Experiencewith Automated Planning for Panda

Alexey Rudenko and Peter Reiher
{arudenko, reiher} @cs.ucla.edu

Computer Science Department
University of California, Los Angeles
Tedhnicd Report CSD-TR 010041
Abstract - Open network architectures (ONA) allow dynamic deployment of services in
the networks. The Internet would benefit from quick deployment of protocols that provide
customized services to handle user data streams. Complexities and dynamism of network
conditions make it unreasonable to expect users and application writers to foresee and
handle all possible problems. Having network systems automatically adjust to those
problems would be a great improvement, but doing so clearly indicates a need for
automated planning of services in ONA. Panda is an ONA system that is based on the
Active Network paradigm and is capable of automated planning for peer-to-peer UDP
connections.

This paper uses experimental results describing the overheads related to
automated planning in Panda and the benefits Panda can achieve for real user
multimedia applications.

1. Introduction

Open network architectures allow dynamic deployment of services in routers or
spedal servers locaed in the networks. While traditional networks passvely transport
bits from one end system to another, ONA techndogy allows networks to deploy
adaptations dynamicdly. However, mapping ONA services into the mnnedion routers

is a difficult problem. User applicaions might not be avare of current condtions of



highly variable networks; the conredion routers are aware of network condtions, bu
they are not aware of the applicdion requirements to the cnrection protocol. Since
users canna always predict the best way to use the open architedure for their data
streams under the arrent condtions, ONA require full-scale aitomated planning to
efficiently map adaptations into the ONA-enabled nades used by a wnredion. Planning
shoudd guarantee that adaptations are @wmpatible and operate effectively together.
Planning shoud also use aaptations efficiently becaise their exeaution wses limited
computing resources at intermediate nodes and increases the latency of data delivery.
Unnecessarily repeding a particular adaptation a improperly locating it is highly
undesirable.

The planning protocol implemented in Panda wnsists of three ®nsequent phases

- planning data gathering

- cdculation d aplan

- deployment of the plan.

There ae two maor planning protocols implemented in Panda: incremental
planning and centralized planning.

Panda source node intercepts user application dbta packets, converts them into
Panda padkets and further forwards them from node to node and adapts them according to
a plan. Panda destination nod onwerts the padets back to their original state and
forwards them to the receiving site of the user applicaion wing the wrrespondent port.

Incremental planning occurs on all nodes of a @wnnection. When a source node
intercepts a user's applicatlion data padkets it locks the data stream so that data packets are

buffered on the source Panda node. The source node cdculates and deploys the locd



plan for the link between itself and second no@. Then the second noa calculates and
deploys a plan for the link between itself and the third noce of the cnrection and so on,
urtil a locd plan for the link leading into the destination noc itself is cdculated and
deployed. The destination noc informs the source noce that local plans are ready; the
source noce unlocks the data stream and data transfer starts.

In centralized planning the plan cdculation accurs on the source node of a
conredion. When a source Panda node intercepts user applicaion cata packets that are
initiated onthe same nodk, it locks the strean and accumulates its padkets in a buffer. A
message from the source to the destination coll eds the planning data on al nodes of the
conredion and returns this data to the source node. Then centralized planning runs on
the sourcenode. The alapters chosen by the plan are deployed onthe proper nodes of the
conredion. The source node sends messages to all nodes that shoud run particular
adaptations. If a node does not have aparticular adaptation it asks the source noce to
deliver it. The source node sends the aapter to the node and the node sends the
aknowledgement badk to the source node.  When the source node obtains
adknowledgements from al nodes of the cnrection it unlocks the strean and data
padkets are sent to the destination. The protocol is presented onFigure 1.

After the stream is unlocked the packets pass through all adapters that are
deployed on the nodes of the wnrection. The aaptations process the padkets and
forward them further along the amnnedion.

If the @ndtions of the cnnedion change Panda re-runs the planning process

again to adjust to the new condtions. This processis called re-planning.



Incremental planning is quick and inefficient; centralized planning is dow and
more dficient. In Panda both planning algorithms run concurrently. When incremental
planning is dore data padets dart to be forwarded to the destination. When the central
plan is cdculated and deployed the data stream switches to the improved plan.

Thefirst point of the interest is the overhead of the planning protocol:

Latency of incremental planning

- Latency of centralized planning data gathering

- Latency of centralized pan cdculation

- Latency of centralized plan deployment.

