed rate limit to offending streams,
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thus likely damaging legitimate traffic. Instead of fixed legitimate traffic models

that D-WARD uses, [Maz] and [Arb] train their models based on the observed

traffic in the networks. Once underlying traffic patterns change, models need to

be retrained to avoid false positives. Like all learning approaches, these detection

models can be mistrained by the attacker to regard attack traffic as legitimate. On

the other hand, models tailored especially to traffic characteristics of deploying

network are likely to yield better detection accuracy than those deployed by D-

WARD. Thus, integration of a defense system that deploys trained models with

D-WARD would likely enhance detection accuracy. D-WARD’s selective response

guarantees good service to legitimate traffic and is likely to inflict less collateral

damage than the fixed rate-limiting deployed by [Maz] and [Arb].

Resource multiplication mechanisms provide an abundance of resources to

counter DDoS threats. The straightforward example is a system that deploys a

pool of servers with a load balancer and installs high bandwidth links between

itself and upstream routers. The other approach is to acquire resources dynam-

ically once the attack has been detected [YEA00]. These approaches essentially

raise the bar on how many machines must participate in an attack to be effec-

tive. While not providing perfect protection, for those who can afford the costs

resource multiplication has often proved sufficient. For example, Microsoft has

used it to weather large DDoS attacks. Another approach is the use of Akamai

services for distributed Web site hosting. User requests for a Web page hosted in

such a manner are redirected to an Akamai name server, which then distributes

the load among multiple, geographically distributed Web servers hosting replicas

of the requested page.
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11.3 Source-End Defense

We are aware of two source-end defense systems - MULTOPS [GP01] and Reverse

Firewall [Cs3].

MULTOPS [GP01] is a heuristic and a data-structure that network devices

can use to detect DDoS attacks. Each network device maintains a multi-level tree,

monitoring certain traffic characteristics and storing data in nodes corresponding

to subnet prefixes at different aggregation levels. The tree expands and contracts

within a fixed memory budget. The attack is detected by abnormal packet ratio

values, and offending flows are rate-limited. The system is designed so that it can

operate as either a source-end or victim-end DDoS defense system. While the

high-level design of this system has much in common with D-WARD, the details

are different. MULTOPS uses only the aggregate packet ratio to model normal

flows. Non-TCP flows in a system using MULTOPS can either be misclassified

as attack flows, or recognized as special and rate-limited to a fixed value. In the

first approach, harm is done to a legitimate flow, while in the second approach,

a sufficiently distributed attack can still make use of the allowed rate to achieve

the effect. On the other hand, D-WARD adds legitimate UDP and ICMP flow

models, thus detecting a broader range of attacks. MULTOPS imposes a fixed,

non-selective rate limit on outgoing or incoming traffic (based on its deployment

at source- or victim-end), thus likely inflicting collateral damage on legitimate

traffic. D-WARD offers much more selective response with almost no legitimate

traffic drops.

Reverse Firewall [Cs3] prevents DDoS attacks by limiting the rate of “un-

expected” TCP packets at a network’s exit router. The specifics of expected

packets are derived from the foreign-peer acknowledgements to previously sent

traffic. Only the outgoing packets matching the expected range will be forwarded.
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This technique is similar to sequence number prediction but it requires storing

TCP data for each legitimate connection. While it is likely to be more accu-

rate in distinguishing legitimate from attack traffic, this improvement can only

be marginal compared to D-WARD’s already excellent traffic separation. The

improvement is gained at large storage and processing costs that may make the

system unable to handle a large traffic volume. Reverse Firewall deploys a fixed

rate limit on “unexpected” packets and on non-TCP traffic, and thus cannot

adapt to dynamic changes in network conditions. Rate limits are engaged at all

times, which leads to a difficult trade-off for setting the limit. Small values lead

to poor resource utilization, as they cannot accommodate traffic bursts. Large

values, on the other hand, do not control highly distributed attacks, as their traf-

fic passes below the rate limit. D-WARD successfully addresses this problem by

dynamically adjusting rate limits based on current traffic observations.

11.4 Distributed Defense

Distributed defense systems locate their nodes either at edge (victim and source)

networks, or at the edge and in the core.

Distributed defense at the Internet core has a definite advantage over single-

point defense. Due to the highly interconnected core topology, a few strategically

deployed defense systems can monitor and control a large portion of traffic cir-

culating in the Internet. For instance, in [PL01] Park et al. have evaluated

the effectiveness of spoofed address filters deployed at the core. Their results

indicate that with deployment at a chosen 18% of core administrative systems,

almost all spoofed traffic can be detected and dropped. A similar claim would

stand for DDoS defense — it is likely that distributed defense deployed at a small

percentage of core routers would effectively stop a large portion of DDoS attacks.
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Distributed defense at the edge networks has the advantage of easy attack

detection. Because the victim-end defense system raises the attack alarm, the

detection is very reliable. The response is then engaged at source networks that

participate in the attack. A distributed DDoS defense that involves only edge

networks is ineffective against attacks from legacy networks (i.e., those networks

that do not deploy source-end defense). The attack traffic generated by agent

machines in legacy networks reaches the victim unimpeded.

Distributed systems usually attempt to engage defense actions as close to the

sources as possible. This minimizes collateral damage since a response only affects

those traffic mixes that contain the attack. Combining the D-WARD system with

a distributed DDoS defense can greatly enhance performance of both parties.

D-WARD can improve its detection by receiving victim-end attack alert and

advisory on desired actions, while distributed defense can improve its selectiveness

by deploying D-WARD’s source-end response. This effect was demonstrated,

both in the integration of the D-WARD system with COSSACK [Infa] and with

DefCOM [MRR03].

In [MBF02] Floyd et al. have proposed Aggregate Congestion Control. ACC

augments routers with the ability to detect and control flows that create conges-

tion (frequently a sign of DDoS attacks). Flows are detected by monitoring the

dropped packets in the router queue and identifying high-bandwidth aggregates

that are responsible for the majority of drops. The rate limit is then imposed on

the aggregate. Pushback can be used to install rate limits at upstream routers

if the congested router cannot control the aggregate itself. This approach faces

challenges related to augmentation of large numbers of routers, handling legacy

routers, and cooperation among different administrative domains. Further, since

the rate limit is imposed at the aggregate traffic close to the victim, legitimate
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flows suffer collateral damage [IB02]. Combining ACC with D-WARD would ad-

dress this problem, as D-WARD offers a more selective response that guarantees

low collateral damage.

Secure Overlay Services (SOS) [KMR02] prevent denial-of-service attacks on

critical servers by routing requests from previously authenticated clients to those

servers via an overlay network. All other requests are filtered by the overlay. SOS

is a distributed system that offers excellent protection to the specified target at

the cost of modifying the clients’s machines to be aware of the overlay and use

it to access the target. This prevents the use of SOS for protection of public

servers. Additionally, large numbers of overlay nodes are required to make the

system resilient to DoS attacks. Also, SOS offers no protection from insider at-

tacks. Namely, an attacker could trick the authentication mechanism (or subvert

a legitimate client’s machine) and direct its attacks to the victim via the overlay.

DefCOM [MRR03] builds an overlay of defense nodes along the traffic path

and uses it to suppress attack traffic, thus providing resources for legitimate

traffic. More details about DefCOM are given in Section 10.2. D-WARD has

been successfully integrated with DefCOM and has demonstrated excellent per-

formance.

COSSACK [Infa] forms a multicast group of defense nodes which are deployed

at source and victim networks. Each defense node can autonomously detect an

attack and issue a signal to the group, inviting defense nodes from participating

source networks to deploy defense measures. There are several deficiencies in the

COSSACK system. Its use of multicast communication suggests poor scalability

of the communication system and offers many points of failure. D-WARD has

been successfully integrated with COSSACK, and results of this integration are

presented in Section 10.1. Both systems benefit from the integration and provide
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better defense than in the autonomous operation.

The Active Security System (ASSYST) [CCP01] consists of defense nodes

deployed at edge networks. Once the attack is detected, the nodes discover their

peers using probe messages, and organize themselves into a peer-to-peer network.

The blocking requests are then propagated to upstream peers and a response is

installed as close to the sources as possible. ASSYST does not provide separation

of legitimate from attack flows, and is thus likely to inflict collateral damage.

Integration of ASSYST with D-WARD would have the same synergistic benefits

as the D-WARD/COSSACK integration. ASSYST would gain a selective and

dynamic response mechanism, while D-WARD would improve its attack detection

by coupling it with a victim-end attack alert.

IDIP [SDS01] is an application-level protocol that coordinates detection and

responses of multiple intrusion detection systems. IDIP nodes are organized into

neighborhoods and communities. Coordinated detection, attack tracing and re-

sponse within a community are managed by a component called a Discovery

Coordinator. IDIP assumes contiguous deployment of neighborhoods that share

information, and thus its ability to suppress attacks is limited in a partial de-

ployment scenario.

MANAnet [Cs3] forms cooperative neighborhoods of defense nodes around the

victim. These nodes stamp packets that they forward, encoding the path to the

victim in the packet header. The router at the victim then offers a fair share of

resources to each encoded path. Source networks can further deploy the Reverse

Firewall to prevent outgoing attacks. MANAnet requires contiguous deployment

of defense nodes near the victim and changes to the IP protocol to facilitate

packet stamping—both of these features are likely to hinder wide deployment.

Several systems combat DDoS attacks by using a traceback mechanism to
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locate attacking nodes ( [SWK00, BLT01, DFS01, SP01, SPS01]. These systems

provide information about the identity of attacking machines, but do not them-

selves stop DDoS attacks. The complexity of a traceback mechanism is large if

the attack is distributed, and the mechanism itself may be susceptible to attacks.

Both of these issues must be resolved before traceback can be widely deployed

on the Internet and used for DDoS defense. D-WARD could benefit from in-

tegration with a traceback system, as it could receive reliable information that

the attack has been detected and that the source network is participating in it.

Traceback systems would also benefit from this integration as it would enhance

the identification process with automated and selective response.

The approach proposed in [PLR02] combines the Pushback [IB02] and trace-

back [SWK00] approaches to reduce collateral damage to legitimate traffic due to

non-selective pushback action. All routers involved in defense perform probabilis-

tic packet marking (PPM), as described in [SWK00]. The victim builds a “normal

profile” on each of the upstream routers, using marked packets. The victim also

collects current statistics on upstream routers, building a temporary profile. The

attack is detected when the victim notices a large discrepancy between the nor-

mal and temporary profiles. The victim then sends Pushback messages only to

those routers whose profiles disagree with the model, installing responses as close

to the sources as possible. This minimizes collateral damage since those routers

that relay only legitimate traffic are not likely to create anomalous profiles, and

thus will not install responses and drop legitimate packets. Collateral damage

will still be inflicted at those routers near the source that install the response.

Coupling D-WARD with this approach would clearly address this problem and

thus improve defense performance.

Dynabone [Infb] is a system for the rapid configuration, deployment, and
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management of protective layered overlays that reconfigure the network on at-

tack alert, to cut off the attack traffic. DynaBone interconnects numerous parallel

networks (innerlays) into a single “outer” overlay (outerlay) that presents an in-

terface compatible with COTS applications and operating systems. The result is

a parallel set of innerlays, any subset of which can be disconnected in response to

an attack while the outerlay continues to provide effective service over the remain-

ing innerlays. Additionally, Dynabone provides a variety of network management

and security algorithms in innerlays, all of which must be simultaneously attacked

to deny services. Dynabone requires formation of redundant, disjoint innerlays

to provide desired re-routing service. While re-routing will successfully address

flooding attacks by removing high-volume traffic from a bottleneck link, it is still

likely to inflict collateral damage to legitimate traffic sharing the path. Coupling

Dynabone with D-WARD would provide selection function to Dynabone, thus

enabling it to separate legitimate from attack traffic and apply the re-routing

response only to the attack traffic.
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CHAPTER 12

Beyond D-WARD

The previous chapters have described the design and implementation of D-WARD,

a source-end system for DDoS defense. Numerous performance results show that

D-WARD detects a wide range of attacks and successfully controls those at-

tacks, providing good service to legitimate clients. However, distributed denial-

of-service is a complex problem. While D-WARD demonstrates a successful ap-

proach to DDoS defense, it is by no means a “silver bullet” for DDoS attacks.

In this chapter we reexamine the DDoS problem and propose a fundamental so-

lution needed to handle this threat. D-WARD represents a crucial piece of this

solution.

12.1 DDoS Revisited

On the surface, DDoS seems to be a very simple problem — a large number of

machines are generating a lot of traffic that overwhelms some critical resource at

the victim. DDoS attacks are successful because of brute force, not sophistica-

tion. They work because attackers are “stronger” (have more resources) than the

victim. Two obvious solutions come to mind:

1. Equip the victim with more resources. However, the attacker can recruit

hundreds and thousands of machines. If the victim purchases sufficient

resources to weather the largest possible attacks, it will simply waste money
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because these resources will be constantly under-utilized.

2. Perform resource management with fair-sharing among users. As the de-

fense system on the victim’s network link may easily be overloaded with

the attack, the resource management unit should be placed at least one

hop upstream. The goal of resource management would be to divide re-

sources equally among users, so those users that generate a lot of requests

cannot steal resources from users that generate a few. This approach fails

for two reasons. First, attackers use IP spoofing, so instead of seeing many

requests from a few users, the unit will see a few requests from numerous

users. Second, even if IP spoofing were countered, the attacker could re-

cruit a sufficient number of machines to obtain almost all of the critical

resources for himself, even in face of resource management. For example,

let us observe a Web server WS that usually receives 10 requests per sec-

ond, and its resources can support up to 1000 requests per second. At the

time of the attack, this server has three legitimate users that each generate

a request per second. The attacker subverts 10000 machines and instructs

them to generate 1 request per second directed at the Web server WS. If

the server is protected by a resource manager unit, it will detect 10003 le-

gitimate users per second. As it can only accommodate 1000, it will choose

1000 among 10003 requests and forward them to the server. The attacker

obviously stands
(

10000
1000

)
/
(

10003
1000

)
= 73% chance of getting all of the server’s

resources.

The other straightforward solution is to prevent the attacker from gaining

numerous agent machines, thus limiting his power. To achieve this, we must

secure (and keep up to date) the majority of machines in the Internet. While this

is a worthy goal (insecure machines are exposed to many malicious actions, such
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as worm and virus poisoning, that can do significant damage) it is unattainable.

There are simply too many machines owned by too many users all over the world,

and no single policy can be enforced among them.

Obviously, DDoS proves to be tougher than it may seem at first glance. This

is because it misuses the very principles upon which the Internet was built —

best-effort service and the end-to-end paradigm, as discussed in Chapter 2. The

intermediate network blindly forwards requests to their destination, regardless of

the destination’s ability to handle them. In the case of DDoS attack (or a flash

crowd) this leads to overload. The solution to DDoS must be as fundamental as

the misused vulnerabilities to successfully address the threat.

12.2 DDoS Nemesis

Obviously, many aspects of DDoS can more successfully be addressed near the

source than near the victim or in the middle of the Internet:

• Any response deployed near the source has less collateral damage than if

deployed further downstream. This is because pushing responses down-

stream limits the amount of legitimate traffic affected by the response. For

example, let us compare two of the same defense systems, with different

deployment scenarios. System A is deployed at the victim. System B is de-

ployed as two instances located at the only two ingress points at the victim

network. Both systems receive the same attack alert and attack characteri-

zation. Defense system A can police (and thus possibly drop) all legitimate

traffic that a victim receives, and will be engaged at each attack alert. De-

fense system B, on the other hand, can choose to activate either one or both

of its instances. It will choose to activate only one instance if some deci-
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sion function indicates that the majority of attack traffic is traversing this

instance; otherwise both instances will be activated. Even if the decision

function is imprecise or can be tricked by the attacker, there will be cases

in which only one response will be engaged. In these cases only the portion

of legitimate traffic coming over the ingress point with the active response

runs the risk of being dropped, while the rest of legitimate traffic will be

delivered to the victim.

• Source address spoofing could be successfully countered near the source. For

example, if ingress filtering were deployed everywhere, the source addresses

could be trusted and resource management could be performed based on the

source network prefix yielding much less collateral damage. Even various

traceback mechanisms would perform better near the source, as they could

take advantage of known network topology.

• Selectiveness of the response is better near the source. This point was

demonstrated by the D-WARD system. The traffic volume is low at the

Internet edges and high in the core. As traffic differentiation requires sig-

nificant amounts of processing and storage, the only two places to perform

this are near the victim or near the source. The differentiation at the vic-

tim runs the risk of being overwhelmed by the attack traffic. Thus the only

available deployment point is near the source.

However, source-end defense has two major drawbacks that hinder its ability

to completely address the DDoS problem: (1) source-end detection may be in-

accurate, and (2) attacks from unprotected networks are still possible. The first

problem can be addressed by combining victim- and source-end defense. Victim-

end defense can perform detection while source-end defense can respond to the

attack. The second problem can be addressed by deploying defense nodes in
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the core. Those nodes cannot achieve desired selectiveness of the response, but

they can successfully control traffic from unprotected networks. In the mean-

time, traffic from protected networks can be assumed to be legitimate and can

be forwarded freely to the victim. This leads us to the approach that we believe

is a fundamental answer to the DDoS threat — a distributed defense system in-

corporating defense nodes at the victim- and source-end and in the core. This

approach is taken by DefCOM, a logical extension of our work on D-WARD.

We can also arrive at the same solution from the other direction. DDoS

is, in essence, a resource overloading problem. The fundamental solution to

the problem is to assign each user his fair share of the resources. In the case

where there are too many users so that this strategy yields too small a share

of resources, we need to make a more sophisticated choice. One approach, to

choose users randomly, fails because there may be many more malicious than

legitimate users and a random strategy would reduce legitimate users’ chances of

getting the resource. The only other option is to somehow differentiate among

users and perform fair resource sharing only among those users that “pass the

test.” As we have discussed before, this separation of legitimate from attack

traffic can be done near the source. The legitimate packets can then be grouped

by the “user” (a network, IP address, application, etc.), and fair sharing can be

enforced among groups. To accommodate legacy networks, we must assign some

share of resources to them. The fair-sharing enforcement can be performed either

in the core or close to the victim. The benefit of performing it in the core is that

the policing load is shared among multiple defense points and not concentrated

on one point near the victim. Finally, as defense is expensive and is not perfect

(i.e., occasionally a legitimate packet may be dropped), it should be engaged only

during the attack. The attack signal should come from the victim, as the victim

is best informed as to when its resources are being overloaded. Thus we arrive at
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DefCOM from the other direction: attack alert from the victim-end defense, non-

selective response at the core, and selective response near the source. DefCOM

core nodes do not currently perform fair sharing of resources among legitimate

users, but this feature could be easily added.

12.3 D-WARD’s Place in the Solution

The goal of DDoS defense is not only to stop the attack but to detect legitimate

traffic that is mixed with the attack stream, sieve it and deliver it safely to the

victim. D-WARD is crucial for attaining this goal. It provides a highly selective

response that enables legitimate clients of the victim to freely communicate with it

in spite of the attack. This makes the occurrence of the attack almost transparent

to legitimate clients, thus cancelling the DoS effect.

Without D-WARD, the distributed defense system we have proposed as a fun-

damental solution would, at best, divide the collateral damage equally among the

source networks involved in the attack. However, this is a poor deployment mo-

tivation. Who would deploy a defense system that will likely drop its legitimate

traffic during the attack, when this traffic would stand a fair chance of reaching

the victim without the defense? Even if defense nodes are deployed by the core

routers they would produce numerous dissatisfied clients once the responses were

activated. On the other hand, with D-WARD such a system offers a “carpool

lane” to the victim. Those networks that deploy D-WARD can reach the victim

undisturbed even while the attack is on-going. Furthermore, if D-WARD’s re-

sponse is engaged and produces packet drops, this indicates that some machines

within deploying networks are hosting malicious code. This can be a worthy

signal to network administrators to examine their machines and detect any that

are subverted. While there are many issues still to be answered in the DefCOM
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project, node and communication security being the pressing one, we believe that

this approach promises excellent performance and has a good economic model.

Both of these features should facilitate quick and wide deployment, necessary for

a successful DDoS defense.

12.4 Open Issues

While D-WARD demonstrates excellent performance as is, there is a lot of space

for improvements:

1. UDP legitimate connection models could be improved. Currently they only

contain fairly simple DNS, NTP and streaming media models. Adding more

UDP application models and introducing more complexity into the current

ones would definitely improve D-WARD’s performance with UDP traffic,

and make it resilient to stealthy attacks.

2. A value prediction technique could be added for UDP connections to assure

that first connection packets are not dropped during the attack, similar

to sequence number prediction techniques for legitimate TCP connections.

This technique would significantly improve service offered to short UDP

connections such as DNS and NTP that do not benefit much from legitimate

connection models. The question then remains: which parameter should

be chosen for this value prediction technique?

3. A better hashing technique would reduce packet handling overhead, thus

enabling D-WARD to handle higher packet rates.

4. A reduction in state storage requirements could be made to enable D-

WARD to handle very high traffic volumes, consisting of numerous flows
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and connections. Such a modified version could be installed further down-

stream, possibly at core routers or at the victim. While some selectiveness

would likely have to be sacrificed for speed and throughput, this unit would

significantly improve the performance of current defense systems.

5. A better UDP flow model could be designed that would facilitate detec-

tion of non-spoofed attacks. For instance, D-WARD could select a set of

parameters and monitor this set under normal operation, building a legiti-

mate flow model. D-WARD could then monitor these parameters and signal

an attack once a large discrepancy is detected between the model and the

observed values. This approach is successfully deployed in many defense

systems. Although it has severe drawbacks (as discussed in Section 5.1),

such as the mistraining of models and proper model update, if carefully

designed this approach can improve system performance.

6. D-WARD could be equipped with more sophisticated flow models, enabling

it to detect attacks that do not create anomalies at the transport layer, such

as attacks that request expensive cryptographic operations or that overload

a database engine with bogus requests.

The remaining open issues do not pertain exclusively to D-WARD but to

DDoS defense in general:

1. Defense node deployment. DDoS is a distributed problem and must

be addressed in a distributed manner. While some level of defense can

be achieved by deploying the defense nodes only at a single point or at a

limited set of points in the Internet, the quality and effectiveness increase

dramatically as the number of deployment points increases. The question

then remains: how to achieve wide deployment of any defense? One ap-
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proach, taken by D-WARD and DefCOM, is to design a defense system with

good performance and a good economic model, and hope that this will rep-

resent sufficient incentive for wide deployment. The other option is to hope

that the legal system will take interest in network security and mandate de-

ployment of DDoS and other security solutions at all public networks. Yet

another approach is to request defense deployment in policy agreements

between Internet service providers or between administrative domains. Be-

cause networks that do not deploy an adequate defense represent a hazard

and inflict damage to other networks, it would not be unreasonable to re-

quire them to show evidence that they have been secured before entering

into a peering agreement with them.

2. Defense update. DDoS attacks are adversarial. They mutate and adjust

themselves to avoid current defenses. If a defense mechanism disables a

particular attack, attackers will try to find other ways to make effective

attacks. It is impossible to predict all attack variations and design defenses

that will work at all cases. Thus we must be able to update current defenses

with better traffic models and response strategies in the future. We also

must be able to layer new defenses and interface them with the old ones so

that they work in concert.

3. Defense interaction. There are currently many solutions, both in the

DDoS field and in network security in general. It is difficult to predict how

all these solutions may interact if widely deployed. D-WARD is mostly

compatible with and complements other DDoS solutions, but it may fail to

work well with encrypted traffic or with traffic that is subject to anonymiza-

tion such as onion routing. Further, many approaches address only one part

of the DDoS problem. It is likely that, if combined, they could fill a large
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portion of the DDoS defense puzzle. The open question is: how to combine

the existing defenses so to achieve this synergistic effect?
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CHAPTER 13

Conclusion

Distributed denial-of service is a grave problem that requires a complex solution.

This thesis has presented D-WARD, a source-end defense system that successfully

handles a broad range of the attacks. D-WARD achieves excellent performance

with a modest set of models and per packet overhead. It provides good service to

legitimate traffic during the attack, which is the ultimate goal of DDoS defense.

It also detects and controls numerous DDoS attacks within seconds. In this

chapter we summarize the DDoS problem, the D-WARD system’s features and

performance and the lessons learned in the course of this dissertation work.

13.1 Summary of the DDoS Problem

Distributed denial-of-service attacks appeared only five years ago, and they have

quickly become a major problem in the Internet. This is not likely to change any

time soon. The attackers are becoming more sophisticated in their attacks, using

legitimate packets that a victim cannot ignore, communicating with agents via

public services (such as IRC) and deploying their agents strategically to avoid

detection while still performing successful attacks. In the meantime, more and

more machines are connecting to the Internet via cable modems and broadband

connections. These machines are frequently not secured against intrusions, and

their continuous, high-bandwidth Internet connection makes them very appealing
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for subversion. Further, we increasingly rely on the Internet for various services,

as it offers great convenience and speed, and abounds in information. This makes

many Internet sites critical resources that should be accessible at all times.

DDoS defenses are lagging far behind the attacks. While they successfully

handle specific attacks (such as TCP SYN flooding, for instance), they are fre-

quently designed to be deployed at a single spot and work in isolation from other

security systems. Thus they fight a quixotic battle — trying to beat the army of

attacking machines from a single point in the network. The attacker can either

bypass this point or simply overwhelm it with a strong attack in order to achieve

his goal. Further, there is a disproportion in the effort invested in the attack

and in the defense. A small modification in the attack traffic enables an attacker

to bypass or trick current defenses. Meanwhile, defenses must be significantly

changed to handle new attacks. For each step the attacker takes, defenses must

take ten steps to catch up. How can we change the game?

First, DDoS defense must be distributed. This is a natural approach since a

the large army can only be defeated with an army equal in number or in power.

Since it is difficult to assure wide deployment of a single defense system, defenses

must be ready and able to interface with one another and to cooperate for the

common good. Ideally, a defense system should be independent so that it can

work in isolation and still achieve good performance. It should also be able to

combine its actions with other systems to further improve performance. D-WARD

meets this goal, as demonstrated in the COSSACK and DefCOM integration

efforts.

Second, DDoS defense must be selective. To achieve the wide deployment

goal, it is necessary to offer incentives to various networks to deploy the defense.

If a system is selective, this incentive is naturally present in the good service
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level that it promises to legitimate traffic. Otherwise, a non-selective defense

system is no better than the “drop-tail” queuing policy in routers — it controls

the congestion but it offers no fairness. D-WARD meets the selectiveness goal,

as demonstrated in numerous experiments.

Third, DDoS defense must be adaptive. As new attacks appear, the defense

must be easily changed to accommodate new models and policies. If a new set

of attacks is better handled with a new defense system, an old system should be

able to interface with the new one, enabling the customers to purchase upgrades,

not complete replacements. D-WARD’s models can easily be modified using its

configuration parameters. Due to modular design, new models and policies could

also be easily added. Lastly, D-WARD can easily be interfaced with new defense

systems.

Fourth, DDoS defense must be customizable. The Internet has long passed

the era when “one size fits all” protocols were sufficient. It is desirable for new

systems and services to offer a means for policy definitions so that users can

specify custom behaviors of their liking. The system must also provide a policy

checker that warns the user if the desired behavior will result in inefficient or

insecure operation. D-WARD provides a set of configuration parameters that can

be modified by the user and that affect the system’s performance and operation

cost.

13.2 D-WARD Solution

D-WARD approaches the DDoS problem from a new direction. It is a source-end

solution whose goal is to autonomously detect and stop outgoing attacks from

the deploying network. In its design and implementation, D-WARD adheres to
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several principles that are main contributors to its good performance:

1. It makes very few assumptions. The only assumption D-WARD makes is

that it is aware of its policy address set and that it observes symmetric

traffic. D-WARD does not outlaw spoofing. Instead it assumes stealthy

attackers and deploys several strategies to detect sophisticated attacks.

2. It detects legitimate, not attack behavior. There are many characteristics

of DDoS attacks, but most of them are consequences of choice, not of neces-

sity. A system that attempts to detect malicious behavior becomes useless

as soon as the attack changes (e.g., this effect has been noticed in virus

signature detection). D-WARD thus builds a set of legitimate models and

attempts to detect legitimate connections and provide good service to their

packets. The rest of the traffic is then controlled and must fight for re-

sources. Models of legitimate traffic are designed so that the attacker must

sacrifice the attack’s effectiveness to match them. This makes the game

counterproductive to the attacker.

3. It builds models based on protocol specification rather than on observed be-

havior. With the exception of legitimate UDP flow models, all other models

are built upon protocol specifications. This removes the need for model up-

date as traffic changes, and guarantees that all legitimate connections and

flows will obey the model.

4. It applies dynamic response. D-WARD acknowledges the possibility that

its observations and actions may occasionally be wrong. The system is also

aware that network conditions change and the response must be adjusted to

them. D-WARD therefore frequently reevaluates its response and adjusts

it promptly to observations. This allows fast recovery from false alarms,
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fast relief for the victim once the attack has been detected, and speedy

restoration of throughput when the attack subsides.

5. It has modular design. This enables easy modifications and integration

with other defense systems.

6. It is an autonomous system. While parts of autonomous operation may

be overloaded by cooperative action, if D-WARD is integrated with other

defense systems, the D-WARD system achieves excellent performance in

autonomous operation. Current integration efforts were realized to com-

plement the autonomous operation, enhancing D-WARD with cooperation

messages. In the absence of messages, the system falls back to autonomous

mode, thus offering robustness and resiliency to message loss.

D-WARD achieves excellent performance, as has been demonstrated in nu-

merous experiments performed by ourselves and by independent evaluators. Its

simple models account for its small storage cost. Nonetheless, as its models are

fairly fundamental, D-WARD is able to detect and handle even sophisticated

attacks such as an HTTP request flood (see Section 10.1.3.8). While there are

certain aspects of D-WARD that could be improved, these results seem very

promising.

13.3 Key Contributions

D-WARD has demonstrated the main claim of this dissertation — that source-end

defense can detect and control a broad range of attacks in autonomous operation

and at a low cost. We believe that D-WARD has been a missing piece from the

DDoS defense field. Many networks host machines that are poorly secured and so

numerous that keeping them secure and up to date is infeasible. A ready example
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is provided by university networks that have numerous machines that are poorly

administered by students. Even though the whole network has capable admin-

istrators that take care of a few important machines, such as mail servers and

routers, they cannot possibly attend to each machine in the network. Installing

a D-WARD system at the egress point of those networks would serve multiple

purpose: (1) D-WARD would protect the rest of the Internet from DDoS attacks

that originate from the insecure machines in the network, (2) D-WARD would

ensure good service to legitimate clients during the attack, (3) D-WARD response

would alert network administrators to the presence of infected machines in their

network, calling for detailed investigation, and (4) D-WARD makes the deploy-

ing network highly unattractive to the attackers, thus reducing the probability of

intrusions.

D-WARD has achieved an excellent selectiveness of response. This feature

would be beneficial to many other DDoS defense systems. Combining D-WARD

with other defense systems improves the defense performance of the given system

and is likely to achieve a synergistic effect, where the integrated system can handle

a broader range of attacks than any of its parts.

D-WARD provides a dynamic response that is self-adjusting. By carefully

choosing the criteria for adjustment, D-WARD is able to promptly react to

changes in network conditions, while being resilient to an attacker’s attempts to

trick the system into rate limit removal. While attackers can still design stealthy

attacks that will bypass the system (such as low-rate pulsing attacks with long

period), D-WARD forces them to sacrifice attack effectiveness or to recruit many

more agent machines and to distribute those over many source networks. This

makes D-WARD deploying networks unattractive to attackers.

More than just the design of a DDoS defense system, this thesis has been
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an exploration of the DDoS problem and possible solutions. This effort resulted

in the creation of attack and defense taxonomies that enhance the understand-

ing of the problem and solution space, and facilitate design of better defenses.

Parallel work has been performed on the evaluation strategies for DDoS defense

systems. These strategies are lacking at the present time, which hinders testing

and comparisons of DDoS defense systems. As a result of this effort, a customiz-

able attack tool cleo and a trace reconstruct tool tracegen have been created. We

have also selected a set of metrics that can be used to describe performance of

DDoS defense systems.

13.4 Final Comments

Distributed denial-of-service requires a distributed solution. This thesis has pre-

sented a crucial building block of this solution — D-WARD, a source-end defense

system that provides a selective and dynamic response. D-WARD can offer ex-

cellent performance, even in autonomous operation. This performance is further

enhanced if D-WARD is combined with other defense systems. We believe that

these features will lead to quick and wide deployment of D-WARD and integration

with other systems, and thus to further improvement of Internet security.
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