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Rapid and widespread dssemination d seaurity updates throughou the Internet
would be invaluable for many purposes, including sending ealy-warning signals,
distributing new virus sgnatures, upciting certificae revocation lists, dispatching event
information for intrusion cetedion systems, etc. However, naifying a large number of
machines aurely, quickly and with high asaurance is very chalenging. Such a system
must compete with the propagation d threds, hande @mplexities in large-scde
environments, addressinterruption attadks toward dssemination, and also seaure itself.
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CHAPTER 1

Introduction

Over the yeas the Internet has been seriously challenged by various threds: bresk-
ins, attadks, haaxes, vulnerabiliti es, and aher malicious subversion efforts. Writers of
mali cious code, such as viruses, worms, and Trojan hases have been credive in finding
ways for their code to propagate rapidly from macdine to machine, but defenders of the
Internet have been much less aggressve in finding ways to dsseminate the information
necessary to courter these dtadks. As aresult, not only have the network infrastructure
and individual macines been exposed to various forms of network-based attadks, bu
they have been slow in reading to these dtadks. This stuation raises concerns that were
not present when networking was lesscommon and lessrelied upon.

One citicdly desirable mechanism for the Internet is to allow a small number of
sources, such as trusted centers, to dsseminate seaurity information to a vast amourt of
machines over the network, seaurely and quickly.

We have developed a system cdled Revee to suppat such a medhanism. Revere
alows a disemination center to dstribute seaurity updates at Internet scde, seaurely,

quickly, and with high asaurance

1.1 Case Studies

1.1.1  An Early-Warning Mechanism
Protedion d the information infrastructure is inherently a distributed task. Threds

must be courntered as a whale, instead of focusing on the protedion d every individual



machine. With the rapid growth o networks, a threa gains an increassed pdentia for
endangering a larger number of madines, typicdly through propagation and replication.
Eadch maciine mnneded to network must be avare of al posshle atadks. Asaresult, in
a networked environment the threas to an individual macine ae of concern to ather
machines on which the same or simil ar attadks are dso likely to occur.

On the other hand, it is usualy the cae that a threa or vulnerability that later
bemmes widesprea is first deteded in a small number of machines. The difficulty has
often been the ineffediveness of distributing the signatures of or remedies for those
threas. Figure 1.1 (excerpted from [CERT 20012]) showsthat in 12 hous—from 6 am.
to 6 pm. on July 19, 2003—over 260,000 machines were quickly corrupted by the
CodeRed worm [CERT 20011]. An important observation we can draw here is that if

300000
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httoothwww. cert.oratadeizoriesiCA-2001- 22 himl Source; incident data for CERTHIEZH

Fig 1.1 IP addresses compromised by the “CodeRed” worm
(datafor July 19, 2001as reported to the CERT/CC)



those machines could have been naified o the incoming attadk between 10and 11lam.,
or even ealier (perhaps between 7and 8am.), at least 200,000 6 them could have been
saved. Clealy, the caability to dseminate an ealy-warning signa to al potential
victims of athred istherefore highly desirable.

The investigation by CAIDA (the Cooperative Asciation for Internet Data
Analysis) after the CodeRed attadk was even more astonishing. Acoording to [CAIDA
2007], from July 26 to August 23, 2001, dily examination d a randaom subset of the
359,000IP addresses that were originally infeded showed that many were still vulnerable
to the same dtack. Figure 1.2 demonstrates the slownessof those infeded macdines in
patching themselves, and shows that approximately 7% of the macdines were ill

vulnerable & the end d the survey period.

iae T T T T

T
Unpatched IIS5 ——

26 = 1

&8 - 1
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Fercentage of SUCCESSFUL probes

f=1: B

5] 1 1 1 1 1
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a7 28 ag-a2 ag.-a9 =1 ) ag-23

Fig 1.2 Amourt of patching in past-infedion web servers
(Figure avail able & http://worm-seaurity-survey.cada.org/)



The CodeRed worm strongly emphasized the need to reliably kegp macdines up-to-
date in order to be resilient to new threas; the CAIDA survey showed the ladk of this
cgoability in today’'s Internet. For instance duing the CodeRed worm incident,
wi ndowsupdat e. M crosoft.com was aso infeded, and many hosts were
reinfeded whil e trying to patch themselves.

Such a caability also edhoes the report by the President's Commisson on Criticd
Infrastructure Protedion [PCCIP 1997. After wide investigation and analysis, the
commisgon concluded that the quickest and most eff edive way to achieve amuch higher
level of protedion from cyber threds is to ensure aoperation and information sharing
among the infrastructure owners/operators and appropriate government agencies. In

order for thisto happen, ared-time atadk-warning mechanism must be designed.

1.1.2 VirusSignature Distribution

Computer virus encourters have been increasing steaily over the yeas. Figure 1.3
shows a @mputer virus prevalence survey dore in the yea 2000 ly ICSA Labs, a
divison d ICSA.net. The “love bug,” as an example, succesdully infeded some 3.1
milli on computer fil es worldwide by May 5, 2000,ac@rding to [BBC News 200(d.

Currently, many groups devote substantial efforts to identifying and combating new
viruses oon after they are discovered. However, the distribution o information abou a
newly deteded virus is gill primitive, and dten slow to read redpients. Typicdly, a
user hasto dredly contad avirus protedion groups web site to download updites, either
manually or as sheduled. This pulli ng-based method dten fail s to instantaneously keep
a user's madine updated, urlessthe user probes very frequently or the user knows in a

timely way that a new virus updete has just been pubi shed.
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Fig 1.3 Infedion per 1,000computers per month

Given that timely prediction is highly unlikely, “pulling” solutions in high frequency
is virtually the only choice here. Unfortunately, this is a subogimal choice While
attadks in the past have been infeding other macdines in the order of minutes, hous, or
days, and a user alrealy has to probe avirus center at least as often, ore shoud na rely
on an optimistic view that the infedion spead of an attad in the future will not be even
faster—possbly measured in seconds. As aresult, puling will i ncur an even higher cost
in bah CPU time and bandwidth. Such costs can be more prohibitive if a node is
interested in recaving hundeds or thousands of different types of seaurity information
from various stes.

The process of pulling virus information from a website dso ladks flexibility in
recaving the information. Because it has to completely rely on the underlying routing
protocol which determines the delivery path, a redpient node caana seled its own

preferred peth for receving information; nor can it spedfy more than one delivery path,



bath of which can be necessry in some drcumstances in ader to guarantee the
avail ability of seaurity information.

This puling method is also na scdable. When millions of users want to
simultaneously recave information concerning a new virus, the web site for virus
information can become ahat spat of traffic, and users will i ncur a higher latency due to
resource @ntention.

As an aternative, some groups %t up central servers to automaticdly broadcast new
virus sgnatures to every individual user, bu difficulty in managing user records at the
central server grew quickly as more users participated. In particular, a new user may
want to join a any moment, and an existing user may lease withou any natification.
Moreover, the center has to send rew virus information to every individual user, ore by
one, asolution that does not use bandwidth wisely.

Receantly, pee-to-pea techndogy has been used to address ®me of these problems,
where aredpient can forward newly recaved virus information to a secondredpient, and
aseondcan forward to athird, and so on[McAfeeRumor]. Every redpient will thus be
on a dan o recaving information. However, the design techndogy to hande
disconreded nodes, strengthen seaurity, and maintain the chains has not been reported.
Such a system is also subed to man-in-the-midde dtadks. For example, if an
intermediate node on avirus information ddlivery path is corrupted, all of its descendents
downstream in this pea-to-peea structure will mi ssthe information being delivered.

Clealy, what is needed is a mechanism for rapid and widespread dssemination o
new virus sgnatures, considering important issues such as resili ency, scaability, seaurity,

etc.



1.1.3 Information Dispatch in Intrusion Detedion

Similar to signature-based virus detedion, pattern reaognition has been ore gproach
to deteding host-based or network-based intrusions. Newly discovered intrusion petterns
also cdl for a seaure and fast dissemination to all those madiines that need updites on
new types of intrusions.

In addition, a distributed intrusion detedion system relies on timely and trustworthy
seaurity status updates among individual nodes in arder to maintain the state of a system
or evaluate arisk level. This again leads to the requirement for a seaurity information

dissemination service

1.1.4 Widespread Certificate Revocation

One difficulty with widespread use of a pullic key infrastructure has been the
catificae revocaion poblem. If the private key of a madciine is compromised, the
catificae authority that is resporsible for the madine's publlic key will update the
correspondng record and issue anew cetificae if a new public key for that madine is
generated. However, the stale cetificates of the old compromised pulbic key may still be
stored in many places aaoss the network. At every noce that still uses the obsolete
cetificae, the cmpromised puldic key will be used to verify incoming messages from
that machine or proted outgoing messages toward that madine, and bah will become
vulnerable to attadks.

On January 29-30, 2001, VeriSign erroneously issuied two Class 3 code-signing
catificaes to a person pasing as a Microsoft employee [Olavsrud 20A]. Both
catificaes were adgned to "Microsoft Corporation” and could endase exeautable
content using keys that claimed to belong to Microsoft. Reaognizing the danger that

somebody, by impersonating Microsoft, could easily convince users worldwide to



exeaute an arbitrary program, revoking these two certificaes was urgent. Verisign dd
revoke the two certificaes and pubished them in its current Certificae Revocation List
(CRL), bu VeriSign's code-signing certificaes did na spedfy a CRL Distribution Point
(CDP). Therefore, a user would na know to contad CDP to receve an up-to-date CRL.
Microsoft also provided (or suggested) a suite of options, bu al of them were not sound
solutions to the problem, as explained kriefly in the foll owing:
e Asking usersto dscad cetificaes dated onJanuary 29 a 30, when asked
to confirm the installation d a program. By this option, every user must
now read carefully before dicking the “OK” button. And luckily, there

were nolegal certificates issued on these two dates.

» Developing patches for various Windows platforms. The problem of

quickly applying thaose patches gill needs to be solved.

* Removing Verisign from the Trusted Root Store. This would disable aly

catificaes sgned by Verisign, and would be afairly drastic step.

On the other hand, if there were such a service to proadively distribute lists of
revoked certificaes, every node that subscribes to such a service @uld then avoid using
obsolete catificaes. When ndified, the node @uld easily invaidate those cabed

catificaes that shoud be revoked.

1.1.5 Summary

All of these uses of seaurity information dssmination share many common
charaderistics, so it is highly preferable to suppat them with a single cmmmon service
These seaurity updates are usually of low volume, bu of criticd importance Revere

provides this ared service



1.2 Goal of Revere

The goa of Revere isto dsseminate seaurity updates quickly at Internet scde, with
high resiliency and robust seaurity. The seaurity updates can contain an ealy-warning
signal, a new virus sgnature or its remedy, spedal events in a distributed intrusion
detedion system, offending charaderistics to be filtered by a firewall, cetificae

revocaionlists, and so on.

1.3 Asaumptions
This reseach is based on the following assumptions, and we believe they are
reasonable:
* Revereisonly responsiblefor disseminating seaurity updates.
There ae separate procedures that generate seaurity updates and
independent applicdions that use seaurity updates. We believe both
generation and uili zation o seaurity updates are gpli cation-spedfic, and
Revere only provides a general service for different applicaions by
addressng their common reed.
* Seaurity updates are usually of small size at low frequency, and of critical
importance
This is true for ealy-warning signals, virus sgnatures and remedies,
intrusion detedion information, cetificate revocdion lists, etc. One
important implicaion d these dharaderistics is that the bandwidth cost for
disseminating seaurity updates is nat a serious concern; one probably can
afford to spend several times the minimum required bandwidth if

necessary to ensure that the updates are delivered.



* Reverewill run at large scale over heterogeneous nodes.
Nodes may have different cgpabiliti es and preferences in receaving and
forwarding seaurity updates. Also, in a large-scde environment, a
significant number of nodes may be disconreded and are therefore not
ableto listen to seaurity update diseemination for a period d time.

* Any Reverenode muld be arr upted.
While most Revere nodes will operate corredly, the trustworthinessof any
Revere node caina be asaumed withou verificaion. Also, while a
dissemination center will normally be well-proteded, it could be crrupted
as well. However, we do nd assume there is a uniform seaurity scheme
that can be used by all Revere nodks.

* Not all Internet nodesrun Revere.
Any Internet application, including Revere, will not be fully deployed at
once Incrementa deployment will be the norm.

* Thereisno mandatory requirement for the underlying platformsto run Revere.
No changes will be made to operating system, Internet infrastructure, or

hardware, in order to suppat the running of Revere.

1.4 Challenges

Isit feasible to deliver a modest amourt of seaurity-related information to most of the
conreded noces of an Internet-scde @mputer network very rapidly, reliably, and
seaurely? Can it be dore withou huge, powerful server systems? How rapidly can it be
done? Within seconds, for example? Does it require fundamental changes to the Internet

core or to al end systems, or can it berun puely at the goplicationlevel?
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Revere, or any other system that attempts to deliver rapid seaurity updates at high
scade, must overcome several difficult chall enges.

Seaurity updates must be delivered at the same spedd as attads, or even faster, if
posgble. If a node does not receve the most recent seaurity updetes, it is highly
vulnerable to various threds. On the other hand, if necessary seaurity information (such
as worm signatures) were propagated faster than the atadk (worm) itself, the threa would
be substantially diminished.

Ancther challenge is sdability. There ae tens of milli ons of madiines conreded to
the Internet, and ead madine is a potential participant. Because the scde of the Internet
is growing ever larger, a centralized solution would require asingle machine, or even
dozens of madines, to store global knowledge cncerning all potential participants.
Even if this were feasible by using powerful madines, the task of keegping the stored
information upto date is daunting. Approaches based on centralized management are
thus difficult, if not impossble. Distributed solutions can scde well, bu bring their own
challenges. Further, high scde ensures that significant numbers of nodes will be
disconreded at the moment a seaurity update is being disseminated, so any solution must
include feaures to make updates available to those nodes that missed them during
disemination.

High asaurrance of dissemination is aso chalenging, espedaly if a distributed
solution is used. Nodes asdsting in dsemination may be mmpromised, resulting in
dropped, misdireded or damaged seaurity updates. Approaches sich as encryption,
authenticaion, and dgital signatures do nd adualy help ensure that a message is
delivered. Attadks that try to destroy or intercept seaurity messages in the midde require
other countermeasures. Authenticated adknowledgements are helpful, bu do nd scde

well, and typicdly retransmitted messages are till subjed to interruption threds.
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Last but not leat, the system itself must be seaure. A system that delivers trusted
information to milli ons of macdines would become ahighly tempting target for attaders.
If the system’s seaurity is broken, the machines that were targeted for protedion will | ose
that protedion. Worse, if the system is widely deployed, it may be used by hostile forces

to corrupt even larger numbers of machines.

15 RevereOverview

Revere builds an owverlay network ontop d the Internet for a dissemination center to
disseminate any type of seaurity update. This overlay approach provides flexibility,
while requiring no changes to existing network infrastructure. Revere is currently
implemented as a Java gplicaion on @rticipating nodes. These nodes are organized
into an owerlay network to deliver seaurity updates, where eab individua noce is
alowed to join and leave aRevere overlay network. Every node will receive seaurity
updates and every nontled node will also forward seaurity updates.

The Revere overlay network is designed to hande an Internet-scde number of
participants. First, instead of kegoing information concerning all participants of Revere,
every noce only kegys a small amourt of information, typicdly only related to nods in
its neighbarhood onthe overlay network and the dissemination center. Seoond, kecause
high scde means that a significant number of nodes will be disconneded at the moment a
seaurity update is diseminated, Revere is also designed to make seaurity updates
avail able to those nodes that missed them during dissemination.

Equally important, the Revere overlay network is resilient. Althowgh it isrooted at a
dissemination source, the Revere overlay network is nat a treelike structure. To combat
attempts to interrupt dissemination, Revere employs redundancy in the overlay. Whereas

redundancy has been widely used in areas like high-avail ability data storage and some
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fault-tolerant systems to provide resiliency, it has been less used to provide network
resiliency, in part becaise of the extra asts of delivering multiple copies of a message.
For Revere, the gpproadch is ensible, since Revere is designed to handle alow volume of
relatively small but highly important messages. Revere adieves redundancy in the
overlay by automaticdly building multiple a-digjoint-as-possble paths for ead noce to
receve seaurity updates. Revere handes disconreded nodes by providing similarly
redundant repository sites that can be mntaded when disconneded nodes return to the
network.

Furthermore, Revere enforces dringent seaurity for both the dissemination procedure
and the overlay network. Ead seaurity upcdete will be signed by the dissemination
center. If nealed, the pubic key of a dissemination center can be revoked. The seaurity
required to buld the overlay network is provided by a peea-to-pee seaurity scheme
negotiation protocol and a medchanism for pluggable seaurity boxes at each node. These
feaures alow two Revere nodes that do nd know ead cther to communicate withou

predefining a uniform seaurity scheme.

1.6 Key Contributionsof ThisResearch

The first contribution o this reseach is that it demonstrates that quick and secure
dissemination d seaurity updetes at Internet scdeisfeasible.

The second contribution d this reseach is that of building overlay networks for its
spedal purpose—seaurity update diseemination. Building an owerlay network, by itself,
is not new. As described later in Chapter 7, Related Work, many reseachers have
propacsed owerlay networks for various purposes. However, the spedal requirements and
challenges of diseminating seaurity updates make it hard to simply use any existing

overlay networks. Therefore, Revere builds its own owverlay networks. Although Revere

13



alows anoce to join o leare aRevere overlay network at its own dscretion, just as do
many other overlay networks, a Revere overlay network is built and maintained
differently. One significant fedure is that it implements redundancy in the overlay
network in order to address the interruption threds. Every Revere node, at its own
discretion, can choose to have more than ore seaurity update delivery path that meds
certain requirements for spead, seaurity and resili ency.

The third contribution d Revere is that it provides a dual mechanism for seaurity
update disseemination: push and pull. Revere dlows a dissemination center to push anew
seaurity update to al Revere nodes currently conreded, and Revere dso allows eat
individual Revere noce to contad repaository servers to pul missed seaurity updates.
Most information dstribution services in a network implement either push operations or
pull operations. Revere reaognizes that push and pul are wmplementary to eat ather,
and bah must be suppated.

The fourth contribution d Revere is that it addresses various possble dtadks on the
dissemination procedure or the Revere overlay network. Withou strong protedion,
Revere will not be used seriously for recaving important seaurity information. In
proteding the dissemination, nd only is every seaurity update signed by a dissemination
center, thus proteding the integrity of the seaurity update, but also the pullic key of the
center can be revoked in case the pulic key is identified as corrupted. As for proteding
the formation and maintenance of a Revere overlay network, Revere does not assume that
auniform seaurity scheme will be enforced aaossall participants; instead, a pea-to-peea
seaurity scheme negotiation protocol is designed. Every node can spedfy what seaurity
schemes to foll ow for its incoming messages. Furthermore, a Revere node can plug in a
seaurity box for every particular seaurity scheme, making it easy to enforce many

different seaurity schemes.
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The fifth contribution d Revere lies in the technique for measurement, something
that can also be gplied to ather distributed applications. Because of the intended scde of
the system, dired measurement of Revere is impassble d this point. Therefore, Revere
is measured by using an “overloading” technique. With this tedhnique, a physicd
machine can hast many nodes of a distributed system; here, ead logicd noce till runs
the red code, just as it would in the red world, except that every logicd nocdk sits on top
of avirtual topdogy. Large scde can then be adieved using multiple physicd madines,
eadt suppating many logicd nodes.

The sixth contribution o Revere is that it provides an easily deployable solution.
Implemented in Java & application layer, Revere does not require aty changes to the
network infrastructure underneah, and daes not require any particular suppat from the
OS or hardware to be deployed. Any user, who hes installed Revere on its machine, can
just begin runnng Revere in arder to join a Revere overlay network, or can withdraw

from the system by clicking a button.

1.7 Roadmap of ThisDissertation

We describe and dscussRevere in more detail in the following chapters. Chapter 2
discusses the general principle of seauring information transmisson by using
redundancy. Chapter 3 dscusss the RBone, the overlay network that Revere builds for
seaurity update dissemination, and the disemination pocedure itself is described in
Chapter 4.

We identify seaurity isues and dscuss our approadhes in Chapter 5, where we
outline possble atadks and dscuss their countermeasures. Both protedion d the
dissmination procedure and the protedion d the overlay network will be addressed. In

Chapter 6, we introduce alarge-scde-oriented “overloading” approach to measuring

15



large-scde distributed systems, and apply it to Revere measurement. We will discuss
what metrics sioud be evaluated and what measurement procedure we have taken. We
then report and analyze the results of our measurement.

Chapter 7 summarizes related work, including various information dstribution
approadhes viewed in the most general context, pradices on vrus sgnature distribution,
overlay networks developed by other people, multi-path routing, etc. Chapter 8 is
devoted to future work, where we will show that Revere provides a good patform for

interesting reseach aong several lines. We conclude the disertation in Chapter 9.
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CHAPTER 2

Asarancevia Redundancy

One of the most criticd challenges fadng Revere is that of suppating the high
avail ability of seaurity update disseemination undr various circumstances, including the
case Where an attadker is trying to corrupt information while in transit. In this chapter we
justify the fundamental concept of information assurance via redundancy and dscuss
general considerations on wsing redundancy to seaure transmissons, we will thus

establi sh that a redundancy mechanism is critical to the successof Revere.

2.1 TheRedundancy Approach

More and more information is now shared and dstributed over computer networks.
Seaure distribution o such information is beaming increasingly important.
Conventional seaurity approadches address many of the problems of seauring information
diseemination, bu not all of them.

Encryption can provide seaegy, authenticaion can provide asaurance of the source
digital signatures can provide integrity verification, firewalls can filter out dangerous
transmisgons, and so on. But these aad aher traditional medianisms offer little
asgstance with interruption threas. No matter how elaborate the encryption o
authenticaion, if the informationis dropped onthe floor, destroyed o transformed into a
pieceof garbage, blocked due to owerloading of an intermediate link, o disrupted by

other malicious ads, information availability is damaged. In many cases, even if
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attadkers canna deaypt, forge, or ater information, they can acieve their ends merely
by ensuring that important information daes not read an intended destination.

The traditional solutionis to require a&nowledgement of important messages. Since
attadkers might try to forge aknowledgements, they are typicaly signed (and pssbly
encrypted, if they contain sensitive information). If an adknowledgement is not receved
soonenowgh, the message isresent. This methodworks well if arelatively small number
of messages require aknowledgement. If a very large number of messages must be
adknowledged, then hierarchicd or other load distribution methods must spread ou the
resporsibility for cheding acknowledgements. In the general case, all nodes performing
the dhedks must be trusted.

Worse, an attadker can repeaedly intercept or destroy the retransmitted message.
Withou other medhanisms, an attacdker who haes compromised a single link or router node
may permanently prevent the delivery of a message, since eab retransmisson will
probably still follow the same path through the compromised resource

We believe the fundamenta problem isthat thereis only a single path for information
transmisson. If any point of this sngle path is corrupted, transmisson seaurity is
corrupted.  This problem can be reduced by adding redunchncy to information
transmisson structures. Such redundancy can improve transmisgon resiliency and
gredly improve information avail ability. Typicdly, such redundancy can be provided by
using more than ore path through the network to read the destination.

If redundant paths are wmpletely digoint, then attackers must compromise multi ple
resources in the network to prevent message delivery. A greder degree of redundancy
means that more resources must be cmpromised by attadkers. Asauming that there is
cost and risk in compromising ead resource, increasing the degree of redundancy can

thus increese the difficulty of preventing successul delivery. Obviously, redundancy
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uses more resources than single-path transmisgon, and there is a tradeoff between the
degreeof seaurity achieved and the st of providing it.

Similar arguments have demonstrated the value of redundancy for many hardware
fault tolerance problems. In the networking redm, however, adualy providing true
redundancy may be difficult. While two dstinct disks can be used for storing the same
data, or two dstinct processors can be loaded with the same instructions, it is not always
true that two or more disjoint paths can be eaily foundfor reading a spedfic destination
through a network. Such peths might not exist. Even if they do, existing network routing
protocols and the desire to hide network complexities from higher levels make
discovering and wsing the digoint paths difficult. And it is even more difficult to knowv
the locations of those physicd lines that a message foll ows.

On the other hand, an Internet-like network often comes with abundant routes and
conredionsin order to be resili ent to faults and failures (in particular, thisis the basis for
enabling routing protocols to seled spedfic routes to read a destination). The Internet,
for example, is a worldwide mesh or matrix of hundeds of thousands of networks that
are interconreded by abou 8,000 ISPs (Internet Service Providers) at the re
[Quarterman et al.]. Even at the edge of the Internet, more and more organizations have
become multi-homed, with conredions to multiple ISFs.