- Latency of re-planning

- Number of packets ®nt under the incremental plan before the cantrali zed plan

is cdculated and deployed

Other paints of interest are Panda overheads nat related to planning:

- Latency of apacket delivery from the source nock to the destination noa

- Latency of adaptation.
The ultimate measure of Panda and danning isthe quality of service that was achieved
using adaptations compared to an Internet connection that is unable to adapt user data.

The rest of the paper is organized as following. Sedion 2 pesents the description
of the testbed used, section 3 pesents the latency of user packet delivery, sedion 4
presents adaptation latency, section 5 pesents the overhead of the planning protocol,
sedion 6 pesents the QoS test results, sedion 7 dscusses the results, and sedion 8 dfers

conclusions.
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Figure 1: Planning protocol and data transfer on the sour ce Panda node

2. TheTestbed
2.1 Computersand Networks

The conrection was tested with twisted pair sequential conrections of up to four
computers as srown onFigure 2. Déell Inspiron Omnibook 4150 aptops with 333MHz
procesors were used for one set of tests and Hewlett Padkard laptops with 500 MHz
procesors for ancther set of tests; al madines used Linux Red Hat 7.0 with the 2.2.16
kernel. Xircom RedPort2 Ethernet 10/100 mmcia crds were used for the network
conredion between the machines. The source and destination madines run a user
applicaion and the Panda node wncurrently. The priority of the user applicaion was st
lower on the source machine and higher on the destination macdine to ensure proper

al ocaions of resources.
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Figure 2: Panda peer-to-peer connection

Throughpu of the network links is varied among 150 Kbps, 800 Kbps, 2000
Kbps, and 5000Kbps using CBQ.
2.2 Adapters
We used two kinds of adaptations: null adaptations and red adaptations. Null
adaptations do nd perform any data processng; they are used to measure the overheal of
just to having an adapter in a @wnredion. Filters and encryption were used as rea
adaptations. The filters drop particular padkets with color or quality data and
computationally are very emnamic; the encryption adapter performs heavyweight
processng of the data.
2.3 The Problem of Synchronization
The following method was applied to measure one-way padket delivery. The
padkets were stamped with the locd time on the source machine. Uponthe arriva at the

destination machine the stamped time was subtraded from the destination locd time to



obtain measured time delivery. The synchronization o the source and destination
madines clocks was dore with NTP. The NTP server was located on the destination
noce. The source node synchronized itself to the destination locd time before the first
padket was ent to the destination. Then 20,000packets were sent the destination. After
the last padet was delivered, the source madciine measured the skewing value. It was
presumed that skewing gows uniformly by time. The actual time deivery was
cdculated with formulafor ead data packet n:

skewingValue

Actual TimeDelivery(n) = measuredTimeDelivery(n) -
20,000

2.4 Applications

Three different applicaions using the UDP protocol were used for the
performancetests. The latency of the packet delivery and nul-adaptations were tested on
a speda application cdled Connector that was designed in Java for this purpose.
Conredor is able to generate data packets of different size.

The overhead o the planning protocol and red life aaptations was tested with
the WaveVideo application [Frankhauser99], which generated a video strean using .avi
files.

As an dternative to this video stream applicaion, an audio strean generating
applicaion RAT was used, which generated audio stream using .au fil es.

The quality of service was tested with the WaveVideo measurement package that
compares the initial data strean with the one that was adualy delivered. The result is
presented in PINR units, which are the ratio o the initial stream to the error that
occurred during the transmisson.

3. Packet Delivery and Adaptation L atency



Figure 3 presents packet delivery latency for different packet sizes. Panda
withou adaptations extends normal Internet latency 3-4 times, being a relatively slow
Java gplicaion. Null adapters added to the amnnedion make Panda overhead even
heavier for packet delivery. The packet delivery latency aso contains the alaptation
latency. Error bars onthisfigure and all further figures show the value of standard error,
unlessotherwise indicated.

Figure 3 shows that adding Panda to a data stream increases its latency 50-150%,
with longer padkets seing less effed. Adding more Panda-enabled nades or more
adapters modestly increases the delay for each addition.

