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156 T. W. PAGE, JR. ET AL.colleague Alice in Seattle, who then integrates it with her copy. Perhaps she makessome changes and mails them back. Alice and Bob may elect to impose some protocolon themselves to avoid conicting updates. If the other party could not be contacted,however, chances are they would be optimistic and relax their protocol; they wouldupdate the document anyway, making a mental note that those changes may needlater re-integration. In many situations, the need to \get the work done" outweighsthe desire to avoid conicting updates.What is actually going on in this example is a form of data replication withoutany system support. This familiar mode of operation often works out relatively wellin practice. Concurrent changes are seldom a problem, and performance is excellentas data is always local (whether composing, receiving, or modifying, e-mail is alwayslocal). However, a real distributed replicated �le system could surely provide far bettersupport. For example, relying on \mental notes" to propagate changes and check forconicts risks losing updates and often results in the creation of di�ering versions of adocument whose relationship must be reconstructed from memory. Neither does thisinformal approach scale in the number of �le users. This vignette illustrates the valueof an optimistic replicated �le system with an automated service to detect and repairconicts. Ficus represents our e�orts to address the software engineering of such asystem. This paper reports our experiences designing, implementing, measuring andusing an optimistic replicated �le system.Goals of the researchThe purpose of this research is to test the practicality of optimistic �ling. Thefollowing frames our intent in building a replicated �le system:� enable a shared, network-transparent �le hierarchy which scales both to largegeographic distances and very large numbers of �les;� provide high availability and performance;� demonstrate a design and implementation capable of providing realistic, general-purpose use, including permitting all machines to operate as peers rather thanlimiting them to restricted functionality;� produce a real, usable system that others can run and build upon, not simply aproof of concept;� test the use of the stackable layers approach to structuring software for a large�ling project;� avoid building large portions of �le systems to which we have little to contribute;� retain as much compatibility with the existing environment as possible.Optimistic replicated �lingFicus is a general purpose replicated �le system intended to facilitate distributedcollaboration in a highly reliable and scalable fashion. It has been implemented asan addition to Unix, although little of the architecture is speci�c to that system.Replication o�ers the potential for improved performance by locating a copy of data\near" where it is needed, even when it is needed simultaneously at geographicallydispersed locations. Replication is critical to reliability in networks where site andcommunications failures are the rule rather than the exception. Mobile computing



PERSPECTIVES ON OPTIMISTICALLY REPLICATED, PEER-TO-PEER FILING 157represents an important example of this situation.A replicated �le system must have both mechanism and policy to keep multiplereplicas consistent in the face of updates. A pessimistic approach prevents inconsis-tency by restricting updates that could lead to a conict. The optimistic approach, onthe other hand, takes the view that it is expensive in terms of performance to obtainlocks and unacceptably costly in terms of availability to restrict updates, particularlywhen conicts are rare anyway. Hence optimistic policies allow conicts to occur, butdetect and deal with them afterwards. While there are certainly environments and ap-plications which call for the pessimistic policy, we argue that the optimistic approachis essential in the general purpose distributed setting.Unlike most replicated �le and database systems, Ficus allows updates so long asat least one replica of a data object is available; this is termed single-copy availabil-ity. Experience with Ficus, data reported in this paper, and previous results in theliterature (summarized later) indicate that conicting updates seldom occur in prac-tice, for many classes of �les. When conicts do occur, Ficus reliably detects them.For directories and replica location information, the system uses its knowledge of thesemantics of updates to resolve most conicts automatically. If the system does notunderstand the update semantics, as is the case with an arbitrary �le, it reports theconict to a resolver which understands its semantics; if no such software is known,the system informs the �le owner (via e-mail), who resolves it manually. In practice,conict resolution has not been di�cult for users, and there is an expanding set ofautomatic resolvers for known �le types.The Ficus algorithms are based on the view that each machine, including worksta-tions, portable computers and servers, should be empowered with full function so faras replication, �le service, and reconciliation are concerned. In this sense, all machinesare peers. We believe that peer models are particularly important with portable andgeographically distributed computing. For example, if several professionals travel withtheir notebook computers, at their destination they may connect their machines andhave the full bene�ts of optimistic replication without contacting a \home server." Thissituation applies to inherently mobile workers, the military, as well as to any situationwhere remote access can be slow or periodically unavailable. Thus a decentralized peerarchitecture provides a more robust operational solution than a more centralized onein which a server must be present to share or reconcile. However, it demands moresophisticated algorithms to provide a normally transparent level of service.The robustness presented to the user by single-copy availability is also apparent inthe underlying distributed mechanisms that propagate update activity to all replicasand resolve conicts. These mechanisms are designed around pairwise \gossip" strate-gies that idempotently \pull" replica (and meta-data) state from a remote replica, andthen merge, update, or resolve as appropriate with the local state, possibly resultingin a new local replica state. Such \lazy" strategies place minimal requirements on thecommunications environment for fundamental correctness:� no more than two parties are ever required to be alive and communicating at thesame time;� \all pairs" direct communication is never required, although information mustbe able to ow indirectly among any pair of nodes in �nite time;� correctness relies only on a \pull" of information, although a \push" may provide



158 T. W. PAGE, JR. ET AL.signi�cantly improved performance;�� network partitions neither jeopardize correctness, nor unduly delay progress withina partition;� a permanently incommunicado node (either dead or forever partitioned and ad-ministratively declared such) does not delay progress;� messages may be lost, delayed a large (but �nite) time, duplicated or deliveredout of order.The family of algorithms that lies at the heart of Ficus replication typically operatesin two phases, using bit or scalar vectors to record progress. Their local space require-ments are always linear or better in the number of replicas (and thus, quadratic orbetter overall). The global message complexity is quadratic in the worst case of patho-logical network partitioning and linear in the best case (a well-connected LAN). Care-ful piggybacking of related algorithm executions is employed to keep constant factorssmall, and all ancillary algorithm state is discarded upon algorithm termination.The combination of single-copy availability, lazy strategies, and two-phase algo-rithms yields a robust, fault-tolerant, and highly available �ling service. Further, thevarious overhead costs of managing replicas are largely incurred in the background,and not in-line to user �le activity: update propagation, reconciliation, and conictresolution are all normally asynchronous with respect to routine �le access.The next section introduces our approach to optimistic replica management.REPLICATED DATA CONSISTENCYThe basic operation of Ficus is as follows. When a �le is opened (for read or write),Ficus chooses a replica to service subsequent �le requests. Upon receiving an appli-cation's �le update request, Ficus applies the update to the chosen replica. Updatenoti�cation messages then inform the other replicas of the new data, and those sitespull over the changes asynchronously. The update noti�cation messages may be lost.The other replica storage sites may be down or otherwise inaccessible; if they missbeing informed about the update, replicas become temporarily inconsistent.In order to tolerate the occasional missed update propagation, Ficus uses reconcili-ation. On behalf of each �le replica, the �le system periodically contacts a peer replicato enquire about missed activity. Each replica has an associated version vector,1 whichsummarizes the complete set of updates known to that replica. At a reconciliation en-quiry, the local �le system compares the version vector of the local replica to that ofthe remote. If the remote replica is strictly newer than the local, its version vector willdominate and the remote data and version vector can be pulled over to move the sys-tem towards consistency. If two version vectors are not equal and neither dominates,an update/update conict is detected and a resolver invoked. since propagating eitherversion over the other would cause data from one of the updates to be lost.The single-copy availability update policy for �les and directories rules out guaran-teeing one-copy serializability, the traditional de�nition of correct operation inheritedfrom distributed database theory. However, even in the local case Unix �le systems donot provide transactional semantics so abandoning one-copy serializability for the dis-� For example, Ficus uses an \update noti�cation" daemon (a push) to tell other replicas asynchronously of anew �le version This typically results in a much faster propagation than relying on periodic volume-wide �lereconciliation (pulls).