In a word, we believe that redundancy can have gred value in courterading attads.
Even if the paths are not fully digoint, any nonshared pations of the path limit an
attadker’s choice of attadk pants. The atadker must either find and compromise shared
links or routers on the path, a must compromise the right set of non-shared elements.
The volatility and olscurity that makes finding digoint paths difficult also makes
attacking them hard. While some doke points canna be avoided, link-by-link (or

segment-by-segment) redundancy may still prove very useful.
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Redundancy for fault-tolerant information transmisgon hes been studied by many
people [Castro et al. 1999 [Pelc 1999. Deding with Byzantine faults has also been
considered. However, this reseach orly focused on spedally structured networks, such
as broadcasting over complete networks or hypercube.

Another related reseach areais information dspersal [Rabin 1989. This has sme
simil arities to the RAID techndogy for data storage. The original information is divided
into pleces with some level of redundancy before being transmitted separately. After
obtaining the pieces, the recever can assmble them into the original information, even if
some pieces are lost or damaged. But, if al these pieces read the recaver via the same
single path, every piecewill still be subjed to interruption threas, causing the assembling

operations to till fail.

2.2 Interruption Threats

While information transmisgon latency has been shortened dramaticdly in the past
few yeas, information transmisson may still have to cut acdoss ®veral external entities
or domains. A malicious attadk might be ale to penetrate anetwork element where
everything seans under control. These externa or maliciously penetrated places are
where interruption threas will occur.

Interruption threas can be divided into two caegories: path interruption and dita
interruption. A path interruption heppens when information is dropped on the floor or
misdireded to the wrong place A path interruption also happens when some portion o
the transmisson path is flooded, causing denial of service A data interruption happens
when the informationitself is damaged.

A redpient usualy has a better chance of deteding data interruption than it does path

interruption. A redpient with a data interruption can deted that data has been
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manipulated, while aredpient with a path interruption may not notice anything abnarmal
a al. The commondity is that both types of interruption can happen even if the
mali cious entity does nat know what the data contains, so neither encrypting nor signing
can help. Interruption threas can be more serious if combined with ather kinds of

seaurity attads.

2.3 Transmisdgon Primitives

Some transmisson pimitives have aldressed the difficulties in transmitting
information. While these primitives are designed mainly for nonseaurity reasons
(particularly reliability in the sense of no data loss or physicd error) and they do nd
provide a total solution, they do provide some asSstance in coping with seaurity
problems in information transmisson.

In the foll owing subsedions, we will discuss TCP, reliable multicast, broadcast and
floodng, and show that those dforts which ded with transmisson dfficulties are

insufficient to addressinterruption threds.

2.3.1 Réliable Transmisson —TCP

TCP [Postel 1981 provides reliable one-to-one information transmisson ontop o
the IP layer, where an IP padket is routed to the destination along a dynamicdly
determined plysicd path. If a TCP padket is lost acording to adknowledgement
information from the recaver, or if its own retransmisson timer times out, a TCP sender
retransmits the TCP padket.

If interruption attadks are sporadic, causing TCP to drop an occasional padket or
sometimes damage the data, a TCP retransmisgon can hed the problem. But esentialy

TCP canna eliminate interruption threas if the retransmitted TCP padkets encgpsul ated
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in IP padkets are sent through the same hostile point and are maliciously manipulated
again.

Inspeding the TCP adknowledgement mecdhanism will show that TCP retransmisson
appeas even lesseffedive in addresgng interruption threds. In the reverse diredion d a
TCP conredion, the aknowledgement padets could also be subjed to interruption
threds; for instance, when a TCP conredion is ymmetric and the reverse routes passes
through the same hostile point. An adknowledgement padket, even with a signature or
other seaurity enhancement, may nat be &le to read the TCP sender smoacthly. If so, the
sender will not be avare of padket loss damage or misdiredion, and the sender will not
retransmit before it times out.

Even if a sender retransmits (either after it times out or after it deteds padket loss
based on an adknowledgement), a retransmitted padket often uses the same path as the
original one. This causes the padket to crossthe cmpromised pdant on the path again,

and thus be subjeded to repedaed interruption threds.

2.3.2 RédliableMulticast

Reliable multicast provides reliability for information multicast. Usualy it is dore by
negative ac&nowledgements or repair requests. As one example, SRM (scdable reliable
multi cast) [Floyd et al. 1997 lets eadr multi cast redpient be resporsible for information
lossor error by requesting a repair from the whole multicast group (not necessarily from
the sender) or by initiating a local remvery. Since amulticast group could be flooded
when every redpient sends a repair request to the whole group for the same repair, SRM
suppreses repeded repair requests and alows only one wpy to be propagated

throughou the group. Similarly, repairs are dso suppressed.
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Although this bandwidth-aware reliability medanism is reasonable in namal
condtions, it is susceptible to interruption threas. Designed to addresspadket lossdue to
transmisson errors, it canna succesgully hande padket lossor damage due to malicious
efforts. Although repairing padkets can be injeded into a multicast group, reliable
multicast does nat provide dternative paths for padket delivery, and a repair padket can

still be interrupted.

2.3.3 Broadcasting and Flooding

Broadcasting and floodng are used to read multi ple destinations with a best effort in
atransmisson sesson. A redpient may receve more than ore wpy of exadly the same
information, which inadvertently gives rise to some level of redundancy (perhaps not
enough) by heavy use of bandwidth. Standard broadcast and floodng methods assume
that all members are benign nodes and that they foll ow the rules for transmisson.

When deding with the Internet, broadcast and floodng will also introduce other
problems. Broadcast istypicdly dore & subret level, bu the number of subrets over the
Internet is dill | arge, making broadcast a nonscdable gpproach. Floodng at Internet
scdeisaso daunting, sincethis would incur a prohibiti ve bandwidth cost.

Reliable broadcast [Chang et al. 1984 has been proposed to ded with information
loss or error caused by nonseaurity problems such as physicd transmisson errors.
Obvioudly it canna eliminate interruption threds for the same reason that TCP cannat.

In a word, conventional approaches to information transmisson can provide good
reliability in terms of “natural” information loss or error, but provide little suppat in
courterading “artificia” information loss or damage. To ded with these interruption

threds, we neal a new approacd to transmitting information in a seaure fashion.
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24 Asarancevia Redundancy

We propase that redundancy in information transmisson is valuable for providing
seaurity asuurance [Li et al. 1999. Here, reduncancy means that the information
transmisson path, o part of the path, is multiplied to avoid a single point of seaurity
corruption.

We believe redundancy is important for seaurity asaurance in large-scae networks
like the Internet. While massve redundancy in a smal-scde eavironment may be
employed to achieve best resili ency, lean bu resili ent redundancy is the fundamental goal
for seaurity. Brute-force redundancy will result in an urcontrolled waste of resourcesin
alarge-scde environment, which in turn may overload some resources to cause denial of

service

2.4.1 Redundancy in Other Areas

Redundancy has been widely used in many aress by devoting more resources to
adhieve better availability. Resource redundancy is often applied to include multiple
proceses, multiple hardware comporents, and multiple data wpies, usually with
independent fail ure probabiliti es. Examplesinclude:

* High availability data storage. Here, in order to ded with disk crashes,
balance load from a hotspot disk, and to provide lower latency for data
acces either more than ore disk stores a wpy of the data, or the data,
with bult-in redundancy, is dispersed to more than ore disk. This is

normally transparent to users [Patterson et al. 1989.

* Filereplication. This processis used to make replicas to suppat easier
access [Kuenning et al. 1997 [McDermott 1997 [Reiher et al. 1994.

Establi shing mirror web sites for lower latency is one such example.
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o Data backup. Data badkup, wsualy dore periodicdly, can help restore

damaged o lost fil es from badked-up copies.

* Faut-tolerant distributed systems. Here, correspondng to atask, multiple
replicated exeautions [Singhal et al. 1994 may be employed to run a
program concurrently at different locaions. The task can till smoothly

cortinueif at least one exeaution succeaels.

» Mappng ore web site to multiple IP addresss. Mapping one web site to
several different server madines, in a roundrobin fashion a in some
other more sophisticated way, can prevent one single server from being
overloaded and ensure that the site is accessble even if some server

maadines have aashed [Alteon].

2.4.2 Resliency Evaluation

Given a graph with fault probability distribution o nodes, computation d the
probability that there is a nonfaulty path between two arbitrary nodes is known to be NP-
hard in the worst case. But we can till | ook at some resili ency properties of a graph for
some basic understanding of which redundancy structures are good.

Let us define the resiliency of a one-to-one @nredion as the probability that the
source S can reach destination D, denoted as Rsp. Here, the word “read” means that
when every path from Sto D is used to transmit a copy of amessge & the same time, at
least one authentic copy can berecaved. Further assume for this gedfic conredion that
thereisatotal of mcutsets C,, Cy, Cs... Cy, ead containing some number of elements (a
single dement cutset corresponds to a dioke point, for instance). Dencte E; (i=1, ..., m)
asthe event where & least one dement of C;is not broken, then we can define:

Rsp = Proballity (E;andE; ...and Er)
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Usualy deaeasing the number of cutsets, here m, can increase the resiliency of a
conredion. Further analysis can also show that higher resiliency can result if a aitset
contains more dements, or an element has alower probability of being subverted.

Having eat path be & grong as possble by passng through the least number of
corrupted nodes can deaease the number of cutsets; and having more paths, in particular
as digoint as passble, to a destination can make a aitset of the cnnedion contain more

elements, thus grengthening the resili ency of the cnredionin general.

2.4.3 Using Redundancy in Transmisson

Redundancy may be improved by simply increasing the number of information
sources or the number of transmisson paths, particularly when information corruptionis
deteded.

This may not provide extra seaurity assurance in information transmisson, havever,
and may lead to urwise resource usage and degraded performance For instance, if the
incoming link for a recaver is maliciously flooded, causing denia of service contading
more sites for redundant information may not yield any useful message; it may instead
cause even more severe overloading of the link.

Therefore, to adieve the best information delivery assurance a sophisticaed
redundancy design is necessary. The designer shoud understand the stochastic
distribution d interruption threas, make the best trade-off between resource usage and
redundancy, buld resource-saving but resilient transmisson structures, use an adaptive
algorithm to help choose when and hav to deploy redundancy, and so on. For instance a
recaver may also run an intrusion cetedion fadlity to find the reason for continuows

information uravail ability.
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There ae many complex issues in deploying redundancy in large-scde networks like
the Internet. One problem is that madhines in the Internet are heterogeneous in terms of
transmisson charaderistics, platform, seaurity situations and requirements. Idedly,
some of this information shoud be taken into acount when choasing redundant paths.
For example, if a particular noce is suspeded of being highly inseaure, speda cae
shoud be taken to avoid routing multiple suppasedly disoint paths through that node.
Also, the seaurity system must be alaptive in deding with a dynamic environment in
terms of location, transmisson mechanism, and impad of interruption threds.

Further complexity arises becaise a ©mpromised element can compromise other
intermediate dements or cause them to misbehave. For instance while misbehaving on
data traffic itself, a compromised router may cause other routers to unknavingly
misbehave by sending them false routing messages [Wang et al. 1997. Building seaurity
into the routing infrastructure is itself a dhallenging task [Cheung et al. 1997 [Jou et al.
1997 [Wu et al. 1998 [S-BGP]. Unlessthe routing infrastructure seaurity is grong, two
paths used to read a destination shoud na only be & digoint as possble, bu also
isolated within the routing infrastructure. For instance using routers belonging to
different ISPswould be preferable.

Last, as we pointed ou ealier, resilient but lean redundancy is what we want.
Obvioudly, in a large-scde network such as the Internet, bulding such a structure can

only be dorein adistributed fashion, adding further difficulty.

2.5 Employing Redundancy in Revere
Revere employs redundancy in several aspects. (1) every Revere node can have
multiple seaurity upcdete delivery paths, (2) every Revere node can contad severa

sources for missed seaurity updates.
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In the first case, a Revere node will try to guarantee that one path will provide the
fastest delivery of seaurity updates, and the other paths will provide the best resili ency.
We will address this in more detail when we discuss the Revere overlay network
formation and management.

In the second case, having several independent sources for old seaurity updates
suppats higher avail ability. If one sourceis subverted, anather source may still be ale
to provide mmplete aithentic seaurity updates. We will describe this more when we
discussthe dissemination procedure. Both cases will aso be revisited when we discuss
possble atadks toward Revere and courtermeasures.

More interestingly, Revere runs at Internet scde. Since a cetralized solution to
building a good redundant distribution structure is not feasible, a distributed algorithm
that builds a Revere overlay network on the fly must be designed. The seaurity of this
distributed algorithm isindispensable. If the redundancy mecdhanism is compromised, the
suppasedly beneficial system could adually work against seaurity. Some problems in
this area and solutions to the problems are obvious, but more subtle and indired problems
are likely to occur. Theoreticd understanding of large-scde redundancy for Revere dso
requires investigation. For example, in addition to evaluating the resiliency of a one-to-
one @nredion, hav does one evaluate the overal resliency of a dissemination
structure?

Revere does nat address hardware-level redundancy. When a Revere node obtains
multiple delivery paths for receving seaurity updates, thase paths might overlap at a
hardware level, even thouwgh they are quite digoint at alogicd level. Some research has
shown that in general, logicd-level digointedness matches nicdy to hardware-level

digointedness [Andersen et al. 200]. Nevertheless due to the difficulty in gaining
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hardware-level topdogy information and aher relevant knowledge, Revere leaves this as

an open isue. We will i nvestigate this more in future work.

26 Conclusions

In this chapter we discussed using redundancy to seaure information transmisson
against interruption threas. Our analysis $iows that both conventional transmisson
primitives and frequently used seaurity techniques are not adequate when courterading
interruption threds. Redundancy, an approach aready widely used in many areas but
rarely in information transmisgon, can adualy improve the seaurity of information
transmisson. While redundancy has a wide gplicability in many areas of network
seaurity, we have outlined howv redundancy can aso be used in Revere for seaurity

update dissmination.

28



CHAPTER 3

RBone: A Self-Organized Resili ent Overlay Network

An RBone must be formed and maintained for ead dfferent type of seaurity update
natificaion to ensure delivery of the needed seaurity updates. Composed of Revere
nodes and the logicd links between them, an RBone is the basis of searity upcete
dissemination. During seaurity updete dissemination, Revere forwards saurity updstes
from one noce on the RBone to ancther along the virtua li nk between them.

An RBone organizes itself. By merely using a simple user interface Revere dlows
ead individual nocke to join o leave an RBone automaticdly. Revere dlows a hoce to
attadh itself as a diild o other existing Revere nodes to become part of an RBore.
Revere can also deted broken or dead nodes on an RBone and hend e broken links on the
RBone, causing nodes to redtach themselves as required.

Because Revere works at the gplication level, the RBone built by Revere adieves
resiliency at the same level, considering only other participating Revere nodes. Since
information abou genera network topdogy is usually unavailable, Revere does not
attempt to adchieve hardware-level digointness of paths. Medanisms to adieve
hardware-level digointnessare atopic of future reseach.

To adieve both efficiency and resiliency, Revere dlows an individual node to seled
more than ore parent, with ore of parents providing the fastest seaurity updete delivery
and the rest delivering copies aong paths as digoint as possble. Thus, a node will only

missseaurity updatesif al its paths are broken.
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Given that an RBone can contain millions of nodes, al RBone management
operations must be & smple & possble and rely only on a small amourt of partial
knowledge & ead nock to suppat scdability. In Revere, eat nock only kees
information abou its parents, its children, and the diseemination center. Eadh nock is
able to choase its number of parents and chil dren.

For convenience, we asume that a different RBone rooted at a spedfic dissemination
center will be built for every different type of seaurity update. Sharing a common RBone
for different types of seaurity updates and dfferent centers leads to some complexities,
which we aldressbriefly at the end d this chapter.

In the following, we discussthe principles of organizing the nodes on an RBone, the
formation procedure of an RBone, and the mecdhanism of maintaining an RBone. We will
also describe the message format and data structures used in RBone formation and
maintenance by eat Revere node. We leare the discusson onthe seaurity of RBone to

Chapter 5.

3.1 Principlesfor Building an RBone

While ensuring that an RBone must be seaure, fast, scdable, and lightweight in terms
of its charaderistics, there ae threeprominent principles to follow in terms of building a
basic RBone. First, an RBone is an owrlay network. Semnd, an RBone is =if-
organized. Third, an RBone must be resili ent.
3.1.1 An Overlay Network

Revere faces a list of challenges. As discussed in Chapter 1, Revere must be fast,
resilient, scdable, and seaure. Yet there ae no knavn medianisms, including those
related works to be investigated in Chapter 7, to address all these dallenges. For

example, any pulling-based mechanism, which requires eatch noce to pul seaurity
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updates from a disemination center, will fail to instantaneously kegy nodes updated
unless every node probes the center very frequently or knows the avail ability of new
seaurity updates immediately. Any unicast-based dssemination mecdhanism, if requiring
the disseemination center to dredly send seaurity updates to ead individual node, forces
the ceanter to record the identities of al nodes that want to be updated, violating the
scdability requirement. IP multi cast, whose group-based subscription paradigm frees a
dissemination center from recording the individual identities of any joined nodes, is
however, based on a treelike structure for disseminating information, and hes little
resiliency and is susceptible to interruption threas. The deployment of IP multicast has
aso been very difficult [Francis 200Q. Broadcasting mechanisms, some of them
designed to be resilient, are typicadly only applicable to locd area networks and nd
portable to the whole Internet. Worse, seaurity isaues arise in al these candidate
medhanisms and must be aldressd.

We believe that in order to address all these dallenges, a speda network must be
built. Physicdly wiring such a network is infeasible. Logicdly, an dternative isto buld
into routers me spedal medianism that can provide Revere-like service, such as multi-
path forwarding of seaurity updates. However, this results in several problems. First,
conceptualy this violates the layering model of the Internet; routers $houd be used for
general-purpose padket-forwarding service d the IP level, na for spedal-purpose
services like Revere. Every noce that needs saurity updates typicdly has its own
spedfic requirements or preferences regarding recaving seaurity updates. Having
routers address those particularities may cause very complex operations. Seand, this
would face adeployment challenge; adding new software to routers is known to be a
difficult problem. A close example is IP multicast, which is gill striving to achieve

widesprea router-level implementation after yeas of efforts. Third, such a router-level
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network for seaurity update dissemination, if implemented, would require asignificant
effort to manage and seaure. This makes Revere face adilemma: if Revere-enabled
routers do rot enforce seaurity well, Revere, as a high fan-out dissemination system, can
propagate @rrupted o replayed seaurity updates to a large number of seaurity update
redpients; but if Revere-enabled routers enforce seaurity, seaurity isaies such as key
management, noce authenticaion, message verificaion, and replay prevention must be
handled by those Revere-enabled routers.

We propacse to buld an owerlay network ontop d the Internet, correspondng to eat
spedal type of seaurity update (Figure 3.1). Such an owerlay network will be composed
of al nodes that “subscribe” to receve those seaurity updates. On top d the Internet,
eat nock will run Revere & applicaion level, which grealy enhances the flexibility of
eah Revere noce in terms of configuration and adding new functionalities. An
applicaion-level servicewill also be eay to deploy: anode can simply install Revere and
start running it in the same way as normal applicaions. An applicaion-level servicewill
be eay to debug as well. More important, we can nowv start designing this overlay
network to med al the chall enges that Revere faces.

Every Revere node on this overlay network could just be aled node that purely

Applicaiors (yo
layer @)
Hardware-

layer

Fig 3.1 Applicaion-layer overlay network
ontop d hardware layer

A
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listens to new seaurity updates. Unfortunately, this will turn an RBone dfedively into a
unicast-based star-li ke structure, with a dissemination center as the sourcefor every noce.
Such a structure will require adissemination center to store the addresses of al Revere
nodes and transmit seaurity updates to ead individual node, ore by one, and will | ack
redundancy as we discussd ealier. Asaresult, it isobviously not scdable, na efficient,
and dces not suppat transmisson redundancy.

Instead, Revere dlows ead nock to forward seaurity updates to athers, instead of
relying only on a diseemination center. Therefore, an RBone will be cmomposed of some
midde Revere nodes “inside,” which forward seaurity updates to ather nodes, and some
led Revere nodes “outside,” which simply receve updates. As we will il lustrate later,
eah noce can chocose to have multiple RBone nodes as its parents, correspondng to
multi ple as-digoint-as-possble dissemination peths.

Scdability is also much easier to addressnow. By allowing ead node on an RBone
to forward seaurity upcetes to ather nodes, seaurity updates can be propagated hop ly
hop. As aresult, a dissemination center, or any other node, dces nat have to remember
the identities of all seaurity update redpients, save to remember the keys of all other
nodes in order to verify the authenticity of al nodes. This hop-by-hop transmisson

charaderistic dlows eat nock only to record its parents and children onan RBone.

3.1.2 A Sdf-Organized Network

Consisting of Revere nodes and dreded links between them, an RBone is dynamic.
New nodes may wish to join the RBone & any time. On the other hand, an existing node
may crash, become rrupted, a simply want to leave the RBone. Some eisting nodes
may also be disconreded for some time, and then come badk. Revere nedls to adapt

itself to al these situations quickly through a distributed cooperation.
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The answer to this problem is to let the RBone organize itself. When a new node
wants to join Revere, it shoud identify and then contad some eisting Revere nodes on
an RBone, and then try to attac itself to the RBone & the best possble position, finally
becming a dild of one or more eisting Revere nodes. When an existing node quits,
disconreds, crashes, or misbehaves, other nodes assciated with it shoud deted the
anomaly and isolate themselves from this node. The isolating adions alow ead parent
of this broken noce to dsmissthe node & a dnild, and ead child o this broken nock to
attach to a new parent. Similarly, when a dild nodce deteds that one of its parents
bemmes too dstant, the node may also chocse to detadh itself from this parent and attach
to a doser one, in order to achieve better dissemination efficiency.

With such self-organization, nomanual interventionis required to manage an RBone.
Some problems remain to be solved, havever. For example, hov can a node deade
whether to attadh itself to another node? Or, since ax RBone can comprise milli ons of
nodes, for scaability consideration, the self-organization d an RBone must rely only on
partial knowledge & ead nodk; thus, howv can an RBone self-organize itself based on

partial knowledge?

3.1.3 A Reslient Network

Revere is designed to dsseminate seaurity updates in a hostile ewvironment. Because
of the importance of seaurity updates, Revere nodes desire high assurance relative to
recaving seaurity updates, even if the data may have to come through a hogtile
environment with all kinds of passble atadks.

There ae many approades to providing strong resiliency. One possble gproac to
building a reslient network is to use some feedbadk medianism, such as sgned

adknowledgements or signed negative a&nowledgements. However, this is difficult.
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First, being a genera problem as discussed in Chapter 2, single-path dssemination a
feedbadk is subed to interruption threas. Seoond, the large scde with the vast quantity
of participants makes verificaion d positive or negative a&knowledgements from these
participants even harder. The originator of the update, or any verifying server, probably
canna hande millions of adknowledgements, espedally when ddng so requires
cryptographic authentication. Even with a distributed o hierarchicd method, if a
verifying server had to maintain all necessary keys, a heary overhead would result.
Additionally, the protedion d verificaion servers adds new problems. Third, die to the
ladk of trust, a feadbadk-based approach would require that al participants have trusted
keys, leading to a huge key distribution and management problem. Last, as for using
negative a&nowledgements to avoid an adknowledgement explosion, urfortunately a
redpient won't send a negative ac&nowledgement at al if it does not know that it shoud
have receved an updite. This approach ony works when it is feasible for a recaver to
redize that he has not receved a seaurity update that was nt. Seaurity updates, for the
most part, will not be sent periodicdly, bu onthe occurrence of unusual or ungredictable
events. Thus, Revere nodes will have no hnt of when they might want to generate a
negative a&nowledgment. Also, a negative a&knowledgment has the same problem as a
positive a&knowledgement in preventing itself from getting dropped.

Instead, as we discussed in Chapter 2, we propose to buld redundancy into the
RBone to acdhieve resiliency. Eadh nock interested in receving seaurity upcdetes can
chocse to attach itself to an RBone and olain multiple cpies of seaurity updates to
achieve seaurity asurance (Figure 3.2 shows a mini RBone where some nodes have more
than ore paths). Thus, if anode can receve data from multiple digjoint paths, only when

all paths are crrupted will the recaver be prevented from receving the data.
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Fig 3.2 An RBonerooted at a dissemination center

While it seems that this method wastes bandwidth, the disseeminated seaurity updetes
are usually of small size, low frequency but vital importance As long as the number of
digoint paths is nat too hgh, wsing redundancy is accetable. Later in this chapter we

will describe how to compase or detect digjoint paths.

