
UNIVERSITY OF CALIFORNIA

Los Angeles

Revere—Disseminating Security Updates
at Internet Scale

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Jun Li

2002

© Copyright by

Jun Li

2002

 ii

The dissertation of Jun Li is approved.

 Leonard Kleinrock

 Miodrag Potkonjak

 Willi am Kaiser

 Gerald Popek

 Richard Muntz, Committee Co-chair

 Peter Reiher, Committee Co-chair

University of Cali fornia, Los Angeles

2002

 ii i

To my parents

 iv

TABLE OF CONTENTS

1. Introduction ...1

 1.1 Case Studies ...1

 1.2 Goal of Revere ...9

 1.3 Assumptions ...9

 1.4 Challenges ..10

 1.5 Revere Overview ..12

 1.6 Key Contributions of This Research ..13

 1.7 Roadmap of This Dissertation ..15

2. Assurance via Redundancy ..17

 2.1 The Redundancy Approach ..17

 2.2 Interruption Threats ..20

 2.3 Transmission Primitives ...21

 2.4 Assurance via Redundancy ..24

 2.5 Employing Redundancy in Revere ...27

 2.6 Conclusions ..29

3. RBone: A Self-Organized Resili ent Over lay Network ...30

 3.1 Principles for Building an RBone ..31

 3.2 RBone Formation ...37

 3.3 Adaptive Management of RBone ... 51

 3.4 Messages and Data Structures ..53

 v

 3.5 Building a Common RBone ...58

 3.6 Conclusions ..62

4. Dissemination Procedure ..63

 4.1 Dissemination Principle ...63

 4.2 Dissemination Center ...66

 4.3 Security Update Format ...67

 4.4 Pushing: A Store-And-Forward Mechanism ..68

 4.5 Pulli ng Security Updates ..81

 4.6 Open Issues ..86

 4.7 Conclusions ..88

5. Secur ity ...90

 5.1 Assumptions ... 90

 5.2 Security of Dissemination Procedure ...92

 5.3 Securely Building and Maintaining RBones ..108

 5.4 Attacks and Countermeasures ..117

 5.5 Open Issues ..121

 5.6 Conclusions ..123

6. Real Measurement Under Vir tual Topology..125

 6.1 Metrics ..126

 6.2 Overloading Approach To Measuring Large-Scale Distributed Systems ..128

 6.3 Measurement Procedure ...134

 6.4 Results and Analysis ..140

 vi

 6.5 Open Issues ..154

 6.6 Conclusions ..158

7. Related Work ...161

 7.1 General-Purpose Distribution Services ..161

 7.2 Special-Purpose Distribution Services ...170

 7.3 Information Delivery Structures ..174

 7.4 Security ...176

 7.5 Conclusions ..177

8. Future Work ..178

 8.1 Open Issues Discussed in Previous Chapters ...178

 8.2 Think More Beyond Today ..180

9. Conclusions ..183

 9.1 Summary of the Problem ..183

 9.2 The Revere Solution ...184

 9.3 Contributions of the Dissertation ...187

 9.4 Broad Lessons ..189

 9.5 Final Comments ...190

Trademarks ..192

References ..193

 vii

LIST OF FIGURES AND TABLES

Figures

1.1 IP addresses compromised by the “CodeRed” worm ...2

1.2 Amount of patching in post-infection web servers ...3

1.3 Infection per 1,000 computers per month ...5

3.1 Application-layer overlay network on top of hardware layer 33

3.2 An RBone rooted at a dissemination center ..37

3.3 Expanding-wheel topology ...43

3.4 Three-way-handshake during join procedure ..45

3.5 A new node’s three-way-handshake with four existing Revere nodes 47

3.6 Path vector at node 5 ...49

3.7 Parent selection based on path vector ... 50

3.8 Parent selection at node 5 ..51

3.9 RBone messages (solid lines denote inheritance) ...54

3.10 A common RBone based on a single rendezvous point 59

3.11 A common RBone based on multiple rendezvous points 61

4.1 The security update format ..67

4.2 I/O jobs and security update window at a Revere node 69

4.3 Adaptive parent-to-child security update transmission 71

4.4 UDP-based pushing operation ...73

4.5 TCP-based pushing operation ...75

4.6 Bootstrap of dissemination jobs ..77

4.7 Security update processing by an input job ...79

4.8 Pulli ng security updates from repository servers ..83

 vii i

5.1 Integrity protection of a security update ...95

5.2 The key invalidation message ...99

5.3 Center public key invalidation ..100

5.4 An input job function calli ng the security update protector 107

5.5 An output job function versus the security update protector 107

5.6 Peer-to-peer security scheme negotiation ...110

5.7 Secured three-way-handshake procedure ..112

5.8 Security box ...113

5.9 Replay attack prevention using a random number ..120

6.1 A virtual topology with 20 Revere nodes ...131

6.2 Composition of security update dissemination latency 137

6.3 Prolonged dissemination latency in overloaded environment 138

6.4 Outbound bandwidth per node during joining phase ..142

6.5 Join latency per node ...142

6.6 Security update processing delay at a Revere node ..144

6.7 Kernel-space-crossing latency ...145

6.8 Hop count of security update dissemination ...146

6.9 Average and maximum security update dissemination latency 149

6.10 Security update dissemination coverage for a 3000-node dissemination 150

6.11 The latency to reach 99%, 90%, and 2/3 of Revere nodes in an RBone 151

6.12 Resili ency test for a 3000-node dissemination with a 15% node failure 152

6.13 Resili ency test with different node broken probabiliti es on a 3000-node RBone 153

6.14 Monthly average Internet hosts in millions ...156

Tables

3.1 Main fields of a Joint data structure ..53

 ix

ACKNOWLEDGMENTS

Without the constant light of guidance, support and encouragement from my advisors,

Peter Reiher and Gerald Popek, I would have never reached the culmination of this

research journey. During my six years at the University of Cali fornia, Los Angeles, I

have had the great fortune to be their advisee. They tremendously helped to make a

young, inexperienced graduate student into the researcher that I am today. I am certain

that in the future I will continue to benefit from the guidance I have received. Their

creation and continued advancement of the Laboratory for Advanced Systems Research

(LASR)—a unique research laboratory with nearly 30 years of history—also afforded me

a wonderful opportunity to learn, to grow, and to flourish.

I also owe a great magnitude of thanks to my doctoral committee. In addition to Peter

and Gerald, I am honored to have Dr. Leonard Kleinrock, Dr. Miodrag Potkonjak, Dr.

Richard Muntz and Dr. Willi am Kaiser on my committee. Their sharp, insightful

feedback, offered since the very beginning of this research, has proved invaluable.

My participation in other research projects also benefited my thesis research

indirectly but significantly. My partnership with Mark Yarvis concerning research on

securing distributed adaptation (DARPA-funded) and my involvement with source

address validity enforcement (NSF-funded) not only produced publications, but also

triggered inspirations.

Frequent interactions with my colleagues at LASR made this research full of wisdom,

but also full of fun. Among much appreciation to many, my thanks especially go to Dr.

Geoff Kuenning for his help in presenting this research, Dr. Mark Yarvis for sharing his

thoughts on writing a good dissertation, Scott Michel for his willi ngness to test Revere,

 x

Arnell Pablo for setting up testbed machines, Greg Prier, Matt Schnaider and Max

Robinson for reviewing a paper on this research, and Jelena Mirkovic for planning a great

surprise party after my oral defense.

Janice Wheeler greatly improved the clarity and elegance of this dissertation. I am

indebted to her—both for her expert editing work and for always being there when

needed.

 xi

VITA

1970 Born, Changzhi, Shanxi, China

1988 Graduated Changzhi No. 1 High School, Shanxi, China

1992 B.S. in Computer Science, Peking University, China

1992-1995 Research assistant, Chinese Academy of Sciences

1993-1994 Beiji ng Duosi Inc.

1995 M.E. in Computer Software, Chinese Academy of Sciences

1995 Awarded Dean’s Fellowship, Chinese Academy of Sciences

1995-1996 Researcher, Institute of Software, Chinese Academy of Sciences

1996-2002 Graduate student researcher, Laboratory for Advanced Systems
Research, Computer Science Department, University of Cali fornia,
Los Angeles

1997 ACM student member

1998 USENIX student member, Internet Society member

1998 M.S. in Computer Science, University of Cali fornia, Los Angeles

1999 Summer intern, Network Associates Inc.

2000-2001 Program committee member of ACM SIGSAC New Security
Paradigm Workshop

2002 IEEE student member

2002 Outstanding Doctor of Philosophy Degree Award, UCLA Henry
Samueli School of Engineering and Applied Science, Computer
Science Department

2002- Assistant Professor, University of Oregon

 xii

PUBLICATIONS AND PRESENTATIONS

Jun Li, Jelena Mirkovic, Mengqiu Wang, Peter Reiher, and Lixia Zhang. “SAVE: Source
Address Validity Enforcement Protocol,” IEEE Infocom, 2002.

Jun Li, Peter Reiher, Gerald Popek, Mark Yarvis, and Geoffrey Kuenning. “Position
Statement: An Approach to Measuring Large-Scale Distributed Systems,” presented
at the IFIP 14th International Conference on Testing of Communicating Systems
(TestCom 2002), Berlin, Germany, March 2002.

Jun Li, Mark Yarvis, and Peter Reiher. “Securing Distributed Adaptation,” Computer
Networks, Special Issue on Programmable Networks, Vol. 38, No.3, Elsevier
Science, January 2002. pp. 347-371.

Jun Li, Mark Yarvis, and Peter Reiher. “Securing Distributed Adaptation,” Proceedings
of the Fourth IEEE Conference on Open Architectures and Network Programming
(OPENARCH 2001), Anchorage, Alaska, April 2001.

Jun Li and Gerhard Eschelbeck. “Multi -Tier Intrusion Detection System,” UCLA
Technical Report CSD-TR-010027, 2001.

Jun Li, Jelena Mirkovic, Mengqiu Wang, Peter Reiher, and Lixia Zhang. “SAVE: Source
Address Validity Enforcement Protocol,” UCLA Technical Report CSD-TR-010004,
2001.

Jun Li, Xiaoyan Hong, Mani Srivastava, Peter Reiher, and Mario Gerla. “Gradient-
Directed Data Dissemination in Wireless Sensor Networks,” poster presentation at
UCLA Computer Science Department Annual Research Review, April 2000.

Jun Li, Mark Yarvis, and Peter Reiher. “Security in Agent-Based Adaptation,” poster
presentation at UCLA Computer Science Department Annual Research Review, April
1999.

Jun Li, Peter Reiher, Richard Guy, Gerald Popek, and Geoffrey Kuenning. “Revere—
Dissemination of Security Updates,” poster presentation at UCLA Computer Science
Department Annual Research Review, April 1999.

Jun Li, Mani Srivastava, and Peter Reiher. “Simulation of Gradient-Directed Data
Dissemination in Wireless Sensor Networks,” Parsec Workshop, November 1999.

 xiii

Jun Li, Peter Reiher, and Gerald Popek. “Securing Information Transmission by
Redundancy,” 22nd National Information Systems Security Conference, October 1999.

Jun Li, Peter Reiher, and Gerald Popek. “Securing Information Transmission by
Redundancy,” Proceedings of New Security Paradigms Workshop, ACM SIGSAC,
September 1999.

Jun Li and Yufang Sun. “Security Design and Implementation for Micro-Kernel Based
File System Server,” Chinese Journal of Computers, Vol.20, No.5, China Science
Press, May 1997. pp. 396-403.

Jun Li and Yufang Sun. “Security Research for Micro-Kernel Based Operating System,”
Journal of Software, Vol.8, No.2, China Science Press, February 1997. pp. 99-106.

Jun Li and Yufang Sun. “Computer Security and Security Model,” Computer Research
And Development, Vol.33, No.4, China Science Press, April 1996. pp. 312-320.

Jun Li. “Security Design and Implementation for COSIX File System Server,” master’s
thesis, June 1995.

Adam Rosenstein, Jun Li, and Siyuan Tong. “MASH: the Multicasting Archie Server
Hierarchy,” Computer Communication Review, Vol.27, No.3, ACM SIGCOMM, July
1997. pp. 5-13.

 xiv

ABSTRACT OF THE DISSERTATION

Revere—Disseminating Security Updates
at Internet Scale

by

Jun Li

Doctor of Philosophy in Computer Science

University of Cali fornia, Los Angeles, 2002

Professor Peter Reiher, Co-chair

Professor Richard Muntz, Co-chair

Rapid and widespread dissemination of security updates throughout the Internet

would be invaluable for many purposes, including sending early-warning signals,

distributing new virus signatures, updating certificate revocation lists, dispatching event

information for intrusion detection systems, etc. However, notifying a large number of

machines securely, quickly and with high assurance is very challenging. Such a system

must compete with the propagation of threats, handle complexities in large-scale

environments, address interruption attacks toward dissemination, and also secure itself.

Revere addresses these problems by building a large-scale, self-organizing resilient

overlay network on top of the Internet. This dissertation discusses Revere, and discusses

how to secure the dissemination procedure and the overlay network, considering possible

attacks and countermeasures. The dissertation presents experimental measurements of a

 xv

prototype implementation of Revere gathered using a large-scale-oriented approach.

These measurements suggest that Revere can deliver security updates at the required

scale, speed and resili ency for a reasonable cost.

 1

1CHAPTER 1

Introduction

Over the years the Internet has been seriously challenged by various threats: break-

ins, attacks, hoaxes, vulnerabiliti es, and other malicious subversion efforts. Writers of

malicious code, such as viruses, worms, and Trojan horses have been creative in finding

ways for their code to propagate rapidly from machine to machine, but defenders of the

Internet have been much less aggressive in finding ways to disseminate the information

necessary to counter these attacks. As a result, not only have the network infrastructure

and individual machines been exposed to various forms of network-based attacks, but

they have been slow in reacting to these attacks. This situation raises concerns that were

not present when networking was less common and less relied upon.

One criti cally desirable mechanism for the Internet is to allow a small number of

sources, such as trusted centers, to disseminate security information to a vast amount of

machines over the network, securely and quickly.

We have developed a system called Revere to support such a mechanism. Revere

allows a dissemination center to distribute security updates at Internet scale, securely,

quickly, and with high assurance.

1.1 Case Studies

1.1.1 An Ear ly-Warning Mechanism

Protection of the information infrastructure is inherently a distributed task. Threats

must be countered as a whole, instead of focusing on the protection of every individual

 2

machine. With the rapid growth of networks, a threat gains an increased potential for

endangering a larger number of machines, typically through propagation and replication.

Each machine connected to network must be aware of all possible attacks. As a result, in

a networked environment the threats to an individual machine are of concern to other

machines on which the same or similar attacks are also likely to occur.

On the other hand, it is usually the case that a threat or vulnerabilit y that later

becomes widespread is first detected in a small number of machines. The diff iculty has

often been the ineffectiveness of distributing the signatures of or remedies for those

threats. Figure 1.1 (excerpted from [CERT 2001:2]) shows that in 12 hours—from 6 a.m.

to 6 p.m. on July 19, 2001—over 260,000 machines were quickly corrupted by the

CodeRed worm [CERT 2001:1]. An important observation we can draw here is that if

Fig 1.1 IP addresses compromised by the “CodeRed” worm
(data for July 19, 2001 as reported to the CERT/CC)

 3

those machines could have been notified of the incoming attack between 10 and 11 a.m.,

or even earlier (perhaps between 7 and 8 a.m.), at least 200,000 of them could have been

saved. Clearly, the capabilit y to disseminate an early-warning signal to all potential

victims of a threat is therefore highly desirable.

The investigation by CAIDA (the Cooperative Association for Internet Data

Analysis) after the CodeRed attack was even more astonishing. According to [CAIDA

2001], from July 26 to August 23, 2001, daily examination of a random subset of the

359,000 IP addresses that were originally infected showed that many were still vulnerable

to the same attack. Figure 1.2 demonstrates the slowness of those infected machines in

patching themselves, and shows that approximately 7% of the machines were still

vulnerable at the end of the survey period.

Fig 1.2 Amount of patching in post-infection web servers
(Figure available at http://worm-security-survey.caida.org/)

 4

The CodeRed worm strongly emphasized the need to reliably keep machines up-to-

date in order to be resili ent to new threats; the CAIDA survey showed the lack of this

capabilit y in today’s Internet. For instance, during the CodeRed worm incident,

windowsupdate.Microsoft.com was also infected, and many hosts were

reinfected while trying to patch themselves.

Such a capabilit y also echoes the report by the President's Commission on Critical

Infrastructure Protection [PCCIP 1997]. After wide investigation and analysis, the

commission concluded that the quickest and most effective way to achieve a much higher

level of protection from cyber threats is to ensure cooperation and information sharing

among the infrastructure owners/operators and appropriate government agencies. In

order for this to happen, a real-time attack-warning mechanism must be designed.

1.1.2 Virus Signature Distr ibution

Computer virus encounters have been increasing steadily over the years. Figure 1.3

shows a computer virus prevalence survey done in the year 2000 by ICSA Labs, a

division of ICSA.net. The “love bug,” as an example, successfully infected some 3.1

milli on computer files worldwide by May 5, 2000, according to [BBC News 2000].

Currently, many groups devote substantial efforts to identifying and combating new

viruses soon after they are discovered. However, the distribution of information about a

newly detected virus is still primitive, and often slow to reach recipients. Typically, a

user has to directly contact a virus protection group's web site to download updates, either

manually or as scheduled. This pulli ng-based method often fails to instantaneously keep

a user’s machine updated, unless the user probes very frequently or the user knows in a

timely way that a new virus update has just been published.

 5

Given that timely prediction is highly unlikely, “pulli ng” solutions in high frequency

is virtually the only choice here. Unfortunately, this is a suboptimal choice. While

attacks in the past have been infecting other machines in the order of minutes, hours, or

days, and a user already has to probe a virus center at least as often, one should not rely

on an optimistic view that the infection speed of an attack in the future will not be even

faster—possibly measured in seconds. As a result, pulli ng will i ncur an even higher cost

in both CPU time and bandwidth. Such costs can be more prohibitive if a node is

interested in receiving hundreds or thousands of different types of security information

from various sites.

The process of pulli ng virus information from a website also lacks flexibilit y in

receiving the information. Because it has to completely rely on the underlying routing

protocol which determines the delivery path, a recipient node cannot select its own

preferred path for receiving information; nor can it specify more than one delivery path,

Fig 1.3 Infection per 1,000 computers per month

 6

both of which can be necessary in some circumstances in order to guarantee the

availabilit y of security information.

This pulli ng method is also not scalable. When milli ons of users want to

simultaneously receive information concerning a new virus, the web site for virus

information can become a hot spot of traff ic, and users will i ncur a higher latency due to

resource contention.

As an alternative, some groups set up central servers to automatically broadcast new

virus signatures to every individual user, but diff iculty in managing user records at the

central server grew quickly as more users participated. In particular, a new user may

want to join at any moment, and an existing user may leave without any notification.

Moreover, the center has to send new virus information to every individual user, one by

one, a solution that does not use bandwidth wisely.

Recently, peer-to-peer technology has been used to address some of these problems,

where a recipient can forward newly received virus information to a second recipient, and

a second can forward to a third, and so on [McAfee Rumor]. Every recipient will t hus be

on a chain of receiving information. However, the design technology to handle

disconnected nodes, strengthen security, and maintain the chains has not been reported.

Such a system is also subject to man-in-the-middle attacks. For example, if an

intermediate node on a virus information delivery path is corrupted, all of its descendents

downstream in this peer-to-peer structure will mi ss the information being delivered.

Clearly, what is needed is a mechanism for rapid and widespread dissemination of

new virus signatures, considering important issues such as resili ency, scalabilit y, security,

etc.

 7

1.1.3 Information Dispatch in Intrusion Detection

Similar to signature-based virus detection, pattern recognition has been one approach

to detecting host-based or network-based intrusions. Newly discovered intrusion patterns

also call for a secure and fast dissemination to all those machines that need updates on

new types of intrusions.

In addition, a distributed intrusion detection system relies on timely and trustworthy

security status updates among individual nodes in order to maintain the state of a system

or evaluate a risk level. This again leads to the requirement for a security information

dissemination service.

1.1.4 Widespread Certificate Revocation

One diff iculty with widespread use of a public key infrastructure has been the

certificate revocation problem. If the private key of a machine is compromised, the

certificate authority that is responsible for the machine’s public key will update the

corresponding record and issue a new certificate if a new public key for that machine is

generated. However, the stale certificates of the old compromised public key may still be

stored in many places across the network. At every node that still uses the obsolete

certificate, the compromised public key will be used to verify incoming messages from

that machine or protect outgoing messages toward that machine, and both will become

vulnerable to attacks.

On January 29-30, 2001, VeriSign erroneously issued two Class 3 code-signing

certificates to a person posing as a Microsoft employee [Olavsrud 2001]. Both

certificates were assigned to "Microsoft Corporation" and could endorse executable

content using keys that claimed to belong to Microsoft. Recognizing the danger that

somebody, by impersonating Microsoft, could easily convince users worldwide to

 8

execute an arbitrary program, revoking these two certificates was urgent. Verisign did

revoke the two certificates and published them in its current Certificate Revocation List

(CRL), but VeriSign's code-signing certificates did not specify a CRL Distribution Point

(CDP). Therefore, a user would not know to contact CDP to receive an up-to-date CRL.

Microsoft also provided (or suggested) a suite of options, but all of them were not sound

solutions to the problem, as explained briefly in the following:

• Asking users to discard certificates dated on January 29 or 30, when asked

to confirm the installation of a program. By this option, every user must

now read carefully before clicking the “OK” button. And luckily, there

were no legal certificates issued on these two dates.

• Developing patches for various Windows platforms. The problem of

quickly applying those patches still needs to be solved.

• Removing Verisign from the Trusted Root Store. This would disable any

certificates signed by Verisign, and would be a fairly drastic step.

On the other hand, if there were such a service to proactively distribute lists of

revoked certificates, every node that subscribes to such a service could then avoid using

obsolete certificates. When notified, the node could easily invalidate those cached

certificates that should be revoked.

1.1.5 Summary

All of these uses of security information dissemination share many common

characteristics, so it is highly preferable to support them with a single common service.

These security updates are usually of low volume, but of criti cal importance. Revere

provides this shared service.

 9

1.2 Goal of Revere

The goal of Revere is to disseminate security updates quickly at Internet scale, with

high resili ency and robust security. The security updates can contain an early-warning

signal, a new virus signature or its remedy, special events in a distributed intrusion

detection system, offending characteristics to be filtered by a firewall , certificate

revocation lists, and so on.

1.3 Assumptions

This research is based on the following assumptions, and we believe they are

reasonable:

• Revere is only responsible for disseminating secur ity updates.

There are separate procedures that generate security updates and

independent applications that use security updates. We believe both

generation and utili zation of security updates are application-specific, and

Revere only provides a general service for different applications by

addressing their common need.

• Secur ity updates are usually of small size, at low frequency, and of critical

importance.

This is true for early-warning signals, virus signatures and remedies,

intrusion detection information, certificate revocation lists, etc. One

important implication of these characteristics is that the bandwidth cost for

disseminating security updates is not a serious concern; one probably can

afford to spend several times the minimum required bandwidth if

necessary to ensure that the updates are delivered.

 10

• Revere will run at large scale over heterogeneous nodes.

Nodes may have different capabiliti es and preferences in receiving and

forwarding security updates. Also, in a large-scale environment, a

significant number of nodes may be disconnected and are therefore not

able to li sten to security update dissemination for a period of time.

• Any Revere node could be corr upted.

While most Revere nodes will operate correctly, the trustworthiness of any

Revere node cannot be assumed without verification. Also, while a

dissemination center will normally be well -protected, it could be corrupted

as well . However, we do not assume there is a uniform security scheme

that can be used by all Revere nodes.

• Not all Internet nodes run Revere.

Any Internet application, including Revere, will not be fully deployed at

once. Incremental deployment will be the norm.

• There is no mandatory requirement for the underlying platforms to run Revere.

No changes will be made to operating system, Internet infrastructure, or

hardware, in order to support the running of Revere.

1.4 Challenges

Is it feasible to deliver a modest amount of security-related information to most of the

connected nodes of an Internet-scale computer network very rapidly, reliably, and

securely? Can it be done without huge, powerful server systems? How rapidly can it be

done? Within seconds, for example? Does it require fundamental changes to the Internet

core or to all end systems, or can it be run purely at the application level?

 11

Revere, or any other system that attempts to deliver rapid security updates at high

scale, must overcome several diff icult challenges.

Security updates must be delivered at the same speed as attacks, or even faster, if

possible. If a node does not receive the most recent security updates, it is highly

vulnerable to various threats. On the other hand, if necessary security information (such

as worm signatures) were propagated faster than the attack (worm) itself, the threat would

be substantially diminished.

Another challenge is scalabilit y. There are tens of milli ons of machines connected to

the Internet, and each machine is a potential participant. Because the scale of the Internet

is growing ever larger, a centralized solution would require a single machine, or even

dozens of machines, to store global knowledge concerning all potential participants.

Even if this were feasible by using powerful machines, the task of keeping the stored

information up to date is daunting. Approaches based on centralized management are

thus diff icult, if not impossible. Distributed solutions can scale well , but bring their own

challenges. Further, high scale ensures that significant numbers of nodes will be

disconnected at the moment a security update is being disseminated, so any solution must

include features to make updates available to those nodes that missed them during

dissemination.

High assurance of dissemination is also challenging, especially if a distributed

solution is used. Nodes assisting in dissemination may be compromised, resulting in

dropped, misdirected or damaged security updates. Approaches such as encryption,

authentication, and digital signatures do not actually help ensure that a message is

delivered. Attacks that try to destroy or intercept security messages in the middle require

other countermeasures. Authenticated acknowledgements are helpful, but do not scale

well , and typically retransmitted messages are still subject to interruption threats.

 12

Last but not least, the system itself must be secure. A system that delivers trusted

information to milli ons of machines would become a highly tempting target for attackers.

If the system’s security is broken, the machines that were targeted for protection will l ose

that protection. Worse, if the system is widely deployed, it may be used by hostile forces

to corrupt even larger numbers of machines.

1.5 Revere Overview

Revere builds an overlay network on top of the Internet for a dissemination center to

disseminate any type of security update. This overlay approach provides flexibilit y,

while requiring no changes to existing network infrastructure. Revere is currently

implemented as a Java application on participating nodes. These nodes are organized

into an overlay network to deliver security updates, where each individual node is

allowed to join and leave a Revere overlay network. Every node will receive security

updates and every non-leaf node will also forward security updates.

The Revere overlay network is designed to handle an Internet-scale number of

participants. First, instead of keeping information concerning all participants of Revere,

every node only keeps a small amount of information, typically only related to nodes in

its neighborhood on the overlay network and the dissemination center. Second, because

high scale means that a significant number of nodes will be disconnected at the moment a

security update is disseminated, Revere is also designed to make security updates

available to those nodes that missed them during dissemination.

Equally important, the Revere overlay network is resili ent. Although it is rooted at a

dissemination source, the Revere overlay network is not a tree-like structure. To combat

attempts to interrupt dissemination, Revere employs redundancy in the overlay. Whereas

redundancy has been widely used in areas like high-availabilit y data storage and some

 13

fault-tolerant systems to provide resili ency, it has been less used to provide network

resili ency, in part because of the extra costs of delivering multiple copies of a message.

For Revere, the approach is sensible, since Revere is designed to handle a low volume of

relatively small but highly important messages. Revere achieves redundancy in the

overlay by automatically building multiple as-disjoint-as-possible paths for each node to

receive security updates. Revere handles disconnected nodes by providing similarly

redundant repository sites that can be contacted when disconnected nodes return to the

network.

Furthermore, Revere enforces stringent security for both the dissemination procedure

and the overlay network. Each security update will be signed by the dissemination

center. If needed, the public key of a dissemination center can be revoked. The security

required to build the overlay network is provided by a peer-to-peer security scheme

negotiation protocol and a mechanism for pluggable security boxes at each node. These

features allow two Revere nodes that do not know each other to communicate without

predefining a uniform security scheme.

1.6 Key Contr ibutions of This Research

The first contribution of this research is that it demonstrates that quick and secure

dissemination of security updates at Internet scale is feasible.

The second contribution of this research is that of building overlay networks for its

special purpose—security update dissemination. Building an overlay network, by itself,

is not new. As described later in Chapter 7, Related Work, many researchers have

proposed overlay networks for various purposes. However, the special requirements and

challenges of disseminating security updates make it hard to simply use any existing

overlay networks. Therefore, Revere builds its own overlay networks. Although Revere

 14

allows a node to join or leave a Revere overlay network at its own discretion, just as do

many other overlay networks, a Revere overlay network is built and maintained

differently. One significant feature is that it implements redundancy in the overlay

network in order to address the interruption threats. Every Revere node, at its own

discretion, can choose to have more than one security update delivery path that meets

certain requirements for speed, security and resili ency.

The third contribution of Revere is that it provides a dual mechanism for security

update dissemination: push and pull . Revere allows a dissemination center to push a new

security update to all Revere nodes currently connected, and Revere also allows each

individual Revere node to contact repository servers to pull missed security updates.

Most information distribution services in a network implement either push operations or

pull operations. Revere recognizes that push and pull are complementary to each other,

and both must be supported.

The fourth contribution of Revere is that it addresses various possible attacks on the

dissemination procedure or the Revere overlay network. Without strong protection,

Revere will not be used seriously for receiving important security information. In

protecting the dissemination, not only is every security update signed by a dissemination

center, thus protecting the integrity of the security update, but also the public key of the

center can be revoked in case the public key is identified as corrupted. As for protecting

the formation and maintenance of a Revere overlay network, Revere does not assume that

a uniform security scheme will be enforced across all participants; instead, a peer-to-peer

security scheme negotiation protocol is designed. Every node can specify what security

schemes to follow for its incoming messages. Furthermore, a Revere node can plug in a

security box for every particular security scheme, making it easy to enforce many

different security schemes.

 15

The fifth contribution of Revere lies in the technique for measurement, something

that can also be applied to other distributed applications. Because of the intended scale of

the system, direct measurement of Revere is impossible at this point. Therefore, Revere

is measured by using an “overloading” technique. With this technique, a physical

machine can host many nodes of a distributed system; here, each logical node still runs

the real code, just as it would in the real world, except that every logical node sits on top

of a virtual topology. Large scale can then be achieved using multiple physical machines,

each supporting many logical nodes.

The sixth contribution of Revere is that it provides an easily deployable solution.

Implemented in Java at application layer, Revere does not require any changes to the

network infrastructure underneath, and does not require any particular support from the

OS or hardware to be deployed. Any user, who has installed Revere on its machine, can

just begin running Revere in order to join a Revere overlay network, or can withdraw

from the system by clicking a button.

1.7 Roadmap of This Dissertation

We describe and discuss Revere in more detail i n the following chapters. Chapter 2

discusses the general principle of securing information transmission by using

redundancy. Chapter 3 discusses the RBone, the overlay network that Revere builds for

security update dissemination, and the dissemination procedure itself is described in

Chapter 4.

We identify security issues and discuss our approaches in Chapter 5, where we

outline possible attacks and discuss their countermeasures. Both protection of the

dissemination procedure and the protection of the overlay network will be addressed. In

Chapter 6, we introduce a large-scale-oriented “overloading” approach to measuring

 16

large-scale distributed systems, and apply it to Revere measurement. We will discuss

what metrics should be evaluated and what measurement procedure we have taken. We

then report and analyze the results of our measurement.

Chapter 7 summarizes related work, including various information distribution

approaches viewed in the most general context, practices on virus signature distribution,

overlay networks developed by other people, multi -path routing, etc. Chapter 8 is

devoted to future work, where we will show that Revere provides a good platform for

interesting research along several li nes. We conclude the dissertation in Chapter 9.

 17

2CHAPTER 2

Assurance via Redundancy

One of the most criti cal challenges facing Revere is that of supporting the high

availabilit y of security update dissemination under various circumstances, including the

case where an attacker is trying to corrupt information while in transit. In this chapter we

justify the fundamental concept of information assurance via redundancy and discuss

general considerations on using redundancy to secure transmissions; we will t hus

establish that a redundancy mechanism is criti cal to the success of Revere.

2.1 The Redundancy Approach

More and more information is now shared and distributed over computer networks.

Secure distribution of such information is becoming increasingly important.

Conventional security approaches address many of the problems of securing information

dissemination, but not all of them.

Encryption can provide secrecy, authentication can provide assurance of the source,

digital signatures can provide integrity verification, firewalls can filter out dangerous

transmissions, and so on. But these and other traditional mechanisms offer littl e

assistance with interruption threats. No matter how elaborate the encryption or

authentication, if the information is dropped on the floor, destroyed or transformed into a

piece of garbage, blocked due to overloading of an intermediate link, or disrupted by

other malicious acts, information availabilit y is damaged. In many cases, even if

 18

attackers cannot decrypt, forge, or alter information, they can achieve their ends merely

by ensuring that important information does not reach an intended destination.

The traditional solution is to require acknowledgement of important messages. Since

attackers might try to forge acknowledgements, they are typically signed (and possibly

encrypted, if they contain sensitive information). If an acknowledgement is not received

soon enough, the message is resent. This method works well i f a relatively small number

of messages require acknowledgement. If a very large number of messages must be

acknowledged, then hierarchical or other load distribution methods must spread out the

responsibilit y for checking acknowledgements. In the general case, all nodes performing

the checks must be trusted.

Worse, an attacker can repeatedly intercept or destroy the retransmitted message.

Without other mechanisms, an attacker who has compromised a single link or router node

may permanently prevent the delivery of a message, since each retransmission will

probably still follow the same path through the compromised resource.

We believe the fundamental problem is that there is only a single path for information

transmission. If any point of this single path is corrupted, transmission security is

corrupted. This problem can be reduced by adding redundancy to information

transmission structures. Such redundancy can improve transmission resili ency and

greatly improve information availabilit y. Typically, such redundancy can be provided by

using more than one path through the network to reach the destination.