Figure 4 presents the latency of null adaptations. All adaptations were deployed
on ore of the nodes of the @mnrection. Of course, withou Panda no adapters can be
deployed, so the extra latency for that case is defined to be zero. Every Panda node
always runs at least one forward adapter, whaose only task isto forward a padet to a next
noce dter al other adapters are exeauted. The number of forward adapters equal to the
number of connedion nodks is always present in a Panda cnrection bu it is nat courted

on ou graphs.
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Figure 3: Packet delivery latency
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Figure 4. Adaptation latency

Figure 5 presents the packet loss that occurred in the data strean of 20,000
padkets tried for different packet size. The data stream withou Panda had no padet loss
No padket for 2k-packet data stream was lost either. Padket lossincreases with padket
size becaise of extra memory all ocaion by the Panda Java cwde. Figure 6 shows that

Panda throughpu grows with the packet size. At the same time Panda packet lossgrows



with the pacet size, but it never reacies more than 05%. The padet size of multimedia
applicaions varies anyway because some gplicaions apply their own compressng

protocols to the data packets. Error bars represent 95% confidence intervals.
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Figure 5: Packet loss
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Figure 6: Throughput of Panda associated with packet size
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Figure 7 presents the sample of 1000 packet latency distribution. The stream

occurred onthe mnnedion d 4 Panda nodes without adapters for 1k padets.
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Figure 7: Sample of the distribution of packet delivery latency on packet

numbers.

All Figures 3-7 are obtained running the Connedor application and nul adapters.
4. Planning Procedure Latency with the Connector Application and Null Adapters

The planning procedure latency consists of planning data gathering latency, plan
cdculation latency, and dan deployment latency. Planning data gathering takes one
round trip; the source node forwards the data gathering message to the end noeg and
waits for its return. Planning data gathering throughou four Panda nodes takes 108 +/-
2.85milli seaondk.

For centralized planning, the time required to deploy the plan depends on whether
the adaptations are pre-loaded on nales. Obviously, if adaptations are pre-loaded the
deployment latency is much shorter. Figure 8 presents the deployment latency for the

case when adapters are not preloaded. The bars represent the deployment latency of 1-5
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null -adapters that were deployed oneach of the mnrection nods. The deployment on
Node #1is adways fast because it isthe source node, the storage site of all adaptations. In
centralized planning, the more alaptations that must be transmitted to remote nodes, the

longer the deployment processtakes.
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Figure 8: Deployment without pre-loaded adapters

Figure 9 presents the deployment in case of pre-loaded adapters. The latency of
deployment is much shorter in this case becaise alapters need na to be transmitted to
remote nodes. However, the deployment protocol withou adapter transmisgon still must
be performed completely, and that is why the deployment of more adapters takes longer

per noce.
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Figure 9: Deployment with pre-loaded adapters

Figure 10 presents the latency of the deployment protocol when no adapters are

seleded. In this case the deployment protocol consists of the querying messages sent by

the source node to the intermediate nodes asking them if they are realy to receve user
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Figure 10: Latency of the deployment protocol without adaptations
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Figure 11 presents the latency of the incremental planning process The bars for
deployment on ganning machine refers to adaptations that must be deployed on the
macdhine that cdculates the local plan. The bars for deployment on the next machine
refers to the aapters that must be deployed on the macine downstrean from the
planning machine. The bars for deployment on bah macdhines refer to cases where the
incremental plan requires adapters on bdh of these machines. Incrementa planning does
nat include awy adaptation transmisson. All nodes are presumed to be storing all

adaptations that can be chosen by their locd planners.
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Figure 11: Incremental planning and deployment latency

Figure 12 presents the latency of performing both centrali zed and incremental
planning. The bars marked "Incrementa” show the latency of theinitial incremental
plan. The bars marked "Central" show the latency of the planning procedure if no
incremental planning occurs. The bars marked "Central plan with incremental plan in the

badkground” show how incremental planning slows the centralized panning. Oncethe
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incremental plan is established at all nodes, data padkets gart to flow. These padkets

compete with the businessof centralized planning, slowing that procedure down.
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Figure 12: Incremental ver sus centralized planning latency

