Automated Planning for Open Network Architectures

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Computer Science

by

Alexey Rudenko

2002
The dissertation of Alexey Rudenko is approved.

Gerald J. Popek

D. Stott Parker

Milos Ercegovac

Greg J. Pottie

Wesley W. Chu, Committee Co-chair

Peter Reiher, Committee Co-chair

University of California, Los Angeles
2002
To my family—
my mother Larisa
my father Oliver
and my sister Marina
Table of Contents

Abstract .. xvi

1. Introduction ... 1
 1.1 Motivation.. 2
 1.1.1 Deployment of new protocols.. 2
 1.1.2 Heterogeneous networks... 3
 1.1.3 User application requirements... 3
 1.1.4 Service for legacy applications.. 3
 1.2 Open Network Architectures... 4
 1.2.1 Active networks... 5
 1.2.2 Adaptation of data stream.. 5
 1.3 Planning for Active Networks.. 6
 1.4 Implementation of the Planner... 7
 1.5 Road Map to the Dissertation... 7

2. Background on Active Networks .. 9
 2.1 Active Network Concept ... 9
 2.2 Architecture of Active Network Node ... 10
 2.3 Panda as an Active Network Middleware... 12
 2.4 Panda Node Architecture.. 13
 2.5 Problems of Active Networks.. 14
3. Planning Alternatives

3.1 The Requirements to Planning

3.1.1 Temporal factor

3.1.2 Consistency of adaptations

3.1.3 Ordering of adapters

3.1.4 User preferences as an element of planning

3.1.5 Efficiency of the plan

3.1.6 Extensibility of the system

3.1.7 Resource management for planning

3.1.8 Other problems

3.2 Complexity of Planning Problem

3.2.1 Physical model

3.2.2 Observation on planning problem

3.2.3 Estimation of the space of solutions

3.2.4 NP-completeness

3.2.5 Inefficiency of exhaustive search

3.3 Naïve Planning

3.4 Template Planning

3.5 Heuristic Search

3.6 Routing Around Network Resources Planning

3.7 Automated Planning

3.7.1 Incremental planning
3.7.2 Central planning... 45
3.7.3 Distributed planning.. 46
3.7.4 Where to run central planning.. 47
3.7.5 Reuse of earlier computed plans... 48
3.7.6 Approach to planning for multicast communication.............. 48
3.8 Adapter Design... 51
 3.8.1 Classes of adapters... 52
 3.8.2 Adapters with flexible/rigid architecture.............................. 54
 3.8.3 Two-level hierarchy of an access to adapters...................... 54
3.9 Summary.. 56