If redundant paths are completely disjoint, then attackers must compromise multiple

resources in the network to prevent message delivery. A greater degree of redundancy

means that more resources must be compromised by attackers. Assuming that there is

cost and risk in compromising each resource, increasing the degree of redundancy can

thus increase the diff iculty of preventing successful delivery. Obviously, redundancy

 19

uses more resources than single-path transmission, and there is a tradeoff between the

degree of security achieved and the cost of providing it.

Similar arguments have demonstrated the value of redundancy for many hardware

fault tolerance problems. In the networking realm, however, actually providing true

redundancy may be diff icult. While two distinct disks can be used for storing the same

data, or two distinct processors can be loaded with the same instructions, it is not always

true that two or more disjoint paths can be easily found for reaching a specific destination

through a network. Such paths might not exist. Even if they do, existing network routing

protocols and the desire to hide network complexities from higher levels make

discovering and using the disjoint paths diff icult. And it is even more diff icult to know

the locations of those physical li nes that a message follows.

On the other hand, an Internet-like network often comes with abundant routes and

connections in order to be resili ent to faults and failures (in particular, this is the basis for

enabling routing protocols to select specific routes to reach a destination). The Internet,

for example, is a worldwide mesh or matrix of hundreds of thousands of networks that

are interconnected by about 8,000 ISPs (Internet Service Providers) at the core

[Quarterman et al.]. Even at the edge of the Internet, more and more organizations have

become multi -homed, with connections to multiple ISPs.

In a word, we believe that redundancy can have great value in counteracting attacks.

Even if the paths are not fully disjoint, any non-shared portions of the path limit an

attacker’s choice of attack points. The attacker must either find and compromise shared

links or routers on the path, or must compromise the right set of non-shared elements.

The volatilit y and obscurity that makes finding disjoint paths diff icult also makes

attacking them hard. While some choke points cannot be avoided, link-by-link (or

segment-by-segment) redundancy may still prove very useful.

 20

Redundancy for fault-tolerant information transmission has been studied by many

people [Castro et al. 1999] [Pelc 1996]. Dealing with Byzantine faults has also been

considered. However, this research only focused on specially structured networks, such

as broadcasting over complete networks or hypercube.

Another related research area is information dispersal [Rabin 1989]. This has some

similarities to the RAID technology for data storage. The original information is divided

into pieces with some level of redundancy before being transmitted separately. After

obtaining the pieces, the receiver can assemble them into the original information, even if

some pieces are lost or damaged. But, if all these pieces reach the receiver via the same

single path, every piece will still be subject to interruption threats, causing the assembling

operations to still fail .

2.2 Interruption Threats

While information transmission latency has been shortened dramatically in the past

few years, information transmission may still have to cut across several external entities

or domains. A malicious attack might be able to penetrate a network element where

everything seems under control. These external or maliciously penetrated places are

where interruption threats will occur.

Interruption threats can be divided into two categories: path interruption and data

interruption. A path interruption happens when information is dropped on the floor or

misdirected to the wrong place. A path interruption also happens when some portion of

the transmission path is flooded, causing denial of service. A data interruption happens

when the information itself is damaged.

A recipient usually has a better chance of detecting data interruption than it does path

interruption. A recipient with a data interruption can detect that data has been

 21

manipulated, while a recipient with a path interruption may not notice anything abnormal

at all . The commonality is that both types of interruption can happen even if the

malicious entity does not know what the data contains, so neither encrypting nor signing

can help. Interruption threats can be more serious if combined with other kinds of

security attacks.

2.3 Transmission Pr imitives

Some transmission primitives have addressed the diff iculties in transmitting

information. While these primitives are designed mainly for non-security reasons

(particularly reliabilit y in the sense of no data loss or physical error) and they do not

provide a total solution, they do provide some assistance in coping with security

problems in information transmission.

In the following subsections, we will discuss TCP, reliable multicast, broadcast and

flooding, and show that those efforts which deal with transmission diff iculties are

insuff icient to address interruption threats.

2.3.1 Reliable Transmission – TCP

TCP [Postel 1981] provides reliable one-to-one information transmission on top of

the IP layer, where an IP packet is routed to the destination along a dynamically

determined physical path. If a TCP packet is lost according to acknowledgement

information from the receiver, or if its own retransmission timer times out, a TCP sender

retransmits the TCP packet.

If interruption attacks are sporadic, causing TCP to drop an occasional packet or

sometimes damage the data, a TCP retransmission can heal the problem. But essentially

TCP cannot eliminate interruption threats if the retransmitted TCP packets encapsulated

 22

in IP packets are sent through the same hostile point and are maliciously manipulated

again.

Inspecting the TCP acknowledgement mechanism will show that TCP retransmission

appears even less effective in addressing interruption threats. In the reverse direction of a

TCP connection, the acknowledgement packets could also be subject to interruption

threats; for instance, when a TCP connection is symmetric and the reverse routes passes

through the same hostile point. An acknowledgement packet, even with a signature or

other security enhancement, may not be able to reach the TCP sender smoothly. If so, the

sender will not be aware of packet loss, damage or misdirection, and the sender will not

retransmit before it times out.

Even if a sender retransmits (either after it times out or after it detects packet loss

based on an acknowledgement), a retransmitted packet often uses the same path as the

original one. This causes the packet to cross the compromised point on the path again,

and thus be subjected to repeated interruption threats.

2.3.2 Reliable Multicast

Reliable multicast provides reliabilit y for information multicast. Usually it is done by

negative acknowledgements or repair requests. As one example, SRM (scalable reliable

multicast) [Floyd et al. 1995] lets each multicast recipient be responsible for information

loss or error by requesting a repair from the whole multicast group (not necessarily from

the sender) or by initiating a local recovery. Since a multicast group could be flooded

when every recipient sends a repair request to the whole group for the same repair, SRM

suppresses repeated repair requests and allows only one copy to be propagated

throughout the group. Similarly, repairs are also suppressed.

 23

Although this bandwidth-aware reliabilit y mechanism is reasonable in normal

conditions, it is susceptible to interruption threats. Designed to address packet loss due to

transmission errors, it cannot successfully handle packet loss or damage due to malicious

efforts. Although repairing packets can be injected into a multicast group, reliable

multicast does not provide alternative paths for packet delivery, and a repair packet can

still be interrupted.

2.3.3 Broadcasting and Flooding

Broadcasting and flooding are used to reach multiple destinations with a best effort in

a transmission session. A recipient may receive more than one copy of exactly the same

information, which inadvertently gives rise to some level of redundancy (perhaps not

enough) by heavy use of bandwidth. Standard broadcast and flooding methods assume

that all members are benign nodes and that they follow the rules for transmission.

When dealing with the Internet, broadcast and flooding will also introduce other

problems. Broadcast is typically done at subnet level, but the number of subnets over the

Internet is still l arge, making broadcast a non-scalable approach. Flooding at Internet

scale is also daunting, since this would incur a prohibitive bandwidth cost.

Reliable broadcast [Chang et al. 1984] has been proposed to deal with information

loss or error caused by non-security problems such as physical transmission errors.

Obviously it cannot eliminate interruption threats for the same reason that TCP cannot.

In a word, conventional approaches to information transmission can provide good

reliabilit y in terms of “natural” information loss or error, but provide littl e support in

counteracting “artificial” information loss or damage. To deal with these interruption

threats, we need a new approach to transmitting information in a secure fashion.

 24

2.4 Assurance via Redundancy

We propose that redundancy in information transmission is valuable for providing

security assurance [Li et al. 1999]. Here, redundancy means that the information

transmission path, or part of the path, is multiplied to avoid a single point of security

corruption.

We believe redundancy is important for security assurance in large-scale networks

like the Internet. While massive redundancy in a small -scale environment may be

employed to achieve best resili ency, lean but resili ent redundancy is the fundamental goal

for security. Brute-force redundancy will result in an uncontrolled waste of resources in

a large-scale environment, which in turn may overload some resources to cause denial of

service.

2.4.1 Redundancy in Other Areas

Redundancy has been widely used in many areas by devoting more resources to

achieve better availabilit y. Resource redundancy is often applied to include multiple

processes, multiple hardware components, and multiple data copies, usually with

independent failure probabiliti es. Examples include:

• High availabilit y data storage. Here, in order to deal with disk crashes,

balance load from a hotspot disk, and to provide lower latency for data

access, either more than one disk stores a copy of the data, or the data,

with built -in redundancy, is dispersed to more than one disk. This is

normally transparent to users [Patterson et al. 1989].

• File replication. This process is used to make replicas to support easier

access [Kuenning et al. 1997] [McDermott 1997] [Reiher et al. 1996].

Establishing mirror web sites for lower latency is one such example.

 25

• Data backup. Data backup, usually done periodically, can help restore

damaged or lost files from backed-up copies.

• Fault-tolerant distributed systems. Here, corresponding to a task, multiple

replicated executions [Singhal et al. 1994] may be employed to run a

program concurrently at different locations. The task can still smoothly

continue if at least one execution succeeds.

• Mapping one web site to multiple IP addresses. Mapping one web site to

several different server machines, in a round-robin fashion or in some

other more sophisticated way, can prevent one single server from being

overloaded and ensure that the site is accessible even if some server

machines have crashed [Alteon].

2.4.2 Resili ency Evaluation

Given a graph with fault probabilit y distribution of nodes, computation of the

probabilit y that there is a non-faulty path between two arbitrary nodes is known to be NP-

hard in the worst case. But we can still l ook at some resili ency properties of a graph for

some basic understanding of which redundancy structures are good.

Let us define the resili ency of a one-to-one connection as the probabilit y that the

source S can reach destination D, denoted as RS-D. Here, the word “ reach” means that

when every path from S to D is used to transmit a copy of a message at the same time, at

least one authentic copy can be received. Further assume for this specific connection that

there is a total of m cutsets C1, C2, C3… Cm, each containing some number of elements (a

single element cutset corresponds to a choke point, for instance). Denote Ei (i=1, …, m)

as the event where at least one element of Ci is not broken, then we can define:

RS-D = Probabilit y (E1 and E2 …and Em)

 26

Usually decreasing the number of cutsets, here m, can increase the resili ency of a

connection. Further analysis can also show that higher resili ency can result i f a cutset

contains more elements, or an element has a lower probabilit y of being subverted.

Having each path be as strong as possible by passing through the least number of

corrupted nodes can decrease the number of cutsets; and having more paths, in particular

as disjoint as possible, to a destination can make a cutset of the connection contain more

elements, thus strengthening the resili ency of the connection in general.

2.4.3 Using Redundancy in Transmission

Redundancy may be improved by simply increasing the number of information

sources or the number of transmission paths, particularly when information corruption is

detected.

This may not provide extra security assurance in information transmission, however,

and may lead to unwise resource usage and degraded performance. For instance, if the

incoming link for a receiver is maliciously flooded, causing denial of service, contacting

more sites for redundant information may not yield any useful message; it may instead

cause even more severe overloading of the link.

Therefore, to achieve the best information delivery assurance, a sophisticated

redundancy design is necessary. The designer should understand the stochastic

distribution of interruption threats, make the best trade-off between resource usage and

redundancy, build resource-saving but resili ent transmission structures, use an adaptive

algorithm to help choose when and how to deploy redundancy, and so on. For instance, a

receiver may also run an intrusion detection facilit y to find the reason for continuous

information unavailabilit y.

 27

There are many complex issues in deploying redundancy in large-scale networks like

the Internet. One problem is that machines in the Internet are heterogeneous in terms of

transmission characteristics, platform, security situations and requirements. Ideally,

some of this information should be taken into account when choosing redundant paths.

For example, if a particular node is suspected of being highly insecure, special care

should be taken to avoid routing multiple supposedly disjoint paths through that node.

Also, the security system must be adaptive in dealing with a dynamic environment in

terms of location, transmission mechanism, and impact of interruption threats.

Further complexity arises because a compromised element can compromise other

intermediate elements or cause them to misbehave. For instance, while misbehaving on

data traff ic itself, a compromised router may cause other routers to unknowingly

misbehave by sending them false routing messages [Wang et al. 1997]. Building security

into the routing infrastructure is itself a challenging task [Cheung et al. 1997] [Jou et al.

1997] [Wu et al. 1998] [S-BGP]. Unless the routing infrastructure security is strong, two

paths used to reach a destination should not only be as disjoint as possible, but also

isolated within the routing infrastructure. For instance, using routers belonging to

different ISPs would be preferable.

Last, as we pointed out earlier, resili ent but lean redundancy is what we want.

Obviously, in a large-scale network such as the Internet, building such a structure can

only be done in a distributed fashion, adding further diff iculty.

2.5 Employing Redundancy in Revere

Revere employs redundancy in several aspects: (1) every Revere node can have

multiple security update delivery paths; (2) every Revere node can contact several

sources for missed security updates.

 28

In the first case, a Revere node will t ry to guarantee that one path will provide the

fastest delivery of security updates, and the other paths will provide the best resili ency.

We will address this in more detail when we discuss the Revere overlay network

formation and management.

In the second case, having several independent sources for old security updates

supports higher availabilit y. If one source is subverted, another source may still be able

to provide complete authentic security updates. We will describe this more when we

discuss the dissemination procedure. Both cases will also be revisited when we discuss

possible attacks toward Revere and countermeasures.

More interestingly, Revere runs at Internet scale. Since a centralized solution to

building a good redundant distribution structure is not feasible, a distributed algorithm

that builds a Revere overlay network on the fly must be designed. The security of this

distributed algorithm is indispensable. If the redundancy mechanism is compromised, the

supposedly beneficial system could actually work against security. Some problems in

this area and solutions to the problems are obvious, but more subtle and indirect problems

are likely to occur. Theoretical understanding of large-scale redundancy for Revere also

requires investigation. For example, in addition to evaluating the resili ency of a one-to-

one connection, how does one evaluate the overall resili ency of a dissemination

structure?

Revere does not address hardware-level redundancy. When a Revere node obtains

multiple delivery paths for receiving security updates, those paths might overlap at a

hardware level, even though they are quite disjoint at a logical level. Some research has

shown that in general, logical-level disjointedness matches nicely to hardware-level

disjointedness [Andersen et al. 2001]. Nevertheless, due to the diff iculty in gaining

 29

hardware-level topology information and other relevant knowledge, Revere leaves this as

an open issue. We will i nvestigate this more in future work.

2.6 Conclusions

In this chapter we discussed using redundancy to secure information transmission

against interruption threats. Our analysis shows that both conventional transmission

primitives and frequently used security techniques are not adequate when counteracting

interruption threats. Redundancy, an approach already widely used in many areas but

rarely in information transmission, can actually improve the security of information

transmission. While redundancy has a wide applicabilit y in many areas of network

security, we have outlined how redundancy can also be used in Revere for security

update dissemination.

 30

3CHAPTER 3

RBone: A Self-Organized Resili ent Overlay Network

An RBone must be formed and maintained for each different type of security update

notification to ensure delivery of the needed security updates. Composed of Revere

nodes and the logical li nks between them, an RBone is the basis of security update

dissemination. During security update dissemination, Revere forwards security updates

from one node on the RBone to another along the virtual li nk between them.

An RBone organizes itself. By merely using a simple user interface, Revere allows

each individual node to join or leave an RBone automatically. Revere allows a node to

attach itself as a child of other existing Revere nodes to become part of an RBone.

Revere can also detect broken or dead nodes on an RBone and handle broken links on the

RBone, causing nodes to reattach themselves as required.

Because Revere works at the application level, the RBone built by Revere achieves

resili ency at the same level, considering only other participating Revere nodes. Since

information about general network topology is usually unavailable, Revere does not

attempt to achieve hardware-level disjointness of paths. Mechanisms to achieve

hardware-level disjointness are a topic of future research.

To achieve both eff iciency and resili ency, Revere allows an individual node to select

more than one parent, with one of parents providing the fastest security update delivery

and the rest delivering copies along paths as disjoint as possible. Thus, a node will only

miss security updates if all it s paths are broken.

 31

Given that an RBone can contain milli ons of nodes, all RBone management

operations must be as simple as possible and rely only on a small amount of partial

knowledge at each node to support scalabilit y. In Revere, each node only keeps

information about its parents, its children, and the dissemination center. Each node is

able to choose its number of parents and children.

For convenience, we assume that a different RBone rooted at a specific dissemination

center will be built for every different type of security update. Sharing a common RBone

for different types of security updates and different centers leads to some complexities,

which we address briefly at the end of this chapter.

In the following, we discuss the principles of organizing the nodes on an RBone, the

formation procedure of an RBone, and the mechanism of maintaining an RBone. We will

also describe the message format and data structures used in RBone formation and

maintenance by each Revere node. We leave the discussion on the security of RBone to

Chapter 5.

3.1 Pr inciples for Building an RBone

While ensuring that an RBone must be secure, fast, scalable, and lightweight in terms

of its characteristics, there are three prominent principles to follow in terms of building a

basic RBone. First, an RBone is an overlay network. Second, an RBone is self-

organized. Third, an RBone must be resili ent.

3.1.1 An Overlay Network

Revere faces a list of challenges. As discussed in Chapter 1, Revere must be fast,

resili ent, scalable, and secure. Yet there are no known mechanisms, including those

related works to be investigated in Chapter 7, to address all these challenges. For

example, any pulli ng-based mechanism, which requires each node to pull security

 32

updates from a dissemination center, will fail to instantaneously keep nodes updated

unless every node probes the center very frequently or knows the availabilit y of new

security updates immediately. Any unicast-based dissemination mechanism, if requiring

the dissemination center to directly send security updates to each individual node, forces

the center to record the identities of all nodes that want to be updated, violating the

scalabilit y requirement. IP multicast, whose group-based subscription paradigm frees a

dissemination center from recording the individual identities of any joined nodes, is

however, based on a tree-like structure for disseminating information, and has littl e

resili ency and is susceptible to interruption threats. The deployment of IP multicast has

also been very diff icult [Francis 2000]. Broadcasting mechanisms, some of them

designed to be resili ent, are typically only applicable to local area networks and not

portable to the whole Internet. Worse, security issues arise in all these candidate

mechanisms and must be addressed.

We believe that in order to address all these challenges, a special network must be

built . Physically wiring such a network is infeasible. Logically, an alternative is to build

into routers some special mechanism that can provide Revere-like service, such as multi -

path forwarding of security updates. However, this results in several problems. First,

conceptually this violates the layering model of the Internet; routers should be used for

general-purpose packet-forwarding service at the IP level, not for special-purpose

services like Revere. Every node that needs security updates typically has its own

specific requirements or preferences regarding receiving security updates. Having

routers address those particularities may cause very complex operations. Second, this

would face a deployment challenge; adding new software to routers is known to be a

diff icult problem. A close example is IP multicast, which is still striving to achieve

widespread router-level implementation after years of efforts. Third, such a router-level

 33

network for security update dissemination, if implemented, would require a significant

effort to manage and secure. This makes Revere face a dilemma: if Revere-enabled

routers do not enforce security well , Revere, as a high fan-out dissemination system, can

propagate corrupted or replayed security updates to a large number of security update

recipients; but if Revere-enabled routers enforce security, security issues such as key

management, node authentication, message verification, and replay prevention must be

handled by those Revere-enabled routers.

We propose to build an overlay network on top of the Internet, corresponding to each

special type of security update (Figure 3.1). Such an overlay network will be composed

of all nodes that “subscribe” to receive those security updates. On top of the Internet,

each node will run Revere at application level, which greatly enhances the flexibilit y of

each Revere node in terms of configuration and adding new functionaliti es. An

application-level service will also be easy to deploy: a node can simply install Revere and

start running it in the same way as normal applications. An application-level service will

be easy to debug as well . More important, we can now start designing this overlay

network to meet all the challenges that Revere faces.

Every Revere node on this overlay network could just be a leaf node that purely

Hardware-
layer

Application-
layer

Fig 3.1 Application-layer overlay network
on top of hardware layer

 34

li stens to new security updates. Unfortunately, this will t urn an RBone effectively into a

unicast-based star-like structure, with a dissemination center as the source for every node.

Such a structure will require a dissemination center to store the addresses of all Revere

nodes and transmit security updates to each individual node, one by one, and will l ack

redundancy as we discussed earlier. As a result, it is obviously not scalable, not eff icient,

and does not support transmission redundancy.

Instead, Revere allows each node to forward security updates to others, instead of

relying only on a dissemination center. Therefore, an RBone will be composed of some

middle Revere nodes “ inside,” which forward security updates to other nodes, and some

leaf Revere nodes “outside,” which simply receive updates. As we will il lustrate later,

each node can choose to have multiple RBone nodes as its parents, corresponding to

multiple as-disjoint-as-possible dissemination paths.

Scalabilit y is also much easier to address now. By allowing each node on an RBone

to forward security updates to other nodes, security updates can be propagated hop by

hop. As a result, a dissemination center, or any other node, does not have to remember

the identities of all security update recipients, save to remember the keys of all other

nodes in order to verify the authenticity of all nodes. This hop-by-hop transmission

characteristic allows each node only to record its parents and children on an RBone.

3.1.2 A Self-Organized Network

Consisting of Revere nodes and directed links between them, an RBone is dynamic.

New nodes may wish to join the RBone at any time. On the other hand, an existing node

may crash, become corrupted, or simply want to leave the RBone. Some existing nodes

may also be disconnected for some time, and then come back. Revere needs to adapt

itself to all these situations quickly through a distributed cooperation.

 35

The answer to this problem is to let the RBone organize itself. When a new node

wants to join Revere, it should identify and then contact some existing Revere nodes on

an RBone, and then try to attach itself to the RBone at the best possible position, finally

becoming a child of one or more existing Revere nodes. When an existing node quits,

disconnects, crashes, or misbehaves, other nodes associated with it should detect the

anomaly and isolate themselves from this node. The isolating actions allow each parent

of this broken node to dismiss the node as a child, and each child of this broken node to

attach to a new parent. Similarly, when a child node detects that one of its parents

becomes too distant, the node may also choose to detach itself from this parent and attach

to a closer one, in order to achieve better dissemination eff iciency.

With such self-organization, no manual intervention is required to manage an RBone.

Some problems remain to be solved, however. For example, how can a node decide

whether to attach itself to another node? Or, since an RBone can comprise milli ons of

nodes, for scalabilit y consideration, the self-organization of an RBone must rely only on

partial knowledge at each node; thus, how can an RBone self-organize itself based on

partial knowledge?

3.1.3 A Resili ent Network

Revere is designed to disseminate security updates in a hostile environment. Because

of the importance of security updates, Revere nodes desire high assurance relative to

receiving security updates, even if the data may have to come through a hostile

environment with all kinds of possible attacks.

There are many approaches to providing strong resili ency. One possible approach to

building a resili ent network is to use some feedback mechanism, such as signed

acknowledgements or signed negative acknowledgements. However, this is diff icult.

 36

First, being a general problem as discussed in Chapter 2, single-path dissemination or

feedback is subject to interruption threats. Second, the large scale with the vast quantity

of participants makes verification of positive or negative acknowledgements from these

participants even harder. The originator of the update, or any verifying server, probably

cannot handle milli ons of acknowledgements, especially when doing so requires

cryptographic authentication. Even with a distributed or hierarchical method, if a

verifying server had to maintain all necessary keys, a heavy overhead would result.

Additionally, the protection of verification servers adds new problems. Third, due to the

lack of trust, a feedback-based approach would require that all participants have trusted

keys, leading to a huge key distribution and management problem. Last, as for using

negative acknowledgements to avoid an acknowledgement explosion, unfortunately a

recipient won’ t send a negative acknowledgement at all i f it does not know that it should

have received an update. This approach only works when it is feasible for a receiver to

realize that he has not received a security update that was sent. Security updates, for the

most part, will not be sent periodically, but on the occurrence of unusual or unpredictable

events. Thus, Revere nodes will have no hint of when they might want to generate a

negative acknowledgment. Also, a negative acknowledgment has the same problem as a

positive acknowledgement in preventing itself from getting dropped.

Instead, as we discussed in Chapter 2, we propose to build redundancy into the

RBone to achieve resili ency. Each node interested in receiving security updates can

choose to attach itself to an RBone and obtain multiple copies of security updates to

achieve security assurance (Figure 3.2 shows a mini RBone where some nodes have more

than one paths). Thus, if a node can receive data from multiple disjoint paths, only when

all paths are corrupted will t he receiver be prevented from receiving the data.

 37

While it seems that this method wastes bandwidth, the disseminated security updates

are usually of small size, low frequency but vital importance. As long as the number of

disjoint paths is not too high, using redundancy is acceptable. Later in this chapter we

will describe how to compose or detect disjoint paths.

3.2 RBone Formation

Starting from only a dissemination center, an RBone is formed as more and more

nodes join. During its join procedure, a new Revere node has to locate some existing

Revere nodes first, negotiate with them, and decide which of those nodes together, as

parents, can provide the best eff iciency and resili ency. In Section 3.2.1 below, we first

address the search for existing Revere nodes, and in Section 3.2.2, we describe the three-

way-handshake negotiation procedure, the basic operation during a node’s join

procedure. In Section 3.2.3, we discuss the li fe cycle of a join procedure, especially

when a join procedure ends. Parent selection, a key component of the three-way-

handshake, will be further ill ustrated in Section 3.2.4.

Fig 3.2 An RBone rooted at a dissemination center

A dissemination center

A Revere node

 38

3.2.1 Finding Existing Revere Nodes

To join an RBone, it is necessary for a new node to contact some nodes that have

already joined the RBone. Revere allows each new node to use its own method to search

for those nodes. Various methods can be employed, such as using configured knowledge

(for example, the address of the dissemination center or a local designated Revere node),

contacting a directory service, applying a multicast-based expanding-ring or expanding-

wheel search [Rosenstein et al. 1997], or adopting lookup services used in peer-to-peer

systems [Ratnasamy et al. 2001] [Stoica et al. 2001]. Here we describe and analyze

several exemplary methods of node searching:

• Configured knowledge

A new node can start up with the knowledge of some existing Revere

nodes. For example, the dissemination center that provides security

updates to every node is publicly known already. The new node can

simply contact this node. Or, in the local administrative domain of the

new node, there may be a node that is already on the RBone and

configured as the initial contact for new nodes wanting to join Revere.

• Directory service

A directory server can be established to store information regarding some

existing Revere nodes. A new node, in order to locate some existing

Revere nodes, can send a query to this directory server. Included in the

query could be the node’s IP address, the type of security updates that it

needs, the number of existing nodes that it requires, the method for node-

to-node communication that it prefers, the security scheme that it enforces,

etc. Upon the receipt of a query, the directory server can then check its

 39

database of existing Revere nodes; once matches are found, the server then

sends a response back to the new node with a list of existing Revere

nodes.

Given that Revere is a large-scale service extending over the entire

Internet, a single directory server faces a serious scalabilit y problem.

First, the directory server may be overloaded by handling an

overwhelming number of requests. The directory service may be

replicated, but this leads to database synchronization issues between

different replicas. Second, maintaining the database of a directory server

is not simple. After a new node joins an RBone, its parents, or the new

node itself, or some third party, should notify the directory server of the

new membership. Or, after an existing node quits an RBone, a withdrawal

notice should be sent to the directory server as well . Worse, some nodes

may become disconnected or broken without being able to notify the

directory server, resulting in obsolete information at the directory server.

To provide scalable directory service, another alternative is to build a

distributed directory service. For example, each administrative domain

can have a directory server, responsible for maintaining the information of

existing Revere nodes inside the domain and handling requests also from

inside the domain. This, however, limits the scope within which a new

Revere node can search for existing Revere nodes, and adds a

management burden to Revere.

 40

• Multicast-based expanding-disc search1

All of the above problems have led to various IP-multicast-based methods.

IP multicast, first proposed in [Deering 1989], is a mechanism by which

packets can be eff iciently routed from one source to many destinations.

Other than the eff iciency with which queries may be distributed to many

destinations simultaneously, there are two other advantages afforded by

multicast for this application:

o A client may query the set of servers without knowing their

explicit locations (this capabilit y is available irrespective of the

IP multicast routing protocol).

o A client may use TTL-based scope control in order to contact

the topographically closest servers first.

Given the capabiliti es of multicasting, it is possible to design a system that

eff iciently transports directory queries to a set of distributed directory

servers. These servers would ideally be located at the actual sources of the

directory information (e.g., one directory server at each Revere node site).

There is at least one such implementation, called march [Kashima 1995].

march is a multicasting distributed directory database system that relies on

a single multicast address for all directory servers. It uses TTL scope-

limiti ng to constrain the impact of individual queries. By iteratively

expanding the TTL, a march client finds the closest (topographically

speaking) FTP site containing the requested information. This type of

1 Discussions on multicast-based expanding-disc search and multicast-based expanding-wheel
search are based on “MASH: the Multicasting Archie Server Hierarchy” by Adam Rosenstein,
Jun Li, and Siyuan Tong, which appeared in Computer Communication Review, Vol. 27, No. 3,
ACM SIGCOMM, July 1997.

 41

search is often referred to as an “expanding-ring” search. Expanding-ring

searches are inherently robust, as any servers that fail to receive a query

during an iteration have another opportunity to receive the query during

the next iteration.

However, there are drawbacks to the march approach. In each iteration of

an expanding-ring search, queries must be routed to all march servers that

were reached on previous iterations. Such flooding (even inside a limited

TTL radius) of a pervasive multicast group can result in unnecessary

traff ic. Owing to this re-querying of the inner (previously queried) search

rings, such searches may be more aptly referred to as “expanding-disc”

searches. Although the inner disc does not service repeated queries in the

march architecture, the routers do not understand this and must still route

all repeated queries to the same servers at potentially great cost with no

additional benefit. Should march become a popular service, this poor

scaling factor could contribute to Internet congestion.

• Multicast-based expanding-wheel searchMASH approach

[Rosenstein et al.1997] developed a MASH service to search for FTP sites

that contains a particular file. This MASH approach can be generalized

for the purpose of searching existing Revere nodes. By constructing a

two-level hierarchy of march servers, MASH employs a hierarchical

approach to address the problems posed by expanding-disc searches. This

service is characterized by one well -known, pervasive multicast group

Gglobal, and a number of topographically localized subgroups. The well -

known group is much like march's group, but its number of members is

 42

comparatively small , and is self-adjusting as the number of servers in

operation scales up. The subgroups each have their own multicast

address. The servers dynamically organize themselves into these groups.

Each group includes one (only) member of the pervasive group. This

“parent member” receives queries from clients on the global multicast

address, Gglobal, and dispatches these queries to its subordinate servers via

its unique local group multicast address.

In expanding-disc searches, the client completely controls the impact of its

searches. Since only a TTL limit i s used, maximum radius is the only

dimension that may limit the scope of a search. In a hierarchy, each

hierarchical layer can share the burden of restricting the search scope.

What results is a search pattern whose impact, with respect to the

multicast traff ic it generates, is greatest at its frontier, and restricted to

minimal “spokes” en route to the frontier. Thus, this search is called an

“expanding-wheel” search.

Figure 3.3 shows an example of this approach. First, the client C sets its

TTL limit to some small i nitial value (the dashed inner circle) and

transmits its query to the global multicast address. Only the root level

servers (dark fill ed-in circles) li sten to this address.

In Figure 3.3, C's first transmission will reach servers Y and Z. These

servers will either respond themselves (if their local databases match the

query) or they will retransmit C's query by multicasting it to their

respective groups' multicast addresses. If any server hearing this query

can respond, it does so directly to C. If C hears no responses for some

 43

time, it will i ncrease its TTL and retransmit its query again on the global

multicast address. In our example, the rebroadcast query will reach root

servers X, Y, and Z (the dashed, outer circle). Y and Z will i gnore the

retransmitted query (by checking a record of recent queries) but X will

respond in the same manner that Y and Z did the first time. The advantage

of this method over an expanding-disc search is that on TTL-expansion,

the multicast infrastructure will have to carry the unneeded retransmission

only to Y and Z. In an expanding-disc, however, the retransmission would

go to all of Y's and Z's members (all previously reached destinations).

C

X

Y

Z

C MASH client with inner and outer searching rings

MASH subgroup with root server (solid) and subordinate servers
(hollow)

Fig 3.3 Expanding-wheel topology

 44

Under significant scaling conditions, expanding-wheel can lessen the

multicast traff ic load tremendously. This reduction is due to the fact that

the majority of servers are children who do not even subscribe to Gglobal,

and thus are never involved in the multicast distribution tree for the

repeated queries.

Another contribution of this work is a group management protocol to form

hierarchical groups automatically, where higher-level servers are “parents”

of the lower-level servers, the “children.” Refer to [Rosenstein et al.1997]

for more details.

Revere does not have mandatory requirements concerning what service is used to

discover existing Revere nodes. Every exemplary method discussed above can be used.

Revere leaves this decision up to each individual node.

3.2.2 Three-Way-Handshake Protocol

After locating some existing Revere nodes, a new node can then negotiate with those

nodes to attach itself to some of them as a new child. The negotiation between a potential

child and a potential parent is a reciprocal selection procedure. An existing node needs to

determine whether it wants to add the new node as a child. The new node, on the other

hand, needs to determine whether it wants the existing node to be its parent.

The negotiation is handled by a three-way-handshake protocol, as shown in Figure

3.4. A potential child first sends an attach request to a potential parent. The potential

parent decides whether to adopt the applicant as a new child, and sends back a reply

message. The child adoption decision is machine-specific: some machines may only

check to see if they have reached the maximum number of children that can be

accommodated; some machines may check for more information before they make a

 45

decision. Revere allows pluggable machine-specific child-adoption modules. For

example, because it is prone to disconnection, a mobile node may choose only to be a leaf

node on any RBone, without accepting any attach requests. Or a multicast-capable node

may prefer nodes that can hear multicast messages as well , allowing it to maintain a

single multicast IP address that reaches multiple child nodes.

If the potential parent agrees to add the applicant as a new child, it will add the

applicant as a pending child and reply with an attach acknowledgement message to

indicate the approval (otherwise, it will send back a negative acknowledgement

message). The pending child is also bound with a timer, requiring that a confirmation

message be received from the pending child within a specific period.

Upon the receipt of a positive attach acknowledgement message from the potential

parent, the new node decides whether accepting this potential parent will im prove its

resili ency and eff iciency for receiving security updates. If so, it will accept the parent,

Potential child Potential parent

Locate
existing
nodes

Process
attach
request

Select
parents

Attach
new
child

New child New parent

AttachReq

AttachConfirm

AttachAck

Fig 3.4 Three-way-handshake during join procedure

 46

possibly “divorcing” an existing parent. This decision procedure will be discussed

further in Section 3.2.4. If the node decides to add this new parent, it will send back a

confirmation message. When received, the parent will convert the requesting node from

a pending child to a regular child.

During the three-way-handshake procedure, the transmission mechanism that the new

parent uses to forward security updates can also be negotiated. The positive

acknowledgement can contain an ordered list of transmission mechanisms preferred by

the potential parent, and the confirmation message can carry the transmission mechanism

selected by the child.

A potential parent can also assist in finding other parents by randomly choosing one

or more of its current children and including them in its acknowledgement messages.

The potential child is free to contact these nodes or ignore them, depending on its

selection criteria.

Loss or transmission errors may happen for messages used in the three-way-

handshake procedure. A Revere node relies on timers to handle this. For example, after

an AttachReq is sent, if an AttachAck from the other side is not received in time, this

node can treat the AttachReq message as lost or caught in error, or treat the other side as

dead or non-existing. Similarly, after a positive AttachAck message (or an

AttachConfirm message) is sent from a node, the node will begin waiting for an

AttachConfirm (or HeartBeatFromChild message) from the other side. We will ill ustrate

this in more detail when discussing the data structures in Section 3.4.

3.2.3 The L ifetime of a Join Procedure

A new node may need to continuously search for candidate parents until it finishes

the join procedure. A node is allowed to simultaneously negotiate with multiple potential

 47

parents. After a new node attaches itself to its first parent, the new node is then already a

Revere node that belongs to an RBone, and is thus reachable by security updates through

this parent (if nothing goes wrong). However, a join procedure will not end until all of

the following conditions are met:

• The new node has attached itself to some pre-defined minimum number of

parents.

• The estimated security update delivery latency from the dissemination

center is faster than a pre-defined minimum value.

• The resili ency on receiving security updates is stronger than a pre-defined

minimum value.

Figure 3.5 shows that a new node X contacts four potential parents: 1, 2, 3, and 4.

AttachReq

AttachConfirm

Positi ve AttachAck y

Negative AttachAck n

Fig 3.5 A new node’s three-way-handshake
with four existing Revere nodes

4 2

1

3

y n

y

y

X

 48

After sending AttachReq messages to them, nodes 1, 3, and 4 send back positive

AttackAck messages, but node 2 denies node X’s attachment request. Node X selects

nodes 1 and 3 to be its parents and sends back an AttackConfirm message. As a result,

two new parent-child relationships are established.

3.2.4 Parent Selection

A new node typically needs multiple parents. Ideally, a Revere node should select

several parents from all available Revere nodes, such that one parent provides the fastest

security update delivery and the other parents offer suitable resili ency. Good parent

selection, therefore, is a necessity.

To describe parent selection, we first introduce the path vector concept. The path

vector of a node describes the characteristics of the fastest path for delivering a security

update from a dissemination center to this node. We also call it node path vector, or

NPV. It has two important parameters: a latency value and an ordered list of nodes to

cross (including the dissemination center and the destination node). In the following we

use npv(n) to denote node n’s NPV.

Similarly, we also introduce parent path vector, or PPV, to describe the path vector

of the fastest path on which parent p is the last hop in forwarding security updates to n.

In the following we use ppv(n, p) to denote node n’s PPV that is associated with parent p.

From the definitions of NPV and PPV, ppv(n, p) is the concatenation of npv(p) and

the link connecting p to n, and npv(n) is the fastest ppv(n, p) among all p’s. For example,

in Figure 3.6, npv(5) is the same as ppv(5, 3), with a 60-milli second latency, and crosses

nodes 0, 1, 3, and 5; but ppv(5, 4) has a 280-milli second latency, and crosses nodes 0, 2,

4, and 5. (Recollect that all path operations are performed at the Revere level, so these

path vectors do not include intermediate routers not running Revere.)

 49

We determine the resili ency level that a parent provides by comparing this parent’s

PPV and the node’s NPV. For instance, at node 5 in Figure 3.6, parent 4’s resili ency is

calculated by comparing ppv(5, 4) with npv(5) (i.e., ppv(5, 3)). We adopt a simple

calculation by comparing the number of overlapping intermediate nodes between the two

paths (the strongest resili ency level is thus 0). In our example, the resili ency level of

parent 4 is 0.

With the notion of path vector, a child c selects its parents as follows. First, a

potential parent x includes its NPV npv(x) in the positive acknowledgement message that

it sends to c. Second, node c evaluates the latency from x to itself. To do this, c can

contact an existing service (such as [Francis et al. 2001]). Or c can timestamp the attach

request message and the positive acknowledgement message, estimate the round-trip time

between x and itself, and use half of that value as the approximate latency from x to c

(which can be further refined during RBone maintenance). Third, combining npv(x) and

the latency information from x to c, node c derives ppv(c, x) and begins running the

parent selection algorithm, by which node c determines whether adding x as a parent

improves its eff iciency or resili ency. The pseudo code in Figure 3.7 depicts this

procedure. Note that if line 5 in Figure 3.7 is executed to replace node c’s NPV, the

0

1 2

3 4

10 ms

20 ms

100 ms

150 ms

5
30 ms 30 ms

Fig 3.6 Path vector at node 5

 50

resili ency of the parents of node c can be changed, since the resili ency level is calculated

by using node c’s NPV.

If the eff iciency and resili ency of a node have not reached certain preconfigured

levels yet, the node can always contact existing Revere nodes to try to improve, even if

the node has reached the maximum number of parents allowed. An existing parent may

be replaced with a better-quali fied parent. For example, node 5 in Figure 3.8 is

configured to have at most two parents, and already has two (nodes 3 and 4), but in an

attempt to improve its eff iciency, node 5 still contacts node 1. In this case, node 1 will

not be used to replace any existing parent of node 5 since the PPV associated with node

1, ppv(5, 1), carries a slower latency than npv(5), and is also less resili ent than ppv(5, 4).

Function boolean selectParent (ppv(c, x)) on node c:
 whether to select node x as a parent.
 npv(c): current path vector of node c.
1 if (npv(c) does not exist) { /* c has no parent yet * /
2 npv(c) ← ppv(c, x)
3 return true
4 } else if (ppv(c, x) is faster than npv(c)) {
 /* x improves eff iciency * /
5 npv(c) ← ppv(c, x);
6 return true
7 } else if (∃ a parent m of node c, such that
 resili ency(x) is better than resili ency(m) {
 /* x improves resili ency * /
8 return true
9 } else if (c has not reached the minimum number

 of parents) {
10 return true
11 } else {
 /* x improves neither eff iciency nor resili ency * /
12 return false
13 }

Fig 3.7 Parent selection based on path vector

 51

3.3 Adaptive Management of RBone

The changes to an RBone must be detected and quickly dealt with. Changes happen

when a new Revere node joins, when an existing Revere node crashes or leaves, when

one side of a parent-child link wants to untie the connection, when the characteristics of

the connection between two Revere nodes changes, when a parent is detected as

corrupted, when a better path is detected, or for any similar reason.

Managing an RBone is a distributed task. While an RBone can be comprised of a

large number of Revere nodes, a change may only be detected by a few of those nodes.

Moreover, because of the large scale of an RBone, every Revere node only has partial

knowledge of the whole RBone, mostly about its neighboring Revere nodes. As a result,

each Revere node has to respond to changes autonomously, thus usually asynchronously,

based on its limited knowledge of the RBone.

Revere supports two different mechanisms for detecting RBone changes: explicit

notification and implicit detection. With explicit notification, a Revere node can send an

explicit notification message to a parent (or a child) to tear down the connection, and

remove that parent (or that child) from its records at the same time. With implicit

detection, a Revere node relies on heartbeat messages to detect if its parents and children

are still alive. Normally, each parent periodically sends heartbeat messages to its

Fig 3.8 Parent selection at node 5

0

1 2

3 4

10 ms

20 ms

100 ms

150 ms

5
30 ms 30 ms

90 ms

 52

children, and each child periodically sends heartbeat messages to its parents. Lack of

heartbeat messages for a child will eventually lead to its removal; similarly, lack of

heartbeat messages from a parent will l ead to the removal of the parent. Heartbeat

messages can also carry timestamps to measure parent-child round-trip time. If a Revere

node detects that a parent becomes distant, and thus ineff icient in delivering security

updates, this node can also remove that parent.

The explicit tear-down messages are in UDP format, and the delivery of those

messages does not have to be guaranteed. In the case where a tear-down message is lost,

the heartbeat mechanism can help. For example, if a tear-down notification from a parent

to a child is lost, the parent will regard the child as already removed and stop sending

heartbeat messages; although the child will still regard itself as a child of the parent for

some period, lack of heartbeat messages from that parent will cause the child to remove

that parent, and stop sending heartbeat messages toward that parent.

After changes are detected, some data structures must be adjusted, such as a node’s

NPV and PPVs. For example, if a to-be-removed parent is on the fastest delivery path to

a node, the removal of that parent changes this node’s NPV—that parent will no longer

belong to this node’s NPV. Or, if the latency from one of a node’s parents is changed,

this node needs to update the associated PPV. Or, if a node’s NPV becomes slower than

a PPV, this node needs to replace its current NPV with its currently fastest PPV.

The adjustment of data structures may propagate. For example, the update of a

node’s NPV can also potentially change the NPVs and PPVs of the descendents of this

node. To handle this, once the NPV of a node is changed, its heartbeat messages toward

its children will carry the new path vector information, allowing every child to adjust its

NPV and PPVs if needed, or even choose a new parent.

 53

The removal of a parent, either due to the lack of heartbeat messages or because of

explicit notification, can cause a node to search for another parent. The node can use the

same methods described in Section 3.2.1.

3.4 Messages and Data Structures

As we mentioned earlier, each Revere node relies on partial knowledge of the whole

RBone to join an RBone, detect and respond to RBone changes, and receive and forward

security updates. In this section we describe the key data structures relevant to RBone

formation and maintenance. Because Revere is implemented in Java, an object-oriented

language, in the following we describe each data structure in an object-oriented style.

Every Revere node on an RBone uses an object called “Joint” to participate in RBone

formation and management. As pointed out earlier, there is an RBone that corresponds to

every specific type of security updates. Table 3.1 shows the main fields of a Joint data

structure.

Table 3.1: Main fields of a Joint data structure

Field Description

parentsInfo Information about parents of this node

childrenInfo Information about children of this node

incomingMessages
Buffered incoming RBone messages waiting to be
handled

rboneMgr
RBone communication manager responsible for
sending and receiving RBone messages

topology Topology information

searchAgent Agent used in search for existing Revere nodes

timeoutEvents List of events that will tim e out at some future time

rboneSecurityCoordinator RBone security coordinator

 54

A Joint object is also a Java thread. The Joint continuously processes incoming

messages that are read by its associated RBone communication manager. As introduced

in Section 3.2 and Section 3.3, there are three main types of RBone messages: messages

used in a three-way-handshake procedure, explicit RBone maintenance messages for

detaching a parent or a child, and implicit RBone maintenance messages for supporting

heartbeats from a parent or a child. These messages are all derived from RBone

messages, as shown in Figure 3.9. When processing an incoming message, the parent or

child information may be updated, and new messages can be generated and sent.

A Joint object not only processes incoming messages, it also proactively generates

new RBone messages and sends them to other nodes. Similar to incoming messages,

there are also three types of such messages. First, a new Revere node needs to send

AttachReq messages to some existing Revere nodes in order to attach itself to an RBone.

Here, the search agent can be invoked whenever existing Revere nodes are to be found,

and can be configured to use a locally preferred searching method. Second, during

RBone maintenance, a Revere node needs to periodically send heartbeat messages to its

Message

RBoneMessage

AttachReq

AttachAck

AttachConfirm

DetachReq

DetachNotify

HeartBeatFromParent

HeartBeatFromChild

Fig 3.9 RBone messages (solid lines denote inheritance)

 55

parents or children. Third, a Revere node may also need to send a detachment message to

a parent or a child in order to specifically tear down the relationship.

A Joint object has references to parent information and child information. The

parentsInfo object contains the list of current parents of a local Revere node and the path

vector of this node. It also includes information concerning negotiations with those

potential parents. AttachAck messages from those nodes that are not potential parents

will simply be discarded. Similarly, the childrenInfo object contains the list of current

children of a local Revere node. Those pending children, who have been accepted as this

node’s children, but have not confirmed their final willi ngness yet, are also kept in this

object.

An RBone communication manager is responsible for sending and receiving RBone

messages, and it can be configured to use either UDP or TCP for RBone message

communication. An RBone communication manager is implemented as a thread, and

continuously waits for incoming RBone messages at a particular port number. Support

for TCP-based RBone communication involves more operations and higher cost than

UDP-based communication: for every Revere node to communicate, a separate socket

and an associated thread must be created. We use UDP-based RBone communication as

the default.

A Joint object also maintains topology information, mainly a list of measured round-

trip times between the local node and another Revere node. The round-trip time can be

measured by piggybacking timestamps on proper RBone messages. The recorded round-

trip time with a Revere node can also be further refined by incorporating the newly

measured round-trip time with the same node. If it were available, underlying physical

topology information could also be stored here.

 56

The Joint also keeps a list of events that can happen in the future. There are two

types of such events: a scheduled task to perform at a particular future moment, and an

anticipated event to happen before a particular future moment.

A scheduled task is mainly the sending of a message toward another Revere node,

including sending an AttachReq message at a future moment if a Revere node has not

finished the join procedure, sending a heartbeat message toward a child, or sending a

heartbeat toward a parent.

An anticipated event is mainly concerns receiving a particular type of message from

another Revere node. An anticipated event can be the reception of the following

messages from a Revere node:

• AttachAck message: After a node sends out an AttachReq message toward

a potential parent, it initiates a three-way-handshake procedure. It

establishes the proper negotiation state (including remembering the

potential parent), sets up a timer, and begins waiting for the AttachAck

message (positive or negative) from the potential parent. If an AttachAck

message is not received before the timer expires, this node will destroy the

negotiation state information; otherwise, this node will revoke the timer

and begin processing the AttachAck message.

• AttachConfirm message: During the three-way-handshake procedure, if

the potential parent agrees to accept the potential child, it will remember

the potential child as a pending child, and send back a positive AttachAck

message. The potential parent will also set up a timer and begin waiting

for an AttachConfirm message from the potential child. If an

AttachConfirm message is not received before the timer expires, the

 57

potential parent will remove the pending child; otherwise, it revokes the

timer and begins processing the AttachConfirm message.

• HeartBeatFromParent message: Corresponding to every parent, a Revere

child node expects periodic heartbeat messages from this parent. A

Revere node also sets a timer to handle this, typically with a time-out

period that is several times the regular heartbeat period in order to be

resili ent to accidental heartbeat message losses. If no heartbeat message is

received from a parent before the timer expires, this node will regard that

parent as dead and remove it; otherwise, when a heartbeat message is

received, the timer will be reset and another round of waiting for a

heartbeat message will begin.

• HeartBeatFromChild message: This is very similar to

HeartBeatFromParent message, except that a Revere node now expects

heartbeats from one of its children.

Timer-controlled message communication makes an RBone resili ent to message loss.

As an example, after a node sends out an AttachConfirm message to another Revere

node, the first node (the former) immediately records the second node (the latter) as its

parent, and begins waiting for HeartBeatFromParent messages from the second node. If

the AttachConfirm message is lost, the second node will tim e out on waiting for the

AttachConfirm message, and remove the first node as a pending child, and certainly

never issue HeartBeatFromParent messages toward the first node. The first node, without

hearing HeartBeatFromParent messages from the second node at all , will finally time out

and remove the second node as a parent.

 58

The rboneSecurityCoordinator is related to securing an RBone. RBone security will

be discussed in Chapter 5 in more detail .

3.5 Building a Common RBone

So far in our discussion, corresponding to every particular type of security update,

there is an RBone rooted at a specific dissemination center. Different RBones are

independent of one another and every RBone is an autonomous system, formed and

maintained by itself.

This scales well when a node only needs to li sten to several types of security updates.

However, when there are many types of different security updates to li sten to, a node may

become overloaded. For a Revere node that is interested in n types of security updates, it

has to join all n type-specific RBones.

In this section, we discuss two alternatives for designing a common RBone for

delivering multiple types of security updates. Instead of being rooted at a dissemination

center, a common RBone is rooted at a single rendezvous point, or rooted at multiple

rendezvous points.

3.5.1 Common RBone Rooted at a Single Rendezvous Point

A common RBone rooted at a rendezvous point is very similar to an RBone rooted at

a dissemination center, as described earlier in this chapter. Such a common RBone is still

a self-organized overlay network with an open subscription paradigm. However, every

dissemination center now has a link toward the rendezvous point. Figure 3.10 shows a

sample RBone with a single rendezvous point connected by three dissemination centers,

where each center is responsible for delivering some type of security update.

A common RBone rooted at a single rendezvous point has the following implications:

• The path vector of every Revere node will start from the rendezvous point.

 59

• During the join procedure of a new node, any dissemination center will

not respond to an attachment request; instead, the new node can contact

the rendezvous point to start a three-way-handshake procedure.

• When a dissemination center needs to deliver a security update to milli ons

of recipients, it first sends the security update toward the rendezvous

point. When a rendezvous point receives the security update, it then

further disseminates the security update.

• A Revere node may now receive a specific type of security updates that it

did not subscribe to. In other words, this node is simply a forwarding

node for those security updates. (In fact, the type-specific RBone

discussed in previous sections could also have such issues, namely some

Fig 3.10 A common RBone based on a single
rendezvous point

A dissemination center

A rendezvous point

A Revere node

 60

Revere nodes may receive unneeded security updates, depending on what

a dissemination center delivers.) In this case, the node will still run

duplicate checking to help avoid dissemination loops. The security check,

however, is optional since this node will not use those updates at all; it can

rely on other nodes that really need those security updates to authenticate

them. We will discuss duplicate checking and security checking further in

Chapter 4 when we discuss the dissemination procedure.

A common RBone rooted at a rendezvous point also introduces new issues regarding

resili ency: if the rendezvous point is crashed or subverted, or if the path from a

dissemination center to the rendezvous point is broken, security update dissemination will

fail . This can be addressed from two aspects. First, a rendezvous point, as a criti cal

resource, must be protected in the same manner as that of a dissemination center.

Second, the path from a dissemination center to a rendezvous point should be carefully

monitored. If there is any problem with the path, it must be solved immediately.

3.5.2 Common RBone Rooted at Multiple Rendezvous Points

Instead of having a single rendezvous point, multiple equally capable and resili ent

rendezvous points can be established, probably sparsely distributed over the network.

Every dissemination center has a link toward every rendezvous point. A sample RBone

with multiple rendezvous points is shown in Figure 3.11.

Such a common RBone has the following implications:

• The path vector of every Revere node will start from one of the

rendezvous points.

• During its join procedure, a new node can contact one of the rendezvous

points to start a three-way-handshake procedure.

 61

• When a dissemination center needs to deliver a security update to milli ons

of recipients, it first sends the security update toward all rendezvous

points. When a rendezvous point receives the security update, it then

further disseminates the security update.

• Just as with a common RBone rooted at a single rendezvous point, a

Revere node may receive security updates it does not need. The related

discussion in Section 3.5.1 applies here, too.

With multiple rendezvous points, a common RBone becomes more resili ent. An

attacker must compromise all the rendezvous points in order to stop the initiation of

security update dissemination.

Fig 3.11 A common RBone based on multiple
rendezvous points

A dissemination center

A rendezvous point

A Revere node

 62

3.6 Conclusions

The Internet provides many different kinds of message transmission services, from

the lower-level best-effort message delivery to the higher-level reliable message

transmission. However, security update dissemination poses a unique challenge to

sending a moderate amount of information to milli ons of recipients. This chapter shows

that by forming an overlay network of those recipients at the application level,

tremendous communication power and flexibilit y can be achieved, while successfully

addressing challenges such as scalabilit y and resili ency.

RBone, as such an overlay network, supports an open subscription paradigm. A new

node that wants to receive a specific type of security update can simply attach itself to

some existing nodes on the RBone for this type of security update. By proposing a three-

way-handshake procedure, this chapter ill ustrates that a join operation can be simple but

effective. RBone maintenance, which is designed to handle departures,

disconnectedness, crashes, corruption or other changes to Revere nodes, ensures that an

RBone is resistant to unpleasant problems while still maintaining valuable features such

as scalabilit y and resili ency. We also demonstrate that self-organization is not only

flexible, but also powerful.

A highlight that comes with RBone self-organization is that every node can choose its

own mechanisms for many aspects of communication, including the minimum number of

parents to have, the maximum number of children to have, the preferred transmission

mechanism for forwarding security updates to a child, and so on. This chapter also

describes an important discretionary decision-making procedure: how to select a parent.

With successful parent-selection algorithms, not only is the eff iciency of receiving

security updates considered, but also the resili ency of a node to receive those updates.

 63

4CHAPTER 4

Dissemination Procedure

Revere supports a dual mechanism for delivering security updates: pushing and

pulli ng. Using pushing, a dissemination center can broadcast a security update via an

RBone to all connected nodes. Using pulli ng, an individual Revere node can request

security updates. Pushing is the main delivery method. Pulli ng, on the other hand,

allows a node to catch up with any missed security updates.

Although pushing and pulli ng are used in combination in the real world, for clarity,

we will discuss pushing and pulli ng separately in this chapter. This chapter is organized

as follows. First, we discuss the dissemination principle and its relationship with other

software components in Section 4.1. Following that, the role and properties of a

dissemination center are discussed in Section 4.2, and the format of security updates is

explained in Section 4.3. Section 4.4 begins the discussion of pushing operations, where

the receiving, processing and forwarding of a security update at each hop will be

ill ustrated. Section 4.5 describes the pulli ng operation, where we explain why a

repository-server-based pulli ng mechanism is needed and show how it works. Finally,

we raise some open issues and conclude this chapter.

4.1 Dissemination Pr inciple

4.1.1 The Scope of Revere

In terms of disseminating security updates, what does Revere do and what does

Revere not do?

 64

First, it is acceptable for a Revere node to receive multiple copies of the same security

update. Because of the small size, relatively low frequency and criti cal importance of

security updates, Revere can afford to deliver a copy of a security update from every

parent to every child, assuming no failures. As we saw in Chapter 3, every Revere node

on an RBone is allowed to have multiple delivery paths. It is not only worthwhile, but

also important to “waste” some bandwidth to ensure delivery.

Second, no strict global reliabilit y is provided for delivering every security update to

every recipient. Perfect delivery to all nodes is often not vital, although a security update

should be delivered to at least a high percentage of all nodes. During a pushing session

of security updates, neither the dissemination center nor any third party is responsible for

providing reliable delivery. Even though redundant delivery is supported, pushing is still

a best-effort operation. Revere defers the reliabilit y provision to every individual node.

It is up to an individual Revere node itself to determine how many delivery paths to

obtain and maintain, to select which transmission mechanism to use for receiving security

updates and which transmission mechanism to use for forwarding security updates, to

verify whether it has received all the security updates, and to retrieve missed security

updates.

Third, the dissemination service that Revere provides, including pushing and pulli ng,

is a general service only for delivering information. A Revere service client may find it

also needs other relevant services, such as a security update generating and reporting

service by a third party, security update management at a dissemination center, or the

application of newly received security updates at a Revere node. These services,

however, are not part of Revere. For example, when a dissemination center (or probably

actually its system administrator) has information of a newly discovered virus, it may

decide to simply send information that a new virus is found, or decide to distribute the

 65

signature of the new virus as well , or decide to also include the remedy for the virus. A

recipient certainly will respond in different ways when receiving those security updates.

The point here is that Revere is only responsible for delivering security updates.

4.1.2 Characteristics

During the period of disseminating a security update, what delivery characteristics are

important?

To review our discussion in Chapter 1 (Section 1.4), such characteristics are fast,

resili ent, scalable, and secure. Since dissemination is divided into pushing and pulli ng,

those properties should be maintained during both operations.

To be fast, in addition to designing an RBone to eff iciently forward security updates,

Revere tries to ensure that the processing time for a security update at each hop is

minimal. Note, just as it does during a pushing session, a Revere node that pulls security

updates may also need to forward a newly pulled security update to its children;

therefore, fast processing is desirable for both pushing and pulli ng.

To be resili ent (as we saw in Chapter 3), an RBone, as the channel for delivering

security updates, supports resili ency through redundancy. Every node can choose to have

multiple delivery paths, therefore multiple parents, to get security updates pushed

throughout an RBone. From the pulli ng point of view, a Revere node should also be

allowed to contact multiple places to obtain missed security updates.

To be scalable, those cases that are “rare” at lower scale may become common and

must be handled. Node disconnection, for example, will not be rare when the number of

Revere nodes increases to certain level; worse, different nodes may have different

disconnection periods, and thus might incur different sets of missed security updates. In

addition, scalabilit y of Revere in terms of dissemination also concerns the speed of

 66

processing security updates, the cost of storing relevant data structures, and the overhead

of communication among Revere nodes.

To be secure, every security update must be verified upon its receipt. Corrupted

security updates must not be forwarded. We defer security-related discussions to

Chapter 5.

4.2 Dissemination Center

A dissemination center is responsible for disseminating security updates. In

principle, anybody could set up a machine to be a dissemination center for some type of

security information; however, users may not trust such a machine at all . We believe that

a dissemination center should be strongly protected. We also believe that a dissemination

center can quickly and reliably obtain security information that Revere subscribers want.

Such a dissemination center can be much more easily trusted and accepted by Revere

nodes, and can serve a great number of recipients.

A dissemination center is usually set up by a prestigious organization. For instance, a

well -known anti-virus center can set up a dissemination center for new virus signature

distribution, or an esteemed certificate authority may declare itself a dissemination center

for sending certificate revocation lists. There could be more than one dissemination

center for a specific type of security update (such as an early-warning signal). In this

case, a cautious user can subscribe to multiple centers to cross check security update

information.

As discussed in Chapter 3, the RBone dissemination center only needs to remember

the identities of its direct children. This greatly helps the scalabilit y, because the

dissemination center then does not need to keep track of its whole associated RBone.

Maintaining a certain number of children is almost a constant cost. For example, suppose

 67

there are one milli on Revere nodes in an RBone, but its dissemination center only has ten

children. The dissemination center then only needs to remember all of its ten children,

and has no need to know the total number of Revere nodes in the RBone. Essentially,

because every direct child of a dissemination center further forwards a newly received

security update, it is suff icient for the center to forward a security update only to all it s

direct children in order to reach all Revere nodes.

Some information elements of a dissemination center are well known. For instance,

the IP address of the center, the type of security updates that the center is in charge of,

and even the geographical location of the center are probably publicly known. On the

other hand, some information elements must be kept secret. For example, it would be

disastrous if the private key of a dissemination center was disclosed.

4.3 Secur ity Update Format

Figure 4.1 shows the format of a security update. It contains the following fields:

• Type A number can be used to represent a specific type, such as “new virus

signature,” “ new intrusion pattern,” “early warning signal,” “ security

patch,” and so on.

• Seqno The sequence number of the security update, ordered within the

specified type.

• Timestamp The departure time of the security update from the dissemination

center.

seqno timestamp payload signature type

Fig 4.1 The security update format

 68

• Payload The real content of the security update.

• Signature The signature that protects all of the above four fields. It is signed by

the dissemination center.

When there are multiple centers, a security update also needs to carry the IP address

of the dissemination center.

4.4 Pushing: A Store-And-Forward Mechanism

A store-and-forward mechanism is designed for the pushing operation. Via this

mechanism, security updates are pushed from a dissemination center to every node on an

RBone.

A pushing session begins with the composition of a security update by a

dissemination center. After the payload of a security update is provided, the center adds

the type and the sequence number of the security update, stamps the departure time, and

signs the message with a digital signature covering all other fields of the security update.

Strictly speaking, the timestamp here is not precisely the departure time, because the

security update has to be signed after the timestamp is available and before the actual

departure time.

After a security update is composed, the dissemination center then forwards it toward

all it s children on the RBone. Every child will process the security update, deliver it to

the local application that needs the security update, and, if the node has any children,

forward the security update to those children. This store-and-forward procedure repeats

recursively at every Revere node.

The store-and-forward mechanism at each node uses two types of jobs—input job and

output job, and employs one main data structure—security update window. Figure 4.2

shows those components at a Revere node. Both input job and output job are called

 69

dissemination jobs. An input job is responsible for receiving incoming security updates

from parent nodes, processing them, and buffering them into the security update window.

An important part of the processing is checking the authenticity of the update. An output

job fetches security updates from the window and delivers them to local applications that

need security updates or to child nodes on the RBone.

4.4.1 Adaptive Transmission Mechanism

Heterogeneity among RBone nodes will be common at large scale. In particular, the

transmission mechanism between a parent and a child may have to be tailored to the local

conditions or configurations. Revere allows an arbitrary transmission mechanism to be

used when a security update is forwarded from a parent to a child, instead of enforcing

any particular method for forwarding security updates from node to node. The two nodes

themselves can decide which specific transmission mechanism is best for their

communication.

Possible transmission mechanisms include TCP, UDP, TFTP, IP multicast, broadcast,

etc. Email could be used as well . Or, in an extreme case, a floppy disk can even be used

to manually transfer a security update from one machine to another. In principle, all it

output
job 3

output
job 2

input
job 2

input
job 1

output
job 1

security update window

Fig 4.2 I/O jobs and security update window at a Revere node

 70

takes is for the two nodes to agree on the transmission mechanism used between them.

No other nodes will be affected at all .

Such an agreement can be reached during the three-way-handshake procedure when

the child is trying to attach itself to the parent. The AttachReq message from a potential

child should carry a list of acceptable transmission mechanisms for receiving security

updates, ordered by preference. The potential parent, in addition to checking other

constraints when deciding whether to adopt this potential child, would then also check the

list of transmission schemes to see whether it can support at least one of them. If a

particular transmission scheme can be selected, and other child-selection constraints are

all met, the potential parent can then include this selected transmission scheme in the

positive AttachAck message toward the potential child. In turn, the potential child will

also check to determine if an acceptable transmission scheme is selected. If so, it sends

back an AttachConfirm message to formally become the child of the potential parent. On

the other hand, disagreement on the security update transmission mechanism can cause

the three-way-handshake to fail at any point of the negotiation.

By default, Revere supports UDP-based parent-to-child security update transmission.

If a potential child does not specify a li st of acceptable schemes, presumably it will only

accept security updates forwarded using UDP.

Given this flexibilit y in choosing the best transmission scheme, the two

communicating nodes can select the transmission mechanism that is the most adaptive to

the local communication environment, current execution context, or particular user

preference (Figure 4.3). The following are several examples or guidelines for different

needs:

 71

• Adaptation to local communication environment

When the channel between a parent and a child is error-prone, FEC

(forward error control) or another error recovery method may need to be

applied. When the channel is a low bandwidth, the security update can be

compressed at the parent node, and decompressed at the child node upon

receipt. When the channel is capable of broadcasting, such as Ethernet, a

security update may be delivered to multiple nodes through a one-time

broadcast. As another example, TCP is preferred to UDP in terms of

providing reliable delivery, but TCP is more costly than UDP because it

requires a Revere node to maintain a connection with every individual

parent or child node.

• Adaptation to current execution context

Depending on the current running environment, a Revere node might also

have some particular policies regarding forwarding security updates. For

example, when a Revere node is about to forward a security update, if it

happens to have many children at the moment, it may prioriti ze its

children and forward updates first to those with a high priority. On the

other hand, if a node recognizes that all it s parents are heavily overloaded

Fig 4.3 Adaptive parent-to-child security update transmission

context

parent

context

child

channel

 72

with children, it may search for another parent that has a lighter load, and

thus perhaps obtain a faster delivery of security updates.

• Adaptation to par ticular user preferences

Users could have their own preference, too. As a simple example, a user

could specify TCP as the security update forwarding protocol. A user

might prefer not to compress a security update, even when forwarding it

along a low-bandwidth channel, since the compression and the

decompression incur a longer processing time. Additionally, security

updates are usually already of small size.

4.4.2 UDP-Based Pushing

When UDP is used to push security updates, a Revere node incurs low overhead. As

a connectionless transport protocol, UDP allows a recipient to li sten on a specific UDP

port for messages from multiple sources. As a result, a single input job can be used to

receive UDP-encapsulated security updates from all parents. Similarly, a single output

job can be used to forward security updates to all children.

Figure 4.4 shows dissemination jobs and the security update window when UDP is

used. It also shows the relationship between the output job of a parent node and the input

job of a child node. In particular, an output job needs to communicate with multiple

input jobs.

 73

Fig 4.4 UDP-based pushing operation
(Node R has two parents: P1 and P2, and three children: C1, C2 and C3.)

UDP port

C1

C2

C3

P1

output
job

input
job

security update window
R

P2

 74

4.4.3 TCP-Based Pushing

In the case of using TCP for pushing security updates, the overhead will be higher

than using UDP. TCP, as a connection-based protocol, requires both the sender and the

receiver to maintain the connection. To keep listening to TCP-packet-encapsulated

security updates from every source, a Revere node must maintain a separate TCP

connection with that source, and read every incoming message. Since it is natural to

associate each TCP connection with a separate task, and every Revere node is allowed to

have multiple parents, Revere uses multiple input jobs to concurrently read security

updates from all parents.

Similarly, a Revere node may have multiple children, and, corresponding to every

child, a separate TCP connection is required to push security updates toward that child.

Revere uses multiple output jobs to concurrently send security updates toward all

children.

Therefore, a one-to-one association relationship is maintained between the output job

of a parent node and the input job of a child node. Figure 4.5 shows an example of TCP-

based security update pushing. Here, at node N, there are two input jobs corresponding

to its two parents, and three output jobs corresponding to its three children.

TCP connections could be made on a temporary basis: a parent establishes a new TCP

connection with a child for a new security update, delivers the packet representing the

update, then tears down the TCP connection. However, this slows down the forwarding

speed of security updates. TCP connections could also all be handled in a single input

job (or a single output job), but this then requires the input job (or output job) to

multiplex and synchronize among multiple TCP connections, making it a complex issue.

 75

Fig 4.5 TCP-based pushing operation
(Node R has two parents: P1 and P2, and three children: C1, C2 and C3)

TCP port

P1

P2

output
job 3

output
job 2

input
job 2

input
job 1

output
job 1

security update window

R

C1

C2

C3

 76

4.4.4 Concurr ently Running Multiple Transport Protocols

A Revere node could be running multiple protocols in receiving or forwarding

security updates. For instance, a node could run UDP-based input jobs, but TCP-based

output jobs. Or, the node could run one UDP-based input job to collectively receive

security updates from several parents, and run multiple TCP-based input jobs to

separately receive security updates from every other individual parent. Likewise, the

node could run one UDP-based output job to send security updates to some of its

children, and run a TCP-based output job to send security updates toward every other

individual child.

Although TCP and UDP are the two most commonly used transport protocols, Revere

does not exclude other transmission primitives from being used for forwarding security

updates. Again, this can be negotiated when a node tries to attach itself to another Revere

node as a child.

4.4.5 Bootstrap of Dissemination Jobs

Dissemination jobs, namely input and output jobs, can be started immediately when a

node becomes a child of another (immediate bootstrap), or started when a parent node is

about to forward a security update to a child node (on-demand bootstrap). The former

ensures that those necessary dissemination jobs are ready when a security update needs to

be forwarded; the latter helps save some cost by starting them on-demand.

The bootstrap of dissemination jobs has three main components: output job bootstrap

at the parent node, input job bootstrap at the child node, and a necessary information

setup.

The bootstrap of an output job is straightforward. In both immediate bootstrap and

on-demand bootstrap, the parent node will first check to see whether a new output job

 77

must be created and started. For example, when UDP is used, it is not necessary to start a

new output job, unless there is no UDP output job yet at all . However, when TCP is to be

used, a new output job must be created and started that corresponds to the new child.

Step 1 in Figure 4.6 corresponds to the bootstrap of an output job.

The bootstrap of an input job is handled by a node I/O manager. A node I/O manager

is a daemon process that handles two types of messages: LinkInit and LinkInitAck. The

output job of the parent, which could be just created as described in the previous

paragraph, will send a LinkInit message toward the node I/O manager of the child node

(Step 2 in Figure 4.6). Upon receipt of the LinkInit, the node I/O manager at the child

node will check to see if a new input job must be created; if so, a new input job will be

created and started (as shown in step 3 in Figure 4.6). Similar to the creation of an output

Fig 4.6 Bootstrap of dissemination jobs

I/O
manager
(port: z)

I/O
manager
(port: y)

input
job

(port: x)

output
job

Parent node

Child node
AttachConfirm (y)

2. LinkInit (z)

3. Create a new
input job

4. LinkInitAck (x)

5. The child input
job li stens at port
x

6. Security
update

An incoming
security update

1. Create a new
output job if
needed

 78

job, UDP-based pushing will only need one input job per node, but TCP-based pushing

will need one input job per parent.

After both the output job at the parent and the input job at the child are created, some

necessary information must be set up as well , depending on what transmission

mechanism will be used to forward security updates. In particular, it may be necessary to

provide the output job with information regarding the input job at the child. For instance,

when UDP is used, the port number on which the input job of the child li stens to

incoming security updates may not be known to the output job at the parent. Revere

allows the input job at the child to send a LinkInitAck message toward the node I/O

manager at the parent node, which contains necessary information of the input job at the

child (Step 4 in Figure 4.6). Upon receipt of a LinkInitAck message, the node I/O

manager at the parent node will notify the output job of such information (Step 5 in

Figure 4.6).

Revere allows a node I/O manager to sit on an arbitrary port number and piggyback

the port number information of a node I/O manager in other messages, as shown in

Figure 4.6. For instance, based on AttachConfirm messages during a three-way-

handshake procedure, the output job knows the port number of the node I/O manager at

the child node. In turn, based on LinkInit message, the child node knows the port number

of the node I/O manager at the parent node.

After the bootstrap of dissemination jobs, security updates can be forwarded from the

output job at a parent node to the input job at a child node (Step 6 in Figure 4.6).

4.4.6 Processing Secur ity Updates

A security update must be processed before it is forwarded to another Revere node.

Revere is a high fan-out delivery service. It must ensure that a normal node will not

 79

forward security updates that are erroneous, corrupted, or duplicated (including

maliciously replayed).

Through input jobs, Revere mainly performs two checks in terms of processing a

security update: duplicate checking and security checking. Only after a security update

has passed both checks can it be stored in the security update window at a Revere node.

Figure 4.7 shows the procedure of processing a security update.

Duplicate checking. Because of the redundancy built i nto an RBone, nodes typically

receive duplicate copies of each security update. Duplicate copies are identified by the

sequence numbers carried in security updates and will be dropped, rather than put into the

security update window. In addition to preventing local reuse and retransmission to

children, this mechanism avoids dissemination loops.

Fig 4.7 Security update processing by an input job

security update window

seqno
base

duplicate checking

security checking

input job

 80

Duplicate checking is a lightweight operation. For every type of security update, a

Revere node maintains a sequence number record of historical security updates, and

duplicate checking is done to essentially compare the sequence number of a current

security update against this record. The record is the range of historical sequence

numbers. Given that sequence numbers are usually continuous, it is easy to maintain a

complete list of all updates that a node has seen.

Duplicate checking also helps prevent replay attack. With a small processing

overhead, a replayed security update can be easily filtered out.

Security checking. A newly received security update may contain a transmission

error, or worse, it may have been corrupted. An attack may also inject ill egitimate

security updates, probably by impersonating a dissemination center. The input job must

verify every security update to ensure its authenticity and integrity before buffering it into

a security update window. Details will be discussed in Chapter 5.

After passing duplicate checking and security checking, a security update will t hen be

accepted and stored in the security update window as a unique authentic security update.

4.4.7 Secur ity Update Window

The security update window is a place where accepted security updates are stored and

fetched. An input job views a security update window as a queue, and tries to append

every newly accepted security update to the tail of the queue. An output job also views it

as a queue, and tries to fetch security updates, one by one, from the head of the queue.

As we described earlier, a security update window may be simultaneously accessed

by one or more input jobs and one or more output jobs. As a result, the security update

window must be synchronized. On one hand, if there are multiple input jobs in a Revere

node and each of them receives a copy of the same security update, they may all believe

 81

that a unique authentic security update has just been received (after processing the

corresponding copy). They must be synchronized so that one, and only one, copy is

buffered into the security update window. On the other hand, a security update should

not be removed from the security update window until all the output jobs have fetched it.

4.5 Pulli ng Secur ity Updates

4.5.1 Problem Statement

When security updates are pushed from a dissemination center, some nodes may not

be connected or may be temporarily turned off . When they regain connectivity, they will

want to receive the missed security updates. However, this is not easy for the following

reasons: (1) their parents may not have retained all missed copies; (2) depending on the

length of the disconnection period, those original parents may not be parents any more

(lack of heartbeat messages from a disconnected child will eventually cause that child to

be removed); (3) even if a once disconnected node has not missed any security updates at

all , it wants to assure itself of this fact. In the third case, a reconnected node can ask a

parent, since both record the historical sequence numbers, but this may fail i f the parent-

child relationship is already torn down.

4.5.2 Possible Approaches

One approach to the missed-update problem is to use a reliable transmission

mechanism. However, although some reliable transmission mechanisms, such as TCP,

can endure a short disconnection, a longer disconnection period will result in a timeout of

the transmission, causing a node to miss security updates. This also restricts Revere

nodes from using other transmission mechanisms, such as UDP.

Another approach is to rely on the dissemination center to retransmit those missed

security updates. This is a daunting task in that an RBone is typically of large scale, and

 82

it is diff icult to determine when retransmissions have successfully reached all nodes.

Worse, different nodes usually have different disconnection periods; this implies every

node may have a different set of missed security updates, further complicating this

retransmission solution.

A third approach is to let a dissemination center periodically rebroadcast old security

updates along an RBone, making it li kely that sooner or later all Revere nodes (including

those reconnected) will receive a particular update. However, since every Revere node

runs duplicate check before forwarding a update, an update that is rebroadcast may not

travel very far in an RBone.

4.5.3 Our Approach—Repository Server Query

A more general solution is to have disconnected nodes inquire about security updates

that occurred during disconnections. Revere designates some nodes as repository servers

for storing old security updates and for responding to inquiries.

In Figure 4.8, when node A reconnects to the network, it contacts repository servers

R2 and R3 to see whether it has missed some security updates; if so, it will pull the missed

updates from R2 or R3. Furthermore, if node A has children, it will immediately forward

those newly pulled security updates to them.

To process a newly pulled security update, the same procedure is applied as in the

pushing operation. Both duplicate check and security check are necessary steps here, as

shown in Figure 4.7.

4.5.4 Selection of Repository Servers

One important issue with the repository-server-based approach is the selection of

repository servers. A Revere node needs to locate some repository servers for missed

security updates.

 83

A simple way to handle this is static configuration. A static set of repository servers

can be provided when Revere is installed, where each repository server is believed to

maintain stable connections to the network. Problems arise when the set of repository

servers becomes dynamic. Although relatively rare, some repository servers may still

fail , or some other nodes may become better suited to the role of repository server. A

special security update that contains the current list of repository servers can be

disseminated. However, as a one-time delivery, this li st will not reach those disconnected

nodes, resulting in a chicken-and-egg problem; nodes that joined an RBone after the

dissemination of this security update will also miss the repository server information.

Revere employs a dynamic repository server election, maintenance and notification

mechanism. First, every Revere node on an RBone is allowed to nominate itself as a

A

R1
R2

R3

C1 C2

Fig 4.8 Pulli ng security updates from repository servers

a signed security update

 84

repository server, and the nomination will be received and checked by the dissemination

center of the RBone. Second, an existing repository server may also fail (or decide to

degrade itself into a normal Revere node), which will be detected by the dissemination

center (see discussion below). Third, whenever there is a change to the set of repository

servers, the dissemination center will notify Revere nodes of the change (also see

discussion below).

Heartbeat messages, used for RBone maintenance as described in Chapter 3, are also

used here for the above purposes. Heartbeat messages from children, propagating all the

way toward a dissemination center, are employed to report the addition and subtraction of

repository servers. Heartbeat messages from parents, originating from a dissemination

center, are employed to indicate those up-to-date repository servers.

In detail , when a Revere node nominates itself as a repository server candidate, it will

add itself to the repository candidate list in the heartbeat messages toward every parent.

In turn, when a parent receives repository candidate lists from its children, it will

aggregate those lists to generate a new candidate list, and piggyback the new list on its

own heartbeat message toward its own parent. This repeats until the dissemination center

receives a final li st of all repository candidates.

The dissemination center will check the list of the repository candidates and select

some of them to be the repository servers for the whole RBone. The center will t hen

propagate the selection results through heartbeat messages toward its children, together

with the list of already existing repository servers. Every child will record the new list of

repository servers and also forward the information toward its own children, again

through heartbeat messages.

Although repository servers should rarely be unavailable, Revere is still designed to

be capable of handling failures of repository servers. In addition to the repository

 85

candidate list, heartbeat messages from a child can also carry the identities of current

repository servers. Similarly, a parent can aggregate such information carried in the

heartbeat messages from all of its children, and piggyback the aggregated result on its

own heartbeat message toward its own parent. However, the heartbeat messages clearly

will not be generated and reported from a failed repository server; as a result, the final li st

of current repository servers that is received at a dissemination center will not include the

failed repository server.

4.5.5 Contacting Repository Servers

Since each Revere node keeps a local li st of available repository servers, it then can

make an inquiry to one of the repository servers about missed security updates.

A problem we need to solve here concerns the reliabilit y of the pulli ng operation. A

repository server receiving an inquiry might very well be subverted itself, and thus fail to

deliver some of the security updates received. The security update authentication

mechanism (to be discussed in Chapter 5) ensures that a subverted repository server

responding to an inquiry cannot forge false security updates, but the subverted repository

could easily fail to deliver some of the updates it had received.

A Revere node can obtain some degree of certitude that all security updates that were

missed during disconnection have been retrieved. To do so, Revere again employs

redundancy to achieve high assurance. As we described earlier, Revere builds multiple

repository servers, and a Revere node can just contact more than one repository server to

obtain missed security updates. Or, instead of literally pulli ng security update copies

from each of repository servers contacted, a node can just pull security updates from only

one of them—a “master” repository server, and contact other “slave” repository servers

to check on whether the master repository server provided a complete set of missed

 86

security updates (typically done by comparing the range of sequence numbers of recently

disseminated updates).

A key benefit of having repository servers is that they are always available for

obtaining security updates. A node on an RBone can also make use of this fact. For

example, if node x receives updates n, but has not received update n-1 yet, it can always

query a repository server. Or, if a node has not received any security updates from its

parents in a suspiciously long time (and the length of time is at the node’s own

discretion), it can check with a repository server.

This characteristic offers some protection against the possibilit y that all of a node’s

parents could be corrupted. If the corrupted parents fail to ever send updates, the node

can uncover the problem by checking with the repository servers. The node can then

choose new parents, provided, of course, that it makes sure the chosen repository servers

are not its parents.

4.6 Open Issues

One issue we have not looked into is adaptive redundancy. Adaptive redundancy has

two aspects to consider: (1) a Revere node may switch to different parents; (2) a Revere

node, which initially chose to have n parents, may decide to have n+∆ parents if there is a

need to increase the level of redundancy, or n-∆ parents if a lesser number of parents can

provide satisfactory certitude of security update delivery. How a Revere node chooses

the initial value of n and the value of ∆, based on node policy and past observation,

deserves more research.

As for security checking during security update dissemination, Revere encloses a

digital signature on every security update. Since verification of a digital signature is

 87

typically slow, other verification mechanisms have been studied. Further investigation of

these mechanisms is needed.

“Virtual child” is another concept that could lead to some open issues. Normally, a

Revere node can have multiple children, where every child is physically a node.

However, one could define a collection of nodes as a single “virtual” child, with just one

single IP address. For example, such a virtual child can simply be a group of IP-

multicast-capable nodes, and a single IP multicast address is recorded at the node as a

single child. Such a virtual child can also be a subnet’s broadcast address, which can be

used to reach all Revere nodes on the subnet. Although this concept improves the

eff iciency of forwarding security updates, how to enroll or dismiss a virtual child is an

issue to investigate.

Another issue concerns the selection of a repository server to contact. While a node

keeps a list of repository servers available, some of them are deemed to be topologically

closer than others, and it is desirable for the node to find out which one to contact for fast

delivery of missed security updates (if any). One might think that the delivery

performance here for a reconnected node is not important, since the node has been

disconnected for an arbitrarily long period. This is not correct. It is the vulnerable period

that a node really cares about. Using a security update regarding a new network-based

attack as an example, a disconnected node is resistant to the attack, and the disconnection

period is not counted as part of vulnerable period at all; however, whenever the node

reconnects, it becomes vulnerable to the attack, and its vulnerable period immediately

starts. So, it is important that a reconnected node receive missed security updates as

quickly as possible.

When a node tries to contact multiple repository servers, a question arises as to what

combination of repository servers would provide the best resili ency. On one hand, the

 88

delivery of missed security updates does not have to rely on the associated RBone—a

direct point-to-point delivery can be used. On the other hand, using RBone may possibly

provide better disjointness, since an RBone itself builds rich redundancy.

4.7 Conclusions

In this chapter we described a dual mechanism for disseminating security updates—

pushing and pulli ng. Pushing relies on an RBone to forward security updates (initiated

from a dissemination center) from node to node. Pulli ng relies on repository servers

embedded within the network, and Revere nodes can query them on missed security

updates.

Both pushing and pulli ng are resili ent operations. Since a Revere node on an RBone

can choose to have multiple delivery paths (as discussed in Chapter 3), the node could

receive multiple copies of a security update along multiple delivery paths during a

pushing operation. The node could also contact multiple repository servers to resiliently

obtain missed security updates (if any are missed) during a pulli ng operation.

Both pushing and pulli ng are adaptive. During pushing, a node could adaptively

choose the best suitable transmission mechanism to forward security updates to its

children. During pulli ng, a node could contact n repository servers at its own discretion.

Both pushing and pulli ng are based on a structure that is dynamically maintained. An

RBone used for pushing operations is self-organized, such that the failure or corruption of

any Revere node can be detected. Repository servers used as the sources for pulli ng

operations are also monitored so that every node can keep an up-to-date list of repository

servers available.

 89

Both pushing and pulli ng are lightweight, using the same procedure to process a

security update, which includes duplicate check and security check. This helps promote

fast delivery of security updates.

Both pushing and pulli ng are scalable. During the pushing operation on top of an

RBone structure, every Revere node only needs to forward a security update to its own

children. Unless a node has an undue number of children, this involves a very small

amount of computation and communication cost. During a pulli ng operation between a

repository server and a Revere node, neither incurs a significant amount of effort, unless

a very limited number of repository servers are serving a huge number of Revere nodes

simultaneously.

 90

5CHAPTER 5

Security

Revere assumes that a large percentage of Revere nodes are cooperative; however,

with Revere running at Internet scale, it is unrealistic to assume that no Revere nodes

have been subverted. Revere, as a service for delivering security information, can be a

very tempting target for attackers. If attackers can misuse or abuse Revere, they can

achieve various malicious goals; for example, a corrupted Revere system may become an

ideal carrier to help propagate network worms or other threats. Therefore, Revere

security must be carefully addressed, including both the security of the dissemination

procedure and the security of RBone management.

In this chapter, we first discuss the security of the dissemination procedure, including

integrity, authenticity and availabilit y of security updates, replay prevention, revocation

of the public key of a dissemination center, etc. We then address the security of Revere

overlay networks, where we introduce the peer-to-peer security scheme negotiation

algorithm and the pluggable security box. We also look at possible attacks and their

countermeasures. At the end of this chapter, we discuss open issues, such as secure

monitoring of dissemination progress, intrusion detection and reaction, and denial-of-

service attacks.

5.1 Assumptions

The following assumptions are made in addressing the security of Revere:

 91

• Any node (except dissemination centers) could be corr upted

Revere does not enforce any policy on new node subscription procedures.

Any node, evil or angel, can join Revere if it chooses. Also, given that an

RBone may include a great number of nodes, the possibilit y that a Revere

node is subverted must not be ignored. Therefore Revere, as an open-

membership system, must secure itself based on this assumption.

• A large percentage of Revere nodes are cooperative

This is necessary to ensure that benign Revere nodes still have a chance to

receive security updates. If every Revere node were surrounded by

malicious nodes, security update delivery wouldn’ t succeed at all . In other

words, if all parents of a Revere node were corrupted, it wouldn’ t be able

to receive authentic security updates; or, if all children of a Revere node

were corrupted, it also couldn’ t help deliver authentic security updates.

• The pr ivate key of a dissemination center may be compromised

Although a dissemination center will be protected very carefully, Revere

still acknowledges the possibilit y that the private key of the center might

be compromised, which can cause disastrous results if not addressed.

• The public key of a dissemination center is well known

The public key of a dissemination center can be configured when a user

installs Revere. It can also be made available through a web site. A

certificate authority may also be contacted to obtain the public key of a

dissemination center. Furthermore, if the dissemination center signs a

message using its private key, every Revere node will be able to verify the

digital signature of this message.

 92

• No uniform secur ity scheme to protect node-to-node control messages

Due to the large scale of Revere, an RBone may support milli ons of

Revere nodes. It is unrealistic to assume that every node at such a scale

will adopt the same security scheme, apply the same security policy, or

use the same configuration. Moreover, even neighboring nodes on an

RBone may appear to be in different domains, thus possibly enforcing

different security schemes.

• The set of secur ity schemes supported by different Revere nodes may overlap

Although a Revere node may run different security schemes from other

Revere nodes, there may be one or more security schemes that both this

node and another node support, making it possible that the two nodes can

agree on some security schemes to protect their communication.

5.2 Secur ity of Dissemination Procedure

5.2.1 Objectives and Requirements

The objectives of securing the dissemination process include the following:

• Integr ity of secur ity updates

While a security update is being delivered to Revere nodes, it may be

corrupted by malicious nodes on delivery paths. Data errors can also be

introduced due to transmission problems. Any modification, whether

intended or not, must be detectable. The integrity of security updates must

be guaranteed.

• Authenticity of secur ity updates

Security updates originate from a dissemination center. However, an

attacker may be able to forge security updates to fool Revere nodes,

 93

probably by impersonating a dissemination center. Every node should be

able to verify whether a security update has indeed originated from a

dissemination center, and a security update forged by an attacker should

not be accepted. Revere must quickly detect the forgery.

• Availabili ty of secur ity updates

A new security update can be suppressed or misdirected, thus faili ng to

reach its destinations. As discussed in Chapter 2, encryption cannot help

at all , since an encrypted security update can still be suppressed,

misdirected, or damaged. Authenticated acknowledgements may help, but

those acknowledgments are also susceptible to interruption threats. Even

if acknowledgements are successfully delivered, retransmitted security

updates often use the same path and will be subject to repeated

interruption threats. Revere should address these issues and achieve the

best availabilit y in delivering security updates.

• Replay prevention

Old security updates may be replayed to flood an RBone. Given that those

old security updates will be verified as authentic and integral, it is

important that Revere not blindly forward those replayed security updates

and help flood the network.

All those objectives correspond to the goal of the “security check” box in Figure 4.7

(Chapter 4). Note that Revere does not protect secrecy. In light of Revere’s free

subscription model, security updates are not secret information; every node is allowed to

join Revere to obtain the automatic notification service. Even non-Revere nodes are free

 94

to read and use Revere updates (if they can obtain them), though Revere does not attempt

to make them available.

5.2.2 Why Public Key Cryptography

There are two main types of cryptography: asymmetric-key-based cryptography and

symmetric-key-based cryptography. Revere uses asymmetric-key-based cryptography

(i.e., public-key cryptography) to protect the dissemination process.

Symmetric-key-based cryptography will not work well for Revere. With a large

number of machines in an RBone, symmetric-key-based cryptography does not scale. To

guarantee that a security update is indeed signed by a dissemination center using

symmetric cryptography, a Revere node must ensure that only the center and itself know

the secret key (if a single key was shared by all Revere nodes, any Revere node could

forge updates). This implies that the dissemination center must maintain a different

secret key for each Revere node. Worse, since now every copy of the same security

update will be signed using a different key, thus carrying a different signature, a different

copy of the same security update is expected at each Revere node. As a result, the

dissemination center has to unicast a different copy to every Revere node.

Instead of using different keys to sign the same security update, asymmetric-key-

based cryptography allows a dissemination center to sign a security update using the

same key—the dissemination center’s private key. Thus, every Revere node expects to

receive the same replica of the security update, and can use the public key of the

dissemination center to verify its integrity.

5.2.3 Integr ity of Secur ity Updates

One method of protecting security updates from errors is to append error correction

code in a security update. Unfortunately, this only helps correct transmission errors. An

 95

attacker, while tampering with other fields of a security update, will be equally capable of

modifying the error correction code to make the tampered security update appear

genuine.

Instead, Revere adopts public-key cryptography to protect security updates from both

malicious manipulation and transmission error (Figure 5.1). When a dissemination center

is about to send out a security update, it is required to sign the security update using its

private key. The format of a security update is shown in Figure 4.1 (Chapter 4), where

the signature protects the type, seqno, timestamp, and payload fields of a security update.

Revere nodes use the public key of the dissemination center to authenticate security

updates. When a new security update is received, a Revere node will apply the public

a signed security update

Fig 5.1 Integrity protection of a security update

center
public
key

center
private
key

 96

key of the dissemination center to verify the signature of the security update. If the

verification is successful, the integrity of the security update is then confirmed.

Once a Revere node has verified the integrity of a security update, it will forward the

security update to its children. Note that the Revere node will not make any changes to

the security update at all; i n particular, it will not touch the signature field. When those

children receive the security update, they will apply the same procedure to verify the

integrity of the security update. Normally, when a Revere node receives a security

update, the update will have already passed a list of intermediate Revere nodes; but as

long as the signature is verified, the integrity of the update can still be trusted.

5.2.4 Authenticity of Secur ity Updates

A Revere node must ensure that a received security update originated from a

dissemination center. Given that every Revere node uses the public key of a

dissemination center to verify newly received security updates, only when the private key

of that dissemination center is used to sign those security updates can the verification

succeed. If the private key of the dissemination center is well protected and only the

center itself knows its own private key, a Revere node can then guarantee that a verified

security update has indeed originated from that dissemination center, and thus can trust

the authenticity of the security update.

Clearly, the private keys of dissemination centers must be carefully protected. If,

despite such care, the private key of a dissemination center is compromised, disastrous

attacks can be launched; e.g., attackers now can easily impersonate the dissemination

center. Revere nodes, unaware of the leakage of the dissemination center’s private key,

will “successfully” verify the security updates that are actually forged by the attacker, and

even be fooled into taking actions based upon such updates.

 97

Four problems must be solved. First, how can Revere quickly detect that, instead of a

dissemination center, an attacker is sending (forged) security updates by impersonating a

center? Second, after a dissemination center recognizes that its private key is

compromised, its public key can no longer be used for security update verification; in this

case, how can the dissemination center revoke or invalidate the current public key?

Third, how can those Revere nodes obtain the next public key of the dissemination

center? Fourth, should old security updates be resigned and redelivered? We call the

first problem impersonation detection, the second problem key invalidation, the third

problem key distribution, and the fourth problem security update redelivery.

5.2.4.1 Impersonation detection

This issue is a diff icult problem and still under investigation, we discuss this issue

here, rather than in Section 5.5 on open issues to maintain the logical connection of

discussions in this chapter. In our current system, a reverse traversal mechanism is

designed for this purpose.

After a Revere node has successfully verified a newly received security update, if it is

still suspicious about the authenticity of the update, it can initiate an impersonation

detection process as follows:

• This Revere node first reports the security update in question to all of its

parents.

• Upon the receipt of this update, every parent will first verify the update; if

verified, that parent reports further up to its parent. This repeats until the

dissemination center receives this reported security update.

 98

Every parent will only report one copy of such a security update to its

parents; otherwise, the dissemination center can be imploded by the

updates when many Revere nodes initiate a report of the same update.

• The dissemination center diagnoses the reported security update, and

makes sure the update was indeed recently sent by itself. If the center has

no knowledge of this security update, and some attacker has compromised

the private key of the dissemination center and is impersonating the

center—the center should immediately trigger the key invalidation

procedure.

Each Revere node could randomly (with very low probabilit y) test a security update

this way. In this fashion, unless a forged update is injected very close to the “edges” of

the Revere graph, some node will probably be triggered to initiate the impersonation

detection process.

5.2.4.2 Key invalidation

Here we discuss the procedure of invalidating the public key of a dissemination

center once its private key is compromised. Recall that the public key is distributed all

over the RBone. Obviously, the center itself cannot distribute a new public key to

replace the old one. (If a new public key to distribute is signed by the current private key

of the dissemination center, the attacker who also has the private key could easily

impersonate the center and distribute a forged public key.) Rather, the dissemination

center sends out a key invalidation message to declare that its current public key should

be invalidated.

The invalidation message is signed by the broken private key, and delivered in the

same way as normal security updates. Figure 5.2 shows a key invalidation message. The

 99

“ type” field indicates this is a key invalidation message, rather than a normal security

update. The “key serial no” field specifies which public key to invalidate, in case a

dissemination center has a list of public keys. Note that the key invalidation message is

really simple—it does not contain any extra information at all . The reason is that any

extra information cannot be trusted by a Revere node at all , since the attacker who has the

private key can easily fabricate or change those fields. The key invalidation message is

designed to only pass a single fact to Revere nodes—a public key must be invalidated,

but nothing more than that.

When a Revere node receives a key invalidation message, it will verify the message

using the current public key of the dissemination center (or more accurately, the public

key indicated by the “key serial no” in the key invalidation message); if verified, the

current public key will be discarded, and the key invalidation message will be forwarded

to other security updates. Figure 5.3 depicts such a procedure. There might be a loop

when delivering a key invalidation message (just as when delivering normal security

updates); however, when a Revere node receives such a message for the second time, the

public key to invalidate will have already been discarded and no action will be taken (and

no action needs to be taken).

The repository servers will keep all key invalidation messages. When a repository

server receives a pulli ng request from a reconnected node for missed security updates,

based on the disconnection period indicated in the pulli ng request, the repository server

can determine whether the reconnected node may also have missed some key invalidation

key serial no signature type

Fig 5.2 The key invalidation message

 100

messages. As a result, the reconnected node may also receive a key invalidation

message—it will handle this message in the same way as described above.

An attacker may launch several kinds of attacks against the key invalidation

mechanism. First, the attacker can try to suppress the invalidation message. However, an

RBone is already a resili ent network with built -in redundancy to protect normal security

updates. Given that a key invalidation message is delivered in the same way as normal

security updates, every Revere node can have multiple resili ent paths to receive the key

invalidation message. Second, the attacker who has broken the private key can create his

own invalidation message, but doing so will destroy any benefit he receives from

Fig 5.3 Center public key invalidation

a key invalidation message

center
public
key

center
private
key

center
private
key

 101

cracking the key. This helps a Revere node invalidate the public key that it should

invalidate.

However, the attacker does achieve one goal when impersonating a dissemination

center and sending out key invalidation messages: if the dissemination center has not

detected the leakage of its private key yet and sends out a security update, those Revere

nodes who have invalidated their current public key will not accept the security update.

Revere corrects this problem by adding reverse path forwarding of key invalidation

messages, similar to what’s done in impersonation detection. Doing so, the

dissemination center will be able to quickly detect not only the leakage of its own private

key, but also the fact that the attacker is disseminating a key invalidation message to

disable the current public key of the dissemination center. The dissemination center then

starts its own key invalidation procedure as described above, and begins other actions that

are discussed below in the key distribution procedure.

5.2.4.3 Key distribution and key switch

After invalidating the dissemination center’s old public/private key pair, a new pair

must be created. Or, if a dissemination center assigns an expiration time to its current

public/private key pair, a new pair must also be provided when the old key pair expires.

The new public key must be distributed to all Revere nodes, possibly milli ons of them.

Manual distribution would be daunting. We foresee two possible methods for

distributing a new dissemination center public key.

• Key distr ibution center.

Although manually distributing a new key to milli ons of Revere nodes is

prohibitive, we can manually distribute the new key to several secondary

trusted centers and let every Revere node contact those trusted centers.

 102

Many schemes that use public-key infrastructure at high scale have this

problem, and we can leverage any good solution others might create.

• Pre-installation.

This method pre-installs a series of dissemination center public keys at

every Revere node. After a public key is invalidated or timed out, the

Revere node will t hen automatically switch to the next available public

key in the series. One must be careful here in protecting the

corresponding series of private keys of the dissemination center. If the

whole series of private keys are compromised, for instance, it will be self-

defeating to switch to next already-compromised private key in the series.

One can imagine that separately protecting every private key in the series

will be helpful.

With either key distribution method noted above, a version number could be

associated with a public key, and every security update could be labeled with this version

number. If a Revere node misses a key invalidation message, when it receives a security

update that carries a different version number, it then knows that a different public key of

the dissemination center should be used, or an adversary has modified the version number

to fool recipients. In this case, the Revere node can consult with repository servers to see

if it has missed some key invalidation messages. If not, it means the current public key is

still effective, unless it times out; otherwise, it should switch to the next public key.

5.2.4.4 Security update redelivery

During the period between key compromise and key invalidation, the security updates

received at a Revere node or a repository server, even though verified as authentic, may

 103

be forgeries, or may indeed be valid updates. The forgeries should be purged, and the

valid updates should be replaced with their new versions.

After switching to the new public key, the dissemination center will do two things.

First, it will send out an “estimated corruption time” message, signed by the new private

key. (Note that the estimated key corruption time is not carried via the key invalidation

message at an earlier time, for such information can be fabricated by an attacker as well .)

Every Revere node can then distinguish between security updates disseminated before the

center’s key is corrupted and those after the corruption (recall that every security update

carries a timestamp that indicates when the security update departed from the center).

Second, the dissemination center will resend those security updates that were sent after

the estimated key corruption time but before beginning the invalidation of the center’s

public key. These are unfortunately signed using the corrupted private key, so those

security updates are re-sent, signed using the new private key.

5.2.5 Availabili ty of Secur ity Updates

The availabilit y of security updates is supported by resili ent delivery of security

updates over RBones. As we discussed in Chapter 3, every Revere node can choose to

have multiple as-disjoint-as-possible delivery paths at its own discretion. During

dissemination, a Revere node expects a copy of the same security update from every

parent (under normal conditions). Unless an attacker corrupts every path, a Revere node

will still be able to receive a copy of the same security update.

The availabilit y of security updates is further strengthened by the abilit y to pull

missed security updates from more than one repository server. If a repository server does

not return a complete set of missed security updates, a Revere node can discover the

missing updates by simultaneously consulting other repository servers. A Revere node

 104

can also check with repository servers every so often, depending on the node’s level of

paranoia.

Multiple dissemination centers can also be set up to provide the same set of security

updates, thus also improving availabilit y.

5.2.6 Replay Prevention of Secur ity Updates

To some degree, the replaying of security updates helps dissemination, but it can also

trigger a flooding attack if not properly handled, because Revere is essentially an

ampli fication mechanism for sending messages. One initiator of a security update can

potentially have its message delivered to thousands or milli ons of nodes. If not handled

carefully, Revere could be misused to flood the network or Revere-participating nodes.

While Revere authentication mechanisms would ensure that no improper actions were

taken on the basis of forged Revere messages, unless some care is taken, Revere would

tend to disseminate replayed legitimate Revere messages. Thus, a Revere node should

not just check authenticity of a message, but should also determine if the message has

been replayed.

Replay of security updates is prevented through the “duplicate check” process at each

Revere node (see Chapter 4). By keeping record of sequence numbers already seen,

duplicate security updates—both those that are caused by dissemination loops and those

that are replayed by attackers—will be detected and dropped, and thus not forwarded to

other Revere nodes. Here, those historical sequence numbers are recorded in ranges,

since the sequence numbers carried by security updates are usually continuous.

5.2.7 Secrecy of Secur ity Updates

As an open-membership system, Revere does not address the secrecy of security

updates. However, if this turns out to be a necessity, we do not exclude the possibilit y of

 105

adding such support. Essentially, this will t urn Revere into a closed-membership system,

in which security updates in transit must be encrypted, and the key used for decrypting

security updates at each Revere node must be carefully handled. Typical issues include,

but are not limited to: how to distribute a key to a newly joined Revere node, how to

generate a new key when an existing Revere node withdraws from Revere, and how to

handle a compromised Revere node that has the secret key to decrypt security updates.

The research community that works on secure multicasting has been studying exactly

the same set of problems along this line. Revere should be able to leverage those

research results if the secrecy of updates becomes important.

5.2.8 Hop-by-Hop Secur ity Update Protection

When a Revere node receives a corrupted security update, it needs to determine

which parent forwarded the update so that the node can remove this parent and re-select a

new parent.

Revere provides the flexibilit y for a parent node and a child node to strengthen the

security update forwarding operation between them. When a security update is

forwarded from a parent node to a child node, in addition to the signature signed by a

dissemination center, the parent node can further strengthen security by also signing the

security update, thus preventing parent spoofing. The same method for protecting node-

to-node control messages (as described in the following Section 5.3) can be applied here.

5.2.9 Implementation

To implement the protection of a dissemination process, a security update protector is

implemented at each Revere node. At each of these nodes, the security protection is

essentially done by a security update protector—including security update integrity and

authenticity protection, key invalidation and switch, replay prevention, etc.

 106

Figure 5.4 shows an example of calli ng the security update protector function, where

the function in an input job, HandleIncomingSecurityUpdatesFromNet(), calls the

HandleIncomingSecurityUpdatesFromNet() (same name) function of the security update

protector to verify the signature of an incoming security update.

Figure 5.5 shows another example of interacting with the security update protector at

a Revere node. An output job function, forwardSecurityUpdates(), calls

secureSecurityUpdatesToNet() to strengthen the security of a security update that is about

to be transmitted: if this Revere node is a dissemination center, the security update will be

signed using the center’s private key; otherwise, hop-by-hop security update protection

can be applied (as described in Section 5.2.8).

The security update protector can be regarded as a “security monitor” in terms of

dissemination since it monitors and filters all i nbound and outbound security updates.

Every Revere node can configure its security update protector to enforce different

security policies.

 107

Fig 5.5 An output job function calli ng the security update protector

output job: forwardSecurityUpdates()

secureSecurityUpdatesToNet()

fetch next
security update
from security
update window

strengthen the security
of the security update forwardMessageToWire()

forward updates
to all children

Security update protector

HandleOutgoingSecurityUpdates()

getNextSecurityUpdates()

Fig 5.4 An input job function calli ng the security update protector

input job: HandleIncomingSecurityUpdatesFromNet()

HandleIncomingSecurityUpdatesFromNet()

duplicate check

signature
verification

HandleIncomingSecurityUpdates()

buffer updates to
security update
window

Security update protector

 108

5.3 Securely Building and Maintaining RBones

5.3.1 Objectives

The security of Revere depends on building an RBone with good dissemination

properties and ensuring that its structure remains sound. A Revere node needs to

authenticate another Revere node if it wants to accept information from that node. For

example, a new Revere node must authenticate a potential parent before accepting the

potential parent as a new parent, and an existing Revere node must authenticate a

potential child before allocating a spot for adopting the potential child as a new child.

Moreover, Revere uses a number of control messages between parents and children, and

Revere needs to secure those messages based on the needs of every involved Revere

node. For example, a Revere node must verify heartbeat messages from parents or

children in order to not be fooled in believing that a dead (or broken) parent (or child) is

still healthy and alive, and a Revere node must verify a termination request from a parent

(or a child) before tearing down the connection with that node.

To protect the integrity of an RBone, Revere authenticates nodes and secures those

control messages on a peer-to-peer basis, or hop-by-hop basis. In other words, every

Revere node tries to ensure that the interactions with its parents or children are secured,

but not beyond that. An alternative approach is to employ path-wise security, where a

Revere node checks the authenticity of every node on all security update delivery paths

and verifies the information of every hop. This alternative greatly increases the overhead

and complexity, whereas we believe a hop-by-hop model should serve well , because a

large percentage of Revere nodes are benign, and every Revere node can still verify the

digital signature of a security update during the dissemination process, if the parent of a

Revere node’s parent is corrupted. The goal is that, through hop-by-hop security

 109

enforcement, there will be chains of trust starting at an RBone’s dissemination center and

reaching most Revere nodes (if not all).

Peer-to-peer security enforcement begins with security scheme negotiation. Since

there is no ubiquitous security scheme for all nodes on a large-scale RBone, nor is one

level of trust appropriate for all situations, every Revere node may implement a different

set of security schemes, perhaps with different orders of preference. Different parameters

may also be used, even if Revere nodes employ the same security scheme. Therefore, a

Revere node needs to select a security scheme used for exchanging messages with each

of its peers. If necessary, different schemes can be used for sending to and receiving

from a given peer. Choosing the appropriate schemes requires a negotiation, and must be

done securely. If the negotiation is successful, proper security schemes can then be

imposed on messages exchanged between the nodes.

Flexibilit y in implementing and supporting different security schemes is also

important. The code for a special security scheme should be easily plugged in, and easily

unplugged when not needed. We will show in Section 5.3.3 that Revere implements each

security scheme via a pluggable (and unpluggable) security box.

5.3.2 Peer-to-Peer Secur ity Scheme Negotiation

Security scheme negotiation is triggered when a node wants to send another node a

message, but finds that no security scheme has been chosen to protect this message.

Figure 5.6 ill ustrates a security scheme negotiation procedure between nodes A and B,

initiated by node A. The following is a stepwise explanation of the negotiation:

1. Node A first sends a negotiation_start message to B in plaintext, indicating an ordered

list of A’s preferred security schemes for incoming messages from B. More broadly,

the message can also include specific parameters for every security scheme.

 110

2. Node B, upon receipt of the negotiation_start message, selects a scheme that B itself

supports and that A also prefers, and creates an authenticator for B itself using this

scheme. Node B sends to A the authenticator, a signature of A’s entire

negotiation_start message, and a signed negotiation_response message. The signing

is done by using the scheme just selected. The negotiation_response message

contains the scheme that B just selected and an ordered list of B’s preferred security

schemes for incoming messages from A. The negotiation_response message is signed

using the scheme just selected.

3. Node A authenticates B, verifies the signature of its initial negotiation_start message

to ensure it has not been tampered with, and verifies the negotiation_response

message. If all are verified, A then chooses a scheme that B prefers and that A itself

Node A Node B

The first
message
m to B

negotiation_start

B’s authenticator

negotiation_response (signed)signature of A’s negotiation_start

A’s authenticator

negotiation_done (signed)

signature of B’s negotiation_response

m (signed)

received
m from A

Fig 5.6 Peer-to-peer security scheme negotiation

 111

also supports to protect its messages toward B. Note that this scheme is allowed to be

different from the scheme that B chose for B’s messages toward A. Node A sends an

authenticator toward B, using the scheme A just selected. To ensure B that its

negotiation_response was not tampered with, A sends back a signature of the

message. Node A also sends a signed negotiation_done message toward B, indicating

the scheme that A selected and ending the negotiation.

If any of these steps fail , the negotiation will fail , and no security scheme will be

selected for communication between the two nodes. For example, if B cannot select a

scheme successfully, B cannot, and will not, respond to A’s negotiation request, and A

will finally time out and give up (note there is no appropriate messages from B to be sent

toward A, since such a message cannot be protected without a scheme chosen by B). If

all steps succeed, the negotiation succeeds, and messages can begin to be forwarded from

A to B (such as message m in Figure 5.6), or vice versa, protected by using the selected

security schemes. When the scheme for messages from A to B is the same as that for

messages from B to A, A and B are enforcing symmetric security schemes; otherwise,

they are asymmetric schemes.

Figure 5.7 shows a secured version of the three-way-handshake procedure.

Compared to Figure 3.4 in Chapter 3, the AttachReq message triggers a security scheme

negotiation between the potential parent and the potential child (supposing the potential

child has never communicated with the potential parent before). Only when the

negotiation succeeds will t he three-way-handshake procedure continue. Also, all those

messages used in the three-way-handshake are now signed. Using the security scheme

just negotiated, the AttachReq and AttachConfirm message are signed using the scheme

 112

that the potential parent prefers, and the AttachAck message is signed using the scheme

that the potential child prefers—all must be verified prior to use.

5.3.3 Pluggable Secur ity Box

Revere implements an extensible architecture to support various security schemes.

As in [Li et al. 2002], each security scheme can be added by plugging in a corresponding

security box. This architecture allows a Revere node to choose a specific security

scheme based on the desired level of protection.

A security box can be viewed as a security monitor that is responsible for node

authentication. It protects RBone activities such as the join procedure or RBone

maintenance. A security box allows a node to authenticate other nodes or authenticate

itself to another node. A security box only allows trustworthy RBone activities.

Fig 5.7 Secured three-way-handshake procedure

Potential child Potential parent

Locate
existing
nodes

Process
attach
request

Select
parents

Attach
new
child

New child New parent

signed AttachConfirm

signed AttachAck

Security scheme negotiation

AttachReq

signed
AttachReq

 113

A security box can also be viewed as a message filter (Figure 5.8). All control

messages sent and received must pass through the security box. Incoming messages are

accepted or rejected based on trust and authenticity. Outgoing messages are inspected

and stamped with authentication information. Every RBone control message, including

heartbeat messages and those used during the join procedure, is signed by its sender’s

security box and verified by its receiver’s security box.

Note that security updates do not pass through any security boxes; instead, they are

protected through the security update protector. In particular, every Revere node is

required to enforce the same algorithm to verify the signature signed by a dissemination

center.

Many security box implementations are possible, each providing a different level of

node authentication, message verification, replay prevention, and possibly secrecy. The

level of protection provided depends entirely on the particular security box

implementation. Moreover, when providing different levels of protection, different

Fig 5.8 Security box

RBone
Activities

Secur ity Box

 114

security schemes require different amounts of infrastructure (which may or may not be

available), and have different levels of overhead.

A simplest security scheme is the null scheme, which actually does not provide any

protection and can only be used when a Revere node does not require security. Having

such a scheme can help demonstrate the added cost of a security architecture.

More complex security schemes can be supported. For instance, symmetric-

cryptography-based security schemes can be implemented via a security box using

Kerberos or other key distribution mechanisms, and asymmetric-cryptography-based

security schemes can be implemented via a security box that relies on a public key

infrastructure. We discuss these two exemplary security schemes in the following two

subsections.

5.3.4 Secur ity Box Example 1: Using Kerberos

5.3.4.1 The Kerberos model

In order to authenticate to another node S using Kerberos, a node C obtains a ticket

and then presents that ticket to S for authentication. At an extremely high level, C sends

a request to Kerberos to authenticate to S. C receives (in the end) a session key for

talking with S, encrypted with a key it shares with Kerberos, along with a ticket that it

can send to S. The ticket contains (among other things) the identity of C and S and a

session key for talking with C encrypted with a secret that S shares with Kerberos.

To authenticate to S, C sends a Kerberos authenticator (a time-stamp, a checksum,

etc.) encrypted using the session key to S along with the ticket. S can obtain the session

key using the key it shares with Kerberos and use it to decrypt the authenticator and

therefore verify the authenticity of C. S can (optionally) send an authenticator back to C,

again encrypted with the session key, allowing C to authenticate S.

 115

Once established, the session key used for authentication of the session can now be

used by C and S for various security purposes.

5.3.4.2 Integration with Revere

Integrating Kerberos into Revere is straightforward. When a first Revere node needs

to authenticate itself to a second Revere node using Kerberos, both nodes must share a

secret with Kerberos. The first Revere node then can request from Kerberos (1) a session

key between the two nodes, which is encrypted such that only the first Revere node can

decrypt, and (2) a ticket to send to the second node, which is the only node able to

decrypt the ticket to retrieve the session key. Doing so, a session key will be distributed

to both nodes. This session key can then be used for both authentication and message

protection between the two nodes.

Since Revere runs at Internet scale, the two communicating nodes may be located at

two different domains, each with a different Kerberos server. The Kerberos

infrastructure is already designed to handle this case. While a Revere node may have to

communicate with several Kerberos servers, it will eventually end up with a session key

and ticket that have been generated by the Kerberos server associated with the second

Revere node.

5.3.5 Secur ity Box Example 2: Using Certificate Author ity Hierarchy

One security box that we have constructed is based on a hierarchical infrastructure of

public key certificate authorities (CA), where recursively the CA at one level (the parent)

produces certificates for the next level down (the child). The public key for the CA at the

root of the hierarchy, the highest level, is universally known.

With this scheme, the verification of a node’s public key, which is equivalently the

authentication of the node itself, is straightforward. A node n can contact its associated

 116

CA, CA(n), to obtain a chain of certificates. On this chain, the first certificate certifies

the public key of node n by CA(n), the second certifies CA(n)’s public key by CA(n)’s

parent, CA(n-1), on the certificate hierarchy, and so on. The last certificate on the chain

is signed by the root. By verifying such a chain of certificates, the node’s public key can

then be authenticated.

Note that the set of certificates needed to certify a node’s public key is static in this

scheme. A node can therefore cache all of the certificates it will need to authenticate

itself to any other node.

Because a Revere node’s public key can be verified, the messages from this node can

also be protected. When this node needs to send messages to other Revere nodes, it can

sign every message using its private key. The digital signature of any message from this

node can be verified by other Revere nodes using this node’s public key.

5.3.6 Summary: Generali ty and Particular ity

Because of the Internet scale that Revere addresses, Revere nodes are inevitably

heterogeneous. It is unrealistic to assume that they enforce a uniform security scheme

with the same parameters and policies. Nonetheless, these Revere nodes must still be

able to communicate, and communicate securely. This requires Revere to be designed in

a suff iciently general way to accommodate such heterogeneity. On the other hand, the

particularity of every Revere node calls for the capabilit y of easily tailoring security

enforcement to local needs.

The peer-to-peer security scheme negotiation allows two arbitrary Revere nodes to

check their compatibilit y before cooperating on RBone operations, addressing the need to

be general. The implementation of pluggable security boxes supports extensible security

 117

architecture and allows special security enforcements to be easily added or removed,

addressing the need to be specific.

Moreover, such generality applies to other distributed systems that have similar

security requirements. Many Internet applications need to address the problem of

enabling secure communication between machines that are distributed among different

administrative domains with different security policies and schemes. To do so, they need

capabiliti es similar to that provided by Revere.

5.4 Attacks and Countermeasures

Attackers can attempt to break into an RBone or rely on other resources to subvert

Revere. This section describes possible attacks and the countermeasures employed by

Revere. We divide the attacks into two categories: (1) attacks on the dissemination

procedure, and (2) attacks on RBone formation and maintenance.

5.4.1 Attacks on Dissemination Procedure

5.4.1.1 Suppressing, misdirecting, or tampering with security updates

Upon the receipt of a new security update, a compromised parent node on an RBone

may drop or misdirect the security update, instead of forwarding it to its children. To

address this, Revere adopts a redundancy mechanism: every node can choose to have

multiple parents forward security updates. As discussed in Chapter 3, Revere tries to

ensure that a node chooses parents with disjoint dissemination paths, thus reducing the

impact of compromised nodes.

A compromised parent may also tamper with security updates. Although a node can

ascertain that a received security update has been corrupted by verifying the signature

carried in the update, and thus not be deceived into accepting the update, the node will

still mi ss an authentic copy of the security update. Redundancy is again the solution.

 118

The difference here is that each node must be able to verify whether a received security

update is authentic. As discussed in Section 5.2, every node can use the public key of the

dissemination center to verify the signature of every received security update.

Moreover, with either case above, if a node did not receive an authentic copy of a

security update from one parent (but it did from other parents), the node will regard this

parent as problematic and remove it, and begin to search for a new one.

Note that each Revere node can specify its own policy for fending off the attacks

described above; for example, it can specify the redundancy level of the in-bound paths.

Through built -in redundancy, we hope there can be at least one path bringing timely

authentic security updates to a Revere node, even when a varying number of Revere

nodes have been subverted. (If every Revere node chooses only one parent, an RBone

will become a tree rooted at a dissemination center.)

5.4.1.2 Replaying security updates

As discussed earlier in Section 5.2.6, replay attacks must be prevented, and Revere’s

duplicate checking capabilit y achieves this goal by dropping replayed security updates.

5.4.1.3 Compromising the private key of a dissemination center

If the private key of a dissemination center is compromised, it is disastrous in that an

attacker can now disseminate malicious information under the mask of authentic security

updates. Strong cryptography should be used, and the key of a dissemination center must

be protected very well . In the event that the key does become compromised, we have

proposed methods to detect the impersonation, to invalidate the compromised key and

then distribute a new key (see Section 5.2.4).

 119

5.4.1.4 Breaking into a repository server

A repository server keeps old security updates. Two undesirable things can happen if

a node tries to pull missed security updates from a compromised repository server: the

node receives a tampered security update, or the node receives an incomplete list of

missed security updates. In the former case, since all security updates carry the signature

of the dissemination center, pulli ng nodes will detect the tampering when trying to verify

the signature. In the latter case, a node pulls updates from one repository first, then

verifies completeness by consulting one or more other repositories. The only information

needed is the sequence numbers of the missed security updates. For example, after

retrieving missed updates with sequence numbers 10 to 15 from the first repository, if the

second repository reports that it has security updates with sequence numbers up to 17, the

node can then try to pull security update 16 and 17 from the second repository. In case

that the second repository server was lying, the node will detect this by verifying the

authenticity of security updates.

5.4.2 Attacks on RBone Formation and Maintenance

5.4.2.1 Attacking security scheme negotiation

During security scheme negotiation, a compromised Revere node may try to trick the

other side (the benign side) into using a weaker scheme to verify messages from the

compromised node. Revere prevents this problem. As shown in Figure 5.6, whether the

compromised node is the initiator or not, it must use one of the schemes already specified

by the other side to authenticate itself and sign its response.

5.4.2.2 Impersonating another node

An attacker can try to impersonate another Revere node and send forged messages for

joining or maintaining an RBone. Revere allows each node to use its preferred security

 120

box to check incoming messages. For example, when using the security box described in

Section 5.3.5, every message is signed by the sender, whose public key can be

authenticated by querying the certificate hierarchy. The recipient can thereby ensure that

the message is indeed from the sender as labelled in the message.

5.4.2.3 Replaying RBone messages

 An attacker can also try to replay previous RBone control messages to fool a Revere

node. As a standard technique to prevent this, a sender can include a random number

preset by the recipient inside the message, and sign the whole message. As shown in

Figure 5.9, if attacker a eavesdrops on a message from y to x and replays it, x can detect

that the message, which carries the same random number r as a previously received one,

is a replayed message.

5.4.3 Compromising Secur ity Update Secrecy

In general, Revere does not handle this problem. Its free subscription paradigm

implies that disseminated security updates are open to the public. For instance, when

disseminating the signature of a newly discovered virus, one would like to see as many

machines as possible obtain the security updates regarding the new virus.

On the other hand, we can treat this as a secondary goal. With this in mind,

preventing the leakage of a security update is challenging due to the scalabilit y

constraints of Revere. If a different key must be used for sending security updates to

Fig 5.9 Replay attack prevention using a random number

x y
r

x←←y sigr
a

x←←y sigr
?

 121

each Revere node from a dissemination source, the dissemination source has to keep all

the public keys of each Revere node; this is not scalable. If a shared key is used, then

joining and leaving the Revere system must be handled in a highly secure fashion, so that

each new member can be trusted, and each previous member cannot re-gain the security

updates disseminated after it left Revere.

5.5 Open Issues

5.5.1 Securely Monitor ing Dissemination Progress

One open question is how Revere securely monitors the progress of dissemination.

So far there is no feedback mechanism designed in Revere, partly because of the

scalabilit y concerns when handling feedback from millions of Revere nodes, but mostly

because of the diff iculty in securing a feedback mechanism if there was one.

In the following paragraphs we look at two different conceivable feedback

mechanisms: random feedback sampling and aggregated feedback collecting. We will

see that both address the scalabilit y issue well , but still face serious security challenges.

The random feedback sampling method randomly chooses a number of Revere nodes,

and checks the set of received security updates for each of them. Given that the center

has no record of all current Revere nodes in an RBone (except its own directly connected

children), the sampling method has to rely on every Revere node to proactively and

randomly elect itself (supposing every node uses a probabilit y, say 0.01), and then report

to the center. The center, based on the sets of received security updates from all reporting

Revere nodes, deduces the progress of dissemination. Unfortunately, the dissemination

center has no idea whether a reporting node is authentic or not. If every corrupted node

in an RBone reports to the center that it has received a complete set of security updates,

while only a very small percentage of uncorrupted nodes report their status, the center

 122

can be fooled into believing that the dissemination has been going well . The center might

require every report to be signed (using public key cryptography for example); even if the

sender authenticity of a feedback message is trusted, this still does not necessarily

guarantee that the content of the message is trustworthy.

The aggregated feedback collecting method requires every Revere node to provide

feedback regarding a specific security update. Every Revere node waits for reports from

all of its children (with a timer set), aggregates the reports into one report, and sends to

every parent. The report contains a list of reached descendents (those that reported

receiving the security update), and a list of unreached descendents (those that did not

report before timing out). Through the aggregation of multiple reports into one report,

those repeated entries will be removed, and a node that appeared in both lists will be

removed from the list of unreached nodes. With luck, the dissemination center will

finally receive a report it can use to check the progress of dissemination. This method

also faces security issues. A corrupted Revere node may report all it s descendents as

having received the security update, even if it has not forwarded an authentic copy to any

of them. As a result, if a Revere node happens to be isolated by corrupted Revere nodes,

the fact that it has not received the security update will not be reported to the

dissemination center at all .

5.5.2 RBone Intrusion Detection and Reaction

As discussed earlier, Revere has been designed to be robust against various attacks as

they occur. On the other hand, it is still a diff icult problem for Revere to globally

monitor the health of an RBone. In other words, a distributed intrusion detection system

for Revere is an open question. The open-membership principle of Revere makes this

more challenging—a compromised node can easily join an RBone as long as it can attach

 123

itself somewhere. Although Revere has been designed to be resili ent to interruption

threats and other attacks, it would still be very useful i f Revere could identify those

compromised nodes as early as possible, instead of waiting until attacks are launched.

Moreover, after a Revere node is identified as unreliable by other Revere nodes (for

example, a Revere node may detect that one of its parents does not cooperate in

forwarding security updates), how can the corruption of the node be securely and reliably

reported, and how can all the other Revere nodes be alerted?

5.5.3 Denial-of-Service Attack

Denial-of-service (DOS) attacks are always particularly challenging. Similar to DOS

attacks launched on web servers [CERT 2000], attackers can attempt to flood a

dissemination center to stop its normal dissemination operation. Revere could also face

another type of DOS attack, one caused by infinite join. An attacker could try to corrupt

a certain number of nodes first, and then let those nodes continuously try to become

children of every uncorrupted node through the join procedure. If successful, all those

benign nodes may never have enough space to accept new children; new nodes will

become children of the corrupted nodes and will be unable to receive authentic security

updates. Studies addressed in Section 5.5.2 may prove useful for solving this problem.

5.6 Conclusions

The security of a distributed system has always been challenging. Revere can be

regarded as a distributed system that consists of Revere nodes over the entire Internet.

The large scale, the node heterogeneity, and the various forms of attacks all pose

challenges to securing Revere. Although there are still open issues, such as securely

monitoring dissemination progress, RBone intrusion detection and reaction, and denial-

of-service attack prevention, the security of Revere is fully addressed in this chapter.

 124

The security of Revere is divided into two aspects: securing the dissemination

process, and securing the RBone structure. As discussed in this chapter, the security of

dissemination process concerns the integrity, authenticity and availabilit y of security

updates. Attacks to counter along this line include suppressing, misdirecting, replaying,

or tampering with security updates, breaking into repository servers, or even corrupting a

dissemination center. The signing of security updates using public key cryptography is

used to address this, combined with mechanisms for detecting center impersonation,

invalidating corrupted keys, switching to new keys, and so on. Also, the design of

Revere already helps prevent the replay attack (by checking duplicate security updates

during dissemination) and interruption threats (by building redundancy into RBones).

Securing the RBone structure is challenging, as an RBone consists of large-scale

heterogeneous nodes, each enforcing different security schemes. A peer-to-peer security

scheme negotiation protocol was proposed in this chapter, allowing two arbitrary nodes

to securely communicate with each other. Moreover, the security box corresponding to a

specific security scheme can also be easily plugged in or unplugged, as exempli fied in the

Kerberos-based security box and certificate authority hierarchy-based security box.

 125

6CHAPTER 6

Real Measurement Under Virtual Topology

Revere provides a service for disseminating security updates at Internet scale. To

understand how effective Revere is in providing this service, the characteristics of the

dissemination must be evaluated. This is a criti cal step before widely deploying Revere

over the Internet.

Among various parameters, the speed of dissemination describes the basic behavior

of Revere and must be measured. Furthermore, we must measure the quality of

dissemination in order to understand the resili ency of the Revere infrastructure; Revere

performance in the face of broken nodes is particular interesting.

In addition to the dissemination of security updates, another major Revere activity is

RBone formation and maintenance. As discussed in Chapter 3, an RBone is gradually

formed by a series of join procedures, which are also employed when a node needs to

adjust its position during RBone maintenance. As a result, performance data regarding

the join procedure is also key to the assessment of Revere.

The diff iculty arises because Revere is designed for Internet-scale deployment.

Realistic measurement of large-scale distributed systems poses unique challenges.

Empirical measurements can capture the true behavior of a real system, but this approach

is only feasible when the system is small i n scale. Simulation is more scalable, but

without running real software, it is diff icult for simulation tools to capture all realistic

effects. We adopted an “overloading” approach to address this diff iculty when

measuring Revere.

 126

In this chapter, we will first discuss what metrics to use to evaluate Revere (Section

6.1); then we will i ntroduce the “overloading” approach used for measuring Revere

(Section 6.2), which we believe also applies to other distributed systems. Section 6.3 is

about the procedure of the measurement, where both measurement configurations and

measurement steps will be described. Results and their analysis are covered in Section

6.4, where we discuss the results of the join procedure, dissemination speed, and

dissemination resili ency, etc. Section 6.5 is on open issues, where we discuss those open

problems related to the overloading approach, performance for larger-scale RBones, real-

world challenges, and measurement of an RBone’s physical-layer property. We conclude

the chapter in Section 6.6.

6.1 Metr ics

The following metrics are important for evaluating Revere:

1. Dissemination bandwidth. The bandwidth spent to disseminate secur ity updates.

The dissemination bandwidth, under normal conditions, is easy to

evaluate. In a single round of dissemination, the inbound dissemination

bandwidth per Revere node is the size of the security update multiplied by

the number of parents, and the outbound dissemination bandwidth per

Revere node is the size of the security update multiplied by the number of

children.

Under abnormal conditions, the dissemination bandwidth cost can be

arbitrary. For instance, a subverted Revere node might try to flood its

children with replayed security updates and thereby use up all the

bandwidth available.

 127

2. Maintenance bandwidth. The bandwidth spent to maintain an RBone.

The maintenance bandwidth, under normal conditions, is also easy to

evaluate. The RBone maintenance bandwidth per Revere node is mainly

the size of heartbeat messages during each heartbeat interval.

Similarly, under abnormal conditions, a subverted Revere node may

arbitrarily initiate Revere messages related to maintenance.

3. Join latency. The time that a new node spends before fully becoming a Revere

par ticipant.

More accurately, this is the time that a node spends to find the needed

number of satisfactory parents. Note that even if the node has already

attached to a certain number of parents as required, the join procedure may

still not be done—some parents may have to be replaced with better

quality parents (or not replaced if better parents cannot be located after

certain runs).

4. Join bandwidth. The bandwidth spent to join Revere.

Given that the messages of an RBone, including those related to join

procedure, are all i nternal to the RBone itself, the total amount of

outbound join bandwidth is the same as that of inbound join bandwidth.

5. Dissemination latency. The latency for a secur ity update to reach an individual

Revere node.

Both average and maximum latencies in reaching a node should be

assessed. Also relevant is the time needed to reach a certain percentage of

all Revere nodes, including the special case of reaching all Revere nodes

(under normal conditions).

 128

6. RBone resiliency. The percentage of working Revere nodes that still receive

secur ity updates, given that a certain number of nodes are broken.

Because the first two metrics (dissemination bandwidth and maintenance bandwidth)

are easy to evaluate, we will focus on the measurement of the remaining four metrics in

this chapter.

6.2 Overloading Approach To Measur ing Large-Scale Distr ibuted
Systems

6.2.1 Introduction

Conventional methods for measuring the performance of a distributed system face a

scalabilit y vs. realism dilemma. Realistic measurements of large-scale distributed

systems are particularly challenging. While empirical measurements can capture the true

behavior of a real system, the cost of gaining access to, configuring, maintaining, and

obtaining results from more than a few hundred nodes is typically prohibitive.

Simulation is a more scalable approach, but it is diff icult for a simulation to capture all

aspects of a real system, such as hidden costs and subtle timing effects. In addition, the

simulated version of a software system is typically different from the software that would

actually be deployed. The fact that simulation is usually expensive to develop but slow to

run also makes a simulation-based measurement approach less favorable. In addition,

simulation results must be validated against real systems.

We explore a different approach to measuring large-scale distributed systems in this

chapter—the “overloading” approach. It supports multiple instances of a software system

executing on the same physical node. In this approach, each individual node in a

 129

distributed system runs the real code, and a fairly large number of nodes may be deployed

on a physical node.

In the purely real world, a physical machine typically maps to one individual node of

a distributed system. Via this overloading technique, however, a physical machine can be

overloaded with many nodes of a distributed system, where each logical node still runs

the real code and communicates with other logical nodes, just as it would in the real

world. Large scale can then be achieved using multiple physical machines, each

supporting many logical nodes.

In addition to providing higher-scale measurement, the overloading approach is also

advantageous in that many metrics will not be affected, even if a physical node is fully

overloaded. For example, storage cost and bandwidth cost will be the same no matter

how many individual nodes of a distributed system are running on a single physical node.

However, one fundamental issue arises—how to run a distributed system with this

overloading technique while still achieving accurate measurement results. In particular,

messages between the nodes will now follow different transmission paths than would be

taken in the purely real world. For example, two logical nodes that are collocated on the

same physical node will now communicate without crossing a wire. Also, by running

multiple logical nodes on top of a physical node, resource competition between these

logical nodes can slow down the processing time of various tasks, leading to inaccurate

latency data that is higher than it should be.

We address these and other issues that arise from overloading in the following

sections. Section 6.2.2 describes how a large-scale distributed system can run with a

limited number of physical machines, using a virtual topology to assign logical nodes to a

smaller number of physical machines and to model the communication between those

nodes. In Section 6.2.3 we discuss measurement using this overloading approach,

 130

including techniques that compensate for resource sharing between logical nodes on

physical nodes.

6.2.2 Running Atop a Vir tual Topology

The nodes of any distributed system must exist on top of some topology. When

overloaded on top of physical machines, however, the nodes of a distributed system will

have a different topology than they would in the real world. Such a topology, which may

consist of a single machine, will not, by itself, reflect the characteristics of the topology

of the distributed system.

A virtual topology can be employed to solve this problem. Each node of a particular

distributed system can be viewed as attached to a particular location in a virtual topology.

Such a node communicates through this virtual topology to another node, which is

attached to the same virtual topology. A virtual topology can be generated using one of

many existing topology generation tools, such as GT-ITM [Calvert et al. 1997], Tiers

[Doar 1996], Inet [Jin et al. 2000], or Brite [Medina et al. 2000], depending on the

characteristics of the distributed system.

With the notion of a virtual topology, a distributed system can be created as follows.

After generating a virtual topology, treat each logical node in the virtual topology as an

individual node of the distributed system. For each virtual node, run the software of the

distributed system on top of a physical machine, where multiple instances of the software

program may be invoked on the same machine. As a result, the performance of this

distributed system can be measured.

While it may be possible to map all nodes of a virtual topology to a single physical

machine, multiple machines will t ypically be required for larger scalabilit y, each assigned

a subset of nodes from the common virtual topology. The node assignment can be

 131

fulfilled by contacting a virtual topology server that keeps track of which nodes are

already assigned and which are still outstanding.

Figure 6.1 shows a virtual topology in which a distributed application runs with 20

nodes that communicate across transit-domain routers and stub-domain routers. As

shown in the figure, these 20 nodes are assigned to three physical machines.

It is important to ensure that the real software still functions in this new mode of

execution. One side effect of overloading is the identification of each node in the

distributed system. In a real system, the address of the underlying physical machine can

be used to identify a logical node. Here, since each physical node is overloaded with

multiple logical nodes, logical nodes can no longer be identified using the machine

address. To solve this, each node now has to be identified using the machine address

coupled with some unique number, such as a TCP port number bound to the logical node

Fig 6.1 A virtual topology with 20 Revere nodes

1 1

1

1

1
1

1

1 1

3 3

3

3 3 3 3

3

2 2 2

stub-domain router
transit-domain router

Revere nodes assigned to machine 1 1

3

2 Revere nodes assigned to machine 2
Revere nodes assigned to machine 3

 132

(which is unique since two logical nodes will not be allowed to use the same port

number).

6.2.3 Measur ing Atop a Vir tual Topology

Since overloading typically maps several logical nodes onto a single physical node,

the logical nodes must share the resources of the physical node. This resource sharing

can, but does not necessarily, affect the performance of individual logical nodes.

Many results obtained in a virtual topology will not differ from those obtained while

running atop a real topology with the same structure. For example, whether the

underlying topology is real or virtual, the storage cost or bandwidth cost incurred at an

individual node of a distributed system will not typically be affected. As another

example, the hop count of traveling from one node to another in a distributed system will

not be affected either, when running on top of a virtual topology instead of a real one.

Also, the characteristics of the communication paths between any two nodes of a

distributed system can be easily determined based on the specification of a virtual

topology. For instance, if the length of every link in a virtual topology is known, the

shortest path between any two nodes on the virtual topology can be calculated using

Dijkstra’s algorithm [Dijkstra 1959], instead of being measured.

However, logical nodes on the same physical node must share the processor and

memory. Thus, the processing time of each individual node performing a particular task

will be affected. Due to the overloading of the underlying physical machine, multiple

nodes, if running concurrently, will cause resource contention and result in longer

processing times.

This problem can be solved in three ways. The first approach is to remove the

resource contention, thus causing the measured processing time on an overloaded node to

 133

be the same as the real value. If only a single logical node at a time is allowed to proceed

with full usage of system resources, the time spent by this node on a task should incur

approximately the same amount of time as it would in the real world. However, this

approach may require a logical node to wait for access to the resources to perform a

particular task. If latency is important, this approach will not be appropriate.

The second approach is to calculate a slowdown factor and apply that to the measured

processing latency. A slowdown factor can be estimated by overloading with a different

number of nodes on a physical machine and comparing the impacts. For example, if a

task consumes t0 seconds when n nodes of a distributed system are evenly loaded into n

physical machines, but t seconds if all n nodes are overloaded on one physical machine,

we then can obtain a slowdown factor t/t0 for physical nodes overloaded by a factor of n.

This method works well when the processing time slows down linearly; otherwise, it

must be carefully applied. To gain a more accurate understanding of the slowdown factor

of a distributed system, measurement of overloading factors should be performed.

The third approach, using a divide-and-conquer method, is to divide the task being

measured into several disjoint subtasks that are more easily measured. Here, several

conditions must be met: 1) every subtask must be independent of the others, 2) subtasks

must not overlap in terms of processing latency, and 3) the sum of all subtasks must be

the total processing latency. For example, to evaluate the delay of forwarding a packet

from source to destination, literally measuring the interval from sending time to receiving

time is inaccurate when machines are overloaded. On the other hand, by dividing the

whole delay into transmission delay along the wire, processing delay at each router, and

queuing delay at each router, each component can be measured separately. These

subtasks are usually measured in a non-overloading environment, then applied to the full

system.

 134

The first approach usually requires a new resource-control mechanism to coordinate

the usage of system resources. Thus, this approach will be easier to implement for some

distributed systems than it is for others. The third approach is preferable to the second if

a task can be easily divided into several subtasks, and each subtask can be easily and

accurately measured. It may also be possible to combine these approaches. For example,

a subtask may be measured by applying a corresponding slowdown factor. In the next

section, we will apply the first and the third approach in measuring Revere.

6.3 Measurement Procedure

Rather than first deploying Revere into the Internet, Revere’s performance was

measured using the overloading technique described above. In this section we describe

our measurement procedure and justify our measurement method.

6.3.1 Configurations

To overload different numbers of Revere nodes onto physical nodes, we used a

testbed that consists of ten machines. Every machine was equipped with an AMD

Thunderbird 1.333 GHz CPU, 1.5GB SDRAM, and a 100 Mbps Ethernet interface.

Every virtual topology of Revere nodes was created as follows. We first used GT-

ITM [Calvert et al. 1997] to generate a router-level topology, then attached certain

numbers of Revere nodes (hosts) to each stub-domain router on that topology, and finally

had a topology server assign every testbed machine the same number of Revere nodes.

Transit-stub routers themselves are not Revere nodes; they are merely used in

communication latency evaluation (as discussed later).

Throughout all measurements, the following configurations were used: 1) every

Revere node must have two parents and no more than ten children (except that the

dissemination center can have up to 30 children), 2) UDP is used for security update

 135

forwarding from parent to child, and 3) both security updates and control messages

between Revere nodes are protected using RSA-based public key cryptography with a

three-level certificate server hierarchy; in particular, the signing algorithm is SHA-

1/RSA/PKCS#1.

6.3.2 Phase-Based Measurement

We artificially divided the li fetime of Revere into three phases: the join phase, the

dissemination phase, and the resili ency test phase. In real use, these three phases would

overlap, but measuring them separately captures most costs appropriately. During the

join phase, nodes sequentially join Revere and gradually form an RBone. After all nodes

have joined, the system advances into the dissemination phase, during which the

dissemination center sends security updates through the RBone to individual nodes for

ten rounds. Finally, in the resili ency test phase, dissemination is tested in the face of

broken nodes. We will measure join performance, dissemination latency, and

dissemination resili ency in their respective phases.

6.3.2.1 Join phase

During the join phase, join latency will be artificially increased if every physical

machine is overloaded with several Revere nodes, but join bandwidth should be

unaffected. We evaluated the join performance for one particular scenario where all the

nodes join Revere sequentially. Corresponding to the first approach discussed in Section

6.2.3, we applied a token-controlled mechanism by which a Revere node can only begin

running after it is granted a token by a token server, and it must return the token after it

joins Revere. By enforcing only one token for all Revere nodes on all physical machines,

only one node will be in the process of the join procedure at any time during the joining

phase. Other nodes may be temporarily activated when requested to interact with the

 136

joining node. The measured results of join latency and join bandwidth should be

approximately the same as the real cost of a single node joining. (In a real Revere

system, there will very li kely be simultaneous joins, potentially causing real contention.

Measuring the join cost in this situation is under investigation.)

When a new node tries to join Revere, it will first try a three-way-handshake

procedure with local Revere nodes. If there are no Revere nodes locally, or if the three-

way-handshake with those nodes fails, the node then contacts the dissemination center by

also running the three-way-handshake procedure. If this fails again, the center will

recommend one of its children as a new contact for the new node, and the new node will

start another round of the three-way-handshake procedure. This procedure repeats

recursively until the new node finds two satisfactory parents.

6.3.2.2 Dissemination phase

During the dissemination phase, each node behaves in a store-and-forward manner.

However, because many Revere nodes are running on a physical machine, simply

measuring the interval between sending a security update and receiving it cannot reflect

the true dissemination latency. Given the artificially heavy load on the physical machine,

both the processing delay and the kernel-space-crossing delay will be lengthened. We

solved this problem using the divide-and-conquer method described in Section 6.2.3. In

this phase, we assumed no node or link failure, no malicious subversion efforts, and no

any other abnormal conditions. Clearly, such assumptions are only true in a

measurement environment. In the following we describe the three steps used to evaluate

dissemination latency:

 137

Step 1: Divide the secur ity update dissemination latency

In this step, the latency of disseminating a security update is divided into three parts:

the security update processing delay at every hop (including possible queuing delay), the

kernel-space-crossing delay at every hop, and the transmission delay of crossing the

virtual topology (Figure 6.2). Such a division satisfies the conditions of using the divide-

and-conquer method as discussed in Section 6.2.3. Processing latency, communication

latency and kernel-space-crossing latency are three independent non-overlapping parts,

and their combination fully covers the duration of a security update dissemination.

Note that a hop here, instead of being a router-to-router hop, is a hop from one Revere

node to another.

Step 2: Evaluate every individual par t of dissemination latency

In this step, we evaluated each part separately. The true processing delay per hop can

be measured in a separate experiment without overloading a physical node. In the same

manner, the kernel-space-crossing delay per hop can also be measured. And the

communication latency incurred in every hop can be calculated using the Dijkstra

Fig 6.2 Composition of security update dissemination latency

OS

Revere

Previous hop Next hop
JAVA

Local processing time
(measured)

Kernel-crossing time
(measured)

Per-hop transmission latency
(parameter)

 138

algorithm over the virtual topology graph underneath (assuming no congestion delay on

links).

It is necessary to measure both processing delay and kernel-space-crossing delay in a

clean, non-overloaded environment. Figure 6.3 shows that when a testbed machine is

heavily overloaded, every logical Revere node will i ncur prolonged local processing time

and kernel-space-crossing time; neither will be accurate enough to reflect a realistic

value. We found that the processing delay at a Revere node will vary with the order of

forwarding security updates (we will report the measured data in Section 6.4.2.2).

Step 3: Measure hop counts (and other information) in full systems and sum

In this step, we added all dissemination latency components. Note that with a given

RBone structure, the hops that a security update travels to reach a node are invariant, no

matter how many nodes are simultaneously running on the same physical node. By

summing up the processing delay at every hop and kernel-space-crossing delay at every

hop, and adding the communication latency, we can obtain a very good approximation of

the dissemination latency in large-scale scenarios.

Fig 6.3 Prolonged dissemination latency in an overloaded environment

OS

JAVA

Revere

User space

Kernel space

JAVA

DelaysDelays

A virtual Revere node
overloaded on top of a
physical machine

 139

In the full system, there are two values to measure in order to determine the

dissemination latency of every security update: the hop count that the update incurs when

reaching a Revere node, and the forwarding order of this update at each hop (i.e. each

intermediate Revere node). The hop count is used to determine the total kernel-space-

crossing latency, which is the kernel-space-crossing latency per hop (to be discussed in

Section 6.4.2.3) multiplied by the hop count. The forwarding order is used to determine

the processing latency at each hop (to be discussed in Section 6.4.2.2). The total

communication latency is calculated by summing up the communication latency in every

hop.

6.3.2.3 Resili ency test phase

During the resili ency test phase, each node on the overlay network is assigned a

uniform probabilit y of failure to test how many nodes are still reachable during the

dissemination procedure. The divide-and-conquer method is again used to evaluate the

latency of disseminating security updates toward the remaining nodes. The dissemination

latency is divided, as before, into three parts, and measurement is performed as in the

dissemination phase.

RBone maintenance is turned off on purpose during this phase so that we can analyze

the resili ency of a static RBone. If maintenance were turned on, every Revere node

would adjust its parents if one or more parents were as detected broken; assuming the

maintenance mechanism works well , almost every Revere node would then still be able

to receive security updates, and even those that were not received due to a maintenance

lag can be retrieved using a pulli ng procedure.

 140

6.4 Results and Analysis

6.4.1 Join Latency and Bandwidth

Figure 6.4 shows the outbound bandwidth that each node incurs during the join phase,

for various sizes of Revere networks. This bandwidth cost includes the messages that a

node sends when joining the overlay network and the messages sent in response to the

join requests of other nodes.

In this measurement, each node has to find two satisfactory parents, and must go

through certain rounds of a three-way-handshake with other existing Revere nodes. The

number of rounds increases logarithmically as the number of Revere nodes increases, due

to the top-down recursive search of those potential parents that may still have space to

accommodate a new child, as described in Section 6.3.2.1. When a new node cannot find

satisfactory (eff icient and resili ent) parents locally, it will run the three-way-handshake

with the dissemination center; if the center is full , it will t hen begin running the three-

way-handshake with one of the children of the center; if that child is also full , it then goes

to one of the children of that child; this repeats recursively. As a result, the dissemination

center of an RBone incurs the largest amount of bandwidth cost, while a leaf node on the

RBone probably incurs the minimal amount of bandwidth. Because of this, Figure 6.4

shows a wide variation in bandwidth cost.

Figure 6.5 shows the latency experienced by a node joining RBones of various sizes.

In this experiment, each node completes the join procedure after successfully attaching

itself to two existing Revere nodes that it is satisfied with. For reasons similar to the

logarithmic increase of outbound join bandwidth, the latency to locate two satisfactory

Revere nodes also increases logarithmically as the number of Revere nodes in an RBone

 141

increases. The variation in join latency is at the level of dozens of milli seconds,

indicating that most nodes in an RBone will i ncur similar join latencies.

The costs of both outbound join bandwidth and join latency are acceptable. As the

number of Revere nodes varies from 250 to 3000, the outbound bandwidth per node

during join phase varies from approximately 6 kilobytes to 14 kilobyte, and a new node’s

join latency varies from around 0.7 seconds to 1.5 seconds, both basically following

logarithmic trends as the number of nodes grows.

 142

y = 4.863Ln(x) - 19.219

4

8

12

16

20

24

28

0 500 1000 1500 2000 2500 3000

number of total Revere nodes

o
u

tb
o

u
n

d
 b

an
d

w
id

th
 p

er
 n

o
d

e
(K

B
)

R2=0.953

Fig 6.4 Outbound bandwidth per node during joining phase

(confidence level: 95%)

y = 0.339Ln(x) - 1.128

0.0

0.5

1.0

1.5

2.0

0 500 1000 1500 2000 2500 3000

number of total Revere nodes

jo
in

 la
te

n
cy

 p
er

 n
o

d
e

(s
ec

)

R2=0.919

Fig 6.5 Join latency per node

(confidence level: 95%)

 143

6.4.2 Dissemination Speed

Each security update is disseminated in a store-and-forward manner. As we

described in Section 6.3.2.2, we divided the dissemination latency into three parts (step

1), evaluated each part separately (step 2), and finally combined them together in the full

system to gain the overall dissemination latency (step 3).

Step 1 does not involve any measurement work. Corresponding to step 2, the

evaluation of each of the three parts is described in Sections 6.4.2.1, 6.4.2.2, and 6.4.2.3,

respectively. Corresponding to step 3, we describe the evaluation of the hop count in

Section 6.4.2.4 and report the summed results in Sections 6.4.2.5 and 6.4.2.6.

6.4.2.1 Communication latency

As we discussed in Section 6.3.2.2, the communication latency can be calculated

using the Dijkstra algorithm over the virtual topology graph underneath. With the virtual

topology used for measurement, to transmit a 1-kilobyte security update, the router-to-

router latency is 23.9 ms on average, and ranges from 1 ms to 70 ms.

During the measurement process, when a Revere node receives a security update

from a previous hop, it will l ocate the router associated with itself and the router

associated with the previous hop. Having knowledge of the whole virtual topology, the

measurement code of this Revere node can then invoke the Dijkstra algorithm to

calculate the shortest-path distance between the two routers, which we assume is the

routing path taken to forward the security update from the previous hop.

6.4.2.2 Security update processing latency

In a separate experiment, we also measured the latency in processing a security

update. The processing of a security update at a Revere node includes duplicate check,

security check, buffering into the security update window, and forwarding to the children

 144

of the node. The buffering operation here also includes a possible queuing delay. The

processing duration begins upon the receipt of a security update. However, the

processing ends at a different time for every child, depending on when a security update

toward a specific child departs from the node.

During the experiment of the processing delay at a Revere node, no other Revere

nodes are collocated on the same testbed machine with the tested node. This guarantees

that the measured processing delay is not affected by resource contention from other

Revere nodes. Meanwhile, only normal system processes are running on the testbed

machine. Since in the real world every machine will run just one instance of Revere, this

will give us a realistic value of processing latency.

The experiment shows that the processing delay of a security update does not

correlate with the total number of children at a Revere node. Instead, it varies with the

forwarding order of the update. Figure 6.6 shows that the processing delay versus the

forwarding order is linear. For the first child that receives a security update from a

parent, Figure 6.6 shows that the processing delay is about 1 ms, whereas it becomes

nearly 3 ms in the eyes of the tenth child that receives the same update.

y = 0.182x + 0.936
1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11

the order of forwarding a security update

p
ro

ce
ss

in
g

 d
el

ay
 (

m
s)

R2=0.991

Fig 6.6 Security update processing delay at a Revere node

(confidence level for latency: 95%)

 145

6.4.2.3 Kernel-space-crossing latency

The kernel-space-crossing delay is the time between sending a message from Revere

at application level and the departure of the message from the node, plus the time

between the receipt of the same message at a recipient node and the delivery of the

message to Revere at application level. In another words, it is the latency from the time

that a sender sends a message to the time that a recipient receives the message, but

excluding the time spent on the wire, where both the sending and receiving operations

happen inside Revere at the application level.

To measure the kernel-space-crossing latency, we collocated two Revere nodes on the

same physical machine, and measured the interval from the time of sending a security

update by one Revere node to the time of receiving a security update by another. Since

no wire latency is incurred for message transmission between the two collocated nodes,

this interval is used as the estimated value of kernel-space-crossing latency. Figure 6.7

shows the measured results (the spikes are caused by Java’s garbage collection). With a

95% confidence interval, kernel-space-crossing latency in our measurement configuration

is 674±73 microseconds.

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 100ke
rn

el
-s

p
ac

e-
cr

o
ss

in
g

 la
te

n
cy

 (
m

ic
ro

se
co

n
d

)

Fig 6.7 Kernel-space-crossing latency

 146

6.4.2.4 Hop count

 We measured both the average and maximum hop count for disseminating security

updates (Figure 6.8). As the number of total Revere nodes varies from 250 to 3,000, the

average hop count varies from 2 to 4, and the maximum hop count varies from 6 to 11.

Is such an average hop count value a reasonably good result? In those RBones

measured, every Revere node had two parents. If instead, every node had just one parent,

every RBone would become a tree structure, rooted at a dissemination center. For a fully

saturated balanced tree, we can easily see that if the depth of the tree is 3 hops, where the

root has 30 children and every non-leaf node has 10 children (the same configuration we

used for measurements), such a tree can accommodate 3330 (30+30*10+30*10*10)

nodes at maximum. Here, requiring every Revere node to have two parents will double

the space to accommodate child nodes. Recall that if every Revere node also has

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

number of total Revere nodes

av
er

ag
e

an
d

 m
ax

im
u

m

h
o

p
 c

o
u

n
t

p
er

 n
o

d
e

average: y=0.771Lnx - 1.810

R2=0.852

maximum: y=1.818Lnx-3.902

R2=0.878

Fig 6.8 Average and maximum hop count of security update dissemination

 147

constraints or preferences for having other Revere nodes as its parents, a 3000-node

RBone with an average hop count of 4 is reasonable. This demonstrates that a Revere

node in a 3000-node RBone can stay about just 4 hops away on average from the

dissemination center, while still meeting those RBone formation requirements regarding

eff iciency and resili ency. A similar analysis can be applied to other RBones that have

different numbers of Revere nodes.

Although ideally an RBone should have every non-leaf Revere node fully saturated

with child nodes, and be kept balanced (just like a fully saturated, balanced tree), the

maximum hop counts depicted in Figure 6.8 show that some Revere nodes could be as

far as 6 to 11 hops away from a dissemination center—still considered a reasonable

distance.

The best-fit trendline for a maximum hop count can easily be seen to be a logarithmic

trend as the total number of nodes varies. The best-fit trendline for an average hop count

is also basically logarithmic. Here, the R2 values for both trendlines may not appear as

good as one would expect; this is not a problem because a hop count can only be an

integer, and this prevents the real value from being very close to the trendline.

An analysis also shows that the trendline should be logarithmic. Every node counts

the latency for receiving the first authentic copy of a security update as the dissemination

latency for itself. Since measurement in the dissemination phase does not assume any

failure or security attack, every node must have used its fastest path to receive the first

authentic copy of every security update. Therefore, it is the latency of the fastest path of

every node that is measured. All the fastest paths in an RBone are rooted at the RBone’s

dissemination center—together they form a tree structure. The average hop count we

measured should thus be the same as the average hop count of the tree. Given that the

 148

latter follows a logarithmic trend, we can believe that the average hop count of Revere

nodes in an RBone also follows the same logarithmic trend.

6.4.2.5 Dissemination latency

Based on the results in Sections 6.4.2.1 through 6.4.2.4, we then can derive the

dissemination latency for every security update. Based on the measured result of kernel-

space-crossing latency per hop (from Section 6.4.2.3), multiplied by the hop count

measured for each security update, we obtained the total kernel-space-crossing latency

for the update. Also, based on the measured result of security update processing latency

from Section 6.4.2.2, combined with the forwarding order of a security update recorded

at every hop, we obtained the total processing latency for the update. Recall that the

communication latency of every security update was obtained using the Dijkstra

algorithm during the measurement. Summing all three latencies together, we then

obtained the dissemination latency for every security update.

Figure 6.9 shows both the average and maximum dissemination latency, which

demonstrates a very quick response. It shows that it takes 85 ms to 300 ms on average to

reach a Revere node in an RBone that has 250 to 3,000 Revere nodes. Note that the

maximum dissemination latency is also the time used to reach all the Revere nodes in an

RBone. Several outliers for maximum dissemination latency can be explained as

follows: if there is one node located remotely from the dissemination center of an RBone

and this node incurs the maximum dissemination latency, no matter how fast the rest of

the Revere nodes receive security updates, the maximum latency will be based solely on

the dissemination latency of this single node.

More interestingly, Figure 6.9 shows that both the average and the maximum

dissemination latency closely follow logarithmic trends. If we use these trends to predict

 149

the dissemination latency in an even larger scale, encouraging results can be gained. For

example, reaching a Revere node in a 100-milli on-node RBone will only take

approximately 1.10 seconds on average, and the maximum dissemination latency is 3.83

seconds. Certainly, there are many issues to be addressed when extrapolating both

trendlines for a larger scale. We will discuss this in Section 6.5, Open Issues.

6.4.2.6 Dissemination coverage

It is also worthwhile to ask what latency is needed to reach a certain percentage of

nodes in an RBone. Or, conversely, to ask what percentage of Revere nodes are reached

at a given time?

We obtained the dissemination latency of each individual node and then derived the

percentage of nodes covered as the dissemination proceeds. Figure 6.10 shows the

dissemination coverage over time for a 3000-node dissemination. In this case, 100% of

average: y = 0.079Ln(x) - 0.362

maximum: y = 0.279Ln(x) - 1.307

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000

number of total Revere nodes

av
er

ag
e

an
d

 m
ax

im
u

m
 la

te
n

cy

to
 r

ea
ch

 a
 R

ev
er

e
n

o
d

e
(s

ec
)

R2=0.912

R2=0.927

Fig 6.9 Average and maximum security update dissemination latency
(confidence level for average latency: 99.9%)

 150

the nodes are reached in a short time (less than 1 second). Figure 6.10 (a) shows the

coverage with a 99% confidence interval, and Figure 6.10 (b) shows the same coverage

graph but with a polynomial trendline. The trendline suggests that as time goes by, more

Revere nodes are reached at a polynomial speed (except that the tail part does not follow

closely, as shown in Figure 6.10 (b)).

Clearly, the speed of reaching 100% coverage from 0% coverage is not constant. In

particular, the dissemination coverage has a long “ tail ” as shown in Figure 6.10.

Although at time 610 ms, 99% of nodes have already been reached, it is not until time

950 ms that 100% of nodes are reached. If what one really cares about is not necessarily

the full -coverage latency, even lower latency can be derived. We look further into this

issue as follows.

Based on the dissemination latency to reach every Revere node in an RBone, we

obtained the latency for reaching a certain percentage of nodes in the RBone. Figure 6.11

0%

20%

40%

60%

80%

100%

250 500 750 1000 1250

Time (ms)

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 r

ea
ch

ed

������� ��� 	
 � � �
 � � ��� ��� �
 � �
 � ����� �����
 � �
 � ����� �����
 � �
�� ��� ��	�	
 � � �
� � "!$# %�%�&('

0%

20%

40%

60%

80%

100%

250 500 750 1000 1250

Time (ms)

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 r

ea
ch

ed

Fig 6.10 Security update dissemination coverage for a 3000-node dissemination

(a) Coverage with confidence level
of coverage: 99%

(b) The same coverage graph as that
in (a), but with a polynomial trend

 151

shows the latency for reaching 99%, 90%, and 2/3 of Revere nodes in an RBone, where

the total number of RBone nodes varies from 250 to 3,000. Not surprisingly, all three

trendlines for the 99%, 90% and 2/3 coverage closely follow the logarithmic trend. If we

use the trendlines in Figure 6.11 to predict the latencies in reaching 99%, 90% or 2/3 of

the nodes in a 100-milli on-node RBone, it will t ake about 2.246, 1.876 and 1.342

seconds, respectively.

6.4.3 Dissemination Resili ency

During the resili ency test phase, an RBone’s resili ency was tested using different

probabiliti es that nodes would be broken. After a dissemination center broadcasts a

security update, every Revere node, once visited by the security update, will determine

whether it should emulate a broken node or a working node by asking a common random

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500 3000

number of total Revere nodes

la
te

n
cy

 t
o

 r
ea

ch
 a

 c
er

ta
in

 p
er

ce
n

ta
g

e
o

f
n

o
d

es
 (

se
c)

maximum: y=0.279Ln(x)-1.307

(R2=0.912)

average: y=0.079Ln(x)-0.362

(R2=0.927)

99%

2/3

90%

[99%] y=0.156Ln(x)-0.628 (R2=0.881)

[90%] y=0.136Ln(x)-0.629 (R2=0.913)

[2/3] y=0.098Ln(x)-0.463 (R2=0.914)

Trendlines

Fig 6.11 The latency to reach 99%, 90%, and 2/3 of Revere nodes in an RBone

This is also compared with Figure 6.9’s maximum and average latency to reach Revere nodes, whose
trendlines are also shown in this figure.

 152

boolean server. The random boolean server answers by comparing a newly generated

random number r (0<r<1) with the given broken probabilit y. Clearly, a visited working

node is also a reached working node.

We regard the rest of the nodes that are not visited as unreached working nodes.

There are, then, totally three types of nodes: broken nodes, reached working nodes, and

unreached working nodes. The former two are visited nodes during measurements, and

the ratio of broken nodes over the total number of visited nodes should be approximately

the same as the assigned broken probabilit y.

We use the ratio of reached working nodes over the total number of working nodes to

measure the resili ency of an RBone. In this section, we focus on 3000-node RBones.

Figure 6.12 depicts the resili ency characteristics of the same RBone reported in Figure

6.10; the difference is that now every (visited) Revere node has a 16% probabilit y of

being broken.

Fig 6.12 Resili ency test for a 3000-node dissemination with a 15% node failure

(a) Coverage with confidence level of
coverage: 99%

(b) The same coverage graph as in (a),
but with a polynomial trendline

0%

20%

40%

60%

80%

100%

250 500 750 1000 1250

Time (ms)

p
er

ce
n

ta
g

e
o

f
w

o
rk

in
g

 n
o

d
es

 r
ea

ch
ed

�����(�)���
 � � �
 � � ��� �����
 � � �
 � ��*�� �)���
 � � �
 � ����� ��)�
 � � �
�� ��� ��� �
 � � �
� � "!$# %�%�+�,

0%

20%

40%

60%

80%

100%

0 250 500 750 1000 1250

Time (ms)

p
er

ce
n

ta
g

e
o

f
w

o
rk

in
g

 n
o

d
es

 r
ea

ch
ed

 153

With the failure of as many as 15% of the total nodes (resulted from the 16% broken

probabilit y of visited nodes), a high percentage (93%) of the working nodes are still able

to receive security updates without readjusting the structure of the dissemination overlay

network. Figure 6.12 (a) shows the coverage over time with 99% confidence. Compared

with Figure 6.10 on the same RBone but without node failure, now the dissemination

latency is longer. However, this is still a very fast response, particularly with a fairly

high probabilit y of node failure. Figure 6.12 (b) shows that the dissemination latency

matches smoothly with a polynomial trend.

Measurement shows that the 3000-node RBone is resili ent to small node-broken

probabiliti es (with node-broken probabilit y lower than 2%, 100% working nodes can still

be reached). Corresponding to four different higher failure probabiliti es, Figure 6.13

p=0.08

255

2722

23

p=0.16

457

2365

178

p=0.32

716

1437

847

p=0.64

612

2067

321

Fig 6.13 Resili ency test with different node broken
probabilit y on a 3000-node RBone

reached working nodes
broken nodes

unreached working nodes

 154

shows the resili ency test results in four doughnut charts (the pulled-out slice represents

the unreached working nodes). This demonstrates a very resili ent RBone. Recall that in

measurement, every node has two parents; we believe even better resili ency will result i f

additional parents are allowed.

6.5 Open Issues

6.5.1 More Thoughts on the Overloading Approach

The “overloading” approach to measuring large-scale distributed systems requires

that multiple nodes of a distributed system, if collocated on a physical machine, can still

perform correctly. In practice, however, distributed systems are typically designed with

the presumption that a single instance of the software executes on each physical node.

Slight modifications to a distributed system may be necessary in order to measure it using

this approach. As we pointed out earlier, systems that use an IP address as a node name

will require modification.

Theoretically, it might also be possible to build a common framework based on this

approach to support measurement of differing distributed applications, and a specific

distributed system can be measured by simply plugging it into such a framework.

Designing an interface between the framework and the application being measured then

must be carefully considered.

Another issue is the scalabilit y of this approach itself. Given that multiple nodes

under this approach can contend for resources of the same physical machine, some

resource locking mechanism is needed to obtain accurate results. An example of this

approach is the token mechanism used in measuring the join performance of Revere.

However, this technique slows down the measurement process. The token-controlled

 155

mechanism used to measure joins in Revere, for example, required about 100 minutes of

measurement for 3000 nodes (with the configurations described in Section 6.3.1).

6.5.2 Performance Understanding at Larger Scale

In previous discussions (particularly Sections 6.4.2.5 and 6.4.2.6), performance at

larger scale is predicted by extrapolating a trendline. The question is, will a trend that is

derived from results at smaller scale still apply to a larger scale? Is there a point that the

curve could suddenly change its inclination?

More measurements at larger data points can help promote more confidence

regarding a trend, but since there are almost always values at even larger points that one

cannot measure (in Internet scale), one cannot measure infinitely. One also has to rely on

the analysis of the system behavior to understand its characteristics at larger scale.

6.5.3 Challenges from the Real Wor ld

A real-world environment is always more complicated than a measurement

environment, and thus harder to measure and understand. Even though the measurement

of Revere used the real Revere code, there could still be factors that cannot be captured in

the measurement. Some of those factors are hidden and hard to discover and determine,

and some of them are very diff icult to manipulate due to the tremendous complexity. The

following is a partial li st of those challenges:

First, the real wor ld is heterogeneous. We assumed a homogeneous setup in

measuring Revere. However, taking a snapshot of the Internet at any moment, one would

see a highly heterogeneous composition in almost every aspect (even the Internet

Protocol, regarded as the only invariant by many, is represented by both IPv4 and IPv6)

[Floyd et al. 2001]. From the viewpoint of Internet elements, autonomous domains are

different in that they enforce different routing and security policies; routers are

 156

heterogeneous in that they run different routing protocols with different capabiliti es; links

are heterogeneous in that they have different capacity and quality; hosts are different in

that they have different performance on top of different platforms with different security

and mobilit y constraints.

The heterogeneity can also be exempli fied by two common practices over the

Internet: routing and TCP. Routing is often asymmetric. According to [Paxson 1996], a

path through the Internet in 1995 visited different cities in each direction 50% of the time

and different autonomous systems 30% of the time. TCP, while being widely used, has

more than 400 different implementations and versions as identified using the

“ fingerprinting” technique (a technique that compares protocol behavior in response to

different input) [Fyodor 2001].

Second, the real wor ld is always moving. The Internet has been drastically

changing since its inception, including changes to its various elements, protocols, and

traff ic. We plotted Figure 6.14 according to data reported by netsizer.com as of May 13,

2002. Interestingly, we can observe that, beginning in January 2002, the increase to

0

20

40

60

80

100

120

140

160

180

200

20
00

-1 3 5 7 9 11

20
01

-1 3 5 7 9 11

20
02

-1 3

year/month

m
o

n
th

ly
 a

ve
ra

g
e

h
o

st
s

in
 m

ill
io

n
s

Fig 6.14 Monthly average Internet hosts in milli ons

 157

speed switches from linear to logarithmic. While it is interesting to watch this growth

trend, it indicates that predicting the growth of the Internet is clearly not an easy task.

For example, anyone trying to predict Internet growth in the year 2001 could have easily

made a big mistake in predicting growth for the year 2002, if he had based his prediction

on a linear growth rate.

Traff ic is also non-deterministic and highly dynamic. For instance, [Floyd et al.

2001] reports that USENET traff ic has been exponentially increasing since 1984.

Experiments with FTP traff ic, web traff ic, etc., also show this kind of dynamics.

Congestion control, traff ic control, etc., on the other hand, try to smooth or regulate the

traff ic to better utili ze Internet resources, further making it diff icult to capture traff ic

charactristics.

Third, the Internet is a large-scale target to understand. Due to its great success,

the Internet has grown into an immensely large entity. While it is already diff icult to

predict Revere performance at larger scale (as discussed in Section 6.5.2), the

unpredictabilit y caused by heterogeneity and dynamics at larger scale makes this even

harder.

6.5.4 Measurement of an RBone’s Physical Layer

So far Revere is only measured in the application layer. While an RBone is an

application-level overlay network that connects Internet hosts, its physical-level

properties are still much less understood.

One important question is: how disjoint are a Revere node’s multiple delivery paths?

Although Revere is designed to have them as disjoint as possible, this is mainly done at

application (logical) level. If there were a router that was located on all delivery paths

(which are seemingly disjoint at the logical level) and an attacker could locate this router,

 158

the attacker could still t ry to launch interruption threats or other attacks by breaking into

this router. This is not a problem when the attack model only deals with Revere nodes;

however, this requires a strong trust model of the underlying routing infrastructure.

Ideally, one would hope that if delivery paths are disjoint at application level, their

overlapping degree at the physical (router) level is also low. Clearly, more measurements

are needed to answer the question.

Another important question is: would a particular physical li nk on the Internet be

overloaded by Revere control messages or security updates? At application layer, every

Revere node only has a small number of parents and children, and only communicates

with those nodes most of the time; as a result, no Revere (logical) link will be overloaded.

However, it is unknown whether those Revere links might actually share a common

physical li nk. If a physical li nk is overwhelmed by a huge amount of Revere messages,

the performance of the system may degrade rapidly.

6.6 Conclusions

6.6.1 The Overloading Approach

As more distributed systems run at Internet scale, understanding the performance of a

system at large scale is important. Unfortunately, it can be diff icult to measure a system

that consists of very large numbers of nodes that are part of a large-scale network.

Without actual deployment, measurement of a large-scale system can be performed in

two ways: the first is simulation and the second is the overloading approach. Simulation

is a popular approach for large-scale systems. However, since a simulation does not

typically use the actual software and cannot accurately emulate all environmental factors,

it is very diff icult for simulation tools to capture all the real effects of the system.

 159

Our overloading methodology collocates a large number of nodes of a distributed

system on a machine, while still allowing each node to run the real software. This

methodology can accurately report those metrics that are invariant with respect to

overloading, and can minimize those inaccuracies introduced due to overloading and

resource contention.

Meaningful results can be obtained. We demonstrated this using the overloading

approach for a security update dissemination system. While the measurements reported

in this chapter correspond only to up-to-3000-node networks, the results were obtained

using only 10 nodes. We believe that Internet-scale results can be obtained using only a

few hundred or a few thousand nodes. In addition, we believe that this approach can be

further generalized into a common framework to support measurement of different

distributed systems.

As discussed earlier, the overloading approach shares many of the validation

problems that simulation also experiences, whereas it has the singular advantage of

running the real software.

6.6.2 The Performance of Revere

Encouraging results were obtained for all six metrics—dissemination bandwidth,

RBone maintenance bandwidth, join latency, join bandwidth, dissemination latency, and

dissemination resili ency. A new Revere node can quickly join an RBone after spending a

small amount of bandwidth. An RBone can be maintained using a reasonable amount of

bandwidth, and it can also be made resili ent to node failure or subversion. Moreover,

with a reasonable amount of bandwidth cost, security updates can be delivered to the

whole RBone quickly.

 160

While Revere provides a dual mechanism for delivering security updates, it is mainly

the pushing mechanism that was measured and discussed in this chapter. If every Revere

node has the same configuration as the testbed machine used (whose platform and

performance is that of a common PC in today’s network), dissemination can be achieved

in seconds. It also shows that a high percentage of Revere nodes can be reached much

earlier than before all nodes are reached. This push model is superior to the pull model

that is in current use, which has to rely on high-frequency pulli ng to keep a machine

updated (at the cost of bandwidth).

The measurement further shows that an RBone can be made resili ent to failures and

attacks. It proves that a self-organized resili ent RBone can be made robust without

employing powerful servers over the Internet. In the 3000-node RBone tested, for

instance, even with a 15% node failure, 93% of remaining nodes can still receive security

updates. Note that in the measurement, every node is configured to have only two

parents. We believe that if Revere nodes choose to have more parents, better resili ency

results will be realized.

The measurement also demonstrates that Revere scales well . The join bandwidth

cost, the join latency, the (average and maximum) hop count, the (average and maximum)

dissemination latency, and the time to reach a certain percentage of Revere nodes, all

appear to closely follow logarithmic trendlines as the total number of Revere nodes

increases.

In conclusion, the Revere overlay network is fast, resili ent, lightweight, and

affordable.

 161

7CHAPTER 7

Related Work

7.1 General-Purpose Distr ibution Services

Viewed in the most general context, Revere fits within the broad scope of information

distribution over the Internet. In this section we look into those general-purpose

distribution services, including preliminary techniques (unicasting, broadcasting,

flooding, etc.), IP multicasting, application-layer protocols, email , replicated data

management, content-delivery networks, and some commercial products.

Many of the low-level needs of the Revere system can be met by use of these and

other existing message delivery and network security services. Recall that Revere allows

two Revere nodes (parent and child) to negotiate the delivery mechanism for forwarding

security updates. On the other hand, these services do not solve the entire problem that

Revere addresses.

7.1.1 Preliminary Techniques: Unicasting, Broadcasting, and Flooding

The simplest approach to information distribution is to unicast, but it is not scalable to

unicast security updates to milli ons of nodes from a dissemination center, one by one.

There are tens of milli ons of machines connected to the Internet, and each machine is a

potential participant. Because the Internet is ever growing, it is impossible for a single

machine, or even dozens of machines, to store global knowledge concerning all potential

participants. Even were this feasible using powerful machines, the task of keeping

information up to date is daunting. The unicast approach, which is based on centralized

management, is thus diff icult, if not impossible. Further, high scale ensures that

 162

significant numbers of nodes will be disconnected at the moment a security update is

being disseminated. A unicast-based approach must also include features to make

updates available to those nodes that missed them during dissemination.

Existing Internet broadcast mechanisms that work at the IP level use a best-effort

delivery [RFC919], [RFC922]. They do not guarantee delivery, and they have no

concern for security. Further, they are not designed to deal with the kind of scale that

Revere will handle. They are meant for broadcasting to subnets or small collections of

subnets. However, the number of subnets over the Internet is still a large number, and the

broadcasting mechanisms must reach all those subnets that have recipients separately,

still one by one.

Multi -network broadcasting uses a "broadcast repeater" to forward broadcast

messages over IP networks [RFC947]. The forwarding address is read from a

configuration file, which is not adaptive. The addresses of each repeater's downstream

nodes are fixed. Revere needs to deal with more dynamic networking. Again, this

solution assumes the correct participation of all nodes, particularly of all broadcast

repeaters, and does not include provisions for security.

A simple flooding algorithm might be used that does not require maintaining any

state or topological information [Goldreich et al. 1992], [Bertsekas et al. 1992], [Bauer et

al. 1992]. Each node that receives the broadcast message transmits on all i nterfaces

except the incoming one. After suff icient steps, the message will reach all nodes.

Flooding methods tend to be ineff icient in their use of bandwidth, because they usually

send a copy of the message over every possible link. Also, they usually provide no

support for disconnected nodes, and assume the correct participation of all nodes.

Clearly, using a flooding algorithm at Internet level is not feasible at all .

 163

7.1.2 IP Multicasting

Multicast services, such as MBONE [Deering 1989], [Macedonia et al. 1997],

[Venkateswaran et al. 1997], allow dissemination of information to a large number of

users. Like Revere, multicast is receiver-based, but typical multicast services offer no

guarantee of delivery [Floyd et al. 1995] and have no redundancy. A great deal of

research has been performed on multicast and many different multicast systems handle

some Revere-like issues. However, no existing multicast service currently handles all of

those problems, nor can one be made extensible in a relatively simple manner in order to

handle them.

Multicast services typically use tree-structured routing, implying a single path from a

disseminating machine to any recipient. These services are thus not resili ent to attacks on

individual li nks and nodes. If a node on the tree is broken, all the descendents of this

node will be disabled from receiving the security updates.

Furthermore, most existing routers do not provide multicast routing capabiliti es,

limiti ng the use of multicast protocols. If Revere is to be deployed into the existing

Internet and supply services even to legacy systems that do not provide multicast, it

cannot rely on the presence of such protocols.

Reliable multicast protocols [Chang et al. 1984], [Kaashoek et al. 1989], [Moses et

al. 1989], [Yavatkar et al. 1995], [Levine et al. 1996], [Lin et al. 1996] seek to ensure

that all receivers get complete and correct information, typically by acknowledgments for

all packets, which leads to an acknowledgment implosion problem. The use of negative

acknowledgments allows many multicasting systems to avoid acknowledgment

implosion, but this technique is not suitable for Revere's needs, because a Revere node

cannot assert that it missed a disseminated security update or did not. Security update

dissemination is not a periodic behavior, and a dissemination center sends out updates

 164

whenever new updates are available. Repair-request methods are also used by some

multicasting systems to solve this problem, but, li ke negative acknowledgments, they

require the receiving nodes to be aware that they missed something. Last, reliable

multicast mechanisms are designed for packet loss or damage due to transmission errors,

not for loss or damage due to interruption threats.

Multicast systems vary tremendously in their details. In a typical multicast system, a

multicast tree (shortest path tree or Steiner tree) is built for eff iciently sending a message

to a given set of destinations [Garcia-Lunes-Aceves 1993]. The tree can be quite

unbalanced in terms of performance for different senders. An overlay hypercube

topology was also used for multicasting, significantly improving the performance for any

sender. [Moser et al. 1997] uses a SecureRing protocol to protect against Byzantine

failures, an unsuitable solution (and overprotection) for the scale and requirements of

Revere. Other reliable multicast research includes consistent totally ordered delivery of

data to all receivers [Birman et al. 1991] [Whetten et al. 1995], handling large numbers

of acks [Pingali et al. 1994], using minimal network resources [Yavatkar et al. 1993], and

managing the multicast groups [Yavatkar et al. 1995], [Liebeherr et al. 1997]. These

objectives are different from rapid dissemination of a small amount of data sent to all

nodes.

In a word, IP multicast still faces many problems for deployment at a large scale, and

cannot distribute to all recipients unless they are all connected simultaneously. Reliable

multicast is better, but it mainly handles packet loss caused by transmission errors, not

loss caused by attacks such as interruption threats.

 165

7.1.3 SMTP, NNTP, FTP, HTTP

At a higher layer, smtp, nntp, ftp, http, etc., all provide certain distribution

capabiliti es, but it is diff icult to tailor these capabiliti es to meet the challenges of

providing a successful security update dissemination service. None of these provide a

resili ent network to address man-in-the-middle delivery threats, none provide both

pushing and pulli ng mechanisms for best large-scale delivery coverage, and none fully

address security.

7.1.4 Email

Email has been used as a carrier for alerts [Frank 2000]. Unfortunately, email could

also be a carrier for malicious functions, and an email that carries alerts of a malicious

function often arrives later than an email that carries the malicious function. This makes

email an unrealistic solution for delivering important security information. For example,

when facing the love bug in year 2000, panicked federal agencies completely shut down

their mail servers, making them unable to receive emailed alerts from the federal

computer incident response capabilit y team. The security team ended up using phones

and faxes to send alerts, clearly a scheme not suitable to Internet-scale information

dissemination.

7.1.5 Replicated Data Management

Research in replicated data management, particularly optimistic peer replication,

provides insight into methods for ensuring that different sites share the same view of the

data. Client/server solutions [Satyanarayanan et al. 1990], [Kistler et al. 1991] and

primary copy solutions [Liskov et al. 1991] are less relevant, since they cannot allow

update dissemination between arbitrary participants (a requirement of the Revere

system).

 166

Ficus allowed multiple replicas of f iles, any one of which could initiate an update and

any pair of which could exchange updates [Guy et al. 1990], [Page et al. 1998]. This

functionality is close to what would be required for Revere. Other work done in the

Ficus project addressed issues of ensuring consistent views of changing replicated data

[Goel 1996]. Truff les, a related project, provided some forms of security for optimistic

replicated file systems [Reiher et al. 1993]. Rumor provided a more portable version of

the functionality of Ficus [Reiher et al. 1996], and also more directly addressed issues of

mobilit y and replication. Recent research on the Roam replication system has dealt with

replication and mobilit y at higher scales, with hundreds or thousands of replicas [Ratner

1998], an issue of great relevance to Revere. Still , no replicated file system research has

claimed to support scaling to milli ons of replicas. Simulations of the behavior of

replicated file systems have offered important insights into the proper way to disseminate

shared data among large numbers of participants [Wang et al. 1997]. This and other

relevant replication research [Birman 1985], [Alonso et al. 1989], [Hisgen et al. 1990],

[Badrinath et al. 1992], [Golding et al. 1993], [Danzig et al. 1994], [Demers et al. 1994],

[Gray et al. 1996] provide insights on data consistency and dissemination issues in

Revere, but these works are directed at solving much more general problems than is

Revere. Revere uses simpler, lighter-weight solutions than the file replication systems

mentioned above.

7.1.6 Content-Delivery Networks

Much research has also been done on content delivery networks (CDN), using

distributed caching or overlay techniques. InformationWeek compared seven networks:

Adero, CacheWare, Cidera, Digital Island, epicRealm, iBeam, and Mirror Image Internet

[Patrizio 2000].

 167

• Adero focuses on E-commerce application services, with servers in more

than thirty countries. Its GlobalWise Applications and GlobalWise

Commerce Business are designed to work with a company's existing

network to interact with worldwide customers.

• CacheWare specializes in content distribution and caching from an origin

server to edge servers. Its CacheWare Content Manager takes the load off

an origin server by acting as the intermediary between origin and edge

servers. Rather than requiring each edge server to contact the origin

server, CacheWare pushes updated content to edge servers.

• Cidera's world-wide network is satellit e-based and specializes in

transporting data streams. In addition, it also offers static content caching

and Usenet, allowing customers send huge files without choking network

servers.

• Digital Island was the first company to offer content delivery in 1996. It

has 160 access points in 25 countries, and provides content-delivery and

application services for secure transactions and network awareness. It also

uses Traceware, a product that uses IP addresses to predict client

geographical locations. In this way, its customers can deliver targeted

content in any region.

• EpicRealm focuses on the business-to-business market and lets customers

be served by local servers, regardless of their locations. It caches static

and dynamic content, database-driven content, and even encrypted

content.

 168

• iBeam specializes in streams via satellit e rather than terrestrial li nes,

reducing the number of hops to transmit the stream and thus reducing

packet loss. A terrestrial transmission can go through as many as 20 hops,

while iBeam sends the stream from the source straight to the satellit e, then

back to edge servers at ISPs and major data centers. The data travels over

only the last mile to the user on landlines.

• Mirror Image Internet specializes in caching technology and is building

what it calls a “content access points” network designed for integrating

into existing data centers and accelerating the mirroring, caching, and

delivery of content.

Unlike Revere, where security updates are usually of small size and low frequency,

CDN must handle large blocks of data. Because of this, Revere structure is

fundamentally different from a CDN structure, where the latter does not support parallel

redundancy of information delivery.

7.1.7 Commercial and Research Products

Many commercial products and research projects support data broadcasting

[Bannister et al. 1997]. For example, SATX is an asynchronous communications

program designed to transfer binary files over a data broadcasting network through direct

broadcast satellit es (DBS). More sophisticated schemes maintain topology information

to minimize resource wastage and avoid duplicate messages. Broadcast mechanisms

generally do not guarantee delivery to all sites, or handle disconnected and mobile nodes,

or authenticate messages.

Products such as Pointcast send individually customized information to large numbers

of users periodically. It sends different information to different users using standard

 169

Internet protocols, and is essentially a centralized approach. Clients of Pointcast cannot

benefit each other by forwarding information.

Salamander is a wide-area network data dissemination substrate designed to support

push-based applications [Malan et al. 1997]. Salamander uses a dynamically constructed

tree of distribution servers to push data from suppliers to clients. Salamander is not

meant to provide security, nor is it meant to handle temporarily disconnected nodes.

The Clearinghouse project at Xerox PARC [Demers et al. 1987] addressed the

problem of eff iciently disseminating name-to-address mappings for a corporate electronic

mail environment spanning several hundred LANs scattered around the world. A server

on each LAN hosted a replica of the mapping database (the Clearinghouse), and could

independently generate updates. The Clearinghouse algorithms propagated updates using

several different mechanisms, the most important and effective being “ rumor

mongering,” a constrained flooding/gossiping approach with relatively low overhead and

high probabiliti es of effective, reasonably quick update distribution. While this work has

many surface similarities to Revere, it handles a different problem and has other

dissimilar characteristics. First, Revere's scale is several orders of magnitude larger, and

it must handle a more rapidly changing network topology than does Clearinghouse.

Frequent medium-term disconnections of nodes are the norm, and Revere must deal with

node and link failures on-line and automatically. Second, unlike Clearinghouse, Revere

cannot trust all it s nodes completely. Third, Clearinghouse's operational constraints

allow for a daily six-hour window in which to propagate updates among replicas. Revere

must share all resources with normal demands, and it must propagate much more rapidly

than daily in some predefined period. Last, Revere faces a much larger heterogeneity

problem than Clearinghouse faces.

 170

Other commercial products that provide information dissemination services include

BackWeb, Ifusion, InCommon, Intermind, Marimba, NETdelivery, and Wayfarer. Many

of these commercial systems require clients to periodically poll the servers for new data,

fetching it if available. This approach has performance problems at high scale, especially

if pulli ng is frequent. But if pulli ng is infrequent, data dissemination is slow.

7.2 Special-Purpose Distr ibution Services

Given that there are many special-purpose distribution services, one might think of

tailoring or extending those services for security update dissemination. Unfortunately,

from those special-purpose distribution services surveyed, this is not an easy task. In the

following sections, we describe several such distribution services, including virus

signature distribution, NTP (network time protocol for clock time synchronization and

distribution), event notification, key distribution, and software distribution.

7.2.1 Virus Signature Distr ibution

When considering application purpose, virus signature distribution, as one of the

earliest practical purposes for security information dissemination, is probably the most

similar to Revere service. Many industrial groups devote substantial efforts to

identifying and combating new viruses, including Symantec, IBM, and McAfee

Associates. For example, Symantec has anti-virus tools for protection against known

viruses, and takes aggressive actions to find new viruses as they occur, producing

detection and repair mechanisms for them soon after they are discovered. These groups

offer signature distribution services to their customers, allowing a customer to download

newly discovered virus signatures and response mechanisms on demand.

This strategy for virus signature distribution does not make use of the existing

network except in the most trivial way. Each participant must directly contact the virus

 171

protection group's site to receive updates. Updating is typically done in a pull fashion,

either when scheduled by the user's machine or on command. This often fails to

instantaneously keep a user’s machine updated, unless the user probes very frequently,

which unfortunately incurs high bandwidth cost; the web site would also be overwhelmed

by requests from a multitude of users.

At IBM, researchers are developing anti-virus technology based on human immune

systems. In their approach, a potentially infected computer sends a suspicious file to a

central site where it is analyzed for the purpose of determining a virus signature. This

signature is sent back to the computer that found it, presumably including an antidote to

the virus, as well . This antidote is then sent from computer to computer via a simple

distributed dissemination mechanism designed for a local area network. This anti-virus

system is not designed to be secure from attacks. The authors have not yet reported on

extending it to handle mobile and disconnected systems [Kephart et al. 1997].

Some groups set up central servers to automatically broadcast new virus signatures to

every individual user, but diff iculty in managing user records at the central servers grew

quickly as more users participated. Peer-to-peer technology has been used recently to

address some of these problems, where information can be forwarded along a chain of

recipients [McAfee Rumor]; however, the design technology to handle disconnected

nodes, strengthen security (including combating interruption threats), and maintain the

chains has not been reported. Revere, in addition to supporting the pulli ng mechanism,

provides a non-centralized push model that better addresses eff iciency, resili ency and

security.

Revere is able to ensure wider, faster distribution of virus signatures and similar

security information while proving strong security and resili ency.

 172

7.2.2 NTP—Network Time Protocol

The Network Time Protocol solved a problem with some similarities to problems that

Revere addresses [Mill s 1991]. The Network Time Protocol (NTP) ensures that large

numbers of networked sites substantially agree on the current time. The designers of the

protocol foresaw possible security problems, and dealt with them in the protocol.

The NTP disseminates clock information to a large, diverse Internet system over

subnetworks operating at speeds from mundane to light-wave speed. Like Revere, the

messages in question tended to be small . NTP uses backup paths to achieve robustness,

echoing Revere's use of redundant delivery paths. NTP supports multiple service classes,

based on the needs of particular nodes. NTP addresses security issues including address

filtering for access control, authentication via digital signatures, protection from untrusted

time servers by data filtering and peer selection and combining algorithms.

However, the problem that NTP solves is different from Revere's in important ways.

NTP requires manual configuration, while Revere must do automatic configuration.

Moreover, a backup path can evolve into a primary path in NTP, a strategy that works

better in NTP than it does in Revere, since an NTP node has reasonable expectations of

when NTP messages should arrive, and can switch paths when expected messages do not

arrive. Revere messages are unpredictable, and a Revere node cannot locally distinguish

between a situation where no Revere messages are being sent and a situation where

subversion prevents delivery of messages.

Also, NTP does not require retransmission of missed messages. Time updates are, by

their nature, ephemeral. A missed update is of no value shortly afterwards, so

disconnected nodes have no need to acquire them.

 173

7.2.3 Event Notification

Event notification services, which usually adopt a centralized approach, focus on

different issues and often view the mapping between event subscribers and event

publishers as a key issue [Krishnamurthy et al. 1995] [Gruber et al. 1999].

[Cabrera et al. 2001] proposes another event notification service called Herald.

Similar to Revere, Herald is designed to operate correctly in the presence of numerous

broken and disconnected components. Also similar to Revere, Herald also views

machines as a federation of nodes within cooperating but mutually suspicious domains of

trust. In particular, Herald addresses scalabilit y, an issue less addressed in previous

works on event notification service. One key difference between Herald and Revere is

the delivery of information. Herald does not provide redundant delivery (actually it tries

to avoid it), and Revere views redundant delivery as a fundamental basis for security

update dissemination.

7.2.4 Key Distr ibution

Key distribution mechanisms also have some relationship to Revere's design. The

main goal for key distribution, however, is secrecy of the keys, while in many cases

secrecy is of secondary importance for Revere. Quick dissemination and high

availabilit y will often be more important for Revere than for many key distribution

faciliti es. Generally, key distribution systems do not operate at the scales envisioned for

Revere.

7.2.5 Software Distr ibution

Many software vendors have adopted the Web for software distribution and update

distribution, relying primarily on user pull techniques where a user downloads the

 174

software from the Web. Users need to pull the new releases individually, which results in

heavy traff ic and delay when, for example, Microsoft releases upgrades to its browser.

Several commercial products allow automatic updates of popular software, such as

Symantec's TuneUp [Symantec TuneUp] and McAfee’s Oil Change [McAfee

OilChange]. TuneUp monitors which programs a user has, and automatically downloads

and installs the updates when they become available. Oil Change software makes clever

use of push technology to notify users automatically when updates are available. The

software can be updated with a one-button push from the user. Both products are

designed to facilit ate software updates for PC users.

In some overlay networks, control software can be updated automatically. For

example, in Metricom Ricochet wireless networks, the gateway software is updated

automatically when new versions are available. Here, the sites to be updated are

controlled by Metricom, and the time delay is not criti cal.

All of these automatic software update schemes are designed for ease of use and

cannot provide reliable transfer of data. Their concerns with security primarily relate to

authentication of the server directly to the client, or vice versa. They also do not take

advantage of broadcast medium in some local networks, as the downloads are

accomplished using point-to-point TCP protocol. Using such automatic distribution

mechanisms in Revere to distribute security information will not yield a rapid, reliable,

and secure mechanism.

7.3 Information Delivery Structures

7.3.1 Overlay Networks

Revere’s RBone overlay network is comparable to various self-organizing overlay

networks that are also composed of Internet end hosts. Yoid, for example, tries to build a

 175

general architecture for information distribution, including a tree topology for content

distribution and a mesh topology for control information distribution [Francis 2000].

Revere instead relies on a single topology for both purposes, enables multi -path delivery,

and enforces security with the presumption of open membership. ALMI builds a small -

scale minimum spanning tree among end hosts, and it relies on a central controller for

tree management [Pendarakis et al. 2001]. End System Multicast also targets small -scale

tree-structured overlay networks, but it first builds a mesh of nodes, and then constructs a

shortest-path tree out of the mesh [Chu et al. 2000]. Scattercast adopts a similar

approach to End System Multicast, while emphasizing infrastructural support and proxy-

based multicast [Chawathe 2000]. Bayeux [Zhuang et al. 2001] uses Tapestry [Tapestry],

an application-level routing protocol, to organize receivers into a distribution tree.

Overcast focuses on optimizing network bandwidth when building its overlay distribution

tree [Jannotti et al. 2000]. A fundamental difference between RBone and these overlay

networks is that RBone is not a tree-like structure; instead, every Revere node can choose

to have two or more as-disjoint-as-possible paths to receive security updates. Also, in

addition to the pushing mechanism, Revere allows each node to pull missed security

updates from repository servers.

In terms of building resiliency into an overlay network, Revere shares commonaliti es

with RON [Andersen et al. 2001]. Instead of targeting another distribution service, RON

inserts a new layer of resili ent overlay network between the routing substrate below and

network applications above, thus providing faster routing failure recovery and

application-specific routing. One useful discovery from RON is that a failed router or

physical li nk can be avoided if a message is routed through a different node on the RON

overlay.

 176

7.3.2 Multi-Path Routing

Multi -path routing is similar to Revere’s multi -path message delivery [Chen et al.

1998], [Murthy et al. 1996], [Zaumen et al. 1998]. However, these systems are primarily

meant for load balancing or congestion avoidance and do not fully consider the

disjointedness between different paths. It is also diff icult for these systems to address

security issues (such as key distribution, replay prevention, etc.) at router level. They

also face deployment problems.

7.3.3 Peer-to-Peer Computing

Peer-to-peer computing is developing rapidly and gaining prominence as an

infrastructural service. Broadly speaking, the relationship between Revere nodes is also

peer-to-peer, and results from peer-to-peer research can be leveraged to improve the

Revere overlay network.

7.3.4 Geographic Routing

Geographic routing sends messages to participating machines located in close

physical proximity to destination points [Navas et al. 1997]. Primarily used to support

mobile computing, geographic routing protocols may prove a useful component of the

Revere system.

7.4 Secur ity

Much research has been done on securing communication channels or strengthening

networking elements. While Revere addresses its own security issues, as we discussed in

Chapter 5, Security, Revere could also leverage such research. For instance, research has

been performed on intrusion detection [Denning 1986], [Lunt 1988], [Snapp et al. 1991],

[Kim et al. 1994], [Crosbie et al. 1995]. Methods that defend networks or cooperating

distributed systems against intrusion, especially when all members are peers, are

 177

particularly relevant [Mukherjee et al. 1994], [White et al. 1996], [Zerkle et al. 1996].

Revere is not competitive with these efforts; rather, it will be a user of existing intrusion

detection techniques. We expect that the practical experience of applying these

techniques to a new problem will uncover new possibiliti es and requirements that will

call for further study.

7.5 Conclusions

In this section, we described works related to Revere. As we can see, both general-

purpose distribution services and special-purpose services fail to meet the challenges of

rapid, widespread and secure delivery of security updates. Information delivery

structures, such as various overlay networks, while aim to provide general-purpose

information delivery, do not fully address the special need of security update

dissemination. Being aware of those related works, Revere provides a solution for

disseminating security updates quickly, securely and resili ently. It is also able to

leverage existing research results, such as security enforcement.

 178

8CHAPTER 8

Future Work

This dissertation has presented key techniques that enable the dissemination of

security updates. It also provides a platform for further research on open issues. In the

following two sections, we will first briefly revisit the open technical issues that have

been discussed in previous chapters, and then ask questions from a broader view of the

Revere system.

8.1 Open Issues Discussed in Previous Chapters

The following is a li st of open issues that were more extensively discussed in prior

chapters. Questions that are relevant to each item are presented as examples of issues

that need to be addressed.

• Adaptive redundancy. How should a Revere node adjust its redundancy

degree for receiving security updates? Would two different delivery paths

be enough, for example? (See Section 4.6 for more details.)

• Secur ity update integr ity protection other than using digital

signature. While digital signature based on public key cryptography has

been widely used and is also employed in Revere, could other integrity

protection techniques under study benefit Revere better? (See Section 4.6

for more details.)

 179

• Repository server selection. Among many repository servers, which

ones should a node choose to query for missing security updates? (See

Section 4.6 for more details.)

• Secure dissemination process monitor ing. How should Revere securely

monitor the dissemination process in real time? How should every

individual node provide feedback on its receipt of security updates? (See

Section 5.5.1 for more details.)

• RBone intrusion detection and reaction. How should Revere detect

intrusions? If a node is detected as corrupted, how can it report the

problem? (See Section 5.5.2 for more details.)

• Denial-of-service attack prevention. Can a dissemination center be

flooded and paralyzed? Can malicious nodes lock benign nodes out from

receiving security updates? (See Section 5.5.3 for more details.)

• Overloading approach improvement. How to speed up overloading-

based measurement while still collecting realistic results? To what degree

can the approach be generalized? (See Section 6.5.1 for more details.)

• Revere performance understanding at larger scale. It is prohibitive to

understand a system at very large scale, but it has always been desirable to

achieve this. How can one deduce or extrapolates performance of a

system from smaller-scale results? (See Section 6.5.2 for more details.)

• Measurement results applied to the real wor ld. The real world is

always more complex than any measurement setup. Will t he results from

 180

the latter be applicable to the real world environment? (See Section 6.5.3

for more details.)

8.2 Think More Beyond Today

Certainly more work is required on Revere to refine the general technical approach

and demonstrate its possibiliti es. The feasibilit y of a delivery system of such scale and

speed raises a number of serious questions:

1. Would such a system on such a scale be valuable? If so, then the task of deploying

Revere agents on a large number of Internet nodes would probably require the public-

service cooperation of major software distributors, Internet service providers, etc.

This also includes testing Revere on different platforms, experimenting with its

interaction with other applications, and studying wide deployment issues (some may

not be technical).

2. Can one depend on its safety? After all , the lure of such a target to the attacker can

hardly be overestimated. One could argue that addressing such a large portion of the

Internet is inherently dangerous, just as one could argue that constructing a very tall

building invites disaster. However, there can be variations on the delivery service.

One could have several dozen, or even a few hundred Revere networks deployed, so

that a successful attack on one does not immediately affect nodes that are not part of

that compromised system.

How feasible is it to validate the security of Revere? A formal method, or another

approach? Can Revere automate/improve the discovery of new security problems?

Recall that in Section 5.2.4.1, we discussed the detection of dissemination center

impersonation. This is just a starting point.

 181

3. What is the quali ty of a delivery path at the physical level? This question warrants

study if we cannot assume that routers are fully trustworthy. In particular, there is no

guarantee that if two delivery paths are disjoint at the application level, they will also

be disjoint at the physical level. If not, how much overlap will t here be, and is it

possible that many Revere links multiplex over a specific physical li nk?

4. Can a path vector carr y r icher information? If so, a node would then have more

information from which to select parents or adjust its own position in an RBone. But

what would such information be? We know a path vector currently describes the

latency of a path and the ordered list of nodes on the path, but how about the

trustworthiness of a path, for example? A closely related question is, how to define

the trustworthiness of a path?

5. What will be done with the updates once delivered? In some cases, the answer is

simple and obvious, such as installi ng new virus signatures into a virus detection

database. In other cases, there are greater challenges. For example, could the system

be used to install security fixes as fast as the attacks are made? Few system

administrators today are eager to accept automated patch installation, because they

lack confidence that patches will work properly in their systems. If Revere were in

place, safe automated patch installation would become more appealing, but Revere

itself does nothing to make automated patch installation more reliable.

Lessons can be learned from previous incidents. [Fisher 2002] reports that with at

least four vaguely defined patch installation mechanisms, Microsoft’s Windows

Update caused the automated scanning service to mismanage patches. In one extreme

case, a patch for a customer actually removed a previous hot fix, causing that machine

to be infected by the Nimda virus. Worse, updates from a vendor could even conflict

 182

with software already installed; for example, in October 2000, Symantec’s new update

toward a customer conflicted with its firewall , causing the firewall to shut down and

leaving the affected system open to exploit [Lemos 2000].

6. Can Revere be easily deployed in the real wor ld? What are those deciding factors

that affect a widespread deployment of Revere? Are they mostly societal or

psychological issues? For example, would another CodeRed worm trigger a fast, wide

deployment of Revere? Further, how transparent should Revere be to a user? Are

there a few default Revere node configurations that work well for most users? If so,

how do we discover those configurations? Clearly, answers to items 1, 2, and 5 above

are also criti cal to this issue.

7. Can Revere be easily por ted to a wireless wor ld? This includes the situation where

every node is wireless and the situation where the core of a network is wired but the

edge is wireless. If Revere is not readily portable here, what would those new

constraints be and what redesign of Revere should be made? As we can see, when

individual nodes become more mobile, the delivery paths for every Revere node will

become more volatile. Meanwhile, is there something in the wireless environment

that is actually more useful? For instance, will node location information as reported

from GPS be criti cal in determining multiple physically disjoint delivery paths?

8. Last, can an RBone be theoretically analyzed? [Singh 1995] proposes a way to

evaluate the global reliabilit y of a communication network. Unfortunately, his method

requires knowledge of the global topology of the network. In Revere, no node has

such knowledge. Is there a distributed version of the algorithm where every node only

has partial knowledge of the whole system?

 183

9CHAPTER 9

Conclusions

This work demonstrates that fast, secure and resili ent delivery of a modest amount of

information through a very large-scale network is feasible, without employing huge

server farms. To summarize the work, in this chapter we will recapitulate the problem

Revere tries to solve, summarize the solution Revere provides, and outline Revere’s

contributions. Broad lessons learned from this work will also be presented.

9.1 Summary of the Problem

Threats such as viruses, worms, or Trojan horses are able to propagate throughout the

network quickly. However, potential victims do not have up-to-date knowledge of new

threats, and are therefore susceptible to those threats. This indicates that any defense

against threats must react at the same speed as the threat (if not faster), and that a strong

need exists for a service that disseminates security updates in a fast, eff icient manner.

Unfortunately, despite these indications, an effective dissemination service has not

existed in the past.

Although it is usually quick and easy to determine the solution to a new threat,

notifying an Internet-scale network of the solution—or disseminating security updates at

Internet-scale—is challenging. Such a system must outpace the spread of threats, address

the complexities in a large-scale environment, ensure the delivery toward a large

percentage of recipients (if not all), and secure the system itself.

 184

Simple transmission techniques can hardly meet those requirements. Unicast requires

a dissemination center to send updates toward each individual recipient, one by one; here,

leaving aside the lack of bullet-proof protection of the delivery process, the sequential

delivery of updates is not eff icient, and the dynamic management of recipient records is

not scalable. Broadcast allows all nodes in a subnet to be reached simultaneously, but the

number of subnets over an Internet-scale network is still l arge. IP multicast builds a tree

structure to deliver information, allowing a trusted source to reach all nodes connected to

the tree during dissemination; however, IP multicast lacks suff icient resili ency due to its

use of a tree structure. It often fails to reach nodes that have no stable connection. It has

also been diff icult to deploy.

Application-layer protocols and services, as seen today, can hardly be tailored or

extended to fulfill t he requirements, either. None of them provides an adequately

resili ent network to address man-in-the-middle delivery threats. Also, many of them

require recipients to pull i nformation from a source. To keep up to date, every recipient

has to probe the source frequently (unless it is able to predict the availabilit y of

information in a timely fashion), potentially incurring a prohibitive bandwidth cost and

processing overhead. Further, because these application-layer protocols and services

have not been designed for the purpose of delivering criti cal updates, security concerns

have been less addressed; for example, if an attacker steals the key of a dissemination

source, it then can send forged information under the identity of the source.

9.2 The Revere Solution

Revere employs a dual mechanism for security update delivery: push and pull . Push

allows a dissemination center to broadcast updates to all connected nodes once new

updates are available; pull allows a node to catch up with missed security updates.

 185

Push is performed through an application-layer Revere overlay network. Without

relying on huge, powerful server farms, Revere adopts a non-centralized approach to

build self-organized resili ent overlay networks, on which every node is a recipient

(except that the root is the dissemination center or a repository point), and every link is a

unicast connection between a parent node and a child node. During a push session, a

dissemination center only needs to forward updates to a very small number of nodes,

each of which then further forwards the updates to its own children, a recursively

repeatable procedure.

While the push model allows immediate delivery, the Revere overlay network further

meets other challenges as follows:

• Resili ency is supported through redundancy. At its own discretion, every

recipient can choose to have multiple as-disjoint-as-possible delivery

paths, leading to multiple parents for the recipient in the Revere overlay

network.

• Scalabilit y is achieved through the distributed nature of the overlay

network itself. In a Revere overlay network, each node need not know all

the other nodes in the network. For instance, a dissemination center only

needs to know all of its own direct children to begin dissemination, and a

normal node only needs to know its parents, its children, the dissemination

center, and a small amount of information regarding its delivery paths.

• The complexities in a large-scale environment are handled by designing

the Revere overlay network to be self-organized and without a central

control. A Revere overlay network can be fairly dynamic, and the large

scale of the overlay further complicates the problem: nodes may come and

 186

go, links could go up and down, and the whole overlay can hardly stay in a

steady state. Via self-organization, new nodes can join through the three-

way-handshake, existing nodes can detect problems and reposition

themselves. The redundancy built i n the overlay network also provides a

cushion period while a node is adjusting its position—it still can receive

security updates during the transient period unless all it s paths are broken.

• The overlay network operates at the application layer. New functionaliti es

can be easily added, and different configurations set up without diff iculty.

Implemented in Java, Revere can be readily installed and started. Once a

node begins to run Revere, it will automatically join a relevant Revere

overlay network and become a Revere node. Leaving Revere is equally

easy. In light of these features, deployment of Revere becomes easy.

Pull i s performed through contacting repository servers. Repository servers, either

statically configured or dynamically elected, allow a reconnected node to pull missed

security updates. To obtain higher certitude when pulli ng missed security updates, the

node can independently contact multiple repository servers. The pull mechanism also

provides a means for a node that is connected all the time to determine if all it s parents

have been compromised and are blocking him from receiving security updates.

Both push and pull processes are secured. Revere uses public key cryptography to

protect security updates. Every security update must be signed by its dissemination

center, and every node must verify the authenticity and integrity of an update (whether

the update is pulled from a repository server or pushed from a parent node). Moreover,

once a dissemination center detects that its private key is stolen, it will immediately

initiate the key invalidation process. Upon the receipt of a (verified) key invalidation

 187

message, a node will discard the current public key in use and switch to the next one.

There is an important property regarding the key invalidation message: whether injected

by a trusted dissemination center or an attacker, it will not degrade the security of a

Revere overlay network.

The Revere overlay network is also secured to provide a sound delivery structure.

While most Revere nodes can be assumed cooperative, Revere is designed to deal with

the corruption of some nodes. Knowing that all nodes in an Internet-scale overlay

network cannot enforce a uniform security scheme, Revere supports pluggable security

boxes to easily enforce new security schemes. For two nodes that enforce different sets

of security schemes, the peer-to-peer security scheme negotiation will allow them to

communicate, and do so securely, by following the security preference of each other.

Key performance results of a prototype, measured using the large-scale-oriented

overloading approach, suggest that Revere can deliver security updates at the required

scale, speed and resili ency for a reasonable cost. For instance, it takes less than 1 second

to reach all nodes in a 3000-node Revere overlay network, and just a bit over 1 second to

reach 93% of working nodes even if 15% of all nodes are broken. The cost for joining

such a network is also lightweight, with a less-than-two-second join latency and about 20

kilobytes of bandwidth cost.

9.3 Contr ibutions of the Dissertation

The thesis of this research is that without relying on huge, powerful server farms, it is

still feasible to deliver a modest amount of information in an Internet-scale network

quickly, securely and resili ently. Solutions based on other distribution services or

delivery structures are frequently insuff icient when security and resili ency requirements

become criti cal. Instead, this research provides a sound solution for such delivery.

 188

Revere introduces a dual mechanism for delivering criti cal information. With push

and pull combined, not only can information be broadcast to recipients once it becomes

available, but it can also be made available for recipients to query at any time.

Revere builds a self-organized resili ent overlay network for large-scale delivery. In

such an overlay network, every node can both receive information and forward

information, acting as both a beneficiary and a benefactor. Different from other overlay

networks, a Revere overlay network allows a node to select multiple least-overlapping

delivery paths, and achieve best resili ency using a path vector concept. Also different

from many other overlay networks, Revere supports open membership, instead of

enforcing closed membership and ensuring that every member is trusted. Because of

such differences, management of the Revere overlay network becomes more challenging;

Revere has built a self-organizing capabilit y into its overlay networks to cope with

complexities in a dynamic large-scale environment.

Revere protects both the delivery procedure and the delivery structure. For the

former, a digital signature allows a node to verify the authenticity and integrity of

security updates, redundancy in both push and pull allows a node to gain higher certitude

in receiving security updates, and the key invalidation mechanism allows a node to

discard a corrupted public key and switch to a new one. For the latter, the

implementation of pluggable security boxes allows a node to flexibly enforce different

security schemes and policies, the peer-to-peer security scheme negotiation enables a

node to enforce its own specific security schemes when communicating with other nodes,

and the discretionary security enforcement at individual nodes makes the whole delivery

structure robust.

Revere also provides a deployable solution. Revere runs at application level, and it

does not need any changes to underlying operating systems or network infrastructures.

 189

Any node can automatically join a Revere network by running Revere software (and

certainly it is also easy for a node to leave the network). Without demanding a large

amount of node or networking resources, Revere supports lightweight core

functionaliti es. Revere is modular and extensible; for example, Revere is easily

extensible for adding new security schemes, readily configurable for replacing the default

policy for adopting a new child or parent, and fairly adaptive for tailoring to locally

available transmission mechanisms.

9.4 Broad Lessons

Without using large server farms, Revere becomes powerful by aggregating resources

among recipients: every recipient, as beneficiary of the service, can also serve as a

benefactor. This liberates a dissemination source from being solely responsible for

reaching all nodes in the system. For this reason, the Revere model is not a purely client-

server or publisher-subscriber model, since a normal node also serves others. It

underpins a simple but profound fact: a node can obtain information goods not only from

the original servers, but also from its peers. Instead of being a negative factor, larger

scale in this context actually means more sources from which to gain information. Peer-

to-peer computing, for instance, echoes this principle in distributing data among all the

peering nodes and benefits all the peering nodes.

Revere is also an example of a design that crosses three fields: distributed systems,

security and networking. Composed of mostly cooperative elements but also some

uncooperative ones, its task of synchronizing all elements to have the same information

(security updates) across the network in the face of security challenges is a typical

mission for such a field-crossing design. These field-crossing designs face challenges

similar to those that Revere faces (eff iciency, scalabilit y, security, resili ency, etc.), where

 190

some elements may not be trusted (subject to corruption), reliable (prone to error), or

always available (subject to failure). The methodologies adopted by Revere to be robust

to such problems are also applicable to those similar designs.

Revere is also a service that delivers information at application level. It demonstrates

that an application-level Revere-like service is feasible and can be made effective without

changing underlying hardware, operating systems, or network infrastructures. Further,

Revere shows an interesting phenomenon in its incremental deployment: not only can

Revere be easily deployed (every node can just run Revere software to become a Revere

node), but Revere also tends to show more attractive benefits to potential participants as

more nodes exist in the system and form a larger information pool.

9.5 Final Comments

Since today’s attackers already distribute malicious functions rapidly, an even faster

notification system is required. Although additional work is necessary in order to ensure

a very high certainty of safety and to verify feasibilit y, Revere offers encouragement that

such a system is possible.

Revere also has a broader applicabilit y for delivering other information rather than

just security updates. For instance, when every node in a Revere overlay network

chooses to only have a single delivery path, the Revere overlay network effectively

becomes a tree structure, and Revere is then equivalent to a system that supports host-

level multicast.

Likewise, the overloading technique used for measuring Revere has a broader use.

Other distributed systems may find this large-scale-oriented approach helpful. For

example, this research has developed techniques to adjust those results that are affected

 191

by the degree of overloading. Our experiences related to this overloading technique can

lend insights for testing other systems.

Broader use of redundancy is also very appealing. Revere demonstrates that proper

use of redundancy will greatly improve system resili ency and information readiness.

Given the abundance of many kinds of components in an Internet-scale distributed

system, chances are that Revere-like redundancy, or redundancy at much greater scale,

will prove very advantageous.

 192

10TRADEMARKS

LINUX is a trademark of Linus Torvalds. RED HAT is a trademark of Red Hat

Software, Inc. JAVA is a trademark of Sun Microsystems, Inc. AMD is a trademark of

Advanced Micro Devices, Inc. ETHERNET is a trademark of Xerox Corporation. CERT

is a trademark of Carnegie Mellon University. ICSA is a trademark of ICSA, Inc. BBC is

a trademark of the British Broadcasting Corporation. VERISIGN is a trademark licensed

to VeriSign, Inc. MICROSOFT and WINDOWS are trademarks of Microsoft Corporation.

KERBEROS is a trademark of the Massachusetts Institute of Technology. RSA is a

trademark of RSA Security Inc. iBEAM Broadcasting is a trademark of iBEAM

Broadcasting Corporation. CacheWare is a trademark of CacheWare, Inc. Digital Island

is a trademark of Digital Island, Inc. epicRealm is a trademark of epicRealm Operating

Inc. PointCast is a trademark of PointCast, Inc. Xerox is a trademark of Xerox

Corporation. BackWeb is a trademark of BackWeb Technologies. iFusion is a

trademark of iFusion, LLC. McAfee is a trademark of Network Associates, Inc.

Symantec is a trademark of Symantec Corporation. Ricochet is a trademark of Metricom,

Inc.

 193

11REFERENCES

[Alonso et al. 1989] R. Alonso, D. Barber, and S. Abad. “A File Storage
Implementation for Very Large Distributed Systems,” IEEE Workshop on
Workstation Operating Systems, September 1989.

[Alteon] White Paper. “Enhancing Web User Experience With Global Server Load
Balancing,” Alteon Networks. Available at http://www.alteon.com/products/
white_papers/GSLB/index.html.

[Andersen et al. 2001] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris.
“Resili ent Overlay Networks,” SOSP 2001.

[Badrinath et al. 1992] B. Badrinath and T. Imielinski. “Replication and Mobilit y,”
Proceedings of the 2nd IEEE Workshop on Mobilit y of Replicated Data, November
1992.

[Bannister et al. 1997] J. Bannister, R. Lindell , C. DeMatteis, M. O'Brien, J. Stepanek,
M. Campbell , and F. Bauer. “Deploying Internet Services Over a Direct Broadcast
Satellit e Link: Challenges and Opportunities in the Global Broadcast Service,”
Proceedings of MILCOM 97, 1997.

[Bauer et al. 1992] M. A. Bauer and T. Wang. “Strategies for Distributed Search,”
Proceedings of the 1992 ACM Computer Science Conference on Communications,
1992.

[BBC News 2000] BBC News. “Police close in on Love Bug culprit,” Saturday, 6 May
2000. http://news.bbc.co.uk/hi/english/sci/tech/newsid_738000/738537.stm.

[Bertsekas et al. 1992] D. Bertsekas and R. Gallagher. Data Networks, Prentice Hall ,
1992.

[Birman 1985] K. Birman. “Replication and Availabilit y in the ISIS System,”
Proceedings of the ACM Symposium on Operating System Principles, December
1985.

[Birman et al. 1991] K. Birman, A. Schiper, and P. Stephenson. “Lightweight Causal
and Atomic Group Multicast,” ACM Transactions on Computer Systems, Vol. 9, No.
3, 1991.

[Cabrera et al. 2001] L. Cabrera, M. Jones, and M. Theimer. “Herald: Achieving a
Global Event Notification Service,” Proceedings of the Eighth Workshop on Hot
Topics in Operating Systems (HotOS-VIII), Elmau, Germany, May 2001.

 194

[CAIDA 2001] CAIDA. “The Spread of the Code-Red Worm (CRv2),” http://www.
caida.org/analysis/security/code-red/coderedv2_analysis.xml, and http://worm-
security-survey.caida.org/.

[Calvert et al. 1997] K. Calvert, M. Doar, and E. Zegura. “Modeling Internet
Topology,” IEEE Comm. Magazine 35, 6 June 1997.

[Case et al. 1990] J. Case, M. Fedor, M. Schoffstall and J. Davin. “A Simple Network
Management Protocol (SNMP),” RFC 1157, May 1990.

[Castro et al. 1999] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance,”
Proceedings of the Third Symposium on Operating Systems Design and
Implementation, New Orleans, February 1999.

[CERT 2000] Computer Emergency Response Team. “CERT(R) Advisory CA-2000-01
Denial-of-Service Developments,” http://www. cert.org/advisories/CA-2000-01.html,
January 2000.

[CERT 2001:1] Computer Emergency Response Team. “CERT(R) Advisory CA-2001-
19 `Code Red’ Worm Exploiting Buffer Overflow in IIS Indexing Service DLL,”
http://www.cert.org/advisories/CA-2001-19.html, July 19, 2001.

[CERT 2001:2] Computer Emergency Response Team. “CERT(R) Advisory CA-2001-
23 Continued Threat of the `Code Red’ Worm,” http://www.cert.org/advisories/CA-
2001-23.html, July 26, 2001.

[Chang et al. 1984] J. M. Chang and N. F. Maxemchuck. “Reliable Broadcast
Protocols,” ACM Transactions on Computing Systems, August 1984.

[Chawathe 2000] Y. Chawathe. “Scattercast: an Architecture for Internet Broadcast
Distribution as an Infrastructure Service,” Ph.D. thesis, Fall 2000.

[Chen et al. 1998] J. Chen, P. Druschel, and D. Subramanian. “An Eff icient Multipath
Forwarding Method,” IEEE INFOCOM 1998.

[Cheung et al. 1997] S. Cheung and K. Levitt. “Protecting Routing Infrastructures from
Denial of Service Using Cooperative Intrusion Detection,” Proceedings of New
Security Paradigms Workshop, Langdale, Cumbria, UK, 1997.

[Chu et al. 2000] Y. Chu, S. Rao, and H. Zhang. “A Case for End System Multicast,”
Proceedings of ACM Sigmetrics, June 2000.

[Crosbie et al. 1995] M. Crosbie and G. Spafford. “Defending a Computer System
Using Autonomous Agents,” Proceedings of the 18th National Information Systems
Security Conference, 1995.

 195

[Danzig et al. 1994] P. Danzig, K. Obraczka, D. DeLucia, and N. Alam. “Massively
Replicating Services in Autonomously Managed Wide-Area Internetworks,” USC
Computer Science Department Technical Report 93-541, January 1994.

[Deering 1989] S. Deering. “Host Extension for IP Multicasting,” RFC-1112, August
1989.

[Demers et al. 1987] A. Demers et al. “Epidemic Algorithms for Replicated Database
Management,” Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, 1987.

[Demers et al. 1994] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
B. Welch. “The Bayou Architecture: Support for Data Sharing Among Mobile
Users,” Proceedings of the IEEE Workshop on Mobile Computing Systems and
Applications, December 1994.

[Denning 1986] D. Denning. “An Intrusion Detection Model,” Proceedings of the 1986
IEEE Symposium on Security and Privacy, 1986.

[Dijkstra et al. 1959] E. Dijkstra. “A Note On Two Problems in Connexion with
Graphs,” Numerische Mathematik, 1:269-271, 1959.

[Doar 1996] M. B. Doar. “A Better Model for Generating Test Networks,” Proceedings
of Global Internet, November 1996.

[Felix] Project Felix: Independent Monitoring for Network Survivabilit y. Available at
http://govt.argreenhouse.com/felix/.

[Fisher 2002] D. Fisher. “Security Tool Leaves Holes,” eWeek—the Enterprise
Newsweekly, Vol. 19, No. 16, April 22, 2002.

[Floyd et al. 2001] S. Floyd and V. Paxson. “Diff iculties in Simulating the Internet,”
IEEE/ACM Transactions on Networking, February, 2001.

[Floyd et al. 1995] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. “A
Reliable Multicast Framework for Light-weight Sessions and Application Level
Framing,” Proceedings of the ACM SIGCOMM 95, 1995.

[Francis 2000] P. Francis. Yoid: Your Own Internet Distribution. Available at
http://www.aciri.org/yoid, April 2000.

[Francis et al. 2001] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L.
Zhang. “ IDMaps: a Global Internet Host Distance Estimation Service,” IEEE/ACM
Transactions on Networking, 9(5): 525-540, October 2001.

 196

[Frank 2000] D. Frank. “One if by phone, two if by fax,” Federal Computer Week,
September 2000.

[Fyodor 2001] Fyodor. nmap (“Network Mapper”). http://www.insecure.org/nmap.
2001.

[Garcia-Lunes-Aceves 1993] J. J. Garcia-Lunes-Aceves. “Loop-Free Routing Using
Diffusing Computations,” IEEE Transactions on Networking, Vol. 1, No. 1, February
1993.

[Goel 1996] A. Goel. “View Consistency for Optimistic Replication,” UCLA Technical
Report CSD-960011, February 1996.

[Goldreich et al. 1992] O. Goldreich and D. Sneh. “On the Complexity of Global
Computation in the Presence of Link Failures: The Case of Uni-Directional Faults,”
Proceedings of the Eleventh Annual ACM Symposium on Principles of Distributed
Computing, 1992.

[Golding et al. 1993] R. Golding and D. Long. “Modeling Replica Divergence in a
Weak-Consistency Protocol for Global-Scale Distributed Data Bases,” UC Santa
Cruz Computer Science Department Technical Report UCSC-CRL-93-03, 1993.

[Gray et al. 1996] J. Gray, P. Helland, P. O'Neil , and D. Shasha. “The Dangers of
Replication and a Solution,” Proceedings of the ACM SIGMOD Conference, June
1996.

[Gruber et al. 1999] R. Gruber, B. Krishnamurthy, E. Panagos. “The Architecture of the
READY Event Notification Service,” Proceedings of 19th IEEE International
Conference on Distributed Computing Systems, May 1999.

[Guy et al. 1990] R. Guy, J. Heidemann, W. Mak, T. Page, G. Popek, and D. Rothmeier.
“ Implementation of the Ficus Replicated File System,” Proceedings of the 1990
Usenix Conference, June 1990.

[Hisgen et al. 1990] A. Hisgen, A. Birrell , C. Jerian, T. Mann, M. Schroeder, and G.
Swart. “Granularity and Semantic Level of Replication in the Echo Distributed File
System,” Proceedings of the IEEE Workshop on Management of Replicated Data,
November 1990.

[Olavsrud 2001] T. Olavsrud. “Fraudulent Digital Certificates Issued in Microsoft's
Name,” Internet News, March 22, 2001. http://www.internetnews.com/dev-news/
article/0,,10_721571,00.html.

 197

[Jannotti et al. 2000] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole
Jr. “Overcast: Reliable Multicasting with an Overlay Network,” Proceedings of the
Fourth Symposium on Operating System Design and Implementation, October 2000.

[Jin et al. 2000] C. Jin, Q. Chen, and S. Jamin. “ Inet: Internet Topology Generator,”
University of Michigan Technical Report CSE-TR-433-00, 2000.

[Jou et al. 1997] Y. Jou, F. Gong, C. Sargor, S. Wu, R. Cleaveland. “Architecture
Design of a Scalable Intrusion Detection System for the Emerging Network
Infrastructure,” MCNC Technical Report CDRL A005, April 1997. Available at
http:// shang.csc.ncsu.edu//papers/jinaoArch.ps.gz.

[Kaashoek et al. 1989] M. F. Kaashoek, et al. “An Eff icient Reliable Broadcast
Protocol,” ACM Operating Systems Review, Vol. 23, No. 4, October 1989.

[Kashima 1995] H. Kashima. “Searching Internet Resources Using IP Multicast,” INET
'95, August 1995.

[Kephart et al. 1997] J. O. Kephart, G. B. Sorkin, D. M. Chess, and S. R. White.
“Fighting Computer Viruses,” Scientifi c American, November 1997.

[Kim et al. 1994] G. Kim and E. Spafford. “Writing, Supporting, and Evaluating
Tripwire: A Publicly Available Security Tool,” Purdue University Computer Science
Department Technical Report CSD-TR-94-019, 1994.

[Kistler et al. 1991] J. Kistler, and M. Satyanarayanan. “Transparent Disconnected
Operation for Fault-Tolerance,” ACM Operating Systems Review, Vol. 25, No. 1,
January 1991.

[Krishnamurthy et al. 1995] B. Krishnamurthy and D. Rosenblum. “Yeast: a General
Purpose Event-Action System,” IEEE Transactions on Software Engineering, 21(10),
October 1995.

[Kuenning et al. 1997] G. Kuenning and G. Popek. “Automated Hoarding for Mobile
Computers,” Proceeding of the 16th ACM Symposium on Operating Systems
Principles (SOSP-16), October 5-8, 1997.

[Lemos 2000] R. Lemos. “Bugs at Internet Speed?” ZDNet, November 2000.
http://www.zdnet.com/zdnn/stories/news/0,4586,250123,00.html.

[Levine et al. 1996] B. Levine, D. Lavo, and J. J. GarciaLuna-Aceves. “The Case for
Reliable Concurrent Multicasting Using Shared Ack Trees,” Proceedings of the ACM
Multimedia Conference, November 1996.

 198

[Li et al. 1999] J. Li, P. Reiher, and G. Popek. “Securing Information Transmission by
Redundancy,” Proceedings of New Security Paradigms Workshop, ACM SIGSAC,
September 1999.

[Li et al. 2002] J. Li, M. Yarvis, and P. Reiher. “Securing Distributed Adaptation,”
Computer Networks, Special Issue on Programmable Networks, 38(3): 347-371, Elsevier
Science, 2002.

[Liebeherr et al. 1997] J. Liebeherr and B. Sethi. “A Scalable Control Topology for
Multicast Communications,” Personal Communications, Polytechnic University of
New York, Brooklyn, 1997.

[Lin et al. 1996] J . C. Lin and S. Paul. “RMTP: A Reliable Multicast Transport
Protocol,” Proceedings of IEEE INFOCOM, pp. 1414-1425, March 1996.

[Liskov et al. 1991] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M.
Willi ams. “Replication in the Harp File System,” Proceedings of the ACM
Symposium on Operating System Principles, October 1991.

[Lunt 1988] T. Lunt. “Automated Audit Trail Analysis and Intrusion Detection: A
Survey,” Proceedings of the 11th National Computer Security Conference, October
1988.

[Macedonia et al. 1997] M. Macedonia and D. Brutzman. “MBONE: The Multicast
BackBONE,” http://www.mice.cs.ucl.ac.uk/- mice/mbone review.html, 1997.

[Malan et al. 1997] G. R. Malan, F. Jahanian, and S. Subramanian. “Salamander: A
Push-based Distribution Substrate for Internet Applications,” Proceedings of the
USENIX Symposium on Internet Technologies and Systems, December 1997.

[McAfee Rumor] McAfee ASaP's Rumor Technology. http://www.mcafeeasap.com/
content/virusscan_asap/rumor.asp.

[McAfee OilChange] McAfee OilChange Online (previously CyberMedia OilChange).
http://www.mcafee.com/myapps/oco/default.asp?

[McDermott 1997] J. McDermott. “Replication Does Survive Information Warfare
Attacks,” Proc. of the 11th Annual Working Conference on Database Security, August
1997, pp. 186-198.

[Medina et al. 2000] A. Medina, I. Matta, and J. Byers. “On the Origin of Power Laws
in Internet Topologies,” ACM Computer Communication Review, 30(2), April 2000.

[Mill s 1991] D. Mill s. “ Internet Time Synchronization: The Network Time Protocol,”
IEEE Transactions on Communications, Vol. 39, No. 10, October 1991.

 199

[Moser et al. 1997] L. E. Moser and P. M. Melli ar-Smith. “Secure Multicast Protocols
for Group Communications,” Technical Report, Department of Electrical and
Computer Engineering, University of Cali fornia at Santa Barbara, 1997.

[Moses et al. 1989] Y. Moses and G. Roth. “On Reliable Message Diffusion,”
Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed
Computing, 1989.

[Moskowitz et al. 1997] I. Moskowitz and M. Kang. “An Insecurity Flow Model,” Proc.
of New Security Paradigms Workshop, Cumbria, UK, September 1997.

[Mukherjee et al. 1994] B. Mukherjee, L. Heberlein, and K. Levitt. “Network Intrusion
Detection,” IEEE Network, May/June 1994.

[Murthy et al. 1996] S. Murthy and J. J. Garcia-Luna-Aceves. “Congestion-Oriented
Shortest Multipath Routing,” IEEE INFOCOM, 1996.

[Navas et al. 1997] J. Navas and T. Imielinski. “Geographic Addressing and Routing,”
Proceedings of the Third ACM/IEEE International Conference on Mobile Computing,
1997.

[Page et al. 1998] T. Page, R. Guy, J. Heidemann, D. Ratner, P. Reiher, A. Goel, G.
Kuenning, and G. Popek. “Perspectives on Optimistically Replicated Peer-to-Peer
Fili ng,” Software Practice and Experience, 1998.

[Patrizio 2000] A. Patrizio. “Content-Delivery Network Services Vary Greatly,”
INFORMATIONWEEK.com, December 2000. http://www.informationweek.com/
815/cdnvendors.htm.

 [Patterson et al. 1989] D. Patterson, G. Gibson, and R. Katz. “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” Proceedings of IEEE COMPCON, Spring
1989.

[Paxson 1996] V. Paxson. “End-to-End Routing Behavior in the Internet,” Proceedings
of ACM Sigcomm, 1996.

[Pelc 1996] A. Pelc. “Fault-Tolerant Broadcasting and Gossiping in Communication
Networks,” Networks, Vol. 28 (1996), pp. 143-156.

[Pendarakis et al. 2001] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. “ALMI:
an Application Level Multicast Infrastructure,” in Proceedings of the 3rd Usenix
Symposium on Internet Technologies & Systems (USITS), March 2001.

 200

[Pingali et al. 1994] S. Pingali , D. Towsley, and J. F. Kurose. “A Comparison of
Sender-Initiated and Receiver-Initiated Reliable Multicast Protocols,” Proceedings of
the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, issued as Performance Evaluation Review, Vol. 22, No.1, pp.
221-330.

[PCCIP 1997] The President's Commission on Critical Infrastructure Protection. Critical
Foundations: Protecting America's Infrastructure, October 1997.

[Postel 1981] J. Postel. “Transmission Control Protocol,” RFC 0793, September 1981.

[Quarterman et al.] J. S. Quarterman and P. H. Salus. “How the Internet Works,”
Matrix.net. http://www.mids.org/works.html.

[Rabin 1989] M. Rabin. “Eff icient Dispersal of Information for Security, Load
Balancing and Fault Tolerance,” JACM 36(2) (1989), pp. 335-348.

[Ratnasamy et al. 2001] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
“A Scalable Content-Addressable Network,” ACM Sigcomm 2001, August 2001.

[Ratner 1998] D. Ratner. “Roam: A Scalable Replication System For Mobile and
Distributed Computing,” UCLA CSD Ph.D. dissertation, January 1998.

[Reiher et al. 1993] P. Reiher, T. Page, S. Crocker, J. Cook, and G. Popek. “Truff les - A
Secure Service for Widespread File Sharing,” Proceedings of the Privacy and
Security Research Group Workshop on Network and Distributed System Security,
February 1993.

[Reiher et al. 1996] P. Reiher, G. Popek, M. Gunter, J. Salomone, and D. Ratner. “Peer-
to-Peer Reconcili ation-Based Replication for Mobile Computers,” Proceedings of the
ACM/ECOOP Workshop on Mobilit y and Replication, July 1996.

[RFC919] Request for Comments 919 – Broadcasting Internet Datagrams.

[RFC922] Request for Comments 922 - Broadcasting Internet Datagrams in the Presence
of Subnets.

[RFC947] Request for Comments 947 - Multinetwork Broadcasting Within the Internet.

[RFC1825] Request for Comments 1825 - Security Architecture for the Internet
Protocol.

[Rosenstein et al. 1997] A. Rosenstein, J. Li, and S. Tong. “MASH: the Multicasting
Archie Server Hierarchy,” Computer Communication Review, Vol.27, No.3, ACM
SIGCOMM, July 1997, pp. 5-13.

 201

[Satyanarayanan et al. 1990] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E.
Siegel, and D. Steere. “Coda: A Highly Available File System for a Distributed
Workstation Environment,” IEEE Transactions on Computers, Vol. 39, No. 4, April
1990.

[S-BGP] Secure BGP Project (S-BGP). Available at http://www.net-
tech.bbn.com/sbgp/sbgp-index.html.

[Snapp et al. 1991] S. Snapp, J. Brentano, G. Dias, T. Goan, T. Heberlein, C. Ho, K.
Levitt, B. Mukherjee, S. Smaha, T. Grance, D. Teal, and D. Mansur. “DIDS
(Distributed Intrusion Detection System) - Motivation, Architecture, and an Early
Prototype,” Proceedings of the 14th National Computer Security Conference, 1991.

[Singh 1995] B. Singh. “A Global Reliabilit y Evaluation: Cutset Approach,” IETE
Technical Review, Vol 12, No 4, July-August 1995, pp. 275-278.

[Singhal et al. 1994] M. Singhal and N. Shivaratri. Advanced Concepts in Operating
Systems, Distributed, Database, and Multiprocessor Operating Systems, McGraw-
Hill , Inc., 1994

[Stoica et al. 2001] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
“Chord: a Scalable Peer-to-Peer Lookup Service for Internet Applications,” ACM
Sigcomm 2001, August 2001.

[Symantec TuneUp] Quarterdeck Tuneup (merged with Symantec Corp.). Available at
http://www.tuneup.com.

[Tapestry] Tapestry: Fault-resili ent Wide-area Location and Routing. http://www.cs.
berkeley.edu/~ravenben/tapestry.

[Venkateswaran et al. 1997] R. Venkateswaran, C. Raghavendra, X. Chen, and V.
Kumar. “DMRP: A Distributed Multicast Routing Protocol for ATM Networks,”
Proceedings of the ATM 97 Workshop, 1997.

[Wang et al. 1997] F. Wang, B. Vetter, and S. Wu. “Secure Routing Protocols: Theory
and Practice,” May 1997. Available at http://shang.csc.ncsu.edu//papers/CCR-
SecureRP2.ps.gz.

[Whetten et al. 1995] B. Whetten, S. Kaplan, and T. Montgomery. “A High
Performance Totally Ordered Multicast Protocol,” Proceedings of IEEE INFOCOM,
1995.

[White et al. 1996] G. White, E. Fisch, and U. Pooch. “Cooperating Security Managers:
A Peer-Based Intrusion Detection System,” IEEE Network, January/February 1996.

 202

[Wu et al. 1998] S. Wu and C. Sargor. “Deciduous: Decentralized Source Identification
for Network-based Intrusions,” DARPA/ITO Next Generation Internet PI Conference,
October 1998. Available at http://shang.csc.ncsu.edu/deciduous/.

[Yavatkar et al. 1993] R. Yavatkar and L. Manoj. “Optimistic Strategies for Large-Scale
Dissemination of Multimedia Information,” ACM Multimedia 93 Proceedings, 1993.

[Yavatkar et al. 1995] R. Yavatkar, J. Griff ioen, and M. Sudan. “A Reliable
Dissemination Protocol for Interactive Collaborative Applications,” ACM Multimedia
95 Proceedings, 1995.

[Zaumen et al. 1998] W. T. Zaumen and J.J. Garcia-Luna-Aceves, “Loop-Free Multipath
Routing using Generalized Diffusing Computations,” IEEE INFOCOM 1998.

[Zerkle et al. 1996] D. Zerkle and K. Levitt. “NetKuang: A Multi -host Configuration
Vulnerabilit y Checker,” Proceedings of the 6th USENIX Security Symposium, July
1996.

[Zhuang et al. 2001] S. Zhuang, B. Zhao, A. Joseph, R. Kata, and J. Kubiatowicz.
“Bayeux: an Architecture for Scalable and Fault-Tolerant Wide-Area Data
Dissemination,” Proceedings of NOSSDAV, 2001.

 203

12