3.2 RBoneFormation

Starting from only a disemination center, an RBone is formed as more and more
nodes join. During its join procedure, a new Revere nocke has to locae some eisting
Revere nodes first, negotiate with them, and dedde which o those nodes together, as
parents, can provide the best efficiency and resiliency. In Sedion 3.2.1 below, we first
addressthe seach for existing Revere nodes, and in Sedion 3.2.2 we describe the three
way-handshake negotiation procedure, the basic operation duing a node's join
procedure. In Sedion 3.2.3 we discuss the life g/cle of a join procedure, espedally
when a join procedure ends. Parent seledion, a key comporent of the threeway-

handshake, will be further ill ustrated in Sedion 3.2.4
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3.2.1 Finding Existing Revere Nodes
To join an RBorg, it is necessary for a new node to contad some nodes that have
arealy joined the RBone. Revere dlows eat new node to use its own methodto seach
for those nodes. Various methods can be employed, such as using configured knowledge
(for example, the addressof the dissemination center or alocad designated Revere node),
contading a diredory service, applying a multi cast-based expanding-ring or expanding-
whed seach [Rosenstein et al. 1997, or adopting lookup services used in pea-to-pee
systems [Ratnasamy et al. 2001] [Stoica et al. 200]]. Here we describe and analyze
several exemplary methods of node seaching:
» Configured knowledge
A new node can start up with the knowledge of some eisting Revere
nodes. For example, the disemination center that provides saurity
updates to every nocke is puldicly known aready. The new node can
simply contad this node. Or, in the locd administrative domain of the
new node, there may be a node that is areadly on the RBone and
configured as theinitial contad for new nodes wanting to join Revere.
* Directory service
A diredory server can be established to store information regarding some
existing Revere nodes. A new node, in order to locae some eisting
Revere nodes, can send a query to this diredory server. Included in the
guery could be the node's IP address the type of seaurity updates that it
needs, the number of existing nodes that it requires, the method for node-
to-node ommunicationthat it prefers, the seaurity scheme that it enforces,

etc. Upon the recapt of a query, the diredory server can then ched its
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database of existing Revere nodes; once matches are found,the server then
sends a resporse badk to the new node with a list of existing Revere

noaks.

Given that Revere is a large-scde service etending over the antire
Internet, a single diredory server faces a serious <dability problem.
First, the diredory server may be overloaded by handing an
overwhelming number of requests. The diredory service may be
replicaed, bu this leads to database synchronization issues between
different replicas. Sewnd, maintaining the database of a diredory server
is not simple. After a new noce joins an RBonre, its parents, or the new
noce itself, or some third party, shodd ndify the diredory server of the
new membership. Or, after an existing node quits an RBone, a withdrawal
natice shoud be sent to the diredory server as well. Worse, some nodes
may bemme disconreded o broken withou being able to naify the

diredory server, resulting in obsolete information at the diredory server.

To provide scdable diredory service ancther aternative is to buld a
distributed diredory service For example, ead administrative domain
can have adiredory server, resporsible for maintaining the information o
existing Revere nodes inside the domain and handling requests also from
inside the domain. This, however, limits the scope within which a new
Revere node can seach for existing Revere nodes, and adds a

management burden to Revere.
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* Multicast-based expanding-disc search*
All of the aowve problems have led to various | P-multi cast-based methodks.
IP multicast, first proposed in [Deeging 1989, is a medhanism by which
padkets can be dficiently routed from one source to many destinations.
Other than the dficiency with which queries may be distributed to many
destinations smultaneously, there ae two aher advantages afforded by
multi cast for this appli caion:

0 A client may query the set of serverswithou knowing their
explicit locaions (this cgpability is avail able irrespedive of the
|P multi cast routing protocol).

0 A client may use TTL-based scope ntrol in order to contad

the topographicdly closest serversfirst.

Given the caabiliti es of multicasting, it is possbleto design a system that
efficiently transports diredory queries to a set of distributed dredory
servers. These serverswould idedly be located at the adual sources of the
diredory information (e.g., ore diredory server at ead Revere noce site).
Thereis at least one such implementation, cdled march [Kashima 1995.
march is a multi casting distributed dredory database system that relies on
a single multicast address for all diredory servers. It uses TTL scope-
limiting to constrain the impad of individual queries. By iteratively
expanding the TTL, a march client finds the dosest (topographicdly

spe&ing) FTP site mntaining the requested information. This type of

! Discusgons on multi cast-based expanding-disc search and multi cast-based expanding-wheel
seach are based on“MASH: the Multi casting Archie Server Hierarchy” by Adam Rosenstein,
JunLi, and Siyuan Tong, which appeaed in Computer Comrunication Review, Vol. 27,No. 3,
ACM SIGCOMM, July 1997.
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seach is often referred to as an “expanding-ring” seach. Expanding-ring
seaches are inherently robust, as any servers that fail to receve aquery
during an iteration have ancther oppatunity to recave the query during

the next iteration.

However, there ae drawbadks to the march approad. In ead iteration d
an expanding-ring seach, queries must be routed to all march servers that
were readied on pevious iterations. Such floodng (even inside alimited
TTL radius) of a pervasive multicast group can result in unrecessary
traffic. Owing to this re-querying of the inner (previously queried) search
rings, such seaches may be more atly referred to as “expanding-disc”
seaches. Although the inner disc does naot service repeaed queries in the
march architedure, the routers do nd understand this and must still route
al repeded gueries to the same servers at potentially grea cost with no
additional benefit. Shoud march beame apopuar service this poar
scding fador could contribute to Internet congestion.
* Multicast-based expanding-whed searchd MASH approach

[Rosenstein et al.1997 developed a MASH serviceto seach for FTP sites
that contains a particular file. This MASH approach can be generalized
for the purpose of seaching existing Revere nodes. By constructing a
two-level hierarchy of march servers, MASH employs a hierarchicd
approadc to addressthe problems posed by expanding-disc seaches. This
service is charaderized by one well-known, pervasive multicast group
Gyloba, and a number of topagraphicaly locdized subgroups. The well-

known group is much like march's group, bu its number of members is

41



comparatively small, and is sif-adjusting as the number of servers in
operation scdes up. The subgroups eat have their own multicast
address The servers dynamicdly organize themselves into these groups.
Eadh group includes one (only) member of the pervasive group. This
“parent member” recaves queries from clients on the global multicast
address Gyona, and dspatches these queries to its sibardinate servers via

itsunique locd group multi cast address

In expanding-disc searches, the dient completely controls the impaa of its
seaches. Since only a TTL limit is used, maximum radius is the only
dimension that may limit the scope of a seach. In a hierarchy, eah
hierarchicd layer can share the burden of restricting the seach scope.
What results is a seach pattern whose impad, with resped to the
multicast traffic it generates, is gredest at its frortier, and restricted to
minimal “spokes’ en route to the frontier. Thus, this sach is cdled an

“expanding-whed” seach.

Figure 3.3 shows an example of this approach. First, the dient C sets its
TTL limit to some small initia value (the dashed inner circle) and
transmits its query to the global multicast address Only the roat level

servers (dark fill ed-in circles) listen to this address

In Figure 3.3, C's first transmisson will read servers Y and Z. These
servers will ether respondthemselves (if their locd databases match the
query) or they will retransmit C's query by multicasting it to their
respedive groups multicast addresses. If any server heaing this query

can respond, it does © dredly to C. If C heas no resporses for some
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MASH client with inner and ouer searching rings

G MASH subgroupwith roat server (solid) and subardinate servers
(halow)

Fig 3.3 Expanding-whed topdogy

time, it will i ncrease its TTL and retransmit its query again onthe global
multicast address In ou example, the rebroadcast query will read root
servers X, Y, and Z (the dashed, ouer circle). Y and Z will ignore the
retransmitted query (by cheding a record of recent queries) but X will
respondin the same manner that Y and Z did the first time. The advantage
of this method over an expanding-disc seacch is that on TTL-expansion,
the multicast infrastructure will have to carry the unneeled retransmisson
onlytoY andZ. In an expanding-disc, however, the retransmisson would

go to al of Y's and Z's members (all previously reated destinations).
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Under significant scding condtions, expanding-whed can lesen the
multi cast traffic load tremendously. This reduction is due to the fad that
the majority of servers are diildren who donat even subscribe to Gyopas,
and thus are never involved in the multicast distribution tree for the

repedaed queries.

Another contribution o this work is a group management protocol to form
hierarchicd groups automaticaly, where higher-level servers are “parents”
of the lower-level servers, the “children.” Refer to [Rosenstein et al.1997
for more detail s.
Revere does nat have mandatory requirements concerning what service is used to
discover existing Revere nodes. Every exemplary method dscussed above can be used.

Revere leares this decision upto ead individual nock.

3.2.2 Three-Way-Handshake Protocol

After locding some eisting Revere nodes, a new node can then negotiate with those
nodes to attadh itself to some of them as anew child. The negotiation between a potential
child and apatential parent isaredprocd seledion procedure. An existing node needs to
determine whether it wants to add the new node & a diild. The new node, onthe other
hand, readsto determine whether it wants the existing node to beits parent.

The negotiation is handled by a threeway-handshake protocol, as siown in Figure
3.4. A poatential child first sends an attach request to a potential parent. The potential
parent deades whether to adopt the gplicant as a new child, and sends badk a reply
message. The dild adopion dedsion is macdine-spedfic: some macdiines may only
chek to see if they have readed the maximum number of children that can be

acommodated; some macdiines may chedk for more information hbefore they make a
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Fig 3.4 Threeway-handshake during join procedure

dedsion. Revere dlows pluggable macdine-spedfic child-adogtion modues. For
example, becauseit is prone to dsconredion, a mohile node may chocse only to be aled
noce on any RBone, withou accepting any attach requests. Or a multi cast-capable node
may prefer nodes that can hear multicast messages as well, allowing it to maintain a
single multicast IP addressthat readies multiple cdild nodes.

If the potential parent agrees to add the gplicant as a new child, it will add the
applicant as a pending child and reply with an attach adknowledgement message to
indicae the gproval (otherwise, it will send badk a negative adknowledgement
message). The pending child is also boundwith a timer, requiring that a cnfirmation
message be recaved from the pending chil d within a spedfic period.

Upon the recept of a paositive dtach adknowledgement message from the patential
parent, the new node deddes whether accepting this paotential parent will im prove its

resiliency and efficiency for recaving seaurity updates. If so, it will accept the parent,
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possbly “divorcing” an existing parent. This dedsion pocedure will be discussed
further in Sedion 3.2.4 If the node deddes to add this new parent, it will send badk a
confirmation message. When receaved, the parent will convert the requesting node from
apending child to aregular child.

During the threeway-handshake procedure, the transmisson mechanism that the new
parent uses to forward seaurity updates can also be negotiated. The paositive
adknowledgement can contain an ardered list of transmisson mechanisms preferred by
the patential parent, and the confirmation message can cary the transmisson medhanism
seleded by the dild.

A potential parent can also assst in finding other parents by randamly choasing one
or more of its current children and including them in its acdknowledgement messages.
The potential child is free to contad these nodes or ignore them, depending on its
seledioncriteria.

Loss or transmisson errors may happen for messges used in the threeway-
handshake procedure. A Revere node relies on timers to hande this. For example, after
an AttadhReq is snt, if an AttacdhAck from the other side is not receved in time, this
noce can tred the AttachReq message as lost or caught in error, or trea the other side &
dead o nonexisting. Smilarly, after a postive AttadhdAck message (or an
AttachConfirm message) is ent from a node, the node will begin waiting for an
AttachConfirm (or HeatBeaFromChild message) from the other side. We will ill ustrate

thisin more detail when discusgng the data structuresin Sedion 3.4.

3.2.3 Thelifetimeof a Jan Procedure
A new node may neeal to continuowly seach for candidate parents until it finishes

thejoin procedure. A noceis allowed to simultaneously negotiate with multi ple potential
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parents. After anew node dtadhesitself to itsfirst parent, the new node is then alrealy a
Revere nock that belongs to an RBone, and is thus readable by seaurity updates through
this parent (if nothing goes wrong). However, ajoin procedure will not end urtil all of
the following condtions are met:

* The new nock has attached itself to some pre-defined minimum number of

parents.

» The estimated seaurity updete delivery latency from the dissemination

center isfaster than a pre-defined minimum value.

» Theresiliency onreceving seaurity updates is gronger than a pre-defined

minimum value.

Figure 3.5 shows that a new node X contads four potential parents. 1, 2, 3,and 4.

—»  AttachReq
------- yp Positive AttadhAck

....... Ny Negative AttachAck
=P  AttachConfirm

Fig 3.5 A new nock' s threeway-handshake
with four existing Revere nodes
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After sending AttachReq messages to them, nodes 1, 3, and 4 send badk positive
AttadkAck messages, bu node 2 denies nock X’'s attadiment request. Node X seleds
nodes 1 and 3to be its parents and sends badk an AttackConfirm message. As a resullt,

two new parent-child relationships are establi shed.

3.2.4 Parent Seledion

A new noce typicdly needs multiple parents. Idedly, a Revere node shoud seled
several parents from all avail able Revere nodes, such that one parent provides the fastest
seaurity update delivery and the other parents offer suitable resiliency. Good parent
seledion, therefore, is anecessty.

To describe parent seledion, we first introduce the path vedor concept. The path
vedor of a noce describes the charaderistics of the fastest path for delivering a seaurity
updete from a dissemination center to this node. We dso cdl it node path vedor, or
NPV. It has two important parameters. a latency value and an ordered list of nodes to
cross (including the dissemination center and the destination nod). In the following we
use npv(n) to dencte node n'sNPV.

Similarly, we dso introduce parent path vedor, or PPV, to describe the path vedor
of the fastest path onwhich perent p is the last hopin forwarding seaurity updates to n.
In the foll owing we use ppv(n, p) to denote node n’s PPV that is associated with parent p.

From the definitions of NPV and PPV, ppv(n, p) is the mncaenation d npv(p) and
the link conreding p to n, and npv(n) is the fastest ppv(n, p) anong al p’s. For example,
in Figure 3.6, npv(5) is the same & ppv(5, J), with a 60-milli second latency, and crosses
nodes 0, 1, 3,and 5 but ppv(5, 4) has a 280-milli second latency, and crosses nodes 0, 2,
4, and 5. (Rewlled that al path operations are performed at the Revere level, so these

path veaors do nd include intermediate routers not runnng Revere.)
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We determine the resiliency level that a parent provides by comparing this parent’s
PPV and the node’'s NPV. For instance at node 5 in Figure 3.6, parent 4's resiliency is
cdculated by comparing ppv(5, 49 with npv(5) (i.e., ppv(5, J). We aop a smple
cdculation by comparing the number of overlapping intermediate nodes between the two
paths (the strongest resiliency level is thus 0). In ou example, the resiliency level of

parent 4is0.

Fig 3.6 Path vedor at node 5

With the nation o path vedor, a dild ¢ seleds its parents as follows. First, a
patential parent x includes its NPV npv(X) in the positive a&knowledgement message that
it sends to c. Sewnd, no@ c evauates the latency from x to itself. To dothis, ¢ can
contad an existing service (such as [Francis et al. 2001]). Or ¢ can timestamp the dtac
request message and the pasitive a&knowledgement message, estimate the roundtrip time
between x and itself, and wse half of that value & the gproximate latency from x to ¢
(which can be further refined duing RBone maintenance). Third, combining npv(x) and
the latency information from x to ¢, node ¢ derives ppv(c, xX) and kegins runnng the
parent seledion agorithm, by which noce ¢ determines whether adding x as a parent
improves its efficiency or resliency. The pseudo code in Figure 3.7 depicts this

procedure. Note that if line 5 in Figure 3.7 is exeauted to replacenode ¢'s NPV, the
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Function bodean seledParent (ppv(c, X)) on nogk c:
whether to seled node x as a parent.
npv(c): current path vedor of noce c.
1 if (npv(c) doesnat exist) {/* c hasno parent yet */
2 npv(c) — ppv(c, X)
3 return true
4 } eseif (ppv(c, x) isfaster than npv(c)) {
I* ximproves efficiency */

5  npv(c) — ppv(c, X);
6 return true
7 } eseif (Oaparent mof node ¢ such that

resili ency(X) is better than resili ency(m) {
[* x improves resili ency */
8 return true
9 } eseif (chasnaot readied the minimum number
of parents) {
10 returntrue
11} else{
[* x improves neither efficiency nor resiliency */
12 returnfalse
13}

Fig 3.7 Parent seledion based on @th vedor

resili ency of the parents of node ¢ can be dhanged, sincethe resiliency level is cdculated
by using node ¢’'sNPV.

If the dficiency and resiliency of a node have not reated cetain preconfigured
levels yet, the node can always contad existing Revere nodes to try to improve, even if
the node has reatied the maximum number of parents allowed. An existing parent may
be replaced with a better-qualified parent. For example, noce 5 in Figure 3.8 is
configured to have & most two parents, and alrealy has two (nodes 3 and 4, bu in an
attempt to improve its efficiency, noce 5 still contads node 1. In this case, node 1 will
not be used to replace ay existing parent of node 5 since the PPV asociated with noce

1, ppv(5, 1), caries aslower latency than npv(5), andis also lessresili ent than ppv(5, 4.
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Fig 3.8 Parent seledionat nocke 5

3.3 Adaptive Management of RBone

The dhanges to an RBone must be deteded and quckly dedt with. Changes happen
when a new Revere node joins, when an existing Revere node aashes or leaves, when
one side of a parent-child link wants to urtie the conredion, when the daraderistics of
the @nredion ketween two Revere nodes changes, when a parent is deteded as
corrupted, when a better path is deteded, o for any similar reason.

Managing an RBore is a distributed task. While an RBone can be comprised of a
large number of Revere nodes, a hange may only be deteded by a few of those nodes.
Moreover, because of the large scde of an RBone, every Revere node only has partia
knowledge of the whole RBone, mostly abou its neighbaring Revere nodes. As aresullt,
eat Revere nock has to respondto changes autonamously, thus usually asynchronously,
based onits limited knowledge of the RBone.

Revere suppats two dfferent mechanisms for deteding RBone danges. explicit
natification and implicit detedion. With explicit natificaion, a Revere node can send an
explicit natification message to a parent (or a cild) to tea down the @wnredion, and
remove that parent (or that child) from its records at the same time. With implicit
detedion, a Revere node relies on heatbea messages to deted if its parents and chil dren

are still alive. Normally, eat parent periodicdly sends heatbea messages to its
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children, and each child periodicdly sends heatbea messages to its parents. Ladk of
heatbea messages for a dild will eventualy leal to its removal; smilarly, ladk of
heatbea messages from a parent will | eal to the remova of the parent. Heatbea
messages can also cary timestamps to measure parent-child roundtrip time. If a Revere
noce deteds that a parent becomes distant, and thus inefficient in delivering seaurity
updates, thisnode can also remove that parent.

The eplicit tea-down messages are in UDP format, and the delivery of those
messages does nat have to be guaranteed. In the cae where atea-down message is lost,
the heatbea mecdhanism can help. For example, if atea-down ndification from a parent
to a dild is lost, the parent will regard the dhild as already removed and stop sending
heatbea messages; although the child will still regard itself as a dhild of the parent for
some period, ladk of heatbea messages from that parent will cause the dild to remove
that parent, and stop sending heatbea messages toward that parent.

After changes are deteded, some data structures must be aljusted, such as a noce’s
NPV and PPVs. For example, if ato-be-removed parent is on the fastest delivery path to
a noce, the removal of that parent changes this node’'s NPV—that parent will no longer
belong to this node’'s NPV. Or, if the latency from one of a node's parents is changed,
this noce neeads to updite the associated PPV. Or, if anode’'s NPV beammes dower than
aPPV, thisnode neeads to replaceits current NPV with its currently fastest PPV.

The ajustment of data structures may propagate. For example, the update of a
noce’s NPV can also pdentialy change the NPVs and PPVs of the descendents of this
noce. To hande this, oncethe NPV of anode is changed, its heatbea messages toward
its children will cary the new path vedor information, allowing every child to adjust its

NPV and PPVsif nealed, o even choose anew parent.
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The removal of a parent, either due to the ladk of heatbea messages or because of
explicit natification, can cause anode to seach for ancther parent. The node can use the

same methods described in Sedion 3.2.1

3.4 Messagesand Data Structures

As we mentioned ealier, ead Revere node relies on partial knowledge of the whole
RBone to join an RBone, deted and respondto RBone dhanges, and receve and forward
seaurity updetes. In this sdion we describe the key data structures relevant to RBone
formation and maintenance. Because Revere is implemented in Java, an oljed-oriented
language, in the following we describe eab data structure in an oljed-oriented style.

Every Revere node on an RBone uses an oljed cdled “Joint” to participate in RBone
formation and management. As pointed ou ealier, thereis an RBone that corresponds to

every spedfic type of seaurity updates. Table 3.1 shows the main fields of a Joint data

structure.
Table 3.1 Main fields of a Joint data structure
Field Description
parentsinfo Information abou parents of this node
childreninfo Information abou children of thisnode
incomingMessages Buff ered incoming RBone messages waiting to be
hand ed
RBone communication manager resporsible for
rboreMgr . g
sending and recaving RBone messages
topdogy Topdogy information
searchAgent Agent used in seach for existing Revere nodes
timeoutEvents List of events that will tim e out at some future time
rboneSeaurityCoordinator RBone seaurity coordinator
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A Joint objed is aso a Java thread. The Joint continuowly processes incoming
messages that are real by its associated RBone ammunicaion manager. Asintroduced
in Sedion 3.2 and Sedion 3.3, there ae threemain types of RBone messages. messages
used in a threeway-handshake procedure, explicit RBone maintenance messages for
detaching a parent or a dild, and implicit RBone maintenance messages for suppating
heatbedas from a parent or a dild. These messages are dl derived from RBone
messages, as iown in Figure 3.9. When processgng an incoming message, the parent or
child information may be updated, and rew messages can be generated and sent.

A Joint objed not only processes incoming messages, it also proadively generates
new RBone messages and sends them to ather nodes. Similar to incoming messages,
there ae dso three types of such messages. First, a new Revere nocde nedals to send
AttachReq messages to some existing Revere nodes in order to attach itself to an RBore.
Here, the seach agent can be invoked whenever existing Revere nodes are to be found,
and can be configured to use alocdly preferred seaching method. Seand, duing

RBone maintenance, a Revere node needs to periodicadly send heatbea messages to its

Message

L RBoneMessage

— AttadhReq

— AttachAck

— AttachConfirm

— DetachReq

— DetachNotify

— HeatBeaFromParent
L HeatBeaFromChild

Fig 3.9 RBone messages (solid lines dencte inheritance)
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parents or children. Third, a Revere node may also need to send a detachment message to
aparent or a child in order to spedficdly tea down the relationship.

A Joint objed has references to parent information and child information. The
parentsinfo oljed contains the list of current parents of alocd Revere node and the path
vedor of this node. It aso includes information concerning negotiations with those
patential parents. AttachAck messages from those nodes that are not potential parents
will simply be discaded. Similarly, the childreninfo objed contains the list of current
children of alocd Revere node. Those pending children, who have been accepted as this
noce’s children, bu have nat confirmed their final willi ngnessyet, are dso kept in this
objed.

An RBone coommunicaion manager is resporsible for sending and recaving RBone
messages, and it can be configured to use ather UDP or TCP for RBone messge
communicaion. An RBone communicaion manager is implemented as a thread, and
continuowly waits for incoming RBone messages at a particular port number. Suppat
for TCP-based RBone communication invaves more operations and hgher cost than
UDP-based communication: for every Revere node to communicate, a separate socket
and an asociated thread must be creaed. We use UDP-based RBone cmmunicéion as
the default.

A Joint objed also maintains topdogy information, mainly alist of measured round
trip times between the locd node and another Revere node. The roundtrip time can be
measured by piggybading timestamps on proper RBone messages. The recorded round
trip time with a Revere node can also be further refined by incorporating the newly
measured roundtrip time with the same node. If it were available, underlying physicd

topdogy information could also be stored here.
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The Joint also kegos a list of events that can happen in the future. There ae two
types of such events. a scheduled task to perform at a particular future moment, and an
anticipated event to happen before a particular future moment.

A scheduled task is mainly the sending of a message toward ancther Revere node,
including sending an AttachReq messge & a future moment if a Revere node has not
finished the join procedure, sending a heatbea message toward a diild, o sending a
heartbea toward a parent.

An anticipated event is mainly concerns recaving a particular type of message from
ancther Revere node. An anticipated event can be the recegtion d the following
messages from a Revere nodk:

» AttachAckmessage: After anode sends out an AttachReq message toward

a potential parent, it initiates a threeway-handshake procedure. It
establishes the proper negotiation state (including remembering the
potential parent), sets up a timer, and kegins waiting for the AttachAck
message (positive or negative) from the potentia parent. If an AttadhAck
message is not recaved before the timer expires, this node will destroy the
negotiation state information; otherwise, this node will revoke the timer

and kegin processgng the AttachAck message.

» AttachCornfirm nessage: During the threeway-handshake procedure, if
the potential parent agrees to accet the potential child, it will remember
the patential child as a pending child, and send back a positive AttachAck
message. The potential parent will also set up a timer and kegin waiting
for an AttachConfirm messge from the potential child. If an

AttadhConfirm message is not receved before the timer expires, the
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patential parent will remove the pending child; otherwise, it revokes the

timer and begins processng the AttachConfirm message.

» HeartBeatFromParent message: Correspondng to every parent, a Revere
child note epeds periodic heatbea messages from this parent. A
Revere node dso sets a timer to handle this, typicdly with a time-out
period that is svera times the regular heatbea period in order to be
resili ent to acadental heatbea message loses. If no heatbea messageis
recaved from a parent before the timer expires, this node will regard that
parent as dead and remove it; otherwise, when a heatbea messge is
recaved, the timer will be reset and ancther round d waiting for a

heatbea message will begin.

* HeartBeatFromChild messages This is very smilar to
HeatBeaFromParent message, except that a Revere node now expeds

heatbeds from one of its chil dren.

Timer-controlled message coommunicaion makes an RBone resili ent to message loss
As an example, after a node sends out an AttachConfirm message to ancther Revere
node, the first noce (the former) immediately records the seaond noe (the latter) as its
parent, and begins waiti ng for HeartBeatFromParent messages from the seaond noc. |If
the AttachConfirm message is lost, the seoond no@ will time out on waiting for the
AttachConfirm message, and remove the first node as a pending child, and certainly
never isaie HeatBeaFromParent messages toward the first node. Thefirst node, withou
heaing HeartBeatFromParent messages from the second noe & al, will finaly time out

and remove the seand no@ & a parent.
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The rboreSeaurityCoordinator is related to seauring an RBone. RBone seaurity will

be discussd in Chapter 5 in more detail .

3.5 Building aCommon RBone

So far in ou discusson, correspondng to every particular type of seaurity upcete,
there is an RBone rooted at a spedfic disemination center. Different RBones are
independent of one another and every RBone is an autonamous s/stem, formed and
maintained by itself.

This sdes well when anode only needs to listen to several types of seaurity updates.
However, when there ae many types of different seaurity updetes to li sten to, a node may
bemme overloaded. For a Revere noce that is interested in n types of seaurity updetes, it
hasto join all ntype-speadfic RBones.

In this ®dion, we discuss two dternatives for designing a common RBone for
delivering multi ple types of seaurity updates. Instead of being rooted at a dissemination
center, a owmmon RBone is rooted at a single rendezvous point, or rooted at multiple

rendezvous points.

3.5.1 Common RBone Rooted at a Single Rendezvous Point

A common RBone rooted at a rendezvous point is very similar to an RBone rooted at
adisemination center, as described ealier in this chapter. Such a mmon RBoneis dill
a self-organized owerlay network with an open subscription paradigm. However, every
dissmination center now has a link toward the rendezvous point. Figure 3.10shows a
sample RBone with a single rendezvous point conneded by three dissemination centers,
where eat center isresporsible for delivering some type of seaurity update.

A common RBonerooted at a single rendezvous point has the foll owing implicaions:

» The path vedor of every Revere node will start from the rendezvous paint.
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3¢ A disemination center
& A rendezvous point

@® A Reverenocke

Fig 3.10 A common RBone based onasingle
rendezvous point
During the join procedure of a new node, any dissemination center will
not respondto an attachment request; insteal, the new node can contad

the rendezvous paint to start a threeway-handshake procedure.

When a diseemination center needs to deliver a seaurity updete to milli ons
of redpients, it first sends the seaurity update toward the rendezvous
point. When a rendezvous point receves the seaurity update, it then

further disseminates the seaurity update.

A Revere node may now recave aspedfic type of seaurity updetes that it
did na subscribe to. In ather words, this node is smply a forwarding
noce for those seaurity updates. (In fad, the type-spedfic RBone

discussed in previous fdions could also have such isaues, namely some
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Revere nodes may receave unreeded seaurity updates, depending on what
a disemination center delivers) In this case, the node will still run
dudicae deding to help avoid dssemination loops. The seaurity chedk,
however, isoptional sincethisnode will nat use those updates at all; it can
rely on aher nodes that redly need thase seaurity updates to authenticate
them. We will discussdupicae deding and seaurity cheding further in

Chapter 4 when we discussthe dissemination procedure.

A common RBone rooted at a rendezvous point also introduces new issues regarding
resiliency: if the rendezvous point is crashed o subwerted, o if the path from a
dissmination center to the rendezvous paint is broken, seaurity update diseemination will
fall. This can be aldresed from two aspeds. First, a rendezvous point, as a aiticd
resource, must be proteded in the same manner as that of a disemination center.
Seoond, the path from a dissemination center to a rendezvous point shoud be caefully

monitored. If thereisany problem with the path, it must be solved immediately.

3.5.2 Common RBone Roated at Multiple Rendeavous Points

Instead of having a single rendezvous point, multiple equaly cgpable and resili ent
rendezvous points can be established, probably sparsely distributed over the network.
Every disemination center has a link toward every rendezvous point. A sample RBone
with multiple rendezvous pointsis siownin Figure 3.11.

Such a mmmon RBone has the foll owing impli cations:

» The path vedor of every Revere node will stat from one of the

rendezvous points.

» During its join procedure, a new node can contad one of the rendezvous

points to start athreeway-handshake procedure.
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Y¢ A dissemination center
& A rendezvous point

@® A Reverenocke

Fig 3.11 A common RBone based onmultiple
rendezvous points
* When adisemination center needs to deliver a seaurity update to milli ons
of redpients, it first sends the seaurity update toward all rendezvous
points. When a rendezvous point receves the seaurity update, it then

further disseminates the seaurity update.

e Just as with a common RBone rooted a a single rendezvous point, a
Revere node may recave seaurity updates it does not need. The related

discussonin Sedion 3.5.1applies here, too.

With multiple rendezvous paints, a mmmon RBone becomes more resilient. An
attadker must compromise dl the rendezvous pants in order to stop the initiation d

seaurity update dissemination.
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3.6 Conclusions

The Internet provides many different kinds of message transmisson services, from
the lower-level best-effort message delivery to the higher-level reliable message
transmisson. However, seaurity update disemination pes a unique dallenge to
sending a moderate anourt of information to milli ons of redpients. This chapter shows
that by forming an owerlay network of those redpients at the gplicaion levd,
tremendows communicaion paver and flexibility can be adieved, while succesdully
addressng chall enges such as sdability and resili ency.

RBone, as such an owerlay network, suppats an open subscription paradigm. A new
noce that wants to recave aspedfic type of security update can smply attach itself to
some eisting nodes on the RBone for this type of seaurity update. By proposing athree
way-handshake procedure, this chapter ill ustrates that a join operation can be simple but
effedive. RBone maintenance, which is designed to hande departures,
disconrededness crashes, corruption a other changes to Revere nodes, ensures that an
RBone is resistant to ungeasant problems whil e still maintaining valuable fegures sich
as gdability and resiliency. We dso demonstrate that self-organization is not only
flexible, but aso powerful.

A highlight that comes with RBone self-organizationis that every node can chocse its
own medanisms for many aspeds of communicaion, including the minimum number of
parents to have, the maximum number of children to have, the preferred transmisson
mechanism for forwarding seaurity updates to a diild, and so on. This chapter aso
describes an important discretionary dedsion-making procedure: how to seled a parent.
With succesdul parent-seledion agorithms, na only is the dficiency of receving

seaurity updates considered, bu also the resiliency of a node to recave those updates.
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CHAPTER 4

Dissmination Procedure

Revere suppats a dua medhanism for delivering seaurity updates: pushing and
pulling. Using pushing, a dissemination center can broadcast a seaurity update via an
RBonre to al conreded nodes. Using pulling, an individual Revere node can request
seaurity updates. Pushing is the main delivery method. Pulling, on the other hand,
allows anodeto cach upwith any missed seaurity upcetes.

Althowgh pushing and pdling are used in combination in the red world, for clarity,
we will discusspushing and puling separately in this chapter. This chapter is organized
as follows. First, we discussthe disemination pinciple and its relationship with ather
software comporents in Sedion 4.1. Following that, the role and poperties of a
dissmination center are discussed in Sedion 4.2,and the format of seaurity updetes is
explained in Sedion 4.3. Sedion 4.4 legins the discusson d pushing operations, where
the receving, processng and forwarding of a seaurity update & eadr hop will be
illustrated. Sedion 4.5 ascribes the pulling operation, where we eplain why a
repository-server-based puling medanism is needed and show how it works. Finaly,

we raise some open isaues and conclude this chapter.

4.1 Disemination Principle
4.1.1 The Scope of Revere
In terms of diseminating seaurity updates, what does Revere do and what does

Revere not do?
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Firgt, it is acceptable for a Revere node to recave multi ple apies of the same seaurity
update. Because of the small size, relatively low frequency and criticd importance of
seaurity updates, Revere can afford to deliver a wpy of a seaurity update from every
parent to every child, assuming no failures. Aswe saw in Chapter 3, every Revere node
on an RBonre is allowed to have multiple delivery paths. It is not only worthwhile, bu
also important to “waste” some bandwidth to ensure delivery.

Seoond, nostrict global reliability is provided for delivering every seaurity upcete to
every redpient. Perfed delivery to all nodesis often na vital, although a seaurity update
shoud be delivered to at least a high percentage of al nodes. During a pushing sesson
of seaurity updates, neither the dissemination center nor any third party is resporsible for
providing reliable delivery. Even though redundant delivery is suppated, pushing is dill
a best-effort operation. Revere defers the reliability provision to every individual node.
It is up to an individua Revere noce itself to determine how many delivery paths to
obtain and maintain, to seled which transmisson mecdanism to use for receving seaurity
updates and which transmisson mecdhanism to use for forwarding seaurity updates, to
verify whether it has receved all the seaurity updates, and to retrieve missed seaurity
updates.

Third, the dissemination service that Revere provides, including pushing and puli ng,
is a general service only for delivering information. A Revere service dient may find it
also nedals other relevant services, such as a seaurity update generating and reporting
service by a third party, seaurity update management at a disemination center, or the
applicaion d newly receved seaurity updbtes at a Revere node. These services,
however, are not part of Revere. For example, when a dissemination center (or probably
adualy its g/stem administrator) has information d a newly discovered virus, it may

dedde to smply send information that a new virus is found, @ dedde to dstribute the
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signature of the new virus as well, or dedde to also include the remedy for the virus. A
redpient certainly will respondin dfferent ways when recaving those seaurity updates.

The point hereisthat Revereisonly resporsible for delivering seaurity upcetes.

4.1.2 Characteristics

During the period d diseeminating a seaurity update, what deli very charaderistics are
important?

To review our discusson in Chapter 1 (Sedion 1.4, such charaderistics are fast,
resilient, scalable, and seaure. Since disemination is divided into pushing and puling,
those properties roud be maintained during both operations.

To befast, in addition to designing an RBone to efficiently forward seaurity updates,
Revere tries to ensure that the processng time for a seaurity update & ead hopis
minimal. Note, just as it does during a pushing sesson, a Revere noce that pull s ®arity
updates may also neel to forward a newly pulled seaurity update to its children;
therefore, fast procesdng is desirable for bath pushing and puli ng.

To be resilient (as we saw in Chapter 3), an RBone, as the dhannel for delivering
seaurity updetes, suppats resili ency through redundancy. Every node can chocse to have
multiple delivery paths, therefore multiple parents, to get seaurity updates pushed
throughou an RBone. From the pulling point of view, a Revere node shoud aso be
allowed to contad multiple places to oltain missed seaurity updates.

To be scdable, those caes that are “rare” a lower scde may become mmmon and
must be handled. Node disconredion, for example, will not be rare when the number of
Revere nodes increases to certain level; worse, different nodes may have different
disconredion periods, and thus might incur different sets of missed seaurity updates. In

addition, scdability of Revere in terms of dissemination also concens the speal o
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processng seaurity updates, the st of storing relevant data structures, and the overhead
of communicaion among Revere nocks.

To be seaure, every seaurity update must be verified uponits recept. Corrupted
seaurity updates must not be forwarded. We defer seaurity-related discussons to

Chapter 5.

4.2 Dissmination Center

A disemination center is resporsible for dissminating seaurity updetes. In
principle, anybody could set up a macdiine to be adissemination center for some type of
seaurity information; however, users may nat trust such amaadine & all. We believe that
adisemination center shoud be strongly proteded. We dso believe that a dissemination
center can quickly and reliably obtain seaurity information that Revere subscribers want.
Such a disemination center can be much more eaily trusted and accepted by Revere
nodes, and can serve agreda number of redpients.

A dissmination center is usualy set up by a prestigious organization. For instance a
well-known anti-virus center can set up a diseemination center for new virus sgnature
distribution, a an esteemed cetificae authority may dedare itself a dissemination center
for sending certificae revocaion lists. There could be more than ore disemination
center for a spedfic type of seaurity update (such as an ealy-warning signal). In this
case, a caitious user can subscribe to multiple centers to cross chedk seaurity update
information.

As discussed in Chapter 3, the RBone disemination center only needs to remember
the identities of its dired children. This grealy helps the scdability, because the
dissemination center then daes nat neal to ke tradk of its whole assciated RBone.

Maintaining a cetain number of children is almost a mnstant cost. For example, suppcse
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there ae one million Revere nodes in an RBone, bu its dissemination center only has ten
children. The dissemination center then only neeals to remember al of its ten children,
and hes no real to know the total number of Revere nodes in the RBone. Esentially,
because every dired child of a dissemination center further forwards a newly receved
seaurity updte, it is sufficient for the canter to forward a seaurity update only to all its
dired childrenin order to read all Revere nodes.

Some information elements of a dissemination center are well known. For instance,
the IP address of the center, the type of seaurity updates that the center is in charge of,
and even the geographicd locaion d the ceiter are probably pulicly known. On the
other hand, some information elements must be kept seaet. For example, it would be

disastrous if the private key of a dissemination center was disclosed.

4.3 Searity Update Format
Figure 4.1 shows the format of a seaurity update. It contains the foll owing fields:

e Type A number can be used to represent a spedfic type, such as “new virus

signature,” “ new intrusion pettern,” “early warning signal,” “ seaurity

patch,” and so on.

e Segno The sequence number of the seaurity update, ordered within the
spedfied type.

 Timestamp The departure time of the seaurity updete from the disseemination

center.

type seqno timestamp payload

Fig 4.1 The seaurity upcete format
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* Payload Thered content of the seaurity upcdate.
e Signature  The signature that proteds all of the éowe four fields. It is sgned by
the dissemination center.
When there ae multiple centers, a seaurity updete dso needs to cary the IP address

of the dissemination center.

4.4  Pushing: A Store-And-Forward Medanism

A store-and-forward medianism is designed for the pushing operation. Via this
mechanism, seaurity updates are pushed from a dissemination center to every node on an
RBonre.

A pushing sesson begins with the @mposition o a seaurity update by a
dissemination center. After the payload of a seaurity update is provided, the center adds
the type and the sequence number of the seaurity update, stamps the departure time, and
signs the message with a digital signature cvering all other fields of the seaurity update.
Strictly spe&king, the timestamp here is not predsely the departure time, becaise the
seaurity update has to be signed after the timestamp is available and kefore the adual
departure time.

After a seaurity update is composed, the dissemination center then forwards it toward
al its children onthe RBone. Every child will processthe seaurity update, deliver it to
the locd application that needs the seaurity update, and, if the node has any children,
forward the seaurity updete to those diildren. This gore-and-forward procedure repeds
reaursively at every Revere noce.

The store-and-forward medhanism at ead noce uses two types of jobs—input job and
output job, and employs one main data structure—seaurity updae window. Figure 4.2

shows those comporents at a Revere node. Both input job and ouput job are cdled
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Fig 4.2 1/0 jobs and seaurity update window at a Revere node

dissmination jobs. An inpu job is resporsible for receving incoming seaurity updates
from parent nodes, processng them, and bufering them into the seaurity update window.
An important part of the processng is cheding the authenticity of the upcete. An ouput
job fetches saurity updates from the window and ddlivers them to locd applicaions that

need seaurity updates or to child nodes on the RBone.

4.4.1 Adaptive Transmisson Mechanism

Heterogeneity among RBone nodes will be ommon at large scde. In particular, the
transmisson medanism between a parent and a dhild may have to be tail ored to the locd
condtions or configurations. Revere dlows an arbitrary transmisson mechanism to be
used when a seaurity update is forwarded from a parent to a dild, instead of enforcing
any particular methodfor forwarding seaurity updates from node to noce. The two nodes
themselves can dedde which spedfic transmisson medanism is best for ther
communicaion.

Possble transmisson medianisms include TCP, UDP, TFTP, IP multi cast, broadcast,
etc. Email could be used aswell. Or, in an extreme cae, afloppy disk can even be used

to manually transfer a seaurity update from one madine to ancther. In principle, al it
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takes is for the two nodkes to agree on the transmisson medanism used between them.
No ather nodes will be dfeded at all.

Such an agreanent can be readied duing the threeway-handshake procedure when
the dhild is trying to attach itself to the parent. The AttachReq message from a patential
child shoud cary a list of accetable transmisson mecdhanisms for receving seaurity
updates, ordered by preference  The potential parent, in addition to cheding other
constraints when dedding whether to adopt this potential child, would then also ched the
list of transmisson schemes to see whether it can suppat at least one of them. If a
particular transmisson scheme can be seleded, and aher child-seledion constraints are
al met, the patential parent can then include this sleded transmisson scheme in the
paositive AttachAck message toward the patential child. In turn, the potentia child will
also chedk to determine if an accetable transmisson scheme is sleded. If so, it sends
badk an AttachConfirm message to formally become the cild of the patential parent. On
the other hand, dsagreament on the seaurity updete transmisson medanism can cause
the threeway-handshake to fail at any point of the negotiation.

By default, Revere suppats UDP-based parent-to-child seaurity update transmisson.
If apatential child dces not spedfy alist of acceptable schemes, presumably it will only
accet seaurity updates forwarded using UDP.

Given this flexibility in chocsing the best transmisson scheme, the two
communicaing nodes can seled the transmisson medianism that is the most adaptive to
the locd communicaion environment, current exeaution context, or particular user
preference (Figure 4.3). The following are several examples or guidelines for different

nedls:
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Fig 4.3 Adaptive parent-to-child seaurity update transmisson

» Adaptation to local communication environment
When the dannel between a parent and a dild is error-prone, FEC
(forward error control) or ancther error recvery method may need to be
applied. When the dhannel is alow bandwidth, the seaurity update can be
compressed at the parent node, and decompressed at the dhild node upon
recapt. When the dhannel is cgpable of broadcasting, such as Ethernet, a
seaurity update may be delivered to multiple nodes through a one-time
broadcast. As ancther example, TCP is preferred to UDP in terms of
providing reliable delivery, bu TCP is more cstly than UDP because it
requires a Revere node to maintain a wnredion with every individual
parent or child nock.

» Adaptation to current exeaution context
Depending on the airrent runnng environment, a Revere node might also
have some particular padlicies regarding forwarding seaurity updates. For
example, when a Revere noce is abou to forward a seaurity updhte, if it
happens to have many children at the moment, it may prioritize its
children and forward updhtes first to thase with a high priority. On the

other hand, if a node reamgnizes that all its parents are heavily overloaded
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with children, it may seach for another parent that has a lighter load, and
thus perhaps obtain afaster delivery of seaurity updates.
* Adaptation to particular user preferences

Users could have their own preference, too. As a simple example, a user
could spedfy TCP as the seaurity updete forwarding protocol. A user
might prefer nat to compress a seaurity update, even when forwarding it
aong a low-bandwidth channel, since the @mpresson and the
decmpresson incur a longer processng time. Additionaly, seaurity

updates are usually aready of small size.

4.4.2 UDP-Based Pushing

When UDP is used to puwsh seaurity updates, a Revere noce incurs low overhead. As
a onredionlesstransport protocol, UDP alows a redpient to listen ona speafic UDP
port for messages from multiple sources. As aresult, a single input job can be used to
recave UDP-encgpsulated seaurity updates from all parents. Similarly, a single output
job can be used to forward seaurity updates to all children.

Figure 4.4 shows disseemination jobs and the seaurity update windowv when UDP is
used. It aso shows the relationship between the output job d a parent node and the input
job d a dild noce. In particular, an ouput job reeds to communicate with multiple

inpu jobs.
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¢ seaurity update window

O @ UDPport

Fig 4.4 UDP-based pushing operation
(Node R has two parents: P, and P,, and three tildren: C,, C, and C3.)
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4.4.3 TCP-Based Pushing

In the cae of using TCP for pushing seaurity updates, the overheal will be higher
than using UDP. TCP, as a mnredion-based protocol, requires bath the sender and the
recaver to maintain the wnredion. To ke listening to TCP-padet-encapsulated
seaurity updetes from every source a Revere node must maintain a separate TCP
conredion with that source, and read every incoming message. Since it is natural to
asociate eab TCP conredion with a separate task, and every Revere nocke is all owed to
have multiple parents, Revere uses multiple inpu jobs to concurrently read seaurity
updates from al parents.

Similarly, a Revere node may have multiple dildren, and, correspondng to every
child, a separate TCP conredion is required to pwsh seaurity upcetes toward that child.
Revere uses multiple output jobs to concurrently send seaurity updates toward all
children.

Therefore, a one-to-one asciation relationship is maintained between the output job
of a parent noce and the inpu job d a diild noce. Figure 4.5 shows an example of TCP-
based seaurity update pushing. Here, at node N, there ae two inpu jobs correspondng
to itstwo parents, and threeoutput jobs correspondng to its three dildren.

TCP conredions could be made on atemporary basis: a parent establi shes anew TCP
conredion with a dild for a new seaurity update, delivers the padket representing the
update, then teas down the TCP conredion. However, this dows down the forwarding
spead o seaurity updates. TCP conredions could also all be handled in a single inpu
job (or a single output job), bu this then requires the inpu job (or output job) to

multi plex and synchronize anong multi ple TCP conredions, making it a cmplex issue.
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Fig 4.5 TCP-based pushing operation
(Node R hastwo parents. P; and P,, and three dildren: C;, C, and Cs)
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4.4.4  Concurr ently Running Multiple Transport Protocols

A Revere node mud be runnng multiple protocols in recaving or forwarding
seaurity updates. For instance, a node could run UDP-based input jobs, bu TCP-based
output jobs. Or, the node @uld run ore UDP-based inpu job to colledively receve
seaurity updates from several parents, and run multiple TCP-based inpu jobs to
separately receve seaurity updates from every other individual parent. Likewise, the
noce aould run ore UDP-based ouput job to send seaurity updates to some of its
children, and run a TCP-based ouput job to send seaurity updates toward every other
individual child.

Although TCP and UDP are the two most commonly used transport protocols, Revere
does nat exclude other transmisgon primitives from being used for forwarding seaurity
updates. Again, this can be negotiated when anoce tries to attad itself to another Revere
nocke asa dild.

445 Bodstrap of Disemination Jobs

Dissmination jobs, namely input and ouput jobs, can be started immediately when a
node becomes a dhild of ancther (imnediate bodstrap), or started when a parent node is
abou to forward a seaurity update to a dild noce (on-demand boastrap). The former
ensures that those necessary dissemination jobs are ready when a seaurity update needs to
be forwarded; the latter helps save some st by starting them on-demand.

The bodstrap of dissemination jobs has threemain comporents. output job bodstrap
a the parent node, inpu job bodstrap at the cild noce, and a necessary information
setup.

The boastrap of an ouput job is draightforward. In bah immediate boastrap and

ondemand bodstrap, the parent node will first chedk to see whether a new output job
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must be aeaed and started. For example, when UDP is used, it is not necessary to start a
new output job, urlessthereis no UDP output jobyet at all. However, when TCPisto be
used, a new output job must be aeaed and started that corresponds to the new child.
Step 1in Figure 4.6 corresponds to the bodstrap of an ouptt job.

The boastrap of aninpu jobishanded by anode I/0O manager. A node I/O manager
is adaanmon pocessthat handes two types of messages: Linkinit and LinkinitAck. The
output job d the parent, which could be just creaed as described in the previous
paragraph, will send a Linkinit message toward the node I/0O manager of the cild noce
(Step 2in Figure 4.6). Uponreceapt of the Linkinit, the node 1/0 manager at the dild
noce will ched to seeif a new inpu job must be aeaed; if so, anew inpu job will be

creaed and started (as shown in step 3in Figure 4.6). Similar to the aedion d an ouput

Anincoming
seaurity upcete
5. The dild input 1. Crede anew
joblistens at port output job if
X output | ¢ needed /A
job L/
6. Saurity ) )
Parent node T upd ‘ 2. Linkinit (2)
Child node |_|
4. LinkInitAck (x) AttachConfirm (y)
«
3. Crede anew
inpu job

Fig 4.6 Bootstrap of disemination jobs
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job, UDP-based pushing will only need ore inpu job per node, bu TCP-based pushing
will need oreinpu job per parent.

After both the output job at the parent and the input job at the dhild are aeded, some
necessry information must be set up as well, depending on what transmisson
mechanism will be used to forward seaurity upcetes. In particular, it may be necessary to
provide the output job with information regarding the inpu job at the dnild. For instance,
when UDP is used, the port number on which the inpu job d the dild listens to
incoming seaurity updates may not be known to the output job at the parent. Revere
alows the inpu job at the dild to send a LinkinitAck message toward the node 1/0
manager at the parent node, which contains necessary information d the inpu job at the
child (Step 4 in Figure 4.6). Upon recept of a LinkinitAck message, the node I/O
manager a the parent node will natify the output job d such information (Step 5 in
Figure 4.6).

Revere dlows a node I/0O manager to sit on an arbitrary port number and pggybadk
the port number information d a node 1/O manager in ather messages, as $own in
Figure 4.6. For instance based on AttachConfirm messages during a threeway-
handshake procedure, the output job knaws the port number of the node 1/O manager at
the dild nock. In turn, besed onLinkinit message, the child node knows the port number
of the node I/0 manager at the parent noce.

After the bodstrap of dissemination jobs, seaurity updates can be forwarded from the

output job at a parent node to theinput job at a dhild nock (Step 6in Figure 4.6).

4.4.6 Processng Seaurity Updates
A seaurity update must be processed before it is forwarded to ancther Revere noce.

Revere is a high fan-out delivery service It must ensure that a norma node will not
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forward seaurity updates that are aroneous, corrupted, a dugicaed (including
maliciously replayed).

Through inpu jobs, Revere mainly performs two cheds in terms of processng a
seaurity updete: dudicate dedking and seaurity chedking. Only after a seaurity update
has passed bah chedks can it be stored in the seaurity update window at a Revere noce.
Figure 4.7 shows the procedure of processng a seaurity update.

Duplicate checking. Because of the redundancy built into an RBone, nodes typicdly
recave dugicae wmpies of ead seaurity update. Duplicae cpies are identified by the
sequence numbers caried in seaurity updates and will be dropped, rather than pu into the
seaurity updete window. In addition to preventing locd reuse and retransmisson to

children, this mechanism avoids dissemination loos.

inpu job
. . 3
dugicate dheckng seqno
base
seaurity checkng ?
l seaurity update window

Fig 4.7 Seaurity update processng by an input job
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Duplicate dhedking is a lightweight operation. For every type of seaurity update, a
Revere node maintains a sequence number record of historicd seaurity updates, and
dugdicae deding is dore to esentially compare the sequence number of a arrent
seaurity updete ajainst this recrd. The record is the range of historicd sequence
numbers. Given that sequence numbers are usualy continuots, it is easy to maintain a
complete list of al updetesthat anode has en.

Duplicate dedking aso helps prevent replay attack. With a small processng
overheal, areplayed seaurity update can be eaily filtered ou.

Security checking. A newly receved seaurity update may contain a transmisson
error, or worse, it may have been corrupted. An attack may also injed ill egitimate
seaurity updates, probably by impersonating a dissemination center. The input job must
verify every seaurity update to ensure its authenticity and integrity before buffering it into
aseaurity update window. Detail swill be discussed in Chapter 5.

After pasgng dugicae heding and seaurity chedking, a seaurity update will then be

acceted and stored in the seaurity update window as a unique aithentic seaurity update.

4.4.7 Seaurity Update Window

The seaurity update window is a placewhere acceted seaurity updates are stored and
fetched. An inpu job Views a seaurity update window as a queue, and tries to append
every newly accepted seaurity updete to the tail of the queue. An ouput job aso viewsit
as aqueue, andtriesto fetch seaurity updetes, ore by one, from the head o the queue.

As we described ealier, a seaurity update windowv may be simultaneously accessed
by one or more inpu jobs and ore or more output jobs. As aresult, the seaurity update
windowv must be synchronized. On ore hand, if there ae multiple inpu jobsin a Revere

noce and ead of them recaves a wpy of the same seaurity update, they may all believe
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that a unique aithentic seaurity update has just been recaved (after processng the
correspondng copy). They must be synchronized so that one, and orly one, copy is
buffered into the seaurity update windowv. On the other hand, a seaurity update shoud

not be removed from the seaurity update window urtil all the output jobs have fetched it.

45 Pulling Seaurity Updates
45.1 Problem Statement

When seaurity updbtes are pushed from a dissmination center, some nodes may not
be mnneded or may be temporarily turned off. When they regain conredivity, they will
want to recave the missed seaurity updates. However, this is not easy for the following
reasons: (1) their parents may not have retained al missed copies; (2) depending on the
length of the disconnedion period, those original parents may not be parents any more
(lack of heatbea messages from a disconreded child will eventually cause that child to
be removed); (3) even if aoncedisconneded nock has not missed any seaurity upadates at
all, it wants to asaure itself of this fad. In the third case, a reconreded noce can ask a
parent, since bath record the historicd sequence numbers, bu this may fail if the parent-

child relationship is already torn down.

4.5.2 Possgble Approaches

One gproach to the mised-update problem is to use a reliable transmisson
mechanism. However, athough some reliable transmisson mecdanisms, such as TCP,
can endure ashort disconredion, alonger disconredion period will result in atimeout of
the transmisson, causing a noce to miss ®aurity updetes. This aso restricts Revere
nodes from using other transmisson medanisms, such as UDP.

Ancther approadch is to rely on the dissemination center to retransmit those missed

seaurity updates. Thisis a daunting task in that an RBone is typicdly of large scae, and
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it is difficult to determine when retransmissons have succesdully readed al nodes.
Worse, different nodes usualy have different disconredion periods; this implies every
noce may have adifferent set of missed seaurity updates, further complicaing this
retransmisson solution.

A third approach is to let a dissemination center periodicaly rebroadcast old seaurity
updates along an RBone, making it likely that soorer or later all Revere nodes (including
those reconreded) will recave aparticular update. However, since a/ery Revere node
runs dugicae ded before forwarding a update, an updie that is rebroadcast may not

travel very far in an RBone.

4.5.3 Our Approach—Repository Server Query

A more general solution isto have disconneded nodes inquire ébou seaurity upcetes
that occurred during disconnedions. Revere designates ome nodes as repository servers
for storing old seaurity updates and for respondng to inquiries.

In Figure 4.8, when noce A recmnreds to the network, it contads repasitory servers
R, and R;3 to seewhether it has missed some seaurity updates; if so, it will pull the missed
updates from R, or R3. Furthermore, if node A has children, it will immediately forward
those newly pulled seaurity updates to them.

To process a newly pulled seaurity updete, the same procedure is applied as in the
pushing operation. Both dupicae hed and seaurity chedk are necessary steps here, as

shown in Figure4.7.

45.4 Seledion of Repository Servers
One important issue with the repaository-server-based approad is the seledion o
repository servers. A Revere node nedls to locae some repository servers for missed

seaurity updates.
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D asigned seaurity update

Fig 4.8 Pulling seaurity updates from repaository servers

A smple way to hande thisis datic configuration. A static set of repository servers
can be provided when Revere is installed, where eab repository server is believed to
maintain stable cnredions to the network. Problems arise when the set of repository
servers becomes dynamic. Although relatively rare, some repository servers may till
fall, or some other nodes may beame better suited to the role of repasitory server. A
speda seaurity update that contains the arrent list of repository servers can be
disseminated. However, as a one-time delivery, thislist will not read those disconreded
nodes, resulting in a cicken-and-egg problem; nodes that joined an RBone dter the
dissmination d this saurity update will aso missthe repasitory server information.

Revere employs a dynamic repository server eledion, maintenance and ndificaion

medhanism. First, every Revere noce on an RBore is allowed to naminate itself as a
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repository server, and the nomination will be recaved and cheded by the dissemination
center of the RBone. Semnd, an existing repository server may also fail (or dedde to
degrade itself into a norma Revere nodke), which will be deteded by the dissemination
center (seediscusgon below). Third, whenever there is a dnange to the set of repasitory
servers, the disemination center will notify Revere nodes of the dhange (also see
discusson kelow).

Heatbea messages, used for RBone maintenance a described in Chapter 3, are dso
used here for the @owve purposes. Heatbea messages from children, propagating al the
way toward a dissemination center, are enployed to report the aldition and subtradion o
repository servers. Heatbea messages from parents, originating from a dissemination
center, are enployed to indicate those up-to-date repository servers.

In detail, when a Revere node nominates itself as arepaository server candidate, it will
add itself to the repository candidate list in the heatbea messages toward every parent.
In turn, when a parent receves repository candidate lists from its children, it will
aggregate those lists to generate anew candidate list, and gggybad the new list on its
own heatbeda message toward its own parent. This repeds until the dissemination center
recavesafina list of al repository candidates.

The disemination center will ched the list of the repository candidates and seled
some of them to be the repasitory servers for the whole RBone. The center will then
propagate the seledion results through heatbea messages toward its children, together
with the list of already existing repository servers. Every child will record the new list of
repository servers and also forward the information toward its own children, again
through heatbea messages.

Althowgh repository servers sioud rarely be unavail able, Revere is gill designed to

be caable of handing falures of repository servers. In addition to the repaository
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candidate list, heatbea messages from a cild can aso cary the identities of current
repository servers. Similarly, a parent can aggregate such information caried in the
heatbea messages from all of its children, and pggybadk the aygregated result on its
own heatbea message toward its own parent. However, the heatbea messages clealy
will not be generated and reported from a fail ed repasitory server; as aresult, the final list
of current repository servers that is receved at a dissemination center will not include the

failed repository server.

455 Contacting Repository Servers

Since eab Revere node kegos a locd list of avail able repasitory servers, it then can
make an inqury to ore of the repasitory servers abou missed seaurity updates.

A problem we nedl to solve here oncerns the reliability of the pulling operation. A
repository server recaeving an inquiry might very well be subverted itself, and thus fail to
deliver some of the seaurity updates recaeved. The seaurity updete aithentication
mechanism (to be discussed in Chapter 5) ensures that a subverted repository server
respondng to an inquiry canna forge false seaurity updates, bu the subverted repository
could easily fail to deliver some of the updates it had receved.

A Revere noce can oltain some degreeof certitude that all seaurity updates that were
missed duing disconredion have been retrieved. To do so, Revere aain employs
redundancy to achieve high assurance As we described ealier, Revere builds multiple
repository servers, and a Revere node can just contad more than ore repaository server to
obtain missed seaurity updates. Or, instead of literaly pulling seaurity update mpies
from ead of repository servers contaded, anode can just pull seaurity updates from only
one of them—a "master” repository server, and contad other “slave” repository servers

to chedk on whether the master repaository server provided a complete set of missed
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seaurity updates (typicdly done by comparing the range of sequence numbers of recently
dissminated updites).

A key benefit of having repository servers is that they are dways available for
obtaining seaurity updates. A nocde on an RBone can also make use of this fad. For
example, if node x recaves updates n, but has not receved updite n-1 yet, it can always
query a repasitory server. Or, if a node has not recaved any seaurity upcetes from its
parents in a suspiciously long time (and the length of time is at the node’s own
discretion), it can chedk with arepasitory server.

This charaderistic offers some protedion against the posshility that all of a node’'s
parents could be crrupted. If the mrrupted parents fail to ever send updies, the node
can urcover the problem by cheding with the repository servers. The node can then
choose new parents, provided, d course, that it makes sure the chosen repository servers

are not its parents.

46 Open Issues

One issie we have nat looked into is adaptive redundancy. Adaptive redundancy has
two aspeds to consider: (1) a Revere node may switch to dfferent parents; (2) a Revere
node, which initialy chose to have n parents, may dedde to have n+A parentsif thereisa
need to increase the level of redundancy, or n-A parents if alesser number of parents can
provide satisfadory certitude of seaurity update delivery. How a Revere node dhocses
the initial value of n and the value of A, based on no@ padicy and pest observation,
deserves more reseach.

As for seaurity cheding during seaurity update dissemination, Revere eicloses a

digital signature on every seaurity update. Since verificdion o a digital signature is
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typicdly slow, ather verificaion medanisms have been studied. Further investigation d
these medhanismsis needed.

“Virtual child” is another concept that could lead to some open isues. Normally, a
Revere noce can have multiple dildren, where every child is physicdly a noce.
However, ore muld define a olledion d nodes as a single “virtual” child, with just one
single IP address For example, such a virtual child can simply be agroup d IP-
multi cast-cgpable nodes, and a single IP multicast addressis recmrded at the node & a
single dhild. Such avirtual child can aso be asubret’s broadcast address which can be
used to read al Revere nodes on the subret. Although this concept improves the
efficiency of forwarding seaurity updetes, how to enroll or dismissa virtua child is an
isweto investigate.

Anather isaue concerns the seledion d arepaository server to contad. While anode
keegps alist of repository servers avail able, some of them are deemed to be topdogicdly
closer than athers, and it is desirable for the noce to find ou which ore to contad for fast
delivery of missed seaurity updates (if any). One might think that the delivery
performance here for a recnneded nock is not important, since the node has been
disconreded for an arbitrarily long period. Thisisnot corred. It isthe vulnerable period
that a noce redly cares abou. Using a seaurity update regarding a new network-based
attadk as an example, adisconneded nock is resistant to the dtad, and the disconredion
period is nat courted as part of vulnerable period at all; however, whenever the node
recnreds, it beames vulnerable to the dtad, and its vulnerable period immediately
starts. S0, it is important that a recnneded node receve missed seaurity updetes as
quickly as possble.

When a nocke tries to contad multiple repository servers, a question arises as to what

combination d repository servers would provide the best resiliency. On ore hand, the
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delivery of missed seaurity updates does not have to rely on the sssciated RBone—a
dired point-to-point delivery can be used. On the other hand, wsing RBone may passbly

provide better digointness since an RBone itself builds rich redundancy.

4.7 Conclusions

In this chapter we described a dual medhanism for disseminating seaurity updates—
pushing and puling. Pushing relies on an RBone to forward seaurity updates (initiated
from a disemination center) from node to nock. Pulling relies on repository servers
embedded within the network, and Revere nodes can query them on missed seaurity
updates.

Both pwhing and puling are resili ent operations. Since aRevere node on an RBone
can choaose to have multiple delivery paths (as discussed in Chapter 3), the node could
recave multiple mpies of a seaurity update dong multiple delivery paths during a
pushing operation. The node muld also contad multi ple repaository servers to resiliently
obtain missed seaurity updates (if any are missed) during a pulli ng operation.

Both pwhing and pdling are adaptive. During pushing, a node @uld adaptively
chocse the best suitable transmisson medianism to forward seaurity updates to its
children. During pulling, anode culd contad n repository servers at its own discretion.

Both pushing and puling are based ona structure that is dynamicdly maintained. An
RBone used for pushing operationsis s f-organized, such that the fail ure or corruption o
any Revere noce can be deteded. Repository servers used as the sources for pulling
operations are dso monitored so that every node can kegp an up-to-date list of repository

servers avail able.
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Both pwshing and pdling are lightweight, using the same procedure to process a
seaurity update, which includes dugicae ded and seaurity chedk. This helps promote
fast delivery of seaurity updates.

Both puwhing and puling are scdable. During the pushing operation ontop d an
RBone structure, every Revere node only needs to forward a seaurity upcete to its own
children. Unless a node has an undwe number of children, this involves a very small
amount of computation and communicaion cost. During a pulling operation ketween a
repasitory server and a Revere node, neither incurs a significant amourt of effort, urless
avery limited number of repository servers are serving a huge number of Revere nodes

simultaneously.
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CHAPTERS

Seaurity

Revere asaumes that a large percentage of Revere nodes are woperative; however,
with Revere running at Internet scae, it is unredistic to assume that no Revere nodes
have been subverted. Revere, as a service for delivering seaurity information, can be a
very tempting target for attackers. If attadkers can misuse or abuse Revere, they can
achieve various malicious goals; for example, a crrupted Revere system may become an
ided carier to help propagate network worms or other thredas. Therefore, Revere
seaurity must be caefully addressed, including both the seaurity of the dissemination
procedure and the seaurity of RBone management.

In this chapter, we first discussthe seaurity of the disemination procedure, including
integrity, authenticity and avail ability of seaurity updetes, replay prevention, revocaion
of the pubic key of a dissmination center, etc. We then addressthe seaurity of Revere
overlay networks, where we introduce the pee-to-pea seaurity scheme negotiation
algorithm and the pluggable seaurity box. We dso look at possble dtadks and their
courtermeasures. At the end d this chapter, we discuss open isdales, such as ®aire
monitoring of dissemination pogress intrusion cetedion and readion, and denial-of-

service dtadks.

51 Asaumptions

The following assumptions are made in addressng the seaurity of Revere:
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* Any node (except disemination centers) could be oorr upted
Revere does nat enforce any palicy on rew node subscription procedures.
Any nodk, evil or angel, can join Revereif it chooses. Also, given that an
RBone may include agrea number of nodes, the posshility that a Revere
noce is subverted must not be ignored. Therefore Revere, as an open-
membership system, must seaure itself based onthis assumption.

* A large percentage of Revere nodes are cooperative
Thisis necessary to ensure that benign Revere nodes gill have a tanceto
recave seaurity updates. If every Revere node were surrounced by
mali cious nodes, seaurity updete delivery wouldn't succeea at all. In ather
words, if al parents of a Revere node were @rrupted, it wouldn't be ale
to receve aithentic seaurity updates; or, if al children of a Revere node
were arrupted, it also couldn't help deliver authentic seaurity updates.

* Theprivate key of a dissmination center may be compromised
Although a diseemination center will be proteded very carefully, Revere
still adknowledges the posshility that the private key of the center might
be compromised, which can cause disastrous results if not addressed.

» Thepublickey of adissemination center iswell known
The puldic key of a disemination center can be @nfigured when a user
instals Revere. It can also be made available through a web site. A
catificae authority may also be mntaded to ohtain the pulic key of a
dissemination center. Furthermore, if the disemination center signs a
message using its private key, every Revere node will be ale to verify the

digital signature of this message.
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* Nouniform seaurity schemeto proted node-to-node @ntrol messages
Due to the large scde of Revere, an RBone may suppat millions of
Revere nodes. It is unredistic to assume that every node & such a scde
will adopt the same seaurity scheme, apply the same seaurity pdlicy, or
use the same @nfiguration. Moreover, even neighbaiing nodes on an
RBone may appea to be in dfferent domains, thus posshbly enforcing
different seaurity schemes.

» Theset of seaurity schemes supported by different Revere nodes may overlap
Although a Revere node may run dfferent seaurity schemes from other
Revere nodes, there may be one or more seaurity schemes that both this
node and another node suppat, making it possble that the two nodes can

agreeon some seaurity schemesto proted their communicaion.

5.2 Seaurity of Dissemination Procedure
5.2.1 Objedivesand Requirements
The objedives of seauring the dissemination processinclude the foll owing:

* Integrity of seaurity updates
While aseaurity update is being delivered to Revere nodes, it may be
corrupted by malicious nodes on dHlivery paths. Data erors can also be
introduwced dwe to transmisson poblems. Any modificaion, whether
intended or not, must be detedable. The integrity of seaurity updates must
be guaranteed.

* Authenticity of seaurity updates
Seaurity updates originate from a dissemination center. However, an

attadker may be ale to forge seaurity updates to foo Revere nodes,
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probably by impersonating a dissemination center. Every node shoud be
able to verify whether a seaurity update has indead ariginated from a
dissmination center, and a seaurity update forged by an attadker shoud
not be accpted. Revere must quickly deted the forgery.

* Availability of seaurity updates
A new seaurity update can be suppreseed o misdireded, thus failing to
reach its destinations. As discus=d in Chapter 2, encryption canna help
a al, snce a encrypted seaurity updete can sill be suppressd,
misdireded, a damaged. Authenticated acknowledgements may help, bu
those a&nowledgments are dso susceptible to interruption threas. Even
if adknowledgements are succesully delivered, retransmitted seaurity
updates often use the same path and will be subjed to repeaed
interruption threas. Revere shoud address these isales and adieve the
best avail ability in delivering seaurity updates.

* Replay prevention
Old seaurity updates may be replayed to floodan RBone. Given that those
old seaurity updates will be verified as authentic and integral, it is
important that Revere nat blindly forward those replayed seaurity updates

and relp floodthe network.

All those objedives correspondto the goal of the “seaurity chedk” box in Figure 4.7
(Chapter 4). Note that Revere does not proted seaegy. In light of Revere's free
subscription model, seaurity updates are nat seaet information; every noce is alowed to

join Revere to oltain the auttomatic natificaion service  Even nonRevere nodes are free
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to read and wse Revere updates (if they can oltain them), though Revere does naot attempt

to make them avail able.

5.2.2 Why Public Key Cryptography

There ae two main types of cryptography: asymmetric-key-based cryptography and
symmetric-key-based cryptography. Revere uses asymmetric-key-based cryptography
(i.e., pubic-key cryptography) to proted the dissemination process

Symmetric-key-based cryptography will not work well for Revere. With a large
number of macdines in an RBone, symmetric-key-based cryptography does not scde. To
guarantee that a seaurity update is indeed signed by a dissemination center using
symmetric ayptography, a Revere node must ensure that only the center and itself know
the seaet key (if a single key was dhared by all Revere nodes, any Revere node could
forge updates). This implies that the dissemination center must maintain a diff erent
seaet key for ead Revere node. Worse, since now every copy of the same seaurity
update will be signed using a different key, thus carrying a diff erent signature, a diff erent
copy of the same seaurity updete is expeded at eaty Revere node. As a result, the
dissemination center hasto uricast adifferent copy to every Revere nock.

Instead of using different keys to sign the same seaurity updete, asymmetric-key-
based cryptography alows a disemination center to sign a seaurity update using the
same key—the dissemination center’s private key. Thus, every Revere node expeds to
recave the same replica of the seaurity update, and can use the pulic key of the

dissmination center to verify itsintegrity.

5.2.3 Integrity of Seaurity Updates
One method d proteding seaurity updates from errors is to append error corredion

code in a seaurity update. Unfortunately, this only helps corred transmisgon errors. An
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attadker, whil e tampering with ather fields of a seaurity update, will be egually cgpable of
modifying the aror corredion code to make the tampered seaurity updeie gpea
genuine.

Instead, Revere adopts puldic-key cryptography to proted seaurity updates from both
mali cious manipulation and transmisgon error (Figure 5.1). When a dissemination center
is abou to send ou a seaurity updkte, it is required to sign the seaurity update using its
private key. The format of a seaurity update is shown in Figure 4.1 (Chapter 4), where
the signature proteds the type, seqno,timestamp, and payload fields of a seaurity upcete.

Revere nodes use the pulic key of the disemination center to authenticate seaurity

updates. When a new seaurity upckte is receved, a Revere node will apply the pubdic

D asigned seaurity update

Fig 5.1 Integrity protedion d aseaurity upcete
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key of the disemination center to verify the signature of the seaurity update. If the
verificaionis successul, the integrity of the seaurity update is then confirmed.

Once aRevere nock has verified the integrity of a seaurity update, it will forward the
seaurity update to its children. Note that the Revere node will not make ay changes to
the seaurity update & all; in particular, it will nat touch the signature field. When thase
children receve the seaurity upcete, they will apply the same procedure to verify the
integrity of the seaurity update. Normally, when a Revere node receves a seaurity
update, the update will have dready passed a list of intermediate Revere nodes; but as

long as the signature is verified, the integrity of the update can still be trusted.

5.2.4 Authenticity of Searity Updates

A Revere node must ensure that a receved seaurity update originated from a
dissemination center. Given that every Revere node uses the public key of a
dissmination center to verify newly receved seaurity updates, only when the private key
of that dissemination center is used to sign those seaurity updates can the verificaion
succeal. If the private key of the disemination center is well proteded and orly the
center itself knows its own private key, a Revere node can then guaranteethat a verified
seaurity update has indeed ariginated from that dissemination center, and thus can trust
the authenticity of the seaurity update.

Clealy, the private keys of disseemination centers must be caefully proteded. If,
despite such care, the private key of a disemination center is compromised, dsastrous
attadks can be launched; e.g., attadkers now can easily impersonate the dissemination
center. Revere nodes, uraware of the legkage of the disemination center’s private key,
will “succesdully” verify the seaurity updates that are acually forged by the dtadker, and

even be fooled into taking adions based uponsuch updies.
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Four problems must be solved. First, how can Revere quickly deted that, insteal of a
dissmination center, an attadker is ending (forged) seaurity updates by impersonating a
center? Sewnd, after a dissemination center recognizes that its private key is
compromised, its pullic key can nolonger be used for seaurity update verificaion; in this
case, how can the disemination center revoke or invalidate the arrent pulic key?
Third, hov can those Revere nodes obtain the next pulic key of the dissemination
center? Fourth, shodd dd seaurity updates be resigned and redelivered? We cdl the
first problem impersonation detedion, the second poblem key invalidation, the third

problem key distribution, and the fourth problem seaurity update redelivery.

5.2.4.1 Impersonaion cetedion

This issue is a difficult problem and still under investigation, we discuss this isue
here, rather than in Sedion 5.5 on open iswes to maintain the logicd conredion o
discussons in this chapter. In ou current system, a reverse traversal mecdhanism is
designed for this purpose.

After aRevere node has succesqully verified a newly receved seaurity updhte, if it is
still suspicious abou the authenticity of the update, it can initiate an impersonation
detedion pocessas follows:

» This Revere nock first reports the seaurity update in question to all of its

parents.

» Uponthe recept of this upcete, every parent will first verify the update; if
verified, that parent reports further up to its parent. This repeas until the

dissemination center receves this reported seaurity upcete.
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Every parent will only report one @py of such a seaurity update to its
parents, otherwise, the disemination center can be imploded by the
updates when many Revere nodes initiate areport of the same update.

* The disemination center diagnoses the reported seaurity upcete, and
makes sure the update was indeal recently sent by itself. If the center has
no knowvledge of this aurity update, and some atadker has compromised
the private key of the disemination center and is impersonating the
center—the center shodd immediately trigger the key invaidation

procedure.

Eadch Revere node auld randamly (with very low probability) test a seaurity update
thisway. In this fashion, uessaforged updie is injeded very close to the “edges’ of
the Revere graph, some node will probably be triggered to initiate the impersonation

detedion pocess

5.2.4.2 Keyinvalidation

Here we discuss the procedure of invalidating the pulic key of a dissemination
center once its private key is compromised. Recdl that the puldic key is distributed all
over the RBone. Obviously, the caiter itself canna distribute a new pubdic key to
replacethe old ore. (If anew pubic key to dstribute is sgned by the aurrent private key
of the disemination center, the dtadker who also has the private key could easily
impersonate the center and dstribute aforged puldic key.) Rather, the dissemination
center sends out a key invalidation message to dedare that its current pulic key shoud
be invali dated.

The invalidation message is sgned by the broken private key, and dcdlivered in the

same way as normal seaurity updates. Figure 5.2 shows a key invalidation message. The
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type key serial no

Fig 5.2 The key invalidation messge

“type” field indicaes this is a key invalidation message, rather than a normal seaurity
update. The “key seriad no’ field spedfies which pubic key to invalidate, in case a
dissmination center has a list of pulic keys. Note that the key invalidation message is
redly smple—it does nat contain any extra information at all. The reason is that any
extrainformation canna be trusted by a Revere noce & all, sincethe d@tadker who hesthe
private key can easily fabricae or change those fields. The key invalidation message is
designed to orly passa single fad to Revere nodes—a puldic key must be invalidated,
but nothing more than that.

When a Revere node receves a key invalidation message, it will verify the message
using the aurrent pulic key of the dissemination center (or more acarately, the pubic
key indicated by the “key seria nao’ in the key invalidation message); if verified, the
current pulic key will be discarded, and the key invalidation message will be forwarded
to ather seaurity updates. Figure 5.3 depicts such a procedure. There might be aloop
when delivering a key invalidation message (just as when delivering normal seaurity
updates); however, when a Revere node recaves 3ich a message for the secondtime, the
pubdic key to invalidate will have drealy been dscarded and noadion will be taken (and
no adion reedsto be taken).

The repaository servers will keep al key invalidation messages. When a repaository
server recaves a puling request from a reconreded nock for missed seaurity updates,
based onthe disconredion period indicaed in the pulling request, the repasitory server

can determine whether the reconreded node may aso have missed some key invalidation
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Fig 5.3 Center pulic key invalidation

messages. As a result, the reconreded noce may also receve a key invaidation
message—it will hand e this message in the same way as described above.

An atacker may launch several kinds of attadks against the key invalidation
medhanism. First, the dtadker can try to suppressthe invalidation message. However, an
RBonre is drealy aresilient network with bult-in redundancy to proted normal seaurity
updates. Given that a key invalidation message is delivered in the same way as normal
seaurity updates, every Revere node can have multiple resilient paths to receve the key
invalidation message. Seand,the dtadker who hes broken the private key can crede his

own invalidation message, bu doing so will destroy any benefit he recaves from
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craking the key. This helps a Revere nocke invaidate the puldic key that it shoud
invali date.

However, the datadker does achieve one goal when impersonating a dissemination
center and sending out key invalidation messages. if the disemination center has not
deteded the leakage of its private key yet and sends out a seaurity updete, those Revere
nodes who have invalidated their current puldic key will not accept the seaurity update.
Revere rreds this problem by adding reverse path forwarding of key invalidation
messges, similar to what's dore in impersonation cetedion. Doing so, the
dissmination center will be &leto quckly deted nat only the legkage of its own private
key, bu aso the fad that the dtadker is diseeminating a key invalidation message to
disable the aurrent pubic key of the disemination center. The dissemination center then
startsits own key invalidation procedure & described abowve, and begins other adions that

are discussed below in the key distribution procedure.

5.2.4.3 Keydistribution andkeyswitch
After invalidating the dissmination center’s old pubic/private key pair, a new pair
must be aeaed. Or, if a disemination center assgns an expiration time to its current
pubic/private key pair, a new pair must also be provided when the old key pair expires.
The new pulic key must be distributed to all Revere nodes, passbly milli ons of them.
Manual distribution would be daunting. We foresee two possble methods for
distributing a new dissemination center pulic key.
» Keydistribution center.
Althowgh manually distributing a new key to milli ons of Revere nodes is
prohibitive, we can manually distribute the new key to several secondary

trusted centers and let every Revere noce contad those trusted centers.
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Many schemes that use pulic-key infrastructure & high scde have this
problem, and we can leverage any good solution ahers might crede.
* Pre-installation.

This method pe-installs a series of dissemination center pubic keys at
every Revere node. After a puldic key is invalidated o timed ou, the
Revere noce will then automaticdly switch to the next available pubic
key in the series. One must be caeful here in proteding the
correspondng series of private keys of the disemination center. If the
whole series of private keys are mmpromised, for instance, it will be self-
defeding to switch to next already-compromised private key in the series.
One car imagine that separately proteding every private key in the series
will be helpful.

With either key distribution method nded abowve, a verson number could be
asciated with a puldic key, and every seaurity update could be labeled with this version
number. If a Revere node misses a key invali dation message, when it receives a seaurity
update that caries a different version number, it then knows that a different pulic key of
the diseemination center shoud be used, a an adversary has modified the version number
to fod redpients. In this case, the Revere node can consult with repository serversto see
if it has missed some key invalidation messages. If nat, it means the arrent puldic key is

still effedive, unessit times out; otherwise, it shoud switch to the next puldic key.

5.2.4.4 Seaurity updde redelivery
During the period ketween key compromise and key invalidation, the seaurity updates

recaved at a Revere noce or a repository server, even thowgh verified as authentic, may
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be forgeries, or may indeed be valid updites. The forgeries oud be purged, and the
valid updites shoud be replaced with their new versions.

After switching to the new pubic key, the dissemination center will do two things.
First, it will send ou an “estimated corruption time” message, signed by the new private
key. (Note that the estimated key corruption time is not caried via the key invalidation
message & an ealier time, for such information can be fabricated by an attadker as well .)
Every Revere noce can then distinguish between seaurity updates disseminated before the
center’s key is corrupted and those dter the crruption (recdl that every seaurity update
caries a timestamp that indicates when the seaurity update departed from the center).
Seoond, the dissemination center will resend thase seaurity updates that were sent after
the estimated key corruption time but before beginning the invalidation d the ceter's
pulic key. These ae unfortunately signed using the rrupted private key, so those

seaurity updates are re-sent, signed using the new private key.

5.2.5 Availability of Seaurity Updates

The avallability of seaurity updates is suppated by reslient delivery of seaurity
updates over RBones. As we discussd in Chapter 3, every Revere node can chocse to
have multiple a-digoint-as-possble delivery paths at its own dscretion. During
dissemination, a Revere node expeds a @mpy of the same seaurity update from every
parent (under normal condtions). Unlessan attadker corrupts every path, a Revere node
will gtill be ableto receve a opy of the same seaurity update.

The avallability of seaurity updates is further strengthened by the aility to pul
missed seaurity updates from more than ore repaository server. If arepository server does
not return a cmplete set of missed seaurity updates, a Revere node can discover the

missng updates by simultaneously consulting other repository servers. A Revere noce
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can also ched with repaository servers every so dften, depending on the node's level of
paranoia.
Multiple dissemination centers can also be set up to provide the same set of seaurity

updates, thus also improving avail ability.

5.2.6 Replay Prevention of Seaurity Updates

To some degree the replaying of seaurity updates helps dissemination, bu it can also
trigger a floodng attadk if not properly handed, becaise Revere is esentiadly an
amplificaion medhanism for sending messages. One initiator of a seaurity update can
patentially have its message delivered to thousands or millions of nodes. If not handed
caefully, Revere could be misused to flood the network or Revere-participating nodes.
While Revere aithenticaion medianisms would ensure that no improper adions were
taken onthe basis of forged Revere messages, uriess ®me cae is taken, Revere would
tend to dseminate replayed legitimate Revere messages. Thus, a Revere node shoud
not just chedk authenticity of a message, but shoud also determine if the message has
been replayed.

Replay of seaurity updates is prevented through the “dupicae ded” processat eah
Revere noce (see Chapter 4). By keeping record of sequence numbers alrealy seen,
dudicae seaurity updates—bath those that are caused by dissemination loops and thase
that are replayed by attadkers—will be deteded and dopped, and thus not forwarded to
other Revere nodes. Here, those historicd sequence numbers are recorded in ranges,

sincethe sequence numbers carried by seaurity updates are usually continuots.

5.2.7 Secreg of Seaurity Updates
As an open-membership system, Revere does not address the seaecy of seaurity

updates. However, if thisturns out to be anecessty, we do nd exclude the posshility of
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adding such suppat. Esentialy, thiswill turn Revere into a dosed-membership system,
in which seaurity updates in transit must be encrypted, and the key used for deaypting
seaurity updates at ead Revere node must be caefully handled. Typicd issues include,
but are not limited to: how to distribute akey to a newly joined Revere node, how to
generate anew key when an existing Revere node withdraws from Revere, and hav to
hande a ompromised Revere noce that has the seaet key to deaypt seaurity updates.
The research community that works on seaure multi casting has been studying exadly
the same set of problems along this line. Revere shoud be &le to leverage those

reseach resultsif the seaecy of updates becomes important.

5.2.8 Hop-by-Hop Seaurity Update Protedion

When a Revere noce recaves a crrupted seaurity updete, it needs to determine
which parent forwarded the update so that the node can remove this parent and re-seled a
new parent.

Revere provides the flexibility for a parent node and a dhild noce to strengthen the
seaurity update forwarding operation between them. When a seaurity update is
forwarded from a parent node to a dild nodg, in addition to the signature signed by a
dissmination center, the parent node can further strengthen seaurity by also signing the
seaurity update, thus preventing parent spoding. The same method for proteding node-

to-noce cntrol messages (as described in the following Sedion 5.3) can be gplied here.

5.2.9 Implementation

To implement the protedion d adisemination rocess a searity update protedor is
implemented at eaty Revere node. At eat of these nodes, the seaurity protedion is
esentialy dore by a seaurity update protedor—including seaurity update integrity and

authenticity protedion, key invalidation and switch, replay prevention, etc.
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Figure 5.4 shows an example of cdling the seaurity update protedor function, where
the function in an inpu job, HandelnhcomingSaurityUpdaesFromNet(), cdls the
HandelncomingSaurityUpdatesFromNet() (same name) function d the seaurity update
protedor to verify the signature of an incoming seaurity update.

Figure 5.5 shows ancther example of interading with the seaurity update protedor at
a Revere noce. An ouput job function, forwardSeaurityUpdaes(), cdls
seaureSeaurityUpdaesToNet() to strengthen the seaurity of a seaurity update that is abou
to be transmitted: if this Revere noce is a diseemination center, the seaurity update will be
signed uwsing the center’s private key; otherwise, hopby-hop seaurity update protedion
can be gplied (as described in Sedion5.2.9.

The seaurity update protedor can be regarded as a “seaurity monitor” in terms of
dissemination since it monitors and filters al inboundand oubound seaurity updates.
Every Revere node can configure its seaurity update protedor to enforce different

seaurity palicies.
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5.3 Seaurely Building and Maintaining RBones
5.3.1 Objedives

The seaurity of Revere depends on bulding an RBone with good dssemination
properties and ensuring that its gructure remains und. A Revere node needs to
authenticae another Revere noce if it wants to accept information from that node. For
example, a new Revere node must authenticae apatential parent before acceting the
potential parent as a new parent, and an existing Revere node must authenticate a
patential child before dlocating a spot for adopting the potentia child as a new child.
Moreover, Revere uses a number of control messages between parents and children, and
Revere nedls to seaure those messages based on the neals of every involved Revere
node. For example, a Revere node must verify heatbea messages from parents or
children in order to na be foded in believing that a dead (or broken) parent (or child) is
still hedthy and dlive, and a Revere node must verify a termination request from a parent
(or a dhild) before teaing down the mnredion with that node.

To proted the integrity of an RBone, Revere authenticates nodes and seaures those
control messages on a pea-to-pee basis, or hop-by-hop kasis. In aher words, every
Revere nock tries to ensure that the interadions with its parents or children are seaured,
but nat beyond that. An alternative gproad is to employ path-wise seaurity, where a
Revere node dhedks the authenticity of every node on all seaurity update delivery paths
and verifies the information o every hop. This alternative gredly increases the overheal
and complexity, whereas we believe ahop-by-hop model shoud serve well, becaise a
large percentage of Revere nodes are benign, and every Revere node can still verify the
digital signature of a seaurity update during the disseemination process if the parent of a

Revere node’s parent is corrupted. The goal is that, through hopby-hop seaurity
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enforcement, there will be dhains of trust starting at an RBone' s dissemination center and
reating most Revere nodes (if nat all).

Pea-to-pea seaurity enforcement begins with seaurity scheme negotiation. Since
there is no ubiquitous ity scheme for all nodes on a large-scae RBone, nor is one
level of trust appropriate for all situations, every Revere node may implement a diff erent
set of seaurity schemes, perhaps with dfferent orders of preference Different parameters
may also be used, even if Revere nodes employ the same seaurity scheme. Therefore, a
Revere nock nedls to seled a seaurity scheme used for exchanging messages with ead
of its peas. If necessary, different schemes can be used for sending to and receving
from agiven pea. Choasing the gpropriate schemes requires a negotiation, and must be
dore seaurely. If the negotiation is successul, proper seaurity schemes can then be
impased onmessages exchanged between the nodes.

Flexibility in implementing and suppating different seaurity schemes is aso
important. The cde for a spedal seaurity scheme shoud be eaily plugged in, and easily
unpugged when na needed. We will show in Sedion 5.3.3that Revere implements ead

seaurity scheme via apluggable (and unpuggable) seaurity box.

5.3.2 Peerto-Peer Searity Scheme Negatiation
Seaurity scheme negotiation is triggered when a node wants to send ancther noce a
message, bu finds that no seaurity scheme has been chosen to proted this message.
Figure 5.6 ill ustrates a seaurity scheme negotiation procedure between nodes A and B,
initiated by node A. Thefollowing is astepwise explanation d the negotiation:
1. Node A first sends anegatiation_start message to B in plaintext, indicaing an ordered
list of A’s preferred security schemes for incoming messages from B. More broadly,

the message can aso include spedfic parameters for every seaurity scheme.
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Node A Node B

The first
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—» Negotiatiq n_star

received
m from A

Fig5.6 Pea-to-pea seaurity scheme negotiation

2. Node B, uponrecept of the negatiation_start message, seleds a scheme that B itself
suppats and that A also prefers, and creaes an authenticator for B itself using this
scheme. Node B sends to A the aithenticaor, a signature of A’s entire
negatiation_start message, and a signed negatiation_response message. The signing
is dore by using the scheme just seleded. The negatiation_resporse message
contains the scheme that B just seleded and an ardered list of B’s preferred seaurity
schemes for incoming messages from A. The negatiation_response message is sgned

using the scheme just seleded.

3. Node A authenticaes B, verifies the signature of its initial negatiation_start message
to ensure it has not been tampered with, and werifies the negotiation_resporse

message. If all are verified, A then chooses a scheme that B prefers and that A itself
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also suppatsto proted its messages toward B. Note that this shemeis all owed to be
different from the scheme that B chose for B’s messages toward A. Node A sends an
authenticaor toward B, using the scheme A just seleded. To ensure B that its
negatiation_resporse was not tampered with, A sends badk a signature of the
message. Node A also sends a signed negatiation_dore message toward B, indicating

the scheme that A seleded and ending the negotiation.

If any of these steps fail, the negotiation will fail, and no seaurity scheme will be
seleded for communicdion between the two nodes. For example, if B canna seled a
scheme successully, B cannat, and will nat, respondto A’s negotiation request, and A
will finally time out and give up (note there is no appropriate messages from B to be sent
toward A, since such a message canna be proteded withou a scheme chosen by B). If
al steps sicceal, the negotiation succeels, and messages can begin to be forwarded from
A to B (such as message min Figure 5.6), or vice versa, proteded by using the seleded
seaurity schemes. When the scheme for messages from A to B is the same & that for
messages from B to A, A and B are enforcing symmetric seaurity schemes; otherwise,
they are asymmetric schemes.

Figure 5.7 shows a seared version d the threeway-handshake procedure.
Compared to Figure 3.4 in Chapter 3, the AttachReq message triggers a seaurity scheme
negotiation ketween the potential parent and the potential child (suppasing the potential
child has never communicaed with the potentia parent before). Only when the
negotiation succeeals will the threeway-handshake procedure @ntinue. Also, al those
messages used in the threeway-handshake ae now signed. Using the seaurity scheme

just negotiated, the AttachReq and AttachConfirm message ae signed using the scheme

111



Potential child Potential parent

Locate

existing

nodes

—>
AttachReq\
Securit
Y Sch
—
signed
AttachReq
Process
H attach
request
‘ aquc\(
AW
Seleda
parents
Sg
nedAttao‘zco”ﬁrm

Attach
new
child

Fig 5.7 Seaured threeway-handshake procedure

that the potential parent prefers, and the AttachAck message is sgned using the scheme

that the potential child prefers—all must be verified prior to use.

5.3.3 Pluggable Seaurity Box

Revere implements an extensible achitedure to suppat various aurity schemes.
Asin[Li et al. 2003, eat seaurity scheme can be alded by plugging in a crrespondng
seaurity box. This architedure dlows a Revere node to chocse a spedfic seaurity
scheme based onthe desired level of protedion.

A seaurity box can be viewed as a seaurity monitor that is resporsible for node
authenticaion. It proteds RBone adivities such as the join procedure or RBone
maintenance A seaurity box allows a node to authenticate other nodes or authenticate

itself to another node. A seaurity box only all ows trustworthy RBone adivities.
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A seaurity box can also be viewed as a message filter (Figure 5.8). All control
messages ent and receved must passthrough the seaurity box. Incoming messages are
acceted or rejeded based ontrust and authenticity. Outgoing messages are inspeded
and stamped with authentication information. Every RBone cntrol messge, including
heatbea messages and those used duing the join procedure, is sgned by its ender’s

seaurity box and werified by itsrecever’'s saurity box.

—» —/ RBore
— 3 | Activities

y

Seaurity Box

Fig 5.8 Seaurity box

Note that seaurity updates do nd passthrough any seaurity boxes; instead, they are
proteded through the seaurity update protedor. In perticular, every Revere node is
required to enforce the same dgorithm to verify the signature signed by a dissemination
center.

Many seaurity box implementations are passble, ead providing a different level of
noce authentication, message verificaion, replay prevention, and passbly seaecy. The
level of protedion povided depends entirdly on the particular seaurity box

implementation. Moreover, when providing different levels of protedion, dfferent
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seaurity schemes require different amourts of infrastructure (which may or may not be
avail able), and have different levels of overheal.

A simplest seaurity scheme is the null scheme, which adually does nat provide any
protedion and can orly be used when a Revere node does not require seaurity. Having
such ascheme can help demonstrate the added cost of a seaurity architedure.

More @mplex seaurity schemes can be suppated. For instance symmetric-
cryptography-based seaurity schemes can be implemented via a seaurity box using
Kerberos or other key distribution medianisms, and asymmetric-cryptography-based
seaurity schemes can be implemented via a seaurity box that relies on a pulic key
infrastructure. We discuss these two exemplary seaurity schemes in the following two

subsedions.

5.3.4 Searity Box Example 1: Using Kerberos
5.3.4.1 The Kerberos model

In order to authenticate to anather node S using Kerberos, a node C ohtains a ticket
and then presents that ticket to Sfor authentication. At an extremely high level, C sends
a request to Kerberos to authenticate to S C recaves (in the end) a sesson key for
talking with S, encrypted with a key it shares with Kerberos, along with a ticket that it
can sendto S The ticket contains (among other things) the identity of C and Sand a
sesson key for talking with C encrypted with a seaet that S shares with Kerberos.

To authenticate to S, C sends a Kerberos authenticator (a time-stamp, a dedksum,
etc.) encrypted using the sesson key to Saong with the ticket. Scan oltain the sesson
key using the key it shares with Kerberos and use it to deaypt the aithenticator and
therefore verify the authenticity of C. Scan (optionally) send an authenticaor bad to C,

again encrypted with the sesson key, all owing C to authenticae S
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Once established, the sesson key used for authentication o the sesson can now be

used by C and Sfor various saurity purposes.

5.3.4.2 Integrationwith Revee

Integrating Kerberos into Revere is graightforward. When a first Revere node neals
to authenticate itself to a second Revere node using Kerberos, bah nodes must share a
seaet with Kerberos. The first Revere node then can request from Kerberos (1) asesson
key between the two nodes, which is encrypted such that only the first Revere node can
deaypt, and (2) a ticket to send to the seaond nod, which is the only node ale to
deaypt the ticket to retrieve the sesson key. Doing so, a sesson key will be distributed
to bah nodes. This ssson key can then be used for both authenticaion and message
protedion between the two nodes.

Since Revere runs at Internet scde, the two communicaing nodes may be locaed at
two dfferent domains, eadh with a different Kerberos wrver. The Kerberos
infrastructure is aready designed to hande this case. While aRevere node may have to
communicae with several Kerberos srvers, it will eventually end upwith a sesson key
and ticket that have been generated by the Kerberos srver associated with the second

Revere noce.

5.3.5 Seaurity Box Example 2: Using Certificate Authority Hierarchy

One seaurity box that we have nstructed is based ona hierarchicd infrastructure of
pubic key cetificate aithorities (CA), where reaursively the CA at one level (the parent)
produces cetificaes for the next level down (the dhild). The pubdic key for the CA at the
roct of the hierarchy, the highest level, isuniversally known.

With this sheme, the verificaion d a node's pulic key, which is equivalently the

authenticaion d the noce itself, is graightforward. A node n can contad its asociated
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CA, CA(n), to oltain a chain o cetificates. On this chain, the first cetificae cetifies
the puldic key of node n by CA(n), the second certifies CA(n)'s puldic key by CA(n)’'s
parent, CA(n-1), onthe cetificae hierarchy, and so on. The last certificate on the chain
is sgned by theroot. By verifying such a dhain of certificaes, the node's public key can
then be authenticaed.

Note that the set of cetificates needed to certify a node’'s puldic key is gdatic in this
scheme. A node can therefore cabde dl of the cetificaes it will need to authenticate
itself to any other node.

Because aRevere node's pullic key can be verified, the messages from this node can
also be proteded. When this node needs to send messages to ather Revere nodes, it can
sign every message using its private key. The digital signature of any message from this

node can be verified by other Revere nodes using this node' s public key.

5.3.6 Summary: Generality and Particularity

Because of the Internet scde that Revere aldresses, Revere nodes are inevitably
heterogeneous. It is unredistic to assume that they enforce aunform seaurity scheme
with the same parameters and pdicies. Nonetheless these Revere nodes must till be
able to communicae, and communicate seaurely. This requires Revere to be designed in
a sufficiently general way to acommodate such heterogeneity. On the other hand, the
particularity of every Revere node cdls for the caability of easily taloring seaurity
enforcement to locd needs.

The peea-to-pea seaurity scheme negotiation allows two arbitrary Revere nodes to
chedk their compatibility before moperating on RBone operations, addressng the need to

be general. The implementation d pluggable seaurity boxes suppats extensible seaurity
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architedure and allows edal seaurity enforcements to be eaily added o removed,
addressng the nee to be spedafic.

Moreover, such generality applies to ather distributed systems that have similar
seaurity requirements. Many Internet applicaions neal to address the problem of
enabling seaure ommunicaion between machines that are distributed among diff erent
administrative domains with dfferent seaurity policies and schemes. To doso, they nead

cgpabiliti es smilar to that provided by Revere.

54 Attacksand Countermeasures

Attadkers can attempt to bregk into an RBone or rely on aher resources to subvert
Revere. This sdion describes posdble atadks and the countermeasures employed by
Revere. We divide the dtads into two categories. (1) attadks on the dissemination

procedure, and (2) attacks on RBone formation and maintenance.

5.4.1 Attackson Disemination Procedure
5.4.1.1 Suppessng, misdireding, a tampering with seaurity updaes

Uponthe recapt of a new seaurity update, a mmpromised parent node on an RBone
may drop a misdired the seaurity update, instead o forwarding it to its children. To
address this, Revere alopts a reduncancy medhanism: every node can chocse to have
multiple parents forward seaurity updates. As discussed in Chapter 3, Revere tries to
ensure that a node choases parents with dgoint dissemination paths, thus reducing the
impad of compromised noces.

A compromised parent may also tamper with seaurity updates. Although a node can
ascetain that a receved seaurity update has been corrupted by verifying the signature
caried in the update, and thus not be decaved into acceting the update, the node will

still miss an authentic copy of the seaurity update. Redundancy is again the solution.



The difference here is that ead node must be ale to verify whether a receved seaurity
update is authentic. Asdiscussed in Sedion 5.2, every noce can use the pulic key of the
dissmination center to verify the signature of every recaved seaurity update.

Moreover, with either case @owe, if a node did na recave an authentic copy of a
seaurity update from one parent (but it did from other parents), the node will regard this
parent as problematic and remove it, and begin to seach for anew one.

Note that ead Revere node can spedfy its own pdicy for fending off the dtacks
described above; for example, it can spedfy the redundancy level of the in-bound g@ths.
Through bult-in redundancy, we hope there can be at least one path bringing timely
authentic seaurity updates to a Revere node, even when a varying number of Revere
nodes have been subverted. (If every Revere node choaoses only one parent, an RBone
will beacome atreerooted at a dissemination center.)
5.4.1.2 Replayingseaurity updaes

As discussd ealier in Sedion 5.2.6 replay attadks must be prevented, and Revere's
dudicae deding capability achieves this goal by droppng replayed seaurity updates.
5.4.1.3 Compromising the private keyof a dssemination center

If the private key of a dissemination center is compromised, it is disastrous in that an
attadker can nav disseeminate malicious information unayr the mask of authentic seaurity
updates. Strong cryptography shoud be used, and the key of a dissemination center must
be proteded very well. In the event that the key does become @mpromised, we have
propcsed methods to deted the impersonation, to invalidate the compromised key and

then distribute anew key (seeSedion5.2.4).
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5.4.1.4 Breakinginto arepaository server

A repository server keegps old seaurity updates. Two uncesirable things can happen if
a nock tries to pul missed seaurity updates from a compromised repository server: the
noce recaeves a tampered seaurity update, or the node receves an incomplete list of
missed seaurity updates. In the former case, since dl seaurity updates carry the signature
of the dissemination center, puling nodes will deted the tampering when trying to verify
the signature. In the latter case, a node pulls updates from one repository first, then
verifies completenessby consulting one or more other repasitories. The only information
needed is the sequence numbers of the missed seaurity updates. For example, after
retrieving missed updites with sequence numbers 10to 15from the first repository, if the
sendrepository reports that it has saurity updates with sequence numbersupto 17,the
noce can then try to pul seaurity upcete 16 and 17from the second repaository. In case
that the second repository server was lying, the node will deted this by verifying the

authenticity of seaurity upcetes.

5.4.2 Attackson RBone Formation and Maintenance
5.4.2.1 Attacking seaurity scheme negatiation

During seaurity scheme negotiation, a ompromised Revere node may try to trick the
other side (the benign side) into using a wedker scheme to verify messages from the
compromised noce. Revere prevents this problem. As dhown in Figure 5.6, whether the
compromised nock is the initiator or nat, it must use one of the schemes alrealy spedfied

by the other side to authenticate itself and sign its resporse.

5.4.2.2 Impersonaing andher node
An attacker can try to impersonate another Revere node and send forged messages for

joining or maintaining an RBone. Revere dlows eat nock to use its preferred seaurity
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box to chedk incoming messages. For example, when using the seaurity box described in
Sedion 5.3.5 every message is sgned by the sender, whose pullic key can be
authenticated by querying the cetificae hierarchy. The redpient can thereby ensure that

the message isindeed from the sender as labell ed in the message.

5.4.2.3 Replaying RBone messages

An attadker can also try to replay previous RBone control messages to fod a Revere
noce. As a standard technique to prevent this, a sender can include arandam number
preset by the redpient inside the message, and sign the whole message. As down in
Figure 5.9, if attadker a eavesdrops on a message from y to x and replays it, X can deted
that the message, which carries the same randam number r as a previously receved ore,

isareplayed message.

Fig 5.9 Replay attadk prevention wsing arandam number

5.4.3 Compromising Seaurity Update Secregy

In general, Revere does not hande this problem. Its free subscription paradigm
implies that disseminated seaurity updates are open to the puldic. For instance, when
disseminating the signature of a newly discovered virus, ore would like to see & many
madhines as possble ohtain the seaurity updates regarding the new virus.

On the other hand, we can trea this as a semndary goa. With this in mind,
preventing the le&kage of a seaurity update is chalenging due to the scdability

constraints of Revere. If a different key must be used for sending seaurity updates to
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eat Revere node from a disemination source the dissemination source has to keep all
the pulic keys of ead Revere nodg; this is not scadable. If a shared key is used, then
joining and leaving the Revere system must be handlied in a highly seaure fashion, so that
eat new member can be trusted, and ead previous member canna re-gain the seaurity

updates disseminated after it |eft Revere.

5.5 Open Issues
5.5.1 Seaurely Monitoring Disemination Progress

One open question is how Revere seaurely monitors the progress of dissemination.
So far there is no feedbadk medhanism designed in Revere, partly becaise of the
scdability concerns when handing feedbad from millions of Revere nodes, bu mostly
because of the difficulty in seauring afeadbad medanism if there was onre.

In the following paragraphs we look at two dfferent concevable feedbadk
medchanisms. randam feedbadk sampling and aggregated feedbadk colleding. We will
seethat both addressthe scdability issue well, but still faceserious saurity chall enges.

The randam feedbadk sampling method randamly chooses a number of Revere nodes,
and chedks the set of recaved seaurity updetes for ead of them. Given that the canter
has norecord of all current Revere nodes in an RBone (except its own dredly conneded
children), the sampling method hes to rely on every Revere node to proadively and
randamly eled itself (suppasing every node uses a probability, say 0.01), and then report
to the center. The canter, based onthe sets of recaved seaurity updates from al reporting
Revere nodes, deduces the progress of diseemination. Unfortunately, the disseemination
center has no ideawhether a reporting noce is authentic or not. If every corrupted node
in an RBone reports to the center that it has recaved a complete set of seaurity updates,

while only a very small percentage of uncorrupted noces report their status, the center
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can befoded into believing that the dissemination has been going well. The center might
require every report to be signed (using pullic key cryptography for example); even if the
sender authenticity of a feedbadk message is trusted, this gill does not necessarily
guaranteethat the content of the message is trustworthy.

The agregated feedbadk colleding method requires every Revere node to provide
feedbadk regarding a spedfic seaurity update. Every Revere node waits for reports from
al of its children (with atimer set), aggregates the reports into ore report, and sends to
every parent. The report contains a list of readed descendents (those that reported
recaving the seaurity update), and a list of unreaded descendents (those that did na
report before timing out). Through the aggregation d multiple reports into ore report,
those repeaed entries will be removed, and a node that appeaed in bah lists will be
removed from the list of unreadied nodes. With luck, the dissemination center will
finaly recave areport it can use to chedk the progress of dissemination. This method
also faces eaurity isaies. A corrupted Revere node may report al its descendents as
having recaved the seaurity update, even if it has not forwarded an authentic copy to any
of them. Asaresult, if a Revere node happens to be isolated by corrupted Revere nodes,
the faa that it has not receved the seaurity update will not be reported to the

dissmination center at all.

5.5.2 RBonelntrusion Detedion and Reaction

As discussd ealier, Revere has been designed to be robust against various attadks as
they occur. On the other hand, it is gill a difficult problem for Revere to globally
monitor the hedth o an RBone. In ather words, a distributed intrusion detedion system
for Revere is an open guestion. The open-membership principle of Revere makes this

more call enging—a compromised nock can easily join an RBone @ long asit can attach
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itself somewhere. Although Revere has been designed to be resilient to interruption
threds and aher attadks, it would still be very useful if Revere could identify those
compromised nodes as ealy as possble, instead of waiting until attadks are launched.
Moreover, after a Revere nock is identified as unreliable by other Revere nodes (for
example, a Revere node may deted that one of its parents does not cooperate in
forwarding seaurity updates), how can the corruption d the node be seaurely and reliably

reported, and hav can al the other Revere nodes be derted?

5.5.3 Denial-of-Service Attack

Denial-of-service (DOS) attadks are dways particularly challenging. Similar to DOS
attadks launched on web servers [CERT 2000, attackers can attempt to flood a
dissmination center to stop its normal diseemination operation. Revere muld also face
ancther type of DOS attack, ore caused by infinite join. An attadker could try to corrupt
a cetain number of nodes first, and then let those nodes continuowsly try to become
children of every uncorrupted noce through the join procedure. If successul, all those
benign nodes may never have enough spaceto accet new children; new nodes will
bemme dildren o the crrupted nodes and will be unable to recave aithentic seaurity

updates. Studies addressed in Sedion 5.5.2may prove useful for solving this problem.

56 Conclusions

The seaurity of a distributed system has always been challenging. Revere can be
regarded as a distributed system that consists of Revere nodes over the entire Internet.
The large scde, the node heterogeneity, and the various forms of attadks all pose
challenges to seauring Revere. Although there ae still open isaues, such as earely
monitoring dissemination progress RBone intrusion detedion and readion, and cenial-

of-service dtad prevention, the seaurity of Revereisfully addressed in this chapter.
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The seaurity of Revere is divided into two aspeds. seauring the dissemination
process and seauring the RBone structure.  As discussed in this chapter, the seaurity of
dissemination process concerns the integrity, authenticity and avail ability of seaurity
updates. Attads to courter along this line include suppressng, misdireding, replaying,
or tampering with seaurity updates, bresking into repository servers, or even corrupting a
dissmination center. The signing of seaurity updates using pulic key cryptography is
used to address this, combined with mechanisms for deteding center impersonation,
invalidating corrupted keys, switching to new keys, and so on. Also, the design of
Revere dready helps prevent the replay attadk (by cheding dupicae seaurity updates
during diseemination) and interruption threas (by buil ding redundancy into RBones).

Seauring the RBone structure is challenging, as an RBone wnsists of large-scde
heterogeneous nodes, ead enforcing different seaurity schemes. A peea-to-pea seaurity
scheme negotiation protocol was proposed in this chapter, allowing two arbitrary nodes
to seaurely communicae with ead ather. Moreover, the seaurity box correspondng to a
spedfic seaurity scheme can also be eaily plugged in o undugged, as exemplified in the

Kerberos-based seaurity box and certificate authority hierarchy-based seaurity box.
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CHAPTER 6

Red Measurement Under Virtual Topdogy

Revere provides a service for diseminating seaurity upcetes at Internet scde. To
understand hov effedive Revere is in providing this srvice the daraderistics of the
dissemination must be evaluated. Thisis a aiticd step before widely deploying Revere
over the Internet.

Among various parameters, the speed of dissemination describes the basic behavior
of Revere and must be measured. Furthermore, we must measure the quality of
dissemination in order to understand the resiliency of the Revere infrastructure; Revere
performancein the faceof broken nodesis particular interesting.

In addition to the diseemination d seaurity updates, another major Revere adivity is
RBone formation and maintenance As discussed in Chapter 3, an RBone is gradually
formed by a series of join procedures, which are dso employed when a node nedls to
adjust its position duing RBone maintenance. As a result, performance data regarding
the join procedure is also key to the assesament of Revere.

The difficulty arises becaise Revere is designed for Internet-scde deployment.
Redistic measurement of large-scde distributed systems poses unique dallenges.
Empiricd measurements can cgpture the true behavior of ared system, bu this approac
is only feasible when the system is snall in scde. Simulation is more scdable, bu
withou running red software, it is difficult for simulation todls to capture dl redistic
effeds. We aoped an “overloading” approach to address this difficulty when

measuring Revere.
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In this chapter, we will first discusswhat metrics to use to evaluate Revere (Sedion
6.1); then we will introduce the “overloading” approach used for measuring Revere
(Sedion 6.2), which we believe dso applies to ather distributed systems. Sedion 6.3 is
abou the procedure of the measurement, where both measurement configurations and
measurement steps will be described. Results and their analysis are mvered in Sedion
6.4, where we discuss the results of the join procedure, disemination speed, and
dissmination resili ency, etc. Sedion 6.5is on open iswues, where we discussthose open
problems related to the overloading approad, performancefor larger-scde RBones, red-
world chall enges, and measurement of an RBone's physicd-layer property. We mnclude

the dhapter in Sedion 6.6.

6.1 Maetrics
The following metrics are important for evaluating Revere:

1. Dissemination bandwidth. The bandwidth spent to disseminate seaurity updates.
The dissmination kandwidth, undr norma condtions, is easy to
evaluate. In a single round d dissmination, the inbound dsemination
bandwidth per Revere node is the size of the seaurity update multiplied by
the number of parents, and the outbound dssemination bandwidth per
Revere nocke is the size of the seaurity update multiplied by the number of

children.

Under abnamal condtions, the disemination bandwidth cost can be
arbitrary. For instance, a subverted Revere node might try to flood its
children with replayed seaurity updates and thereby use up al the
bandwidth avail able.
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2. Maintenance bandwidth. The bandwidth spent to maintain an RBone.
The maintenance bandwidth, under norma condtions, is aso easy to
evaluate. The RBone maintenance bandwidth per Revere noce is mainly
the size of heatbea messages during eat heatbed interval.
Similarly, under abnamal condtions, a subverted Revere node may
arbitrarily initi ate Revere messages related to maintenance

3. Join latency. The time that a new node spends before fully beacoming a Revere

participant.

More acarately, this is the time that a node spends to find the neeled
number of satisfactory parents. Note that even if the node has arealy
attached to a cetain number of parents as required, the join procedure may
still not be done—some parents may have to be replaced with better
quality parents (or not replaceal if better parents canna be locaed after
certain runs).

4. Join bandwidth. The bandwidth spent to join Revere.
Given that the messages of an RBone, including those related to join
procedure, are dl internal to the RBone itself, the total amount of
outboundjoin bandwidth is the same & that of inboundjoin bandwidth.

5. Dissemination latency. The latency for a seaurity update to reach an individual

Revere node.

Both average aad maximum latencies in reading a node shoud be
asesxd. Also relevant is the time needed to read a cetain percentage of
al Revere nodes, including the spedal case of reading all Revere nodes

(under normal conditions).



6. RBone resiliency. The percentage of working Revere nodes that still recave

seaurity updates, given that a certain number of nodes are broken.

Because the first two metrics (dissemination bandwidth and maintenance bandwidth)
are eay to evauate, we will focus on the measurement of the remaining four metrics in

this chapter.

6.2 Overloading Approach To Measuring Large-Scale Distributed
Systems

6.2.1 Introduction

Conventional methods for measuring the performance of a distributed system face a
scdability vs. redism dilemma. Redistic measurements of large-scde distributed
systems are particularly challenging. While empiricd measurements can capture the true
behavior of ared system, the st of gaining accessto, configuring, maintaining, and
obtaining results from more than a few hunded nodes is typicdly prohibitive.
Simulation is a more scdable gproadch, bu it is difficult for a simulation to cgpture dl
aspeds of ared system, such as hidden costs and subtle timing effeds. In addition, the
simulated version d a software system is typicdly different from the software that would
adually be deployed. The fad that simulationis usually expensive to develop bu slow to
run also makes a simulation-based measurement approach less favorable. In addition,
simulation results must be validated against red systems.

We explore adifferent approach to measuring large-scde distributed systems in this
chapter—the “overloading” approad. It suppats multiple instances of a software system

exeauting on the same physicd node. In this approach, ead individua noce in a
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distributed system runs the red code, and afairly large number of nodes may be deployed
onaphysicd noce.

In the purely red world, a physicd madine typicdly maps to ore individual noce of
adistributed system. Viathis overloading technique, however, a physicd macdine can be
overloaded with many nodes of a distributed system, where eat logicd node still runs
the red code and communicaes with other logicd nodes, just as it would in the red
world. Large scde can then be adieved using multiple physicd madines, each
suppating many logicd nodes.

In addition to providing higher-scde measurement, the overloading approac is also
advantageous in that many metrics will not be dfeded, even if a physicd node is fully
overloaded. For example, storage st and bandwidth cost will be the same no matter
how many individual nodes of adistributed system are running on asingle physicd noce.
However, ore fundamental isuue aises—how to run a distributed system with this
overloading technique while still adhieving acairate measurement results. In particular,
messages between the nodes will now follow different transmisson paths than would be
taken in the purely red world. For example, two logicd nodes that are ollocated onthe
same physicd node will how communicae withou crossng a wire. Also, by running
multiple logicd nodes on top d a physicd node, resource @mpetition between these
logicd nodes can slow down the processng time of various tasks, leading to inacarate
latency datathat is higher than it should be.

We aldress these and aher iswues that arise from overloading in the following
sedions. Sedion 6.2.2 describes how a large-scde distributed system can run with a
limited number of physicd madhines, using a virtual topdogy to asdgn logicd nodesto a
smaller number of physicd madines and to model the communicaion between those

nodes. In Sedion 6.2.3 we discuss measurement using this overloading approacd,
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including techniques that compensate for resource sharing between logicd nodes on

physicd nodes.

6.2.2 Running Atop a Virtual Topology

The nodes of any distributed system must exist on top d some topdogy. When
overloaded ontop d physicd madines, however, the nodes of a distributed system will
have adifferent topdogy than they would in the red world. Such atopdogy, which may
consist of a single machine, will nat, by itself, refled the dharaderistics of the topdogy
of the distributed system.

A virtual topdogy can be employed to solve this problem. Each nock of a particular
distributed system can be viewed as attached to a particular location in avirtual topdogy.
Such a node ommunicates through this virtual topdogy to ancther node, which is
attached to the same virtual topdogy. A virtual topdogy can be generated using one of
many existing topdogy generation toadls, such as GT-ITM [Calvert et al. 1997, Tiers
[Doar 1994, Inet [Jin et al. 200, or Brite [Medina et al. 200Q, depending on the
charaderistics of the distributed system.

With the notion d a virtual topdogy, a distributed system can be aeaed as foll ows.
After generating a virtual topdogy, trea ead logicd node in the virtual topdogy as an
individual noce of the distributed system. For each virtual node, run the software of the
distributed system ontop d a physicd madine, where multi ple instances of the software
program may be invoked onthe same madine. As a result, the performance of this
distributed system can be measured.

While it may be posshble to map all nodes of a virtual topdogy to a single physicd
madchine, multi ple machines will typicdly be required for larger scdability, ead assgned

a subset of nodes from the common \rtual topdogy. The node asdgnment can be
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fulfilled by contading a virtual topdogy server that keeps tradk of which nodes are
arealy assgned and which are still outstanding.

Figure 6.1 shows a virtual topdogy in which a distributed application runs with 20
noces that communicae acoss transit-domain routers and stub-domain routers. As
shown in the figure, these 20 nodes are asdgned to threephysicd madines.

It is important to ensure that the red software still functions in this new mode of
exeattion. One side dfea of overloading is the identificaion d ead nock in the
distributed system. In ared system, the aldressof the underlying physicd madine can
be used to identify a logicd node. Here, since eab plysicd noce is overloaded with
multiple logicd nodes, logicd nodes can no longer be identified using the madhine
address To solve this, eath noct now has to be identified using the madcine aldress

couped with some unique number, such as a TCP port number boundto the logicd node

&

OO
©0

@O0

Revere nodes assgned to machine 1
Revere nodes assgned to machine 2
Revere nodes assgned to machine 3
stub-domain router

transit-domain router

0000

Em®OO

Fig6.1 A virtual topdogy with 20Revere nodes
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(which is unique since two logicd nodes will na be dlowed to use the same port

number).

6.2.3 Measuring Atop a Virtual Topology

Since overloading typicadly maps svera logicd nodes onto a single physica nodk,
the logicd nodes must share the resources of the physica node. This resource sharing
can, bu does nat necessarily, affed the performance of individual logicd nodes.

Many results obtained in a virtual topdogy will nat differ from those obtained while
running atop a red topdogy with the same structure. For example, whether the
underlying topdogy is red or virtual, the storage st or bandwidth cost incurred at an
individual noce of a distributed system will not typicdly be dfeded. As ancther
example, the hop court of traveling from one node to ancther in a distributed system will
not be dfeded either, when runnng ontop d avirtual topdogy instead of ared one.

Also, the dharaderistics of the communicaion paths between any two nodes of a
distributed system can be eaily determined based on the spedficaion d a virtual
topdogy. For instance, if the length of every link in a virtual topdogy is known, the
shortest path between any two nodes on the virtual topdogy can be cdculated using
Dijkstra’ s algorithm [Dijkstra 1959, instead of being measured.

However, logicd nodes on the same physicd node must share the processor and
memory. Thus, the procesang time of ead individual node performing a particular task
will be dfeded. Due to the overloading of the underlying physicd macdine, multiple
nodes, if runnng concurrently, will cause resource ontention and result in longer
processng times.

This problem can be solved in three ways. The first approac is to remove the

resource ontention, thus causing the measured processng time on an overloaded noce to
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be the same asthered value. If only asingle logicd node & atimeis allowed to proceed
with full usage of system resources, the time spent by this node on a task shoud incur
approximately the same amount of time & it would in the red world. However, this
approadh may require alogicd node to wait for accessto the resources to perform a
particular task. If latency isimportant, this approach will not be gpropriate.

The second approach is to cdculate aslowdown fador and apply that to the measured
processng latency. A slowdown fador can be estimated by overloading with a diff erent
number of nodes on a physicd macine and comparing the impads. For example, if a
task consumes ty seconds when n nodes of a distributed system are evenly loaded into n
physicd madines, bu t seconds if all n nodes are overloaded on ore physicd madine,
we then can oltain a slowdown fador t/ty for physicd nodes overloaded by a fador of n.
This method works well when the processng time slows down linealy; otherwise, it
must be caefully applied. To gain amore acarate understanding of the slowdown fador
of adistributed system, measurement of overloading fadors shoud be performed.

The third approad, wsing a divide-and-conquer method, is to dvide the task being
measured into severa digoint subtasks that are more eaily measured. Here, severa
condtions must be met: 1) every subtask must be independent of the others, 2) subtasks
must not overlap in terms of processng latency, and 3 the sum of all subtasks must be
the total processng latency. For example, to evaluate the delay of forwarding a padet
from sourceto destination, literally measuring the interval from sending time to recaving
time is inacarate when macdines are overloaded. On the other hand, by dividing the
whole delay into transmisson delay aong the wire, processng delay at ead router, and
gueuing delay at ead router, ead comporent can be measured separately. These
subtasks are usually measured in a nonroverloading environment, then applied to the full

system.
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The first approach usualy requires a new resource-control mechanism to coordinate
the usage of system resources. Thus, this approach will be eaier to implement for some
distributed systems than it is for others. The third approach is preferable to the second if
a task can be eaily divided into several subtasks, and ead subtask can be eaily and
acarately measured. It may also be possble to combine these gpproaches. For example,
a subtask may be measured by applying a @mrrespondng slowdown fador. In the next

sedion,we will apply thefirst and the third approach in measuring Revere.

6.3 Measurement Procedure
Rather than first deploying Revere into the Internet, Revere's performance was
measured using the overloading tedhnique described above. In this ®dion we describe

our measurement procedure and justify our measurement method.

6.3.1 Configurations

To owerload dfferent numbers of Revere nodes onto physicd nodes, we used a
testbed that consists of ten madines. Every madine was equipped with an AMD
Thunderbird 1.333GHz CPU, 1.5GB SDRAM, and a 100 Mbps Ethernet interface

Every virtual topdogy of Revere nodes was creaed as follows. We first used GT-
ITM [Calvert et al. 1997 to generate arouter-level topdogy, then attached certain
numbers of Revere nodes (hosts) to eat stub-domain router on that topdogy, and finally
had a topdogy server assgn every testbed machine the same number of Revere nodes.
Transit-stub routers themselves are not Revere nodes, they are merely used in
communicaion latency evaluation (as discussd later).

Throughou al measurements, the following configurations were used: 1) every
Revere node must have two parents and no more than ten children (except that the

dissmination center can have up to 30 children), 2) UDP is used for seaurity update
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forwarding from parent to child, and 3 both seaurity updates and control messages
between Revere nodes are proteded using RSA-based public key cryptography with a
threelevel cetificae server hierarchy; in particular, the signing algorithm is SHA-

1/RSA/PKCSH1.

6.3.2 Phase-Based Measurement

We atificialy divided the lifetime of Revere into three phases. the join phase, the
dissemination phase, and the resiliency test phase. In red use, these three phases would
overlap, bu measuring them separately captures most costs appropriately. During the
join phase, nodes squentialy join Revere and gradually form an RBone. After al nodes
have joined, the system advances into the disemination phase, duing which the
dissmination center sends ity updates through the RBone to individual nodes for
ten rounds. Finaly, in the resiliency test phase, disemination is tested in the face of
broken nods. We will measure join performance dssemination latency, and
dissemination resili ency in their respedive phases.
6.3.2.1 Join phase

During the join phese, join latency will be atificially increesed if every physicd
machine is overloaded with severa Revere nodes, bu join bandwidth shoud be
unaffeded. We evaluated the join performance for one particular scenario where dl the
nodes join Revere sequentialy. Correspondng to the first approach dscussed in Sedion
6.2.3 we gplied a token-controlled medanism by which a Revere node can only begin
running after it is granted a token by a token server, and it must return the token after it
joins Revere. By enforcing only one token for al Revere nodes on all physicd madines,
only one noce will be in the processof the join procedure & any time during the joining

phase. Other nodes may be temporarily adivated when requested to interad with the
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joining node. The measured results of join latency and join bandwidth shoud be
approximately the same & the red cost of a single noce joining. (In a red Revere
system, there will very likely be simultaneous joins, paentialy causing red contention.
Measuring the join cost in this stuationis under investigation.)

When a new noce tries to join Revere, it will first try a threeway-handshake
procedure with locad Revere nodes. If there ae no Revere nodes locdly, or if the three
way-handshake with those nodes fail s, the node then contads the dissemination center by
also running the threeway-handshake procedure. If this fails again, the ceater will
recommend ore of its children as a new contad for the new node, and the new node will
start ancther round d the threeway-handshake procedure. This procedure repeds

reaursively until the new node finds two satisfadory parents.

6.3.2.2 Disemination phae

During the dissmination plese, ead nock behaves in a store-and-forward manner.
However, becaise many Revere nodes are running on a physicd macdine, smply
measuring the interval between sending a seaurity update and receving it canna reflect
the true disemination latency. Given the atificially heavy load onthe physicd madine,
bath the processng delay and the kernel-spacecrossng delay will be lengthened. We
solved this problem using the divide-and-conguer method described in Sedion 6.2.3 In
this phase, we aaumed no noe or link falure, no malicious subversion efforts, and no
any other abnamal condtions. Clealy, such assumptions are only true in a
measurement environment. In the following we describe the three steps used to evauate

dissemination latency:
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Step 1: Dividethe seaurity update diseemination latency

In this gep, the latency of disseminating a seaurity upcete is divided into three parts:
the seaurity update processng delay at every hop (including possble queuing delay), the
kernel-spacecrossng delay at every hop, and the transmisson ddlay of crossng the
virtual topdogy (Figure 6.2). Such adivision satisfies the condtions of using the divide-
and-conquer method as discus®d in Sedion 6.2.3 Processng latency, communication
latency and kernel-spacecrossng latency are three independent non-overlapping parts,
and their combination fully coversthe duration d a seaurity update dissemination.

Note that ahop here, instead of being a router-to-router hop,is a hopfrom one Revere
nock to anather.
Step 2: Evaluate every individual part of dissemination latency

In this gep, we evaluated eat part separately. The true processng delay per hop can
be measured in a separate experiment withou overloading a physicd noce. In the same
manner, the kernel-spacecrossng delay per hop can also be measured. And the

communicaion latency incurred in every hop can be cdculated using the Dijkstra

Local processing time

(measured)
Kernel-crossing time
(measured)
Previous hop /m
=
|

Per-hop transmission latency
(parameter)

Fig 6.2 Compasition d seaurity update dissemination latency



algorithm over the virtual topdogy graph undrneah (assuming no congestion dcelay on
links).

It is necessary to measure both processng delay and kernel-spacecrossng delay in a
clean, nonoverloaded environment. Figure 6.3 shows that when a testbed madine is
heavily overloaded, every logicd Revere node will i ncur prolonged locd processng time
and kernel-spacecrossng time; neither will be acarate enowgh to refled a redistic
value. We foundthat the processng delay at a Revere node will vary with the order of
forwarding seaurity updetes (we will report the measured datain Sedion 6.4.2.9.

Step 3: Measure hop counts (and other information) in full systemsand sum

In this gep, we alded all disemination latency comporents. Note that with a given
RBone structure, the hops that a seaurity update travels to read a noce ae invariant, no
matter how many nodes are simultaneously runnng on the same physicd node. By
summing up the processng delay at every hop and kernel-spacecrossng delay at every
hop, and adding the communication latency, we can oltain a very good approximation o

the dissemination latency in large-scde scenarios.

A virtual Revere node
o o overloaded ontop d a
physicd machine

User space \ JAVA
Kernel |
ernel space = x!
(O i i
| |

Fig 6.3 Prolonged dsemination latency in an overloaded environment

13¢€



In the full system, there ae two values to measure in order to determine the
dissmination latency of every seaurity update: the hop court that the update incurs when
reading a Revere node, and the forwarding order of this update & ead hop(i.e. eah
intermediate Revere node). The hop court is used to determine the total kernel-space
crossng latency, which is the kernel-spacecrossng latency per hop (to be discussed in
Sedion 6.4.2.3 multiplied by the hop court. The forwarding order is used to determine
the procesdng latency at eat hop (to be discused in Sedion 6.4.2.9. The tota
communicaion latency is cdculated by summing up the cmmunicaion latency in every
hop.
6.3.2.3 Resiliencytest phase

During the resiliency test phase, ead noce on the overlay network is assgned a
uniform probability of failure to test how many nodes are till readiable during the
dissemination procedure. The divide-and-conquer method is again used to evaluate the
latency of disseminating seaurity updates toward the remaining nodes. The disemination
latency is divided, as before, into three parts, and measurement is performed as in the
dissmination plese.

RBone maintenanceis turned off on pupose during this phase so that we can analyze
the resiliency of a static RBone. |f maintenance were turned on, every Revere node
would adjust its parents if one or more parents were & deteded broken; assuming the
maintenance medhanism works well, aimost every Revere node would then still be ale
to recave seaurity updates, and even those that were not receved due to a maintenance

lag can be retrieved using a pulli ng procedure.
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6.4 Resultsand Analysis
6.4.1 Join Latency and Bandwidth

Figure 6.4 shows the outbound landwidth that ead noce incurs during the join phese,
for various sizes of Revere networks. This bandwidth cost includes the messages that a
node sends when joining the overlay network and the messages snt in resporse to the
join requests of other nodes.

In this measurement, eadr nock has to find two satisfadory parents, and must go
through certain rounds of a threeway-handshake with ather existing Revere nodes. The
number of rounds increases logarithmicaly as the number of Revere nodes increases, due
to the top-down reaursive seach of those potential parents that may still have spaceto
acommodate anew child, as described in Sedion 6.3.2.1 When anew node caind find
satisfadory (efficient and resili ent) parents locdly, it will run the threeway-handshake
with the diseemination center; if the center is full, it will then begin running the three
way-handshake with ore of the dildren o the center; if that child is also full, it then goes
to ore of the dhildren of that child; this repeasreaursively. Asaresult, the dissemination
center of an RBone incurs the largest amourt of bandwidth cost, while aled node onthe
RBone probably incurs the minimal amourt of bandwidth. Because of this, Figure 6.4
shows awide variationin bandwidth cost.

Figure 6.5 shows the latency experienced by a node joining RBones of various szes.
In this experiment, ead noce completes the join procedure dter succesdully attaching
itself to two existing Revere nodes that it is stisfied with. For reasons smilar to the
logarithmic increase of outboundjoin bandwidth, the latency to locae two satisfadory

Revere nodes aso increases logarithmicdly as the number of Revere nodes in an RBone
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increases. The variation in join latency is at the level of dozens of milliseconds,
indicating that most nodes in an RBone will i ncur similar join latencies.

The wsts of bath ouboundjoin bandwidth and join latency are accetable. As the
number of Revere nodes varies from 250 to 3000, the outbound landwidth per node
during join phese varies from approximately 6 kil obytes to 14 klobyte, and a new node's
join latency varies from around 0.7semnds to 1.5 seoonds, bah besicdly following

logarithmic trends as the number of nodes grows.
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6.4.2 Disemination Spedd

Eadch seaurity updete is disseminated in a store-and-forward manner. As we
described in Sedion 6.3.2.2 we divided the dissemination latency into three parts (step
1), evaluated ead part separately (step 2), and finally combined them together in the full
system to gain the overall dissemination latency (step 3.

Step 1 daes not involve aly measurement work. Correspondng to step 2, the
evauation d eat o the threeparts is described in Sedions 6.4.2.1 6.4.2.2 and 6.4.2.3
respedively. Correspondng to step 3, we describe the evaluation d the hop count in
Sedion 6.4.2.4and report the summed resultsin Sedions6.4.25and 6.4.2.6

6.4.2.1 Communication latency

As we discus=d in Sedion 6.3.2.2 the communicdion latency can be cdculated
using the Dijkstra dgorithm over the virtual topdogy graph undrneah. With the virtual
topdogy used for measurement, to transmit a 1-kil obyte seaurity update, the router-to-
router latency is 23.9ms on average, and ranges from 1 msto 70ms.

During the measurement process when a Revere node receaves a seaurity update
from a previous hop, it will |ocae the router associated with itself and the router
asciated with the previous hop. Having knowledge of the whale virtual topdogy, the
measurement code of this Revere node can then invoke the Dijkstra dgorithm to
cdculate the shortest-path dstance between the two routers, which we a&saume is the

routing path taken to forward the seaurity update from the previous hop.

6.4.2.2 Seaurity updéae processng latency
In a separate experiment, we dso measured the latency in processng a seaurity
update. The processng of a seaurity update & a Revere noce includes dugicae dedk,

seaurity chedk, bufering into the seaurity update window, and forwarding to the dildren
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of the node. The buffering operation here dso includes a possble queuing delay. The
processng duration bkegins upon the recept of a seaurity update. However, the
processng ends at a different time for every child, depending on when a seaurity update
toward a spedfic child departs from the nock.

During the experiment of the processng delay at a Revere node, no dher Revere
nodes are mllocated onthe same testbed macdiine with the tested noce. This guarantees
that the measured processng delay is not affeded by resource @ntention from other
Revere nodes. Meanwhile, orly normal system processes are runnng on the testbed
machine. Sincein the red world every machine will run just one instance of Revere, this
will give usaredistic value of processng latency.

The eperiment shows that the processng delay of a seaurity update does naot
correlate with the total number of children at a Revere node. Instead, it varies with the
forwarding order of the update. Figure 6.6 shows that the processng delay versus the
forwarding order is linea. For the first child that receves a seaurity update from a
parent, Figure 6.6 shows that the processng delay is abou 1 ms, whereas it becomes

nealy 3 msin the g/es of the tenth child that receves the same updte.

y =0.182x + 0.936

processing delay (ms)

0 1 2 3 4 5 6 7 8 9 10 11

the order of forwarding a security update

Fig 6.6 Seaurity update processng delay at a Revere node
(confidencelevel for latency: 95%)
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6.4.2.3 Kernel-space-crossng latency

The kernel-spacecrossng delay is the time between sending a message from Revere
a applicaion level and the departure of the message from the node, plus the time
between the recapt of the same message & a redpient node and the delivery of the
message to Revere & applicaion level. In another words, it is the latency from the time
that a sender sends a message to the time that a redpient recaves the message, bu
excluding the time spent on the wire, where both the sending and recaving operations
happen inside Revere & the gplicationlevel.

To measure the kernel-spacecrossng latency, we ll ocated two Revere nodes onthe
same physicd madine, and measured the interval from the time of sending a seaurity
update by one Revere nock to the time of receving a seaurity update by ancther. Since
no wire latency is incurred for messge transmisson ketween the two coll ocated nodes,
this interval is used as the estimated value of kernel-spacecrossng latency. Figure 6.7
shows the measured results (the spikes are caised by Java s garbage wlledion). With a
95% confidenceinterval, kernel-spacecrossng latency in our measurement configuration

iS674+73 microseamnds.
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Fig 6.7 Kerne-spacecrossng latency
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6.4.2.4 Hopcoun

We measured bah the average and maximum hop court for diseminating seaurity
updates (Figure 6.8). Asthe number of total Revere nodes varies from 250to 3,000,the
average hopcourt varies from 2 to 4,and the maximum hopcourt variesfrom 6to 11.

Is such an average hop court value areasonably good result? In those RBones
measured, every Revere node had two parents. If instead, every node had just one parent,
every RBone would become atreestructure, rooted at a dissemination center. For afully
saturated balanced tree we can easily seethat if the depth of the treeis 3 hogs, where the
root has 30 children and every nonled node has 10 children (the same @nfiguration we
used for measurements), such a tree ca acommodate 3330 (30+30*10+30*10*10)
nodes at maximum. Here, requiring every Revere node to have two parents will doulde

the space to acommodate diild nodes. Recdl that if every Revere node dso has

) -

maximum: y=1.818Lnx-3.902 .
10| R°=0.878 = m-TEom

average and maximum
hop count per node
()]
=

° average: y=0.771Lnx - 1.810
24 R?=0.852

0 500 1000 1500 2000 2500 3000
number of total Revere nodes

Fig 6.8 Average and maximum hop court of seaurity update dissemination
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constraints or preferences for having other Revere nodes as its parents, a 300Gnode
RBone with an average hop court of 4 is reasonable. This demonstrates that a Revere
noce in a 3000node RBone can stay abou just 4 hops away on average from the
dissmination center, while still meding those RBone formation requirements regarding
efficiency and resiliency. A similar analysis can be gplied to aher RBones that have
different numbers of Revere nodes.

Although idedly an RBone shoud have every nonled Revere noce fully saturated
with child nodes, and ke kept balanced (just like afully saturated, belanced tree), the
maximum hop courts depicted in Figure 6.8 show that some Revere nodes could be &
far as 6 to 11 hop away from a disemination center—still considered a reasonable
distance

The best-fit trendine for a maximum hop court can easily be seen to be alogarithmic
trend as the total number of nodes varies. The best-fit trendline for an average hop court
is also besicdly logarithmic. Here, the R? values for bath trendines may not appea as
good as one would exped; this is not a problem becaise ahop count can ony be an
integer, and this prevents the red value from being very close to the trendline.

An analysis aso shows that the trendine shoud be logarithmic. Every node murts
the latency for receving the first authentic copy of a seaurity update & the dissemination
latency for itself. Since measurement in the dissemination phase does not assume ay
faillure or seaurity attadk, every node must have used its fastest path to recave the first
authentic copy of every seaurity updete. Therefore, it is the latency of the fastest path of
every nock that is measured. All the fastest paths in an RBone ae rooted at the RBone's
dissemination center—together they form a tree structure. The average hop count we

measured shoud thus be the same & the arerage hop court of the tree Given that the



latter follows a logarithmic trend, we can believe that the average hop count of Revere

nodes in an RBone dso foll ows the same |logarithmic trend.

6.4.2.5 Disemination latency

Based on the results in Sedions 6.4.2.1through 6.4.2.4 we then can derive the
dissmination latency for every seaurity upcdete. Based onthe measured result of kernel-
gpacecrossng latency per hop (from Sedion 6.4.2.3, multiplied by the hop count
measured for eat seaurity update, we obtained the total kernel-spacecrossng latency
for the update. Also, based onthe measured result of seaurity update processng latency
from Sedion 6.4.2.2 combined with the forwarding order of a seaurity update recorded
a every hop, we obtained the total processng latency for the update. Recdl that the
communicaion latency of every seaurity update was obtained using the Dijkstra
algorithm during the measurement. Summing all three latencies together, we then
obtained the dissemination latency for every seaurity update.

Figure 6.9 shows bath the average aaxd maximum dissemination latency, which
demonstrates a very quick resporse. It shows that it takes 85 msto 300ms on average to
reat a Revere noce in an RBone that has 250 to 3,000Revere nodes. Note that the
maximum dissemination latency is aso the time used to read all the Revere nodesin an
RBone. Several outliers for maximum disemination latency can be eplained as
follows: if there is one nocke locaed remotely from the dissemination center of an RBone
and this node incurs the maximum dissemination latency, no matter how fast the rest of
the Revere nodes receve seaurity updates, the maximum latency will be based solely on
the dissemination latency of this sngle noce.

More interestingly, Figure 6.9 shows that both the average and the maximum

dissemination latency closely follow logarithmic trends. If we use these trends to predict
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Fig 6.9 Average and maximum seaurity update disemination latency
(confidencelevel for average latency: 99.9%)

the disseemination latency in an even larger scae, encouraging results can be gained. For
example, reating a Revere node in a 100-millionrnode RBone will only take
approximately 1.10 secnds on average, and the maximum dissemination latency is 3.83
semnds. Certainly, there ae many iswues to be aldressed when extrapaating both

trendlinesfor alarger scde. Wewill discussthisin Sedion 6.5, Open Issues.

6.4.2.6 Disemination coverage

It is also worthwhile to ask what latency is neaded to reat a cetain percentage of
nodes in an RBone. Or, conversely, to ask what percentage of Revere nodes are readed
a agiven time?

We obtained the diseemination latency of ead individual node and then derived the
percentage of nodes covered as the dissemination poceeals. Figure 6.10 shows the

dissmination coverage over time for a 3000nodke disemination. In this case, 100% of
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Fig 6.10Seaurity update dissemination coverage for a3000-node dissemination

the nodes are readied in a short time (lessthan 1 seaond). Figure 6.10 () shows the
coverage with a 99% confidence interval, and Figure 6.10 (b) shows the same cverage
graph bu with a paynomial trendine. The trendine suggests that as time goes by, more
Revere nodes are readed at a polynomial speed (except that the tail part does nat foll ow
closdly, as hown in Figure 6.10(b)).

Clealy, the speal o reading 100% coverage from 0% coverage is nat constant. In
particular, the disemination coverage has a long “tail” as sown in Figure 6.10.
Althouwgh at time 610 ms, 99% of nodes have dready been readied, it is not until time
950 ms that 100% of nodes are readed. If what one redly cares abou is nat necessarily
the full -coverage latency, even lower latency can be derived. We look further into this
isaue asfollows.

Based on the dissemination latency to reach every Revere noce in an RBone, we

obtained the latency for reading a cetain percentage of nodesin the RBone. Figure6.11
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Fig 6.11 The latency to read 996, 90%, and 23 of Revere nodesin an RBone
Thisisaso compared with Figure 6.9's maximum and average latency to reat Revere nodes, whose
trendlines are dso shown in thisfigure.
shows the latency for reading 99%, 90%, and 23 of Revere nodes in an RBone, where
the total number of RBone nodes varies from 250 to 3,000. Not surprisingly, al three
trendlines for the 99%, 90% and 23 coverage dosely foll ow the logarithmic trend. If we
use the trendines in Figure 6.11to predict the latencies in reading 99%, 90% or 2/3 of
the nodes in a 100-million-node RBone, it will take abou 2.246, 1.876and 1.342

semnds, respedively.

6.4.3 Disemination Resiliency

During the resiliency test phase, an RBone's resiliency was tested using different
probabiliti es that nodes would be broken. After a dissemination center broadcasts a
seaurity upckte, every Revere node, orce visited by the seaurity update, will determine

whether it shoud emulate abroken nock or a working node by asking a mommon randam
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bodean server. The random bodean server answers by comparing a newly generated
randam number r (0<r<1) with the given broken probability. Clealy, a visited working
noceis aso areated working node.

We regard the rest of the nodes that are not visited as unreached working noces.
There ae, then, totally threetypes of nodes: broken nodes, readied working nodes, and
unreadied working nodes. The former two are visited nodes during measurements, and
the ratio of broken nodkes over the total number of visited nodes shoud be gproximately
the same & the asggned broken probability.

We use the ratio of readied working nodes over the total number of working nodes to
measure the resiliency of an RBone. In this dion, we focus on 3006node RBones.
Figure 6.12 depicts the resiliency charaderistics of the same RBone reported in Figure
6.1Q the difference is that now every (visited) Revere node has a 16% probability of

being broken.
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Fig 6.12 Resili ency test for a 3000-node dissemination with a 15% node fail ure
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With the fail ure of as many as 15% of the total nodes (resulted from the 16% broken
probability of visited nodes), a high percentage (93%) of the working nodes are still able
to recave seaurity updates withou readjusting the structure of the dissemination owerlay
network. Figure 6.12(a) shows the mverage over time with 99 confidence Compared
with Figure 6.10 onthe same RBone but withou node failure, now the dissemination
latency is longer. However, this is gill a very fast resporse, particularly with a fairly
high probability of node faillure. Figure 6.12 (b) shows that the dissemination latency
matches gnoathly with a paynomial trend.

Measurement shows that the 3000node RBore is resilient to small node-broken
probabiliti es (with node-broken probability lower than 2%, 100% working nodes can till

be readed). Correspondng to four different higher failure probabiliti es, Figure 6.13

[l broken nodes
0 readed working nods
O  unreaded working noas

Fig 6.13 Resili ency test with different node broken
probability ona3000-node RBone
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shows the resili ency test results in four doughnu charts (the pulled-out dlice represents
the unreaded working nodes). This demonstrates a very resilient RBone. Recdl that in
measurement, every node has two parents; we believe even better resiliency will result if

additional parents are dl owed.

6.5 Open Issues
6.5.1 More Thoughts on the Overloading Approach

The “overloading” approach to measuring large-scde distributed systems requires
that multi ple nodes of a distributed system, if collocaed ona physicd madine, can still
perform corredly. In pradice, however, distributed systems are typicdly designed with
the presumption that a single instance of the software exeautes on ead physicd noce.
Slight modificaions to a distributed system may be necessary in order to measure it using
this approach. As we pointed ou ealier, systems that use an IP addressas a node name
will require modificaion.

Theoreticdly, it might also be posgble to buld a cwmmon framework based onthis
approad to support measurement of differing distributed applications, and a spedfic
distributed system can be measured by simply plugging it into such a framework.
Designing an interfacebetween the framework and the goplicaion keing measured then
must be caefully considered.

Anather issue is the scdability of this approadch itself. Given that multiple nodes
under this approach can contend for resources of the same physicd madiine, some
resource locking medhanism is neaded to oltain acairate results. An example of this
approad is the token mecdhanism used in measuring the join performance of Revere.

However, this technique slows down the measurement process The token-controlled
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mechanism used to measure joins in Revere, for example, required abou 100 minutes of

measurement for 3000 noas (with the configurations described in Sedion 6.3.7).

6.5.2 PerformanceUnderstanding at Larger Scale

In previous discussons (particularly Sedions 6.4.2.5and 6.4.2.9, performance d
larger scde is predicted by extrapoating a trendine. The questionis, will atrend that is
derived from results at smaller scde still apply to alarger scde? Isthere apaint that the
curve @uld suddenly change its incli nation?

More measurements at larger data points can help promote more nfidence
regarding a trend, bu since there ae dmost always values at even larger points that one
canna measure (in Internet scade), one caana measure infinitely. One dