
Mobile Networks and Applications 6, 525–533, 2001
 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Replication Requirements in Mobile Environments ∗

DAVID RATNER
Software.com, Inc., Santa Barbara, CA 93103, USA

PETER REIHER and GERALD J. POPEK ∗∗
Department of Computer Science, University of California, Los Angeles, CA 90095, USA

GEOFFREY H. KUENNING
Department of Computer Science, Harvey Mudd College, Claremont, CA 91711, USA

Abstract. Replication is extremely important in mobile environments because nomadic users require local copies of important data.
However, today’s replication systems are not “mobile-ready”. Instead of improving the mobile user’s environment, the replication system
actually hinders mobility and complicates mobile operation. Designed for stationary environments, the replication services do not and
cannot provide mobile users with the capabilities they require. Replication in mobile environments requires fundamentally different
solutions than those previously proposed, because nomadicity presents a fundamentally new and different computing paradigm. Here
we outline the requirements that mobility places on the replication service, and briefly describe ROAM, a system designed to meet those
requirements.
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1. Introduction

Mobile computing is rapidly becoming standard in all types
of environments: academic, commercial, and private. Wide-
spread mobility impacts multiple arenas, but one of par-
ticular importance is data replication. Replication is espe-
cially important in mobile environments, since disconnected
or poorly connected machines must rely primarily on local
resources. The monetary costs of communication when mo-
bile, combined with the lower bandwidth, higher latency,
and reduced availability, effectively require that important
data be stored locally on the mobile machine. In the case
of shared data, between multiple mobile users or between
mobile and stationary machines, replication is often the best
and sometimes the only viable approach.

Many replication solutions [4,16] assume a static in-
frastructure; that is, the connections themselves may be tran-
sient but the connection location and the set of possible
synchronization partners always remain the same. How-
ever, mobile users are by definition not static, and a replica-
tion service that forces them to adjust to a static infrastruc-
ture hinders mobility rather than enables it. Extraordinary
actions, such as long distance telephone calls over low-
bandwidth links, are necessary for users to conform to the
underlying static model, costing additional time and money
while providing a degraded service. Additionally, mobile
users have difficulty inter-operating with other mobile users,
because communication patterns and topologies are typi-
cally predefined according to the underlying infrastructure.
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Often, direct synchronization between mobile users is sim-
ply not permitted.

Other systems [2,14,18] have simply traded the above
communication problem for another one: scaling. They
provide the ability for any-to-any synchronization, but their
model suffers from inherent scaling problems, limiting its
usability in real environments. Good scaling behavior is very
important in the mobile scenario. Mobile users clearly re-
quire local replicas on their mobile machines. Yet, replicas
must also be stored in the office environment for reliabil-
ity, intra-office use by non-mobile personnel, and system-
administration activities like backups. Additionally, typical
methods for reducing replication factors, such as local area
network sharing techniques, are simply not feasible in the
mobile context. Mobile users require local replicas of criti-
cal information, and in most cases desire local access to non-
critical objects as well, for cost and performance reasons.
The inability to scale well is as large an obstacle to the mo-
bile user as the restriction of a static infrastructure discussed
above.

The main problem is that mobile users are replicating
data using systems that were not designed for mobility. As
such, instead of the replication system improving the state
of mobile computing, it actually hinders mobility, as users
find themselves forced to adjust their physical motion and
computing needs to better match what the system expects.
This paper outlines the requirements of a replication service
designed for the mobile context. We conclude with a de-
scription of ROAM, a replication solution redesigned espe-
cially for mobile computing. Built using the Ward architec-
ture [11], it enables rather than hinders mobility, and pro-
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vides a replication environment truly suited to mobile envi-
ronments.

2. Replication requirements

Mobile users have special requirements above and beyond
those of simple replication required by anyone wishing to
share data. Here we discuss some of the requirements that
are particular to mobile use: any-to-any communication,
larger replication factors, detailed controls over replication
behavior, and the lack of pre-motion actions. We omit dis-
cussion of well-understood ideas, such as the case for opti-
mistic replication, discussed in [2,3,5,17].