4. Planning Protocol.. 57
 4.1 Requirements to the Planning Protocol................................. 57
 4.2 Planning Protocol Design... 59
 4.3 Where to Run the Plan Calculation...................................... 60
 4.4 Implementation of Planning Protocol in Panda..................... 61
 4.5 User Preferences, Data Stream Characteristics, and Planning Data..... 62
 4.6 Planning Data Collection... 64
 4.7 Calculation of a Plan.. 65
 4.8 Deployment of a Plan... 66
 4.9 Incremental Planning Protocol... 66
 4.10 Elements of Resource Management..................................... 67
 4.10.1 Assumptions on resource management........................... 67
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10.2</td>
<td>Detailed description of the resource management implementation</td>
<td>69</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Periodic decommissioning of inactive connections</td>
<td>75</td>
</tr>
<tr>
<td>4.11</td>
<td>Replanning</td>
<td>76</td>
</tr>
<tr>
<td>4.12</td>
<td>User Access to Resources</td>
<td>77</td>
</tr>
<tr>
<td>4.13</td>
<td>Security in ONA Planning</td>
<td>77</td>
</tr>
<tr>
<td>4.13.1</td>
<td>Classification of ONA planning insecurities</td>
<td>78</td>
</tr>
<tr>
<td>4.13.2</td>
<td>Security of incremental planning protocol</td>
<td>80</td>
</tr>
<tr>
<td>4.13.3</td>
<td>Untrustworthy ONA node for central planning protocol</td>
<td>82</td>
</tr>
<tr>
<td>4.13.4</td>
<td>Secure central planning procedure</td>
<td>84</td>
</tr>
<tr>
<td>4.13.5</td>
<td>Secure central planning protocol</td>
<td>86</td>
</tr>
<tr>
<td>4.13.6</td>
<td>Poor quality and malicious design of adapters</td>
<td>89</td>
</tr>
<tr>
<td>4.13.7</td>
<td>Security measures on adapter requests</td>
<td>90</td>
</tr>
<tr>
<td>4.13.8</td>
<td>Electronic signatures with public key and key distribution</td>
<td>91</td>
</tr>
<tr>
<td>4.14</td>
<td>Summary</td>
<td>92</td>
</tr>
<tr>
<td>5.1</td>
<td>Heuristic Search</td>
<td>94</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Adapter selection in two-level adaptation database</td>
<td>95</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Adapter description data</td>
<td>100</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Adapter ordering</td>
<td>102</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Plan optimization</td>
<td>110</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Resources and temporal constraints</td>
<td>120</td>
</tr>
<tr>
<td>5.2</td>
<td>Example of a Plan Calculation</td>
<td>121</td>
</tr>
</tbody>
</table>
5.2.1 Peer-to-peer communication session..121
5.2.2 Adapter selection..122
5.2.3 Adapter ordering..123
5.2.4 Plan optimization..125
5.3 Using Unary Model for the Plan Calculation Algorithm..................128
5.4 Summary...128

6. The Measurement of Performance...130
6.1 Performance of Heuristic Search-based Planning...........................130
6.2 Costs of Incremental versus Central Planning...............................133
6.3 Planning Process Test..136
 6.3.1 The testbed..136
 6.3.2 The latency of packet delivery and adaptation..........................138
 6.3.3 Planning procedure latency with the Connector application and null
 adapters ...142
 6.3.4 Planning procedure latency with real life applications and adaptations .149
 6.3.5 Quality of service improvement..165
 6.3.6 The discussion on performance..174

7. Related work...176
7.1 ONA Implementations for ONA-aware Applications......................176
7.2 ONA Implementation for ONA-unaware Applications.....................179
7.3 AI Planning...181
7.4 Planning for ONA...184
8. Future work

8.1 Change of Adapters

8.1.1 Planning fails because no feasible or consistent plan found

8.1.2 Connections failure

8.2 Planning for Multicast Connection

8.3 ONA Resource Management

8.4 Secure Planning Protocol

8.5 Alternative Path Planning

8.6 Other Communication/Distributed Systems that will Benefit from Automated Planning

9. Conclusion

9.1 Contributions

9.2 The Discussion

Appendices

References
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Active network node</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>A Panda-enabled node</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Two-fold and four-fold data compression</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>A unicast connection</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Estimation of solution space</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Peer-to-peer connection as a bunch of alternative plans</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Alternative plans for three-node connection</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Examples of naïve solutions</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>Efficiency of planning</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>Multicast tree planning</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Planning procedure</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Panda planning procedure</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Resource redistribution among sessions</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Add flow</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Reject flow</td>
<td>73</td>
</tr>
<tr>
<td>4.6</td>
<td>Preemption flow</td>
<td>74</td>
</tr>
<tr>
<td>4.7</td>
<td>Replanning of flow if another connection must be added</td>
<td>74</td>
</tr>
<tr>
<td>4.8</td>
<td>Replan flow if extra resource are released</td>
<td>75</td>
</tr>
<tr>
<td>4.9</td>
<td>Replanning if the network conditions changed</td>
<td>76</td>
</tr>
<tr>
<td>4.10</td>
<td>Incremental planning procedure</td>
<td>82</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.11</td>
<td>The example of the exemption of an intermediate node(s) in planning data collection via tête-a-tête protocol</td>
<td>83</td>
</tr>
<tr>
<td>4.12</td>
<td>Central planning procedure with UNC service</td>
<td>85</td>
</tr>
<tr>
<td>4.13</td>
<td>UNC node does not approve a node as a trustworthy node</td>
<td>86</td>
</tr>
<tr>
<td>4.14</td>
<td>The chain of signatures</td>
<td>92</td>
</tr>
<tr>
<td>5.1</td>
<td>Selection of adapters, ordering of adapters, and location of adapters run sequentially</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Building a local plan</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>The example of exhaustive search with evaluation</td>
<td>105</td>
</tr>
<tr>
<td>5.4</td>
<td>The prototype partial order library plan for adapter ordering</td>
<td>107</td>
</tr>
<tr>
<td>5.5</td>
<td>Resolution of a conflict between preconditions and postconditions</td>
<td>109</td>
</tr>
<tr>
<td>5.6</td>
<td>Plan merging failures</td>
<td>114</td>
</tr>
<tr>
<td>5.7</td>
<td>Peer-to peer communication through nodes A, B, C, D</td>
<td>122</td>
</tr>
<tr>
<td>5.8</td>
<td>Adapting partial order plan for link AB</td>
<td>124</td>
</tr>
<tr>
<td>5.9</td>
<td>Local plan for link AB</td>
<td>124</td>
</tr>
<tr>
<td>5.10</td>
<td>Local plan for link BC and CD</td>
<td>125</td>
</tr>
<tr>
<td>5.11</td>
<td>The chain of local plans on node A, B, C, and D</td>
<td>126</td>
</tr>
<tr>
<td>5.12</td>
<td>ABC plan after merging AB and BC plans</td>
<td>127</td>
</tr>
<tr>
<td>5.13</td>
<td>ABCD plan after merging ABC and CD plans</td>
<td>127</td>
</tr>
<tr>
<td>6.1</td>
<td>Heuristic to exhaustive search time cost ration</td>
<td>131</td>
</tr>
<tr>
<td>6.2</td>
<td>Heuristic search performance by adapters</td>
<td>132</td>
</tr>
<tr>
<td>6.3</td>
<td>Heuristic search performance by nodes</td>
<td>134</td>
</tr>
</tbody>
</table>
6.4 Incremental versus central planning time cost .. 135
6.5 Incremental versus central planning efficiency .. 135
6.6 Panda peer-to-peer connection .. 136
6.7 Packet delivery latency ... 139
6.8 Adaptation latency .. 140
6.9 Packet loss .. 141
6.10 Throughput of Panda associated with packet size 141
6.11 Sample of the distribution of packet latency on packet numbers 142
6.12 Deployment without preloaded adapters ... 143
6.13 Deployment with preloaded adapters .. 144
6.14 Latency of the deployment protocol without adaptations 145
6.15 Incremental planning and deployment latency .. 146
6.16 Incremental versus central planning latency ... 147
6.17 The number of packets sent under incremental plan before central plan is calculated and deployed ... 148
6.18 The latency of pre-planning process .. 149
6.19 Planning procedure latency for the Connector and WaveVideo applications ... 150
6.20 Plan calculation latency for the Connector and WaveVideo applications 151
6.21 Deployment latency for the Connector and WaveVideo applications 151
6.22 Planning procedure latency on Dell Inspirons .. 152
6.23 Plan calculation latency on Dell Inspirons .. 152
6.24 Deployment latency on Dell Inspirons .. 153
6.25 Incremental planning latency on Dell Inspirons .. 154
6.26 Incremental and central planning procedure (Resolution Drop only) on Dell
 Inspirons connection .. 154
6.27 The number of packet sent under the incremental plan before the central plan is
calculated and deployed ... 155
6.28 Central replanning process on Dell Inspirons .. 156
6.29 The comparison of adaptation latencies on Dell Inspirons and Hewlett Packard
 machines connections ... 157
6.30 The planning procedure latency on Dell Inspirons and HPs 158
6.31 The plan calculation latency on Dell Inspirons and HPs 158
6.32 Deployment latency on Dell Inspirons and HPs .. 159
6.33 The planning procedure latency on HPs ... 160
6.34 Plan calculation latency on HPs .. 160
6.35 Deployment latency on HPs ... 161
6.36 Incremental planning latency for Resolution Drop for HPs 162
6.37 Incremental planning latency for Resolution Drop and Encryption for HPs 163
6.38 The number of packets sent under the incremental plan before the central plan
 was calculated and deployed ... 163
6.39 Replanning procedure latency on HPs .. 164
6.40 The plan calculation latency for Rat and VideoWave applications 165
6.41 PSNR (luminance) on Dell Inspirons for 150 Kbps links 166
6.42 PSNR (Cb) on Dell Inspirons connection for 150 Kbps 167
6.43 PSNR (luminance) on Dell Inspirons for 5000 Kbps 168
6.44 PSNR (Cb) on Dell Inspirons for 5000 Kbps 168
6.45 PSNR (luminance) on HPs for 150 Kbps 169
6.46 PSNR (Cb) on HPs for 150 Kbps ... 169
6.47 PSNR (luminance) on HPs for 5000 Kbps 170
6.48 PSNR (Cb) on HPs for 5000 Kbps ... 170
6.49 PSNR (luminance) on HPs .. 171
6.50 The advantage of central planning over incremental planning 173
6.51 PSNR (luminance) for incremental and central plans 173
Acknowledgements

This research would have not been possible without the expert guidance of my advisors, Dr. Peter Reiher and Dr. Gerald J. Popek. I also thank Dr. D. Stott Parker, Dr. Milos Ercegovac, Dr. Richard Muntz, Dr. Wesley Chu, and Dr. Greg J. Pottie for serving on my dissertation committee. I am also grateful for all the support provided by Dr. Richard Korf and Dr. Elias Koutsoupas and the members of LASR research group, especially Dr. Mark Yarvis, Vincent Ferreria, Scott Michel, Kevin Justice, and Li Jun. Generous financial support was provided by DARPA research contract N66001-98-C-8512. I would also like to thank Janice Wheeler for helping me improve my writing style and for the careful proofreading of my papers and this dissertation.

Of the many who encourage me, I especially want to thank Verra Morgan, Roberta Nelson, my mother Larisa, my father Oliver, my grandmother Anna, my sister Marina, and my friends.
Abstract of the Dissertation

Automated Planning for Open Network Architectures

by

Alexey Rudenko

Doctor of Philosophy
University of California, Los Angeles, 2002
Professor Peter Reiher, Co-chair
Professor Wesley W. Chu, Co-chair

Open Network Architectures (ONA) is a relatively new technology for computer systems that allows dynamic deployment of services. The Internet is an obvious area that would benefit from fast deployment of protocols that can appropriately modify or reroute user data streams. ONA systems are meant to use the fast-growing computational resources of modern computer systems to lessen the load on the resources of network communication channels with their often-limited capacity. The balance between communication channels and execution resources depends on user application requirements and network conditions at the moment of the communication. Complex network conditions, in conjunction with temporal constraints, make the automatic choice of necessary measures for improving communications a highly desirable capability. Automatic planning of ONA services should be an important function of ONA.

We propose an approach to the design of a planner for ONA. The approach is focused on the overwhelming number of problems of adaptation planning, such as feasibility and efficiency of a plan, extensibility and composability of adaptations, and temporal limits. The planner automatically calculates properly ordered sequences of
adaptations that modify user data. The purpose of these modifications is to increase throughput, reliability, and safety of communication channels.

The goal of the planner design is to be able to formulate a plan for real-time applications that are very sensitive to the latency of the handshaking phase of the connection. It uses the heuristic search for a plan calculation. The planner is targeted for use by ONA nodes. The actual implementation of this planner was done in Panda, active network middleware that serves adaptation-unaware applications. The latency of the planning algorithm is below 160 milliseconds for realistic cases, which is magnitudes faster than the exhaustive search. The planner was used to calculate plans equally as good as the heuristic search in at least 99% of tested cases. The resulting planning system can be used for adaptation planning in open network architectures, active networks, remote code invocation systems, etc.

This dissertation describes the design, implementation, and performance of the ONA planner.