Figure 13 shows with the number of packets that are forwarded uncer the
incremental plan before the central plan is cdculated and deployed. The bars marked
"node 1, 2, 3or 4 adapters 1" demonstrate the cases when centralized plan requires the
deployment of one adapter on 1st-4th nodes respectively. The further the adapter must be
deployed from the source node, the longer processof the deployment, and, thus, more
padkets are sent under the incremental plan. The bars marked "node 4, adapters 1, 3, 5
demonstrate the cases when the centralized plan requires the deployment of 1, 3or 5
adapters respectively on nale 4. The more alapters must be deployed, the longer the
deployment processlasts, and, thus, the more padkets are sent under the incremental plan.
The graph suggests that very short data streams, for example NTP, may not require

central planning, as all of their messages will be delivered before the centralized planis

cdculated and deployed.
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Figure 13: The number of packets sent under incremental plan before central plan
iscalculated and deployed

Sometimes the @ndtions of networks change when a @nrection is arealy
established. If the dhanges are dramatic enough, the plan is no longer effedive, and the
system must replan. The process of re-planning runs concurrently with the data packet
stream and therefore takes longer than the initial planning. Figure 14 pgresents the latency
of re-planning. The transparent bars s1ow the latency of the initial planning process
where one aapter is deployed onthe third maciine. The gray bars $ow the latency of
re-planning, where one alapter is deployed on the first, the second, the third, and the
forth madiines respedively. Replanning takes at least 50% longer than the initia
centralized planning. Replanning process where an adapter is deployed on the source
madhine still t akes longer than the initial planning. It happens becaise packet storing and
forwarding on the source madhine takes longer than the padket storing only in the initial
centrlized planning, and the traffic of the data packets gill delays the padket exchange of
the planning protocol. The graph also shows that the further an adaptation must be

transmitted from the source nodg, the longer it takes to complete re-planning.
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Figure 14: Thelatency of re-planning process

5. Planning Procedure Latency with Real Life Applications and Adaptations

The results in the previous ction wed the atificia Connedor application and
null adapters, and were conducted onDell Inspiron machines. The following test results
used the WaveVideo application and real adaptations, ResolutionDrop and Encryption,
on Dell Inspiron and Hewlett Padkard machines.

Figure 15 pesents the centrlized panning procedure latency for both the
Conredor and the WaveVideo applicaions. Of cource the Resolution Drop adapter was
not meaningful for the Conrector data padkets, bu it was nat an obstacle to use it for
planning procedure measurements. The WaveVideo application generates data padkets
ten times as fast as the Connector application. This intensity puts extra burden onthe
CPU of the source node and suppresses Panda activity. Thus, the resource requirements
of the user applicaion influence the performance of the Panda. Figures 15, 16and 17
demonstrate the planning procedure latency, plan cdculation latency, and deployment

latency respedively. Figure 16 showsthat the plan cdculationis grongly influenced by
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Figure 15: Planning procedure latency for the Connector and the WaveVideo

applications

the requirements of the user application. Figure 17 shows that the deployment latency is

amost unaffeded.
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Figure 16: Plan calculation latency for the Connector and the WaveVideo applications
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Figure 17: Deployment latency for the Connector and the WaveVideo applications

Figures 18-20 present the latencies for the planning procedure, plan calculation,
and deployment respedively for the WaveVideo application for different network

bandwidth that varies with different CBQ settings.
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Figure 18: Planning procedure latency with Dell Inspirons
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Figure 19: Plan calculation latency on Déell Inspirons
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Figure 20: Deployment latency on Dell Inspirons

The graphs show littl e dependency of latencies for planning procedure on the network
bandwidth, but strong dependance on the number of adaptations.
Figure 21 pesents the incrementa planning latency for the WaveVideo

application.
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Figure 21: Incremental planning latency for Dell Inspirons
Figure 22 presents the latency of re-planning incremental plan with central plan.
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Figure 22: Incremental and central planning procedures (Resolution Drop
only) on Dell Inspiron connection

The gray bars on Figure 22 are the same & the Resolution Drop bars on the Figure 21.
The throughpu has little dfect on the latency because the Resolution Drop adapter is

very small, and can be quickly deployed regardiessof the throughpu.

Figure 23 presents the number of packets that were sent under the incremental

plan before the central plan was caculated and deployed. The latency of the centra
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planning procedure increases the number of the padkets. The number of the packets

shows that very short sesgons that transmit a smal number of padets require

incremental planning only.
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Figure 23: The number of packets sent under the incremental plan before
the central plan is calculated and deployed

The eror bars onthe graph are 95% confidenceintervals.

Figure 24 presents the re-planning that occurs during the sesson.

1500 -

Latency (msec)
N
o
o
o

O Central planning (filter)

@ Central re-planning (filter)

O Central planning (filter+encryption)

A Central re-planning (filter+encryption)

U

N
N

LMY

V.

S
N

NN

LMY

%,

N

DN

nll Bx B

150 800 2000 5000
Throughput (kbps)

Figure 24: Central re-planning process on Dell Inspirons
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Initial central planning represents the planning that occurred before the first packet has
sent withou performing incremental planning. Central re-planning occurs in the midde
of the sesson concurrently with data padkets. The encryption adapter is arelatively large
pieceof code and its deployment is sriously affected by the limited throughput of the
conredion; the re-planning procedure lasts from 1.5 seconds for 5000Kbps to 3 seconds
for 150K bps.

The next series of experiments were run with more powerful HP Omnibooks
(500 GHz of HP versus 333HGz of Dell Inspirons) to determine the dfeds of processor
power on danning and adaptation.

Figure 25 presents the latency of the alaptation with rea adapters on bdh the
Dell and HP madhines. Inspiron (null-adapters) bars represent the alaptation latency
with 0, 1and 2 nul adapters on Inspiron, which is compared with redlistic cases. This
figure shows that processng power has a mgjor effect on the st of runnng realistic

adaptations aswould be expeded.
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Figure 25: The comparison of adaptation latencies on Dell Inspiron and Hewlett
Packar d machines connections
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Figures 26-28 compares the planning procedure, plan cdculation, and the plan

deployment latencies for Dell Inspiron and Hewlett Padkard machines.
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Figure 26: The planning procedure latency on Dell Inspironsand HPs
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Figure 27: The plan calculation latency on Dell I nspirons and HPs



Comparison of Deployment with HP and Inspiron
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Figure 28: Deployment latency on Dell Inspironsand HPs

These figures how that planning is a CPU intensive adivity that can be
asssted by more powerful macines. Much of the wsts of deployment,
however, are more dependant on the network than on CPU, so increasing CPU
power provides lessbenefit in this gage.

The rest of tests were run orly on Hewlett Padkard machines. The
planning data gathering procedure took 72+/- 6 milliseconds for al situations.
Figures 29-31 present the planning procedure, plan cdculation, and fdan

deployment latencies.
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Figure 29: The planning procedure latency on HPs
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Figure 30: Plan calculation latency on HPs
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Figure 31: Deployment latency on HPs

Comparing these Figures with Figures 17-18 oliained for Dell Inpirons we @an
conclude that more powerful madines reduce the overhead of running the planning
protocol and adaptations on Panda nodes. In bah cases the planning procedure latency
depends more on the number of adapters and lesson the network bandwidth.

Figures 32 and 33 present the incremental planning, central planning, and
replanning latencies for Resolution Drop and Encryption adaptations respectively. The
graphs sow that incremental planning is faster than central planning, and centra
planning is faster than central re-planning. The difference between initial central
planning and central re-planning is bigger for bigger adapters because the transmisson o
the adapters depends on the traffic between the mwnnedion nodks, and the re-planning
processcompetes with the data padket transmisson. The bars for 150 kbys on Figure 33
show that the influence of the data padket traffic on that difference is even more

significant if the avail able network bandwidth is small er as expeded.
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Figure 32: Incremental planning latency for Resolution Drop for HPs
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Figure 33: Incremental planning latency for Resolution Drop and Encryption for
HPs

Figure 34 presents the number of packets sent under the incremental

plan before the central plan was cdculated and deployed onthe HPs.
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Figure 34: The number of packets sent under the incremental plan before the
central plan was calculated and deployed

The number of the padkets ent under incremental plan before the central planis
cdculated and deployed varies very widely from 0 to 475. It makes the aonfidence
intervals wide, alowing usto draw few conclusions abou the eff ects of varying

throughpus of different numbers of adapters.

OcCentral planning Inspiron (Resolution Drop)

A Central re-planning Inspiron (Resolution Drop)

E Central re-planning Hewlett Packard (Resolution Drop)

N Central planning Inspiron (Resolution Drop & Encryption)

B Central re-planning Inspiron (Resolution Drop & Encryption)
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Figure 35: Re-planning procedur e latency on HPs
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Figure 35 pesents the re-planning procedure latency compared to the
correspordent initial central planning latency on Dell Inspirons and HPs.  The graph
shows that higher CPU power reduce the latency of the planning and re-planning
proceudures. Slower machines also demonstrate stronger dependancy on the available
network bandwidth. Bigger adapters make this dependancy even stronger.

The transfer of the Resolution Drop adaptation is not affeded much by the
throughpu because it is a small adaptation. Encryptionis avery large alaptation whaose
deployment takes much longer, and is more aff ected by competing data transfer traffic,
thus varying from 1.5 seaconds with 5000K bps throughput to more than 3 seconds with
150 Kbps throughpu. Recdl that the latency of the deployment that does not compete
with datatransfer traffic is presented onFigure 28.

More powerful computers, as Hewlett Padard machines with comparison to Dell
Inspiron are, reduces the latency planning protocol and adaptation.

Ancther redlistic gplicaion, RAT, was run to compare to WaveVideo
applicaion. Figure 36 presents the latencies of the plan calculation for WaveVideo and

RAT. Both applicaionsreceved pans cdling for only the same encryption adapters.
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Figure 36: The plan calculation latency for Rat and WaveVideo applications

The RAT application transfers audio data, which is lessintensive than video data. Since
more resources of the source node can be used for the planning procedure, RAT reveives
its plan faster than WaveVideo.
6. Quality of Service | mprovement
The Panda overheads described in the previous sction are aceptable if Panda's
adapattions improve gplicarion-meaningful quantities. Here we present evidence of
such improvements. Aswe mentioned in Section 2.4QoS is measured in dB of PS\R as
conventional units. PANR expresss the diff erence between sent and celivered signal.
Figure 37 and 38 present PINR luminance and Cb values respedively for the
WaveVideo applicaion dscussed ealier on Dell Inspiron machines with alink limited to

150K bps.
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Figure 37: PSNR (luminance) on Dell Inspironsfor 150 Kbpslinksfor different
number s of video frames

Withou Panda, at first the arve fals once the dannel is sturated; Pandas curve
improves after its planning protocol is completed, providing better PS\R after around 20
frames. Panda adieves this improvement by droppng unimportant padets thus
allowing more important padets to arrive ontime. The PS\R performance of the Panda
with Resolution Drop and Encryption adaptation in some points can be even better than
the Panda with Resolution Drop orly. One possble reason can be the Panda extra

buff ering that slows the data stream but reduces the undesired padet loss
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Figure 38: PSNR (Cb) on Dell Inspiron machines connection for 150 Kbpsfor
different number s of video frames

Figure 39 and 40 pesent PR luminance axd Cb values respedively on Dell
Inspiron madines with 5000Kbps links. In this case the Panda service is not necessary
because the network is powerful enough to deliver packets on time. These figures
demonstrate the importance of a network-aware planning process If the Resolution Drop
adapter were blindy applied or not applied withou considering the network condtions,

poaer PNR would result for some cases.
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Figure 40: PSNR (Cb) on Dell Inspironsfor 5000 kbpsfor different number s of
video frames

More powerful machines can processmore data packets and reduce

padket lossin poa-condtion retworks, and thus increase PANR. Figures 41 and

42 resent PSNR vaues on Hewlett Padkard machines.
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Figure 41: PSNR (luminance) on HPsfor 150 kbpsfor different numbers of video

frames
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Figure 42: PSNR (Cb) on HPsfor 150 kbpsfor different numbers of video frames

Panda provides greaer improvement with the more powerful Hewlett Padkard machines.

Figures 43 and 44 present PSR luminance and Cb respedively on Hewlett

Padard machines with 5000 kbg. Even with this more capable network, in afew cases

Panda provides better PINR.
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Figure 43: PSNR (luminance) on HPsfor 5000 kbpslinksfor different
number s of video frames
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Figure 44: PSNR (Cb) on HPsfor 5000 kbpslinksfor different numbers of
video frames

In figures 37-44, we include data for applying encryption along with padket droppng
using Panda. For this data, Panda is providing a benefit beyond PANR improvements by
keeping the video secret. Withou also droppng frames, though, much greaer

degradation in PSNR would acampony the improved seaurity, as siown in Figure 46.
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This data demonstrate the importance of considering al network condtions and passble
remedies asawhale.

If al links have enough bandwidth bu not al of them seaure the deployment of
Encryption can be necessary. It can be necessary to apply data compresson just to
compensate the dfeds of the Panda andits saurity remedies.

Figure 45 presents PR valuesin various network conditions.
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Zg | ~ 75000 Kbps
s % . 7 7
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Intenet Panda Panda & Panda & Panda &
Resolution  Resolution  Encryption
Drop Drop &
Encryption

Figure 45: PSNR (luminance) on HPs

The Figure 45 clearly shows that Panda provides more benefit for more capable
networks.

PINR measurements can be used also for the quantifying the quality of the
cdculated plans for video data streams. Consider the following example. Figure 46a
shows an example of a wnnedion. One link in this conredion has poor bandwidth,
which is insufficient to cary al the data. Ancther is defined to be inseaure. If the link
adjacent to the source requires encryption and the next link requires filtering, then the

incremental plan will contain an encryptor on the sourcenode and a decryptor and afilter
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onthe next node (Figure 46b). It is clear that this plan is lessoptimal than the optimized
plan that will put the filter and encryptor on the source node and a decryptor on the next
noce (Figure 46c). In the latter case, encryption and decryption will be gplied to fewer
data padkets. Figure 47 demonstrates better PS\R for a filtered and then encrypted and
deaypted data stream (the dark gray line) than with an encrypted, deaypted, and then
filtered data strean (the light gray line). The black line shows the PSNR withou using
Panda. This example shows that a naive planner that all ocates remedies next to links
where problems occur can produce plans that are nat only theoreticdly subogimal, but

that give poarer appli cation-meaningful performance.

Source Destination

‘ Inseaurity " Low bandwidth "

a) Connection

Encryptor DeayptorFilter

> dE»
o o o

b) Sub-optimal solution of incremental planning

Filter Encryptor Deayptor

g <
o o o

c) Optimal solution of centralized planning

Figure 46: The advantage of centralized planning over incremental planning
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Figure 47: PSNR (luminance) for incremental and centralized plans

7. Discussion

The tests show that the overhead of using Panda to adapt data streans can be
compensated with higher quality of service. The overheads are reasonable, particularly
for relatively long-lived data streams. The latency added by the planning protocol isin
the magnitude of 1 second. Panda dso slows down the latency of data packets 4-10
times. The QoS however, can beimproved upto 100%.

More computationally expensive user appli cations can increase the latency of plan
cdculation kecause gplicaion and danning processng compete on the source node.
Plan cdculationfor a 10 times more intensive user appli caion takes 4 time longer.

More powerful computers reduce the overhead of Panda and increase the
delivered QoS. 1.6 times more powerful computers reduce 1.6 times the latency of
planning procedure and increase QoS by 30%.

In low-bandwidth networks even the presence of Panda & an extra buffer for a

bursty traffic can improve the QoS.
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Incremental planning can produwce and deploy plans 50% faster than the
correspondng central plan, bu QoS for the incremental plan can be 45% worse in some
cases as fhown onFigure 47. The number of packets that are sent under an incremental
plan before acentra plan is calculated and deployed varies from zero to some hundeds
depending on the variance of the latency of the central planning procedure. Therefore,
brief sessons shoud useincrementa planning only.

Re-planning can take anumber of times longer than initial planning because it
runs concurrently with datatraffic.

8. Conclusion

Because Active Networks techndogies are complex, many applicaions will not
be wmded to take alvantage of their capabilities. The data streams sent by such
applications can oltain the benefits of Active Networks tedindogies, provided an
automated system can determine the proper choice and dacement of Active Networks
adaptations. This paper has demonstrated that it is possble to buld an automated
planning system that is quick and effective. The overhead and benefits of Panda were
measured in various stuations. Two red multimedia gplicaions were tested for video
and audio data streans. Their performance was improved by Panda: WaveVideo
applicaion data packets were compressed and encrypted, RAT application padkets were
encrypted.

The measurements presented in this paper were made in three dimensions:
applications with dfferent data generation intensity, computers with dfferent CPU power
running Panda nodes, and network links with dfferent bandwidth and security levels.

Various observations were made based onthe results of the testing.
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The results presented in this report can be used for the design of a new generation
of Active Network techndogies.
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