2.1. Any-to-any communication

By definition, mobile users change their geographic loca-
tion. As such, it cannot be predicted a priori what ma-
chines will be geographically collocated at any given time.
Given that it is typically cheaper, faster, and more efficient
to communicate with a local partner rather than a remote
one, mobile users want the ability to directly communicate
and synchronize with whomever is “nearby”. Consistency
can be correctly maintained even if two machines cannot di-
rectly synchronize with each other, as demonstrated by sys-
tems based on the client–server model [4,16], but local syn-
chronization increases usability and the level of functionality
while decreasing the inherent synchronization cost. Users
who are geographically collocated do not want updates to
eventually propagate through a long-distance, sub-optimal
path: the two machines are next to each other, and the syn-
chronization should be instantaneous.

Since users expect that nearby machines should synchro-
nize with each other quickly and efficiently, and it cannot
be predicted which machines will be geographically collo-
cated at any point in the future, a replication model capable
of supporting any-to-any communication is required. That
is, the model must allow any machine to communicate with
any other machine – there can be no second-class clients in
the system.

Any-to-any communication is also required in other mo-
bile arenas, such as in appliance mobility [6], the motion
from device to device or system to system. For instance,
given a desktop, a laptop, and a palmtop, it is unlikely that
one would want to impose a strict client–server relationship
between the three; rather, one would want each to be able to
communicate with any of the others.

Providing any-to-any communication is equivalent to us-
ing a peer-to-peer replication model [10,14,18]; if anyone
can directly synchronize with anyone else, then everyone
must by definition be equals, at least with respect to update-
generation abilities. Some, however, have argued against
peer models in mobile environments because of the relative
insecurity regarding the physical devices themselves – for
example, laptops are often stolen. The argument is that since
mobile computers are physically less secure, they should

be “second-class” citizens with respect to the highly secure
servers located behind locked doors [15]. The class-based
distinction is intended to provide improved security by lim-
iting the potential security breach to only a second-class ob-
ject.

The argument is based on the assumption that security
features must be encapsulated within the peer model, and
therefore unauthorized access to any peer thwarts all secu-
rity barriers and mechanisms. However, systems such as
TRUFFLES [13] have demonstrated that security policies can
be modularized and logically situated around a peer repli-
cation framework while still remaining independent of the
replication system. TRUFFLES, an extension to the peer-
based systems FICUS [2] and RUMOR [14], incorporates
encryption-based authentication and over-the-wire privacy
and integrity services to increase a replica’s confidence in
its peers. TRUFFLES further supports protected definition
and modification of security policies. For example, part of
the security policy could be to only accept new file versions
from specific (authenticated) replicas – which is effectively
the degree of security provided by the “second-class” repli-
cas mentioned above.

With such an architecture, the problems caused by unau-
thorized access to a peer replica are no different from the
unauthorized access of a client in a client-server model.
Thus, the question of update-exchange topologies (any-to-
any as compared to a more stylized, rigid structure as in
client–server models) can be dealt with independently of the
security issue and the question of how to enforce proper se-
curity controls.

2.2. Larger replication factors

Most replication systems only provide for a handful of
replicas of any given object. Additionally, peer algorithms
have never traditionally scaled well. Finally, some have ar-
gued that peer solutions simply by their nature cannot scale
well [15].

However, while mobile environments seem to require a
peer-based solution (described above), they also seem to
negate the assumption that a handful of replicas is enough.
While we do not claim a need for thousands of writable
copies, it does seem likely that the environments common
today and envisioned for the near future will require larger
replication factors than current systems allow.

First and foremost, each mobile user requires a local
replica on their laptop, doubling replication factors when
data is stored both on the user’s desktop and laptop. Ad-
ditionally, although replication factors can often be mini-
mized in office environments due to LAN-style sharing and
remote-access capabilities, such network-based file sharing
cannot be utilized in mobile environments due to the fre-
quency of network partitions and the wide range of available
bandwidth and transfer latency.

Second, consider the case of appliance mobility. The
above discussion assumes that each user has one static ma-
chine and one mobile machine. The future will see the use
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of many more “smart” devices capable of storing replicated
data. Palmtop computers are becoming more common, and
there is even a wristwatch that can download calendar data
from another machine. Researchers [19] have built systems
that allow laptop and palmtop machines to share data dy-
namically and opportunistically. It is not difficult to imagine
other devices in the near future having the capability to store
and conceivably update replicated data; such devices poten-
tially increase replication factors dramatically.

Finally, some have argued the need for larger replication
factors independent of the mobile scenario, such as in the
case of air traffic control [9]. Other scenarios possibly re-
quiring larger replication factors include stock exchanges,
network routing, airline reservation systems, and military
command and control.