PERSPECTIVES ON OPTIMISTICALLY REPLICATED, PEER-TO-PEER FILING 159tributed case is acceptable. Ficus instead provides a no lost updates guarantee, whichwe argue is often preferred. No lost updates guarantees that data in which a user maystill have interest will never be inadvertently discarded as a result of the optimisticupdate synchronization policy (e.g., via an over-write due to concurrent updates orremoval of new data due to a concurrent update and remove operation).Volumes (as in AFS) are sub-trees of the �le naming hierarchy with a granularitysmaller than a conventional �le system but larger than (or equal to) a single directory.The reconciliation daemons, while logically reconciling individual �les and directories,are actually organized at the volume level. Selective replication control within Ficusallows each volume replica to physically store an essentially arbitrary subset of theentire volume. That is, the set of sites which store a volume replica forms the maximal(but not minimal) set of physical storage sites for any given �le within that volume. Theselective replication mechanism additionally preserves transparent remote access tothose objects within the volume that are not locally stored. Due to selective replication,two communicating volume replicas may not store exactly the same set of objects.The reconciliation algorithms dynamically adapt to the current replication patternsand adjust communication topologies to ensure consistency in such cases.2A conict, once detected, must be resolved by software (or humans) which under-stand the semantics of the data and the updates which caused the conict. If the �lein conict is \owned" by an application which has registered a resolver for that �letype with the �le system, the system invokes the type speci�c resolver. If no resolveris known, the system reports the �le conict to the owner (via e-mail).DirectoriesUnlike user �les, directories are managed solely by the �le system, and have sim-ple, well-understood semantics. Hence the �le system itself supplies the resolver fordirectories.A directory contains a set of entries, each of which associates a name with a pointer toa �le or subdirectory. Ficus adds a unique identi�er to this pair for reasons describedin the next section. The only modi�cation operations applicable to a directory areadding new entries and deleting existing ones. Thus it is feasible to take two directoryreplicas that have been updated independently (normally an update/update conict),merge the changes and automatically form a single correct version that reects thee�ects of all updates applied to both replicas.A correct reconciliation algorithm must compare the entries in the two directoryreplicas, identify newly created entries in one replica that have yet to propagate tothe other, and also identify newly deleted entries that still appear in the other replica.Missing operations must be applied to each replica to rectify these inconsistencies.Replaying all operations at each replica is not su�cient because the connection his-tory of sites is arbitrary, rendering the decision of what logs to play at what sitesin what order distinctly non-trivial,1 and because reconciliation must be incremental(and hence not atomic) for the volume to be highly accessible. Note that while resultsmay not be serializable (for example, concurrent deletes to a single replica results inan error while independent, concurrent deletes to di�erent replicas is acceptable), theyare acceptable given the semantics of directory updates.Several issues must be addressed to reconcile replicas accurately; we next discussthese issues and their treatment in Ficus.



160 T. W. PAGE, JR. ET AL.Insert/delete ambiguityConsider two copies of a directory: the �rst has an entry for �le F and the seconddoes not. Has the entry for F been newly created and thus should propagate to thesecond directory replica, or has it been deleted in the second replica and thus shouldbe deleted in the �rst as well? This is the insert/delete ambiguity.3Ficus addresses this di�culty by initially logically deleting a directory entry (chang-ing a ag from Live to Deleted) rather than physically removing it. Logically deletedentries are ignored, except for purposes of reconciliation. Deleted entries can now bedistinguished from inserted ones by the delete mark. This resolves the insert/deleteambiguity at the cost of creating a garbage-collection problem: when is it safe todiscard a logically deleted directory entry?A correct solution must retain a logically deleted entry at least until all directoryreplicas know that the entry is deleted. Otherwise, a replica which discards a logicallydeleted entry might later reconcile with a replica whose directory entry had not yetbeen marked deleted, and conclude that the entry is new and should be propagated,thereby reintroducing the insert/delete ambiguity.Somewhat surprisingly, simply ensuring \all replicas know" is not su�cient. Supposethat when a directory replica learns (via reconciliation) that the entry of interest ismarked logically deleted in all replicas, it discards its own logically deleted entry. If thisdirectory replica later reconciles with another replica (which doesn't yet know that allentry replicas have been marked logically deleted), the question arises, is the logicallydeleted entry to be propagated to the \ignorant" replica? The insert/delete ambigu-ity emerges yet again. Successfully eliminating insert/delete ambiguities requires thatprior to discarding a logically deleted directory entry, a directory replica must notonly know that all replicas are marked deleted, but further must know that all otherreplicas are also aware of this fact.Hence, Ficus employs a garbage-collection algorithm to detect the \all replicas knowthat all replicas know" condition.4 This algorithm has two important properties: mono-tonicity and low-cost indirect communication. Monotonicity insures that the algorithmalways makes progress, guaranteeing eventual termination and preventing repeated se-quences of deallocation/allocation of deleted directory entries. Indirect communicationis necessary in networks in which all-pairs connectivity is not guaranteed. Informationneeded for the algorithm to progress to termination spreads between all data-storingreplicas in a gossip-like fashion. Volume replicas that do not store a given object (viathe selective replication mechanism) need not participate in its garbage collection.The garbage-collection algorithm proceeds in two phases. Phase one compiles thelist of replicas that know the entry is deleted. Phase one ends and phase two beginsat a replica when its list is complete, i.e., includes all replicas of the entry. Phase twocompiles the list of replicas that are known to have �nished phase one, and concludeswhen this second list contains all replicas. When phase two completes at a node, thatnode knows that all replicas know that all replicas have marked the entry deleted, andtherefore it is safe to garbage collect the deleted entry. Any other node that ever asksabout the status of that entry will get the response \entry unknown" from which itcan correctly conclude that garbage collection has �nished at that site, and hence can�nish at the inquirer as well. There is no ambiguity since the inquirer knows, by virtueof being in phase two, that the other site once knew about the entry and its deletion.Further discussion of these algorithms is available elsewhere.2, 4



PERSPECTIVES ON OPTIMISTICALLY REPLICATED, PEER-TO-PEER FILING 161Global inaccessibilityIn Unix-like �le systems, the remove operation does not remove a �le, only a namefor a �le. Freeing the storage for a �le occurs only as a side-e�ect of removing itslast name; when it is no longer accessible it may be garbage collected.5 However, withoptimistic replication, local inaccessibility does not imply global inaccessibility. Othernames may exist in remote replicas, names that have yet to propagate to the local site.The system must not garbage collect �le data until it determines that no new nameexists for the �le anywhere, lest new updates to (or even the last copy of) a �le be lost.An important task of reconciliation is therefore to provide an acceptable solution tothe problem of garbage collection of a partially replicated, distributed graph structuresubject to concurrent changes.Global zero name count is a stable state, as new names can only be created forobjects that have at least one name, and multiple alternative stable state detectionalgorithms may be employed depending on the network communications assumptions.6The speci�c algorithm used for our environment is analogous to and runs in parallelwith the above two-phase algorithm.4 Briey, we detect global inaccessibility withanother two-phased gossip algorithm. Phase one compiles the set of sites that believethe �le to have no names. Phase two permits garbage collection by determining thatall sites know that all sites know the �le has no more names. Here too, only thedata-storing replicas need participate in the algorithm.Remove/update conictsA remove/update conict occurs when the last name of a �le is removed in onepartition while the �le is concurrently updated in another. Remove/update conictsare detected by recording the version vector of a �le whose name is removed andchecking that the removed version is not dominated by, or in conict with, any otherreplica. Again, this runs in parallel with the two-phase garbage collection.There are two policies one might adopt when a remove and an update occur concur-rently: favor the remove and discard the update; or prefer the update and ignore thename deletion. In accordance with our no lost updates policy, we must not discard thenew data, but neither is it acceptable for a deleted name to reappear. Our policy is toremove the �le name, but to save the data in an orphanage (a directory for otherwiseunnamed �les similar to Unix's lost+found) and inform the owner.Name conictsReconciliation must detect when two entries have been created concurrently which havethe same name pointing to di�erent objects. This violates normal directory semantics,which specify that names be unique within a directory. Ficus directory reconciliationdetects name conicts, gives each conicting entry a disambiguating su�x, and invokesa resolver or informs the �les' owner(s). Details of the Ficus resolver architecture arefound elsewhere.7Algorithm discussionThese two-phase algorithms are quite di�erent from conventional two-phase commit



162 T. W. PAGE, JR. ET AL.protocols. In two-phase commit, forward progress is denied whenever a few sites cannotcommunicate. Here, there is no central coordinator, as all participants are peers. Bothphases of the algorithms can be in progress at the same time, since one site may becomeaware that all sites know of a deletion well before other sites do so. No underlyingconnectivity is assumed other than the requirement that information can propagatebetween any two sites in �nite time.A minimum of o(3n) messages is required for reconciliation to complete if informa-tion travels around a virtual ring of the n storage sites. Three trips around the ringassure that every site has heard the state of every other site at least twice, allowingboth phases to complete everywhere.We have described a simpli�ed version of the reconciliation algorithms here. In prac-tice, a number of optimizations are quite bene�cial, especially in environments wherenetwork bandwidth or latency are a consideration. For example, this basic approachadapts well to replicas connected only by a 28.8kb/s modem.8FICUS ARCHITECTUREThe Ficus replication services are added to the Unix kernel using an extensible layeredVFS interface.9, 10 A �le system layer is a software module that conforms to the layerinterface with respect to calls to it from above and calls to the layer below. Each layerin a �le system stack adds a speci�c piece of functionality.Ficus consists primarily of three of layers: the replica selection layer, the logical layer,and the physical layer. The replica selection layer implements a data consistency policyfor clients, providing the abstraction of a single-copy, highly available �le built from themultiple replicas available to it. The logical layer coordinates updates across multiplereplicas and provides other functionality common to di�erent replica selection policies.The physical layer implements the extended attributes needed for replication and maps�le storage to a standard Unix �le system (UFS). These layers use a transport layerto map the layer interface across a network, and are stacked above a unmodi�ed,standard �le system for persistent storage.Figure 1 shows a layer con�guration for a �le with two replicas stored on sites 1and 3. Each replica has a physical layer supporting it. Each client has a logical layer.Logical layers are connected directly to local physical layers, and to remote replicasvia transport layers. Above each logical layer is a replica selection layer, the defaultselection layer for sites 1 and 2 and an alternate selection layer for site 3.The replica selection layerOptimistic concurrency control and lazy update propagation can yield a number of�le versions, including the possibility of conicting versions. The volatility and scale ofa large geographically distributed environment can make it infeasible even to determinethe range of accessible versions. A separate replica selection layer allows di�erent clientsto have appropriate version selection policies. (Early Ficus implementations mergedthe functionality of the replica selection layer into the logical layer.)The default replica selection layer provides only a very simple policy, choosing a localreplica if one exists, and falling back to a randomly chosen replica otherwise. Futurerequests are also directed to that replica, insuring that the client sees consistent dataunless and until that replica becomes inaccessible.
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Figure 1. A typical Ficus layer con�guration with two storage sites and a third sitemounting both replicas.While this default is suitable for general use, some situations require stronger con-sistency guarantees. An alternate model, view consistency allows each client \entity"to access only versions that are at least as new as what that client has previouslyaccessed. This provides a conservative consistency model to each client entity whileallowing optimistic consistency across entities. Entities can vary in size (a process,a user's processes, a machine, or a group of machines); our sample implementationuses machine-granularity entities. The cost of the stronger guarantees provided byview consistency is in the form of additional record keeping (what versions of �les hasthe entity accessed previously) and some performance overhead. A detailed analysisof view consistency, including garbage collection and its e�ects on performance andavailability can be found elsewhere.11Replica selection layers also allow knowledgeable clients explicit access to speci�creplicas. This service is useful, for example, in programs which repair conicts.The logical layerThe logical layer cooperates with the replica selection layer to provide the illusionthat each �le is highly available and has single-copy semantics. The logical layer per-forms update propagation and other services which are common to all replica selectionlayers.To inform other replicas of an update, a logical layer places a summary of theupdate on an outgoing update noti�cation queue, and then returns control to the



164 T. W. PAGE, JR. ET AL.client.� A client is assured that an update has been applied to at least one replica,which is su�cient for the no lost updates guarantee. A daemon periodically servicesthe queue, sending out noti�cation messages containing the version vector of the newversion, and a hint about the site known to have stored that version. Noti�cation isa best-e�ort, one-shot attempt; inaccessible replicas are not guaranteed to receive anupdate noti�cation later. Optimism releases the system from the burden of ensuringthat an update noti�cation is successfully delivered and processed by the receiver. Ifany replica fails to receive or apply the update for whatever reason, it will eventuallylearn of the update via reconciliation. This is an example of how optimism permitsconsiderable simpli�cation throughout the architecture. As so much of a system'sactual implementation is often concerned with error handling, this improvement isconsiderable.On receipt of an update noti�cation, a site places the information contained in thenoti�cation in a queue which is serviced periodically by another kernel daemon. Thatthread, operating at the logical layer, pulls the new data from a more up-to-date site,making sure that this inward propagation occurs atomically. A commit mechanism,using a shadow copy, ensures that a replica's version vector always reects the replica'sdata, even in the face of crashes and concurrent operation during propagation.The physical and persistent storage layersThe physical layer performs three main functions: storing extended attribute infor-mation connected with each replica, creating and managing a Unix �le to store thedata for each �le replica, and implementing the additional naming hierarchy semanticsrequired by Ficus.The �rst function of the physical layer is to manage the extended attribute informa-tion that must be stored with each replica. Note that this information is not replicated;it applies to each replica individually. The physical layer stores extended attributes ina look-aside \auxiliary" �le. There is a single auxiliary �le per directory, with a recordin it for each �le in that directory, an organization which clusters information to takeadvantage of the expected locality of reference between �les in the same directory.When a �le is accessed, the data page with its auxiliary information is likely to becached already and not require an additional disk I/O. In keeping with the layeredarchitecture we have recently experimented with an extended attributes layer thatmay replace this mechanism.The second role of the physical layer, that of storing �le data in the underlying �lesystem, consists primarily of locating the correct Unix �le, and forwarding the variousread, write, create, etc. operations to that �le. From the point of view of the logicallayer, a �le replica is uniquely named by a h�le-ID, replica-IDi pair. The underlyingUFS uniquely identi�es �les by inode number within a �le system. So the physicallayer must map h�le-ID, replica-IDi tuples to inodes in a Unix �le system. In the caseof selective replication, when an object within the volume is not stored locally, thephysical layer instead provides probable remote locations for the object in questionback to the logical layer. Ideally we could bypass Unix �le naming and access these� Since a �le written once tends to be written again very shortly,12 placing the update on a queue gives thepotential to batch the update noti�cations for many updates with a single message, reducing the number ofmessages that synchronous noti�cation would require. This batching optimization would be bene�cial buthas not yet been implemented.