Read-only strategies and other class-based techniques
cannot adequately solve the scaling problem, at least in the
mobile scenario. Class-based solutions are not applicable
to mobility, for the reasons described above (section 2.1).
Read-only strategies are not viable solutions because they
force users to pre-select the writable replicas beforehand and
limit the number of writable copies. In general one cannot
predict which replicas require write access and which ones
do not. We must provide the ability for all replicas to gener-
ate updates, even though some may never do so.

2.3. Detailed replication controls

By definition, a replication service provides users with some
degree of replication control – a method of indicating what
objects they want replicated. Many systems provide repli-
cation on a large-granularity basis, meaning that users re-
quiring one portion of the container must locally replicate
the entire container. Such systems are perhaps adequate in
stationary environments, when users have access to large
disk pools and network resources, but replication control
becomes vastly more important to mobile users. Nomadic
users do not in general have access to off-machine resources,
and therefore, objects that are not locally stored are ef-
fectively inaccessible. Everything the user requires must
be replicated locally, which becomes problematic when the
container is large.

Replicating a large-granularity container means that some
of the replicated objects will be deemed unimportant to the
particular user. Unimportant data occupies otherwise us-
able disk space, which cannot be used for more critical ob-
jects. In the mobile context, where network disconnections
are commonplace, important data that cannot be stored lo-
cally causes problems ranging from minor inconveniences
to complete stoppages of work and productivity, as described
by Kuenning [7]. Kuenning’s studies of user behavior indi-
cate that the set of required data can in fact be completely
stored locally, but only if the underlying replication service
provides the appropriate flexibility to individually select ob-
jects for replication. Users and automated tools therefore
require fairly detailed controls over what objects are repli-

cated, because without them mobile users cannot adequately
function.

2.4. Pre-motion actions

One possible design point would have users “register” them-
selves as nomads for a specific time duration before becom-
ing mobile. In doing so, the control structures and algo-
rithms of the replication system could be greatly simplified;
users would act as if they were stationary, and register their
motion as the unusual case. For instance, suppose a user
was taking a three-day trip from Los Angeles to New York.
Before traveling, machines in Los Angeles and New York
could exchange state to “re-configure” the user’s portable
to correctly interact with the machines in New York. Since
replication requires underlying distributed algorithms, part
of the reconfiguration process would require changing and
saving the distributed state stored on the portable, to ensure
correct algorithm execution.

However, such a design policy drastically restricts the
way in which mobility can occur, and does not match with
the reality of mobile use. Mobility cannot always be pre-
dicted or scheduled. Often the chaos of real life causes un-
predicted mobility: the car fails en route to work, freeway
traffic causes unforeseeable delays, a child has to be picked
up early from school, a family emergency occurs, or weather
delays travel plans. Users are often forced to become mo-
bile earlier or remain mobile longer than they had initially
intended. In general, we cannot require that users know a
priori either when they will become mobile or for how long.

Additionally, this design policy makes underlying as-
sumptions about the connectivity and accessibility of ma-
chines in the two affected geographic areas: Los Angeles
and New York, in the above example. It assumes that before
mobility occurs, the necessary machines are all accessible so
the state-transformation operation can occur. Inaccessibility
of any participant in this process blocks the user’s mobility.
Such a policy seems overly restrictive, and does not match
the reality of mobile use. Perhaps a user wants to change
geographic locations precisely because a local machine is
unavailable, or perhaps a user needs to become mobile at an
instant when connectivity is down between the multiple re-
quired sites. Since neither mobility nor connectivity can be
predicted, one cannot make assumptions on the combination
of the two.

For these reasons, we believe that solutions that require
“pre-motion” actions are not viable in the mobile scenario.
Pre-motion actions force users to adapt to the system rather
than having the system support the desired user behavior.
Any real solution must provide the type of “get-up and go”
functionality required by people for everyday use.

3. Roam

ROAM is a system designed to meet the above set of require-
ments. It is based on the ward model [11] and is currently
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being implemented and tested at the University of California
at Los Angeles.

3.1. Ward model

The ward model combines classical elements of both the
traditional peer-to-peer and client-server models, yielding a
solution that scales well and provides replication flexibil-
ity, allowing dynamic reconfiguration of the synchroniza-
tion topology. The model’s main grouping mechanism is the
ward, or Wide Area Replication Domain. A ward is a collec-
tion of “nearby” machines, possibly only loosely connected.
The definition of “nearby” depends on factors such as geo-
graphic location, expected network connectivity, bandwidth,
latency, and cost; see [12] for a full discussion of these is-
sues.

Wards are created as replicas and are added to the sys-
tem: each new replica chooses whether to join an existing
ward or form a new one. We believe that it is possible to au-
tomate the assignment of ward membership, but as the issues
involved are complex, we have avoided attempting to do so
in the current system. Instead, this decision is controlled by
a human, such as a system administrator or knowledgeable
user. If necessary, the decision can be altered later by using
ward-changing utilities.

Although all members of the ward are equal peers, the
ward has a designated ward master, similar to a server in a
client–server model but with several important differences:

• Since all ward members are peers, any two ward mem-
bers can directly synchronize with one another. Typical
client–server solutions do not allow client-to-client syn-
chronization. Whether by design or by accident, mobile
users will often encounter other mobile users; in such
cases, direct access to the other ward member may be
easier, cheaper and more efficient than access to the ward
master.

• Since all ward members are peers, any ward member
can serve as the ward master. Automatic re-election and
ward-master reconfiguration can occur should the ward
master fail or become unavailable, and algorithms exist
to resolve multiple-master scenarios. Correctness is not
affected by a transient ward master failure, but the system
maintains better consistency if the ward master is typi-
cally available and accessible. Since neither an inacces-
sible ward master nor multiple ward masters affects over-
all system correctness (see section 3.2), the re-election
problem is considerably easier than related distributed re-
election problems.

• The ward master is not required to store actual data for
all intra-ward objects, though it must be able to identify
(i.e. name) the complete set. Most client–server strate-
gies force the server to store a superset of each client’s
data.

The ward master is the ward’s only link with other wards;
that is, only the ward master is aware of other replicas out-
side the ward. This is one manner in which the ward model

Figure 1. The basic ward architecture. Overlapped members are a mobility
feature (section 3.4).

achieves good scaling – by limiting the amount of knowl-
edge stored at individual replicas. Traditional peer models
force every replica to learn about other replica’s existence;
in the ward model, replicas are only knowledgeable about
the other replicas within their own ward. In fact, most repli-
cas are completely unaware of the very existence of other
wards.

All ward masters belong to a higher-level ward, forming
a two-level hierarchical model.1 Ward masters act on their
ward’s behalf by bringing new updates into the ward, export-
ing others out of the ward, and gossiping about all known
updates. Consistency is maintained across all replicas by
having ward masters communicate directly with each other
and allowing information to propagate independently within
each ward. Figure 1 illustrates the basic architecture, as well
as advanced features discussed in later sections.

Wards are dynamically formed when replicas are created,
and are dynamically maintained as suitable ward-member
candidates change. Ward destruction occurs automatically
when the last replica in a given ward is destroyed.

3.2. System correctness

An important feature of the ward model is that system cor-
rectness does not depend on having precisely one master per
ward. Even during reconfiguration, updated files will flow
between replicas without loss of information or other incor-
rect behavior. For most purposes, the ward master is sim-
ply another replica. Whether communicating within its own
ward or with other wards, the master maintains consistency
using the same algorithms as the non-master replicas. Thus,
the propagation of information within and among wards fol-

1 The rationale behind the two-level hierarchy and its impact on scaling is
discussed in section 3.5.
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lows from the correctness of these algorithms, first described
in [1].

If a ward master becomes temporarily unavailable, infor-
mation will continue to propagate between other ward mem-
bers, due to the peer model. However, information will not
usually propagate to other wards until the master returns. An
exception to this rule will occur if a ward member temporar-
ily or permanently moves to another ward, as described in
section 3.4, carrying data with it.

If the master suffers a permanent failure, a new master
can be elected. We must then demonstrate that correctness
will not suffer during the transition to the new master. Cor-
rectness will be violated either if the failed master had some
information that cannot be reconstructed, or if the failed
master’s participation is required for the completion of some
distributed algorithm. The first case can occur only if the
lost information had been created at the master and had not
yet propagated to another replica. In this case, the lost infor-
mation cannot affect correctness because the situation is the
same as if it had never existed. The second case is handled
by distributed failure–recovery algorithms that are invoked
when an administrator declares the old master as unrecover-
able.

If a new ward master is elected, there is a possibility of
creating multiple masters. Correctness is not affected in this
case because the master does not play any special role in
the algorithms. The purpose of a ward master is not to co-
ordinate the behavior of other ward members, but rather to
serve as a conduit for information flow between wards. Mul-
tiple masters, like overlapped members (section 3.4.2), will
merely provide another communication path between wards.
Since the peer-to-peer algorithms assume arbitrary commu-
nication patterns, correctness will not be affected by multiple
ward masters.

3.3. Flexibility in the model

Replication flexibility is an important feature of the ward
model. The set of data stored within each ward, called the
ward set, is dynamically adjustable, as is the set of ward
members themselves. As ward members change their data
demands and alter what replicated data they store locally,
the ward set changes. Similarly, as mobile machines join or
leave the ward, the set of ward participants changes. Both
the ward set and ward membership are locally recorded and
are replicated in an optimistic fashion.

Additionally, each ward member, including the ward
master, can locally store a different subset of the ward set.
Such replication flexibility, called selective replication [10]
provides improved efficiency and resource utilization: ward
members locally store only those objects that they actively
require. Replication decisions can be made manually or with
automated tools [5,8].

Since the ward set varies dynamically, different wards
might store different sets: not all ward sets will be equiv-
alent. In essence, the model provides selective replication
between wards themselves. The reconciliation topologies

and algorithms [10] apply equally well within a single ward
and between ward masters. Briefly, the algorithms provide
that machines communicate with multiple partners to ensure
that each data object is synchronized directly with another
replica. Additionally, the data synchronization algorithms
support the reconciliation of non-local data via a third-party
data-storage site, allowing the ward master to reconcile data
that is not stored locally but is stored somewhere within the
ward.

3.4. Support for mobility

The model supports two types of mobility. Intra-ward mo-
bility occurs when machines within the same ward become
mobile within a limited geographic area; the machines en-
countered are all ward members. Since ward members are
peers, direct communication is possible with any encoun-
tered machine. Intra-ward mobility might occur within a
building, when traveling to a co-worker’s house, or at a local
coffee shop.

Perhaps more interesting, inter-ward mobility occurs
when users travel (with their data) to another geographic re-
gion, encountering machines from another ward. Examples
include businessmen traveling to remote offices and distant
collaborators meeting at a common conference.

Inter-ward mobility raises two main issues. First, recall
that due to the model’s replication flexibility, two wards
might not have identical ward sets. Thus, the mobile ma-
chine may store data objects not kept in the new ward, and
vice-versa. Second, consider the typical patterns of mobility.
Often users travel away from their “home location” for only
a short time. The system would perform poorly if such tran-
sient mobile actions required global changes in data struc-
tures across multiple wards. On the other hand, mobile users
occasionally spend long periods of time at other locations,
either permanently or semi-permanently changing their def-
inition of “home”. In these scenarios, users should be pro-
vided with the same quality of service (in terms of local per-
formance and time to synchronize data) as they experienced
in their previous “home”.

Our solution resolves both issues by defining two types of
inter-ward mobility – short-term (transient) and long-term
(semi-permanent) – and providing the ability to transpar-
ently and automatically upgrade from the former to the latter.
The two operations are called ward overlapping and ward
changing, respectively. Collectively, the two are called ward
motion and enable peer-to-peer communication between any
two replicas in the ward model, regardless of their ward
membership.

3.4.1. Ward changing
Ward changing involves a long-term, perhaps permanent,
change in ward membership. The moving replica physically
changes its notion of its “home” ward, forgetting all infor-
mation from the previous ward; similarly, the other partici-
pants in the old and new wards alter their notion of current
membership. Ward membership information is maintained
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using the same optimistic algorithms that are used for repli-
cating data, so that the problem of tracking membership in
often-disconnected environments is straightforward.

The addition of a new ward member may change the ward
set. Since the ward master is responsible for the inter-ward
synchronization of all data in the ward set, the ward set must
expand to properly encompass the replicated data stored at
the moving replica. Similarly, the ward set at the old ward
may shrink in size, as the ward set is dynamically and op-
timistically recalculated when ward membership changes.
The ward set changes propagate to other ward masters in
an optimistic, “need-to-know” fashion so that only the ward
masters that care about the changes learn of them. Since
both ward sets can potentially change, and these changes are
eventually propagated to other ward masters, ward changing
can be a heavyweight operation. However, users benefit be-
cause all local data can be synchronized completely within
the local ward, giving users the best possible quality of ser-
vice and reconciliation performance.

3.4.2. Ward overlapping
In contrast, ward overlapping is intended as a very light-
weight mechanism, and causes no global changes within the
system. Only the new ward is affected by the operation. The
localization of changes makes it a lightweight operation both
to perform and to undo.

Ward overlapping allows simultaneous multi-ward mem-
bership, enabling direct communication with the members of
each ward. To make the mechanism lightweight, we avoid
changing the ward sets by making the new replica an “over-
lapped” member instead of a full-fledged participant. Ward
members (except for the ward master) cannot distinguish be-
tween real and overlapped members; the only difference is
in the management of the ward set. Instead of merging the
existing ward set with the data stored on the mobile ma-
chine, the ward set remains unaltered. Data shared between
the mobile machine and ward set can be reconciled locally
with members of the new ward. However, data outside the
new ward cannot be reconciled locally, and must either tem-
porarily remain unsynchronized or else be reconciled with
the original home ward.

3.4.3. Ward motion summary
When a replica enters another ward, there are only two possi-
bilities: the ward set can change or remain the same. The for-
mer creates a performance-improving but heavyweight solu-
tion; the latter causes a moderate performance degradation
when synchronizing data not stored in the new ward but pro-
vides a very lightweight solution for transient mobile situ-
ations. Since both are operationally equivalent, the system
can transparently upgrade from overlapping to changing if
the motion seems more permanent than first expected.

Additionally, since ward formation is itself dynamic,
users can easily form mobile workgroups by identifying a set
of mobile replicas as a new (possibly temporary) ward. By
using ward overlapping, mobile workgroups can be formed
without leaving the old wards. Ward motion and dynamic

ward formation and destruction allow easy and straightfor-
ward communication between any set of replicas in the en-
tire system.

3.5. Scalability

The scalability of the ward model is directly related to the
degree of replication flexibility. Ward sets can dynamically
change in unpredictable ways; therefore, the only method for
a ward master to identify its ward set is to list each entry in-
dividually. The fully hierarchical generalization of the ward
model to more than two levels faces scaling problems due
to the physical problems of maintaining and indexing these
lists of entries.

Nevertheless, the proposed model scales well within its
intended environment, and allows several hundred read-
write replicas of any given object, meeting the demands of
everyone from a single developer or a medium-sized com-
mittee to a large, international company. The model could
be adapted to scale better by restricting the degree of repli-
cation freedom. For instance, if ward sets changed only
in very regular fashions, they could be named as a unit in-
stead of naming all members, dramatically improving scala-
bility. However, we believe that replication flexibility is an
important design consideration in the targeted mobile envi-
ronment, and one that users absolutely require, so we have
chosen not to impose such regularity.

4. Performance

4.1. Disk space overhead

ROAM, like RUMOR before it, stores its non-volatile data
structures in lookaside databases within the volume but hid-
den from the user. From the user’s perspective, anything
other than his or her actual data is overhead and effectively
shrinks the size of the disk. Minimal disk overhead is there-
fore an important and visible criterion for user satisfaction.

Additionally, ROAM is designed to be a scalable system.
The Ward Model should support hundreds of replicas with
minimal impact between wards. Specifically, the creation of
a new replica in ward X should not affect the disk overhead
of the replicas in other wards.

We therefore measured the disk overhead of ROAM us-
ing two different volumes. The first of these volumes was
chosen as a typical representative of a user’s personal sub-
tree, while the second was chosen to stress ROAM by storing
small files that would exaggerate the system’s space over-
head.

After empirically measuring the overhead under different
conditions, we fitted equations to describe the overhead in
terms of the number of files, types of files, number of repli-
cas, and number of wards. These equations can be summa-
rized as follows (full results are given in [12]):

• Each new directory costs 4.2 KB + 30 bytes per object
in the directory.
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• Each new file costs 0.24 KB.

• The first replica within the ward, even without any user
data, costs 57.36 KB.

• Each additional replica within the ward costs 6.44 KB +
12 bytes per object stored at the replica.

• Each new ward costs 6.44 KB.

4.2. Synchronization performance

Since ROAM’s main task is the synchronization of data,
we also measured the synchronization performance. We
performed our experiments with two portable machines, in
all cases minimizing extraneous processes to avoid non-
repeatable effects. One machine was a Dell Latitude XP
with a 486DX4 running at 100 MHz with 36 MB of main
memory, while the second was a TI TravelMate 6030 with
a 133 MHz Pentium and 64 MB of main memory. Recon-
ciliation was always performed by transferring data from the
Dell machine to the TI machine. In other words, the recon-
ciliation process always executed on the TI machine.

Of course, reconciliation performance depends heavily
on the sizes of the files that have been updated. Since ROAM

performs whole-file transfers, and any updated file must be
transfered across the network in its entirety, we would ex-
pect reconciliation to take more time when more data has
been updated. We therefore varied the amount of data up-
dated from 0 to 100%, and within each trial we randomly
selected the set of updated files. Since the files are selected
at random, a given figure of X% is only an approximation
of the amount of data updated, rather than an exact figure.
In all measurements, we used the personal-subtree volume
mentioned in section 4.1, and performed at least seven trials
at each data point.

We performed five different experiments under the above
conditions. The first two compared ROAM and RUMOR syn-
chronization performance over a 10 MB quiet Ethernet and
WAVELAN wireless cards, respectively. The third studied
the effect of increasing numbers of replicas; the fourth stud-
ied the effect of increasing numbers of wards. The fifth
looked at the effects of selective replication [10] and differ-
ent replication patterns on synchronization performance.

These experiments showed that ROAM is 10–25% slower
than RUMOR when running with similar numbers of repli-
cas. Most of the slowdown is due to ROAM’s more flexible
structure, which uses more processes and IPC to simplify the
code and enhance scalability. Reconciliation of the 13.6 MB
volume under ROAM takes from 46–206 s, depending on the
transport mechanism, the number of files modified, and the
number of replicas in the ward.

We also studied the impact of multiple wards on the syn-
chronization performance. We varied the number of wards
from one, as in the previous experiments, to six. We placed
three replicas within one of these wards, and measured the
synchronization between two of them on the previously de-
scribed portable machines. These experiments showed that
at a 95% level of confidence, adding wards has no impact on
synchronization performance between two replicas.

4.3. Scalability

We have already discussed some aspects of ROAM’s scala-
bility, such as in disk space overhead (section 4.1). However,
another major aspect of scalability is the ability to create
many replicas and still have the system perform well dur-
ing synchronization. Synchronization performance includes
two related issues. First, the reconciliation time for a given
replica in a given ward should be largely unaffected by the
total number of replicas and wards. Second, the time to dis-
tribute an update from any replica to any other replica should
presumably be faster in the Ward Model than in a standard
approach (like RUMOR), or else we have failed in our task.

4.3.1. Reconciliation time
To measure the behavior of reconciliation time as the total
number of replicas increases, we used a hybrid simulation.
We created 64 replicas of our test volume, reducing the hard-
ware requirements by using servers to store wards and repli-
cas that were not actively participating in the experiments.
Again, we found that at a 95% level of confidence, the syn-
chronization time does not change as the system configura-
tion was varied from one ward with a total of three replicas
to 7 wards with a total of 64 replicas.

4.3.2. Update distribution
Another aspect of scalability concerns the distribution of
updates to all replicas. A scalable system would presum-
ably deliver updates to all replicas more quickly than a non-
scalable system, at least at large numbers of replicas. Addi-
tionally, while it may not perform better at small numbers of
replicas, a scalable system should at least not perform worse.

Rather than measuring elapsed time, which depends on
many complicated factors such as connectivity, network par-
titions, available machines, and reconciliation intervals, we
considered the number of individual, pairwise reconciliation
actions, and analytically developed equations that character-
ize the distribution of updates. We assume that there are M

replicas; one of them, replica R, generates an update that
must propagate to all other replicas. The following equa-
tions identify the number of separate reconciliation actions
that must occur, both on the average and in the worst case,
to propagate the update from R to some other replica S.

In a non-ward system such as RUMOR, since there are M

replicas, M − 1 of which do not yet have the update, and
reconciliation uses a ring between all M replicas, we need
(M − 1)/2 reconciliation actions on average. The worst case
requires M − 1 reconciliation actions.

The analysis for ROAM is a little more complicated. As-
sume that the M replicas are divided into N wards such that
each ward has M/N members. Propagating an update from
R to S requires first sending it from R to R’s ward master,
then sending it from R’s ward master to S’s ward master,
and then finally to S. Of course, if R and S are members of
the same ward, then much of the expense is saved; however,
we will solve the general problem first before discussing the
special case.
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Under the above conditions, we need (M/N−1)/2 recon-
ciliation actions on average to distribute the update between
a replica and its ward master, and (N − 1)/2 actions on av-
erage between ward masters. From these building blocks,
we calculate that, on average, ROAM requires the following
number of reconciliation actions:

1

2

(
M

N
− 1

)
+ 1

2
(N − 1) + 1

2

(
M

N
− 1

)

= M

N
− 1 + 1

2
(N − 1)

= M

N
+ (N − 3)

2
. (1)

Note that when N = M , equation (1) becomes (M − 1)/2
(RUMOR’s performance). Setting N = M eliminates any
benefit from grouping. However, it is also interesting to note
that when N = 2, equation (1) also becomes (M − 1)/2.
Having only two wards does not improve the required time
to distribute updates (although it does improve other aspects
such as data structure size and network utilization).

In general, ROAM distributes updates faster than RUMOR

when 2 < N < M and M > 3; otherwise, ROAM performs
the same as RUMOR (with respect to update distribution).
From the two equations we calculate that the optimal num-
ber of wards for a given value of M is N = √

2M . The above
conditions yield a factor of three improvement at 50 replicas,
and a factor of five at 200 replicas. With a multi-level imple-
mentation, larger degrees of improvement are possible.

The analysis for ROAM also indicates that, in the worst
case, ROAM requires 2M/N + N − 3 reconciliation actions.

As a special case, if R and S are in the same ward, only
(M/N −1)/2 reconciliation actions are required on average,
and M/N − 1 in the worst case.

4.4. Ward motion

Recall from section 3.4 that ROAM supports two different
flavors of ward motion: overlapping and changing. Over-
lapping is a lightweight, temporary form of motion that is
easy to perform and undo. However, synchronization per-
formance can become worse during overlapping. When the
moving replica stores objects that are not part of the new
ward, they must be synchronized with the original ward
(or else remain unsynchronized during the presumably short
time period). Changing is a more heavyweight, permanent
form of motion that costs more but provides optimal syn-
chronization performance in the new ward.

We experimentally investigated the costs of both forms
of ward motion, using the same 13.6 MB volume used in the
other tests. There are four types of costs involved in these
operations:

(1) initial setup costs at the moving replica,

(2) disk overhead at the moving replica,

(3) costs imposed on other wards and ward members, and

(4) ongoing costs of synchronization.

We summarize our results here; complete data is given
in [12].

We found that setting up either type of motion took from
60–80 s, depending on the number of files stored on the local
machine. Somewhat surprisingly, ward changing required
only about 7% more elapsed time than overlapping.

The disk overhead at the moving replica depends on the
size of the destination ward. In essence, the other members
of the destination ward must be tracked as if they were mem-
bers of the replica’s original ward, occupying 6.44 KB plus
12 bytes per file (see section 4.1). For ward overlapping, this
cost must be paid for both the original ward’s members and
the destination ward’s members, while for ward changing,
only the destination’s members must be tracked. In either
case, these costs are insignificant compared to the space re-
quired by the volume itself.

The costs imposed on other replicas and wards are mini-
mal for ward overlapping, but for ward changing the old and
new ward masters must change their ward sets, and these dif-
ferences will need to be propagated to all other ward masters
by gossiping. However, the amount of information that must
propagate is minimal (about 255 bytes per file that changes
ward membership), so the additional network load is still
quite low.

Finally, when wards are overlapped, synchronization
costs increase because the moving replica must communi-
cate with both the new ward and the old one. Synchroniza-
tion with the (temporary) new ward will take about the same
amount of time as it would have in the original ward. How-
ever, to synchronize any files not available in the new ward,
the original must be contacted. We measured these addi-
tional costs for various replication patterns in our test vol-
ume (described in [12]). To simulate the fact that communi-
cation with the original ward is probably long-distance and
thus slower, we used a WAVELAN network for these exper-
iments. We found that the synchronization time depends on
both the number of files found only in the original ward, and
on the number of modified files. When no files had been
modified, the time was essentially constant at about 45 s. By
contrast, when 100% of the (locally-stored) files had been
modified, synchronization took from 78 to 169 s, depending
on the exact set of files shared between the two ward mas-
ters.

5. Conclusion

Replication is required for mobile computing, but today’s
replication services do not provide the key features required
by mobile users. Nomadicity requires a replication solution
that provides any-to-any communication in a scalable fash-
ion with sufficiently detailed control over the replication de-
cisions. ROAM was designed and implemented to meet these
goals, paving the way not just to improved mobile comput-
ing but to new and better avenues of mobile research. Per-
formance experiments have shown that ROAM is indeed scal-
able and can handle the mobility patterns expected to be dis-
played by future users.
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