PERSPECTIVES ON OPTIMISTICALLY REPLICATED, PEER-TO-PEER FILING 165�les directly via references to their inodes. Although we hope that future layers willprovide this interface, currently we map h�le-ID, replica-IDi to a two-level directorystructure.The third function of the physical layer is to implement richer naming semantics thano�ered by standard Unix directories. To permit directory renames during a networkpartition, the Ficus name space must relax the traditional strict tree of the Unix namespace, allowing instead a more general graph. Further, the directory reconciliationmechanisms require keeping some additional state information with each directoryentry. This additional richness inherent in the Ficus model requires that we implementa full name storage mechanism in the physical layer with the additional capabilitiesthat are needed.Volume location and autograftingIn a distributed �le system that spans the Internet, there may be hundreds of thou-sands or millions of volumes to which one may wish transparent access whenever de-sired. Any one machine will only access a very small fraction of the available volumes,yet one cannot predict in advance which volumes will be needed. Therefore, Ficus, likeSprite13 and AFS14 locates and \grafts" (mounts) volume replicas on demand, ratherthan a priori, and periodically ungrafts remote volumes that are unused for some time,permitting access to an enormous virtual name space while consuming only minimallocal resources. Ficus di�ers, however, in how it manages the data necessary to locateremote volumes.Volume location data is critical to availability; the data in a �le system is of little useif it cannot be named. To keep the site storing volume location data from representinga single point of failure that could render the entire subtree beneath it inaccessible,the location information must be replicated. Further, it is essential that these replicasbe managed with an optimistic consistency policy. While updating the informationin a graft point is a relatively rare event, it is generally quite important when itdoes occur. Graft points are updated only when volume replicas are added, deleted,or moved to another host. The importance of updating a graft point may be at itsgreatest precisely when the system is unstable or partitioned; perhaps the reason forupdating the graft point is to add an additional replica of a volume when, due toinstability, only a single replica remains accessible; this update must be permittedeven though it cannot immediately propagate to all replicas of the graft point. Henceit is not reasonable to require that all, or even a majority, of the replicas of the graftpoint be accessible for an update to be permitted.Unlike AFS, a separate volume location database is not necessary in Ficus. Instead,we exploit the same optimistic replication and reconciliation mechanism that managesthe directory name mapping function. The format of a graft point is compatible withthat of a directory, with a single bit indicating that it contains volume location in-formation. Like directory entries, volumes may be moved, created or deleted, so longas any replica of the graft point and volume is accessible in the partition (single-copyavailability). Without building any additional mechanism, updates are propagatedto accessible replicas and all conicting updates are automatically resolved, providingname transparency and high update availability while scaling to very large networks.15
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Figure 2. System time overhead for three benchmarks as the number of replicas vary from zero(un-replicated Unix) to four replicas under Ficus.EVALUATIONThis section evaluates Ficus from three perspectives. First, we examine performance invarious environments. We next reect on the appropriateness of the choice of optimisticreplica management. Finally, we consider broader lessons learned from our experiencesdeveloping and using Ficus.Performance evaluationWe want to answer the question, \What is the cost of replication as provided byFicus?" This evaluation employs three benchmarks which are intended to capture therange of operations on a �le system.The �rst test is a recursive search (grep) which reads every �le in a large subtree.The tree used is the /usr/include hierarchy, which on our system contains 4.2 MBof data and 1191 �les, of which 60 are directories. To the extent that one believes thatthe frequency of read operations greatly dominates writes in a typical �ling environ-ment, read performance is a critical measure of �le system performance. The secondbenchmark is a recursive copy (cp) over NFS of a large subtree, from a UFS �le sys-tem into a Ficus volume. This benchmark is chosen to show a worst case performancefor Ficus, since creating �les is the highest overhead operation. Finally, we use themodi�ed Andrew Benchmark (MAB)14, 16 to model a normal mix of �ling operations,and hence to represent performance in actual use.Figures 2 and 3 display the system time overhead and elapsed time overhead re-
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Figure 3. Elapsed time overhead for the same three benchmarks.

spectively for the three benchmarks, as the number of replicas varies from zero to four(within a local area network). The 0-replica case represents standard SunOS withoutFicus. One replica means that the �les are stored in Ficus, but there is only a sin-gle copy. Thus the di�erence between zero and one replica represents the overheadof running Ficus without any of the bene�ts of additional replicas. The results arenormalized so that the di�erence between the mean time for each benchmark and themean time for the same benchmark on SunOS without Ficus is expressed as a percent-age of the SunOS-only benchmark. All �les were replicated in all volume replicas (noselective replication was used). All measurements were conducted on Sun 3/60s with8 MB of RAM connected by a 10 Mb Ethernet running a version of Ficus based onSunOS 4.1.1. Each benchmark was repeated at least seven times for each number ofreplicas; Table I shows the unnormalized means (in seconds) and the 95% con�denceintervals (expressed as the width on either side of the mean).DiscussionThe shapes of the curves for both elapsed and system time are as one would expect.The grep benchmark is read-only, and so its performance is independent of the numberof replicas. It shows a constant 10-12% overhead compared to Unix.The cp benchmark has a workload that is heavily dependent on the number ofreplicas, as the site performing the copy must do the extra work both of informingeach remote replica of each �le creation, and of serving the requests from the remotereplicas to propagate the data. Clearly, the performance for this benchmark could be



168 T. W. PAGE, JR. ET AL.Table I. Unnormalized benchmark data corresponding to Figures 2 and 3UFS 1 replica 2 replicas 3 replicas 4 replicasmean conf. mean conf. mean conf. mean conf. mean conf.cp elap. 178.9 15.4 201.9 17.3 222.4 32.3 216.0 14.3 255.1 14.0cp sys. 22.8 0.5 30.6 0.3 33.5 1.2 34.9 1.6 37.5 0.5grep elap. 59.8 0.7 64.1 0.7 67.4 7.9 64.2 0.7 64.0 0.6grep sys. 18.9 0.2 22.2 0.3 23.1 1.3 22.3 0.2 22.1 0.5MAB elap. 150.9 2.3 166.1 3.5 169.6 1.9 172.1 5.4 176.3 2.6MAB sys. 36.5 0.3 41.2 0.4 42.4 0.5 42.6 0.9 44.1 0.5improved by being even more lazy about propagation, or by propagating initially toonly a few sites, and allowing remaining propagations to get the data from any ofseveral secondary sites. However, since the elapsed time overhead remains below 25%through three replicas, there has been little motivation in practice to implement theseoptimizations.�The MAB curve shows a slight upward slope, reecting the cost of additional replicasin the update portions of the benchmark. The overhead compared to Unix varies fromapproximately 10% to 25%. This leads us to conclude that the overhead for a normalmix of �ling operations is quite reasonable.These benchmarks do not tell the entire story. Because of the lack of an inodeinterface to �les in the underlying UFS, the physical layer maps �les to the UFS usingan extra layer of UFS directories. Unfortunately, the current implementation of thismapping exhibits signi�cant internal fragmentation, leading to a 100{200% overheadin benchmarks such as a recursive stat. This overhead does not represent a cost ofreplication, but rather of the design decision to build Ficus on top of an unmodi�edUFS. Were we to follow AFS and add an inode-level interface to our underlying Unix,allowing the removal of the extra layer of mapping, we expect the attendant I/Ooverhead would be largely eliminated.Another early design decision which also resulted from the desire to avoid changingthe underlying UFS has further negative performance implications. The method bywhich Ficus maintains extended �le attributes (such as version vectors) causes anadditional �le open to access the extended attribute data (unless the attribute data isfound in the cache). Better extended attribute maintenance is clearly possible.Cost of hosting a replicaThe measurements described in this section are aimed at answering the question,\What does it cost to host a replica?" The components of this cost include the storage(media) cost, the cost of update propagation, and the cost of running the reconcilia-tion daemons. Ficus' optimistic approach to consistency pushes some of the work ofachieving consistency into the background in the form of asynchronous update prop-agation and reconciliation. Update propagation is the best-e�ort approach to updateother replicas soon after a �le has been updated, while reconciliation is a periodic� We have rarely found it necessary to store more than three replicas of frequently updated volumes. Widelyreplicated volumes tend to be read-mostly.



PERSPECTIVES ON OPTIMISTICALLY REPLICATED, PEER-TO-PEER FILING 169Table II. Elapsed time for rcp and MAB benchmarks with interferenceno # interferinginterference 1 2 3rcp mean 266 459 442 441ratio� n/a 1.73 1.66 1.66con�dencey (�) 18.1 34.6 37.4 13.8MAB mean 151 188 244 261ratio n/a 1.25 1.62 173con�dence (�) 2.3 6.1 5.5 7.0� Ratio is to the no interference case.y 95% con�dence interval.mechanism to ensure consistency. Reconciliation runs infrequently (once per hour) atlow priority so it should have limited e�ect on system performance. Our experience isthat the cost of reconciliation on workstations can be minimized by scheduling it torun most frequently during \o�-hours" and less frequently for volumes with low up-date rates. For servers hosting many volumes, the costs of background reconciliationcan be noticeable. A complete examination of reconciliation's e�ects on performanceis the subject of future work.Update propagation runs (in the background) on all machines at all times. Thissection examines the e�ect of update propagation on workstation performance withthe following indirect measurement. A benchmark suite was run on a standard Unix�le system (UFS) on a target machine. Then the benchmark was repeated with areplica of a Ficus volume stored on the same disk as the UFS �le system. An update-intensive workload was run on a second machine that also hosted a replica of thesame Ficus volume. Hence the target machine received a large number of updatepropagation requests and was \pulling over" updated copies of its local �le replicas.The local UFS benchmark was run with 0, 1, 2, and 3 Ficus volumes replicated on thesame disk, each Ficus volume experiencing heavy update propagation from di�erentsites. Table II shows the extent to which the local UFS activity was slowed by hostingthe Ficus replicas under heavy load.The results of the experiments shown in Table II demonstrate that heavy updateactivity on a remote volume replica can seriously a�ect a storage host. It should bepointed out that most of the slow-down here is likely due to disk contention. Boththe local UFS benchmark and the remotely generated Ficus load are very disk I/Ointensive. These results may lead us to rethink the whole-�le-propagation nature ofFicus replication. Currently, for every write operation to a replicated �le, an updatenoti�cation is sent to all replica hosts. Those hosts, in turn, pull over a complete newcopy of the �le, an architecture chosen for its simplicity rather than its performance.Possible changes to address this performance might include page-level propagation,batching, or delay of update noti�cations such that a urry of updates to a single�le cause only a single update noti�cation and subsequent pull of the contents. Theseoptimizations should reduce the load on volume replica storage hosts.



170 T. W. PAGE, JR. ET AL.Table III. UFS, NFS, and 2-replica Ficus over the Internet�MAB cp grepUFS 169.1 (n/a) 216.8 (n/a) 149.1 (n/a)NFS (Internet) 628.3 (3.7) 344.8 (1.6) 243.0 (1.6)Ficus (Internet) 204.5 (1.2) 259.2 (1.2) 182.2 (1.2)� Ratios relative to the local (UFS) case are in parentheses.Other network environmentsThe previous measurements examined performance in the local area network envi-ronment. Ficus is also in use at sites connected via telephone modems, and over theInternet. Table III shows the results of experiments designed to show the performanceof Ficus for sharing data across slow links as compared to the current primary alter-native, NFS. The Internet connection (between beverly.cs.ucla.edu and earvin.isi.edu)has four gateways and a mean round trip time of 10 ms. By comparison, a localEthernet round trip averages 2 ms.These measurements validate the experience of many, that using NFS to share dataover the Internet is only marginally feasible (600 seconds for the MAB, about 4�slower than local). However, keeping a replica at all locations where access is requiredgives all participants performance almost equivalent to local Unix (204 seconds forFicus versus 169 for Unix). One should not be misled by these measurements: very fewpeople would expect to run NFS across a slow link; NFS is not designed for wide-area,low-bandwidth �le sharing as shown by its performance. This comparison illustratesthat when access to a �le is needed in multiple places connected only by the Internet ora modem, replication is the key to giving users in both locations local-quality access.Experiences with optimistic replicationWe have argued that the environments targeted by this work mandate the optimisticreplication strategy adopted. However, if inconsistency frequently renders data un-available, or if the conicts prove di�cult to resolve, then the costs of optimism mightoutweigh the bene�ts. Here, we report on the �le system usage studies that led us tobelieve that optimistic strategies would seldom lead to conicting updates. Then wepresent results of empirical studies measuring the number of conicts actually experi-enced in our working environment. Finally, we address the cost of conicts both whenautomated conict resolvers are employed and when conicts are resolved manually.File system usage studiesAnalyses of �le usage in existing systems suggest that both concurrent read and writesharing is quite rare.17 In the referenced examination of an academic Unix system,of all �les read during a seven-day study period, under 7% were read by more thanone user during the next week (and the vast majority of the �les read by multipleusers were news articles and hence read-only; only 1.3% of �les owned by normalusers were read by multiple readers). Update sharing was even rarer. Just 2.4% of all�les written (and less than 1% of user-owned �les) were updated by multiple writers.



PERSPECTIVES ON OPTIMISTICALLY REPLICATED, PEER-TO-PEER FILING 171Similar results were found for directories. To the extent that concurrent sharing israre, conicts should be minimal.Analysis of commercial systems suggests similar conclusions. The re-analysis of tracedata collected in the 1970s18 from three commercial IBM timesharing environmentsfound that from 3% to 12% of the �les accessed are updated by multiple users.19 Amore recent study looked at traces taken in three di�erent commercial environments.Conict rates of 0.11 and 0.02 conicts per user per week were found in the pro-gramming and \personal productivity" environments, respectively, after adjusting foreasily resolved conicts caused by the mail system. In the third environment, a sharedaccounting database generated a mean of 8.57 conicts per user per week, indicatingthat either application-speci�c conict resolution would be needed or the databaseshould be separated into units of smaller granularity.20In a distributed AFS environment, a study �nds that over 99% of all updates areby the same user that made the previous update, and that the likelihood of di�erentusers modifying a �le less than one day apart was less than 0.75%.21 Excluding system�les, the chance of di�erent users modifying the same object within a week dropped toless than 0.4%. Despite the collaborative nature of the work going on in the measuredenvironment, concurrent write sharing was not common. Again, conicts should be rareif optimistic replication were employed in this environment. Together, these studiesform the basis of the argument that �le access sharing is rare, shared update is evenrarer, and hence the optimistic approach to concurrency control is feasible.Experimental evidenceWhile these results guided the design of Ficus, with a working optimistically repli-cated �le system in use we are now in position to measure the occurrence of conicts inpractice.7 The �rst column of Table IV shows the conict rate observed in an academicenvironment running Ficus during a nine month period. The experimental environmentconsists of 15 workstations, one �le server, and 12 users doing software developmentand word processing. All user �les and the system source code base are replicated be-tween 2 and 12 times. Most machines are on the same local Ethernet. Three machinesoperate in a primarily disconnected mode, connecting via modem nightly or weeklyto reconcile. As the table shows, with fourteen million �le updates over nine monthsof actual use, 489 update-update conicts occurred. Of these, 338 could have beenautomatically resolved. (162 of those 338 actually were resolved automatically, butsince we added more resolvers to our suite frequently during this period, some con-icts that could have been resolved automatically by the end of the period were notautomatically resolved at the beginning. We report both the number actually resolvedand the number that could have been resolved, as the latter is a better indication ofhow the system currently operates.) Over 700,000 name creations produced only 128name conicts. During the measured period, no name conict resolvers were in use, soall 128 name conicts required manual intervention. Since then, several name conictresolvers have been written and exercised.Table IV contains three lines without values, those for disconnected operation re-move/update conicts, total name creates for disconnected operation, and name con-ict rate for disconnected operation. These values are not available for the nine monthdata set. For a four month subset of the nine month data set, 10% of all remove/updateconicts occurred on disconnected volumes. For the same four month period, approxi-



172 T. W. PAGE, JR. ET AL.Table IV. Conict statistics7 gathered over 9 monthsall disconnectedvolumes volumestotal non-directory updates 14,142,241 1,502,378update/update conicts 489 379automatically resolvable 338 316not automatically resolvable 151 63update conict rate 0.0035% 0.0252%1 in 28,571 1 in 3968unresolvable rate 0.0012% 0.0041%1 in 83,333 1 in 24,390remove/update conicts 98 see texttotal name creates 708,780 see textname conicts 128 71name conict rate 0.0181% see text1 in 5525mately 15% of all name creates occurred in disconnected volumes. For that period, thename conict rate in the disconnected volumes was around 3 times as high as the ratefor all volumes. We cannot guarantee that the same trends occurred throughout therest of the nine month period, but very likely they did. Even with fairly conservativeassumptions, the disconnected volumes' remove/update conicts and name conictrate would not be unacceptably high.Conicts are the result of unsynchronized concurrent updates to multiple replicas.In our environment, updates of a single �le by multiple users in a short period arequite uncommon. Hence most conicts are the result of the failure of updates topropagate in a timely manner. Because we operate in an experimental environment,machines frequently crash or are rebooted for software changes, temporarily preventingpropagation. There is reason to believe that production environments would experiencedramatically fewer of this type of conict.Propagation is also typically not possible for replicas stored on disconnected sites.The second column of Table IV shows conict statistics for volumes involved in dis-connected operation. Though such volumes receive only about 10% of all updates,they are responsible for over three quarters of the observed update/update conicts.Despite the lack of update propagation, the conict rate in disconnected volumes isstill quite low. Since most �les are the responsibility of a single individual, we canmatch the movement of the user with the pattern of reconciliation. For example, whenthe user moves from home to o�ce, reconciliation synchronizes the two environments.In e�ect, the user functions as a \human write token."8Most conicts on disconnected sites result from automated programs (such as mailsorting or data collection), or from the number of simple shared databases present ina typical Unix system. Examples of the latter include various game score �les com-monly found in academic computing environments. Since these databases are commonto multiple users, they experience more frequent concurrent update. Fortunately, theirparticularly simple semantics make these types of �les excellent candidates for auto-matic resolvers. This observation is reected by the proportion of conicts that were



PERSPECTIVES ON OPTIMISTICALLY REPLICATED, PEER-TO-PEER FILING 173automatically resolvable for disconnected volumes being extraordinarily high.Impact of conictsAlthough Table IV suggests that conicts are rare (less than two per user per week,counting name conicts and update/remove conicts), even those might prove disrup-tive if they are di�cult to resolve. Our experience suggests that resolution is generallyeasy, for several reasons: many conicts can easily be resolved automatically; whenrequired, manual resolution of conicts has not proved di�cult; and �nally, conictson shared �les are often avoided by higher-level agreements (even in the unreplicatedcase). However, it should be noted that our environment is dominated by experiencedusers. We cannot assert with con�dence that naive users would not be troubled byeven rare conicts.Experience with conicts indicates that a large percentage occur on �les with verysimple, regular semantics. Based on this observation, we constructed a number ofsimple automated conict resolvers. For example, �les are frequently employed to storeprocessed forms of other data; if this form can be regenerated, a resolver can simplydiscard the processed form. Examples of this class of �le include pre-formatted manualpages, compiled object �les (if source code is present), and XMH .xmhcache �les.With slight semantic relaxation, a larger class of �les can be automatically handled.For example, at the cost of occasionally seeing a message twice, conicts on MH.mh sequences �les can be resolved by simply taking the largest possible sequencenumber. Similarly, any concurrent updates to .newsrc �les can be reconciled almostperfectly. The use of a few simple resolvers such as these automates handling of themajority of update/update conicts, reducing user intervention by two thirds. Onaverage, the users in this study responded to less than one conict per week, countingupdate/remove and name conicts. Adding name conict resolvers (as we have done)further lowers this rate.When Ficus detects a conict on a �le for which no resolver is registered, it blocksnormal access to the �le and sends a mail message concerning the conict to the �leowner. Conicting updates of a general text �le are usually easy to identify by simplycomparing the two replicas. In these cases, it is easy to select the missing update fromone version, apply it to the other, and then cause the version vector of the repairedcopy to become dominant using tools provided with Ficus.In our environment, �les that are subject to frequent update by multiple users aretypically already protected from multiple updates by higher-level protocols such asrevision control systems. Note that the case of shared databases is not addressed here,and is the subject of further research.Lessons learnedBuilding and using a large software system in a research setting generates a numberof important lessons that might not be apparent from a paper design. Here we reectupon what was learned from our experiences in this e�ort.



174 T. W. PAGE, JR. ET AL.Lessons concerning replicationOptimism works: A most important conclusion is that optimism works well forour type of use. The laissez faire approach to update propagation with periodic recon-ciliation maintains su�cient consistency so that conicts are rare and not a problem.Subtle Details: While the basic reconciliation algorithms are relatively straight-forward, getting the details right is subtle. These are details which one would tend tooverlook unless building a real system for near-production use. An example is handlinghard failures of media in which some of the state of the two-phase garbage collectionis lost. While the �le content data stored in a damaged replica is generally replicatedor available on dump tapes, the state of the garbage collection algorithms with respectto that replica is available nowhere else. In practice, a mechanism is required to enablethe other replicas to \forget" about the replica which has been lost. Other examplesinclude dealing with replicas in �le systems that are full; concurrent creation, deletion,and moving of replicas; replica switch-over on machine failure; etc. These are exampleof the type of complexity that may be missed without use of a working �le system.Naming model: The semantics of Unix �le naming are very close to being suitablefor the distributed replicated �ling application. Unix largely treats the managementof the name space separately from the �les those names point to, so the user model ofnaming does not need to change radically. However, optimistic directory managementrequires that the system tolerate name conicts and multiple names for directories.The ability to support a DAG as opposed to a strict tree-structured name spacenecessitated re-implementing the directory service for use in Ficus.Leveraging reconciliation: Directories are one example of a rather common typeof data structure, a sequence of records mapping a name to a value, whose updatesemantics consist only of creation and deletion. Ficus uses the same management andreconciliation code both for normal directories and for graft points (volume locationinformation). As a result, user-interface programs (such as touch, mv, and ls) canmanipulate graft points, again resulting in saving of e�ort. In hindsight, we would liketo have have packaged the directory reconciliation algorithms in an even more generaland abstract form so that any similar data structure could utilize them.Software replication: Ficus demonstrates that a software solution to high reliabil-ity and availability is feasible. A software solution (as opposed to hardware-based mir-ror disks, for example) admits use of commodity hardware at great price/performancebene�t. It permits greater exibility and the changing of replication details withoutadding or moving hardware, eases incremental growth, and provides the ability tomaintain replicas at widely separated geographic locations. Packaged as a module,software reconciliation can easily slide in or out of a con�guration on a per-volumebasis. The primary cost in the case of software is in the initial development and insimply storing and propagating the extra copies of data.Bene�ts of simple resolvers: A small number of very simple resolvers (in additionto the directory resolver) take care of most of the conicts that do occur. With the ad-dition of a few additional trivial resolvers, users will be shielded from the vast majorityof conicts, and the statistics reported in Table IV can be expected to improve.Selective Replication: Volume-granularity replication is only part of the solution.Selective control, the ability to control what objects from the volume are locally repli-cated at each volume replica, is required for performance, functionality, and scalability.However, it further complicates the algorithms and control structures, which must now



PERSPECTIVES ON OPTIMISTICALLY REPLICATED, PEER-TO-PEER FILING 175be robust to changing replication patterns and properly respond to inaccurate datawith regard to where speci�c objects are stored. The added complexity, however, pro-vides bene�ts to the user in terms of functionality, performance, and usability.Administrative costs: The administrative costs associated with replication are apotential concern. To the extent that replication is transparent, it leaves all of theother administrative tasks intact; yet it adds more degrees of freedom in deciding howto con�gure a volume. Which sites should store it? Where should each site store it?How often should they reconcile? How should �le system backup dumps be set up?Fortunately, these are largely one-time initial costs, and add little ongoing burden.Although replica setup requires administrative planning, it can ease other tasks.Parts of a network �le system that need to be stored on each machine may be placedin replicated volumes. Then updating one of these �les requires changing the �le onlyonce, rather than going to each machine. Existing tools such as rdist also allow repli-cation, but in a limited manner (master-slave with updates to the master only). Ficussupports full peer-to-peer, update anywhere replication.Backups: The existence of �le replicas on machines with relatively independentfailure modes largely alleviates the recovery-from-hardware-failure motivation for do-ing nightly backups. Backups serve primarily to recover from accidental removal oroverwriting of data by users. Note that a �le versioning mechanism (which has beenprototyped as a stackable layer), almost completely removes this latter motivation forbackups. Perhaps only occasional tape dumps will su�ce for recovery from catastro-phes that would wipe out all replicas. In our working environment, we do not directlybackup disconnected machines and instead rely entirely on replication for their pro-tection from hardware failure.Lessons concerning layeringCache consistency: Cache consistency issues arise both between the Ficus layersand between distinct Ficus hosts; when data is updated in one layer or machine othercaches should be noti�ed. Consistency can be maintained by treating information asa \hint," invalidating out-of-date information, or avoiding caching. We found that theneeds for consistency varied in di�erent parts of Ficus.Inter-layer cache consistency22 was implemented late in Ficus' development. Ficusreplication does not currently use this mechanism. In some cases, Ficus uses dataoptimistically, although this can cause problems in some situations (for example, usersof another replica may not see a �le removal immediately). In other cases Ficus avoidscaching data to make inconsistencies impossible (for example, in handling memorymapped �les) or we have constructed ad hoc mechanisms to access cached data (inreplica selection). Overall, Ficus works adequately in practice without inter-layer cachecoherence. Only very occasionally were coherence problems visible to the user. Howeverthe structure and in some cases the performance of Ficus would bene�t from inter-layercoherence.The situation with cross-machine cache consistency is somewhat di�erent. Ficus op-erates with an identical cross-machine caching policy to NFS. While it is possible toexercise the lack of cache coordination, problems rarely occur in practice. Optimismappears justi�ed in this arena as well. However, in those rare times when the cacheconsistency assumptions are not justi�ed, problems result which are confusing and notrepeatable. While a usable system can be built ignoring cross-machine cache consis-



176 T. W. PAGE, JR. ET AL.tency, the lack of it will be an occasional source of obscure problems.� Our experiencessuggest that applications which are suitable to optimistic replication are less likely toneed stronger than NFS-quality cross-machine cache consistency, although we havenot tried to verify this hypothesis.Layer division: In hindsight, we did not fully appreciate the power of the layered�ling technology when we initially designed Ficus. One example is our split of theoriginal logical layer into logical and replica selection layers for added exibility. Asanother example, much of the physical layer is devoted to dealing with the fact thatUnix does not present inode-level access. Ficus simulates the inode-level interfaceusing the underlying UFS as a at �le service at considerable performance penalty.We should have built a separate layer to simulate such a service; that layer couldsimply be removed when a storage layer with an inode interface became available. Wewould also expect and recommend that a commercial implementation of a layered �lesystem support inode-level access.Sharing �les across administrative domains: Ficus, as originally implemented,operated within a single administrative domain. That is, the �le ownership and per-missions model was as in Unix, with a coordinated space of user identi�ers and a fullyshared �le hierarchy. This was a clear limitation to scaling Ficus across the Internet.We have relaxed this restriction with a user-id mapping layer. Other extensions to im-prove security and support cross-domain sharing over a public network are describedelsewhere.24, 25 RELATION TO OTHER WORKFicus is related to, or draws from, a variety of other work. Ficus is the intellectualdescendant of Locus26 in that both have the goal of providing a network-transparent �lesystem that supports partitioned update with automatic recovery. While experimentalversions of Locus permitted partitioned update, no optimistic directory update wasallowed, and no automatic reconciliation of any object was ever supported. Commercialversions of Locus used only primary-site reconciliation. Ficus avoids the design choices(the need for all sites to agree on the current network topology) that fundamentallyprevented the Locus approach from scaling beyond a relatively small number of sites.Further, Ficus is a modular extension to the Unix �le system, where Locus was a fulldistributed operating system.The weakly consistent replication protocol in which updates are performed syn-chronously to a single replica and propagated asynchronously to the others is similarto that used in the Grapevine's electronic mail system.27 The scaling requirementsand failure characteristics of a wide scale Internet environment led Grapevine to thisclass of solutions just as it led Ficus in this direction.Bayou28 is a replicated storage system based on the peer-to-peer architecture. LikeFicus, Bayou provides support for application-dependent resolution of conicts. How-ever, unlike Ficus, Bayou does not attempt to provide transparent conict detection.Applications must specify a condition that determines when a conicting access hasbeen made, and must themselves specify the particular resolution process. Bayou pro-� Baker23 reports simulations and instrumentation of the Sprite Operating System which lead to the conclusionthat lack of cache consistency is a problem. Either there is considerably more shared �le activity in the Spriteenvironment, or the vast majority of accesses to stale data in NFS-derived systems go unnoticed; both areprobably the case.



PERSPECTIVES ON OPTIMISTICALLY REPLICATED, PEER-TO-PEER FILING 177vides session guarantees29 to improve the perceived consistency by users. Additionally,Bayou establishes strong guarantees about its data|writes can be classi�ed either ascommitted or tentative. It does not support any form of selective replication, so thedatabases (the Bayou replication unit) must be fully replicated at all storage sites.Ficus derives its notion of volumes from the Andrew File System (AFS).30 It sharesmany of the same goals as AFS for scale, and Coda31 for reliability and availability viaoptimistic replica management. Ficus di�ers fundamentally in its peer-to-peer modelof machine interaction as opposed to the client-server model employed in AFS andCoda. Coda allows replication among a backbone of closely coupled servers whileclients on workstations or mobile machines check out whole �les. Where any Ficusmachine may also be fully functioning server, Coda clients cannot exchange locallystored data with other clients. Coda clients utilize on-disk caches that allow them tooperate while disconnected from servers to the extent that needed �les are presentin the local cache, whereas Ficus users require a local replica if a mobile machine isto be able to continue access while disconnected. Finally, Coda's client/server andconsistency models assume geographically co-located servers for good performance;Ficus' peer model works well with geographically distributed and weakly connectedservers.The ISIS environment's Deceit �le system,32 like Ficus, utilizes NFS. Deceit has amode that permits partitioned update, but it does not support automatic directoryreconciliation.The Harp �le system33 implements replication for a Unix client-server environmentusing primary-copy concurrency control. Harp achieves high performance and relia-bility by combining write-behind logging techniques with an uninterruptible powersupply that allows logs to be forced to non-volatile storage after a power failure.The stackable layers architecture in Ficus builds on several areas of related work.It is in many ways the �le system analog of Ritchie's System V streams,34 and of thex-Kernel's notion of protocol stacks.35, 36 It is compatible with and motivated by themicro-kernel philosophy growing out of the Mach work,37 but it provides modular-ity through software structuring conventions rather than with servers in independentaddress spaces. Several e�orts at Sun Microsystems have independently explored stack-able �ling with approaches similar to ours.38-40STATUS AND CONCLUSIONSThe system as described in this paper, including reconciliation, is operational and indaily use since the middle of 1990. Ficus is constructed from modi�ed SunOS 4.1.1source code, the modi�cations currently consisting of approximately 42; 000 lines ofC-language kernel source code and 26; 000 lines of user-level utility code. Within thelaboratory of its developers, all source code development, user �les and shared systembinaries, etc., are replicated under Ficus. Given an average project size of 12 people, wehave accumulated approximately 720 person-months of user experience. While mostof this experience is with its use within an o�ce, Ficus has also been used to sharedata over the Internet, and over phone lines in primarily-disconnected mode.We have gained considerable experience from building and working in an optimisti-cally replicated system. All of our experience supports the view that optimistic rep-lication is very attractive. Providing high performance, high availability, scalable dis-tributed computing service demands an optimistic approach, an approach that has



178 T. W. PAGE, JR. ET AL.proven feasible. It is our hope that the facilities described in this paper will make thathigh quality service commonplace, as they require no special hardware and can easilybe added to many existing systems. Many applications should bene�t from the easewith which the basic reconciliation service can be re-targeted beyond its initial use fordirectory management, as shown by our success in using it to manage Ficus' replicatedvolume location tables.All indications are that these conclusions become \all the more so" as scale increasesin terms of geographic distance and numbers of �les. The alternative, pessimistic rep-lica coordination, becomes increasingly expensive in terms of both delay and avail-ability. Further, the kind of unstructured shared update that could lead to conictsbecomes even less common. Since stronger consistency guarantees can be provided ontop of an optimistic base (and the reverse is not the case), we conclude that optimismis the preferred policy at the lowest level.It has also been our experience that the lack of portability and exibility in hardwarechoices that has resulted from the use of a proprietary operating system source codebase has been an on-going source of frustration. Partially as a result of the restric-tions on wide-spread distribution of a kernel-based implementation, we have extractedmany of the ideas, concepts, and algorithms of Ficus and implemented them in anout-of-kernel form. This application, called Rumor,41 provides peer-to-peer optimisticreplication entirely in user space, though it does not support all features o�ered byFicus, such as transparent replica selection.Finally, this work opens up a number of relevant research directions where one canexpect to make rapid progress, and provides the tools to investigate them. For exam-ple, individual researchers can explore a variety of synchronization and consistencypolicies in a replicated �ling environment, easily adding their own implementationsto experiment with functionality. The use of the stackable �le system technology hasbeen a boon to this research, and should contribute to the future leverage of the Ficussystem.AcknowledgmentsThis work was sponsored by DARPA under contract numbers F29601-87-C-0072and DABT63-94-C-0080 and by the National Science Foundation under Grant No.IRI-9501812.Ficus is the work of many people. Additional contributors to Ficus include: DeiterRothmeier (reconciliation and kernel), Wai Mak (kernel), Je� Weidner (extended at-tribute layer), John Salomone (administration), Steven Stovall (kernel), Greg Skinner(resolvers), and Michial Gunter (reconciliation performance).REFERENCES1. D. Stott Parker, Jr., Gerald Popek, Gerard Rudisin, Allen Stoughton, Bruce J. Walker, EvelynWalton, Johanna M. Chow, David Edwards, Stephen Kiser, and Charles Kline, `Detection ofmutual inconsistency in distributed systems', IEEE Transactions on Software Engineering, 9(3),240{247 (1983).2. David Ratner, Gerald J. Popek, and Peter Reiher, `Peer replication with selective control', Tech-nical Report CSD-960031, University of California, Los Angeles, July 1996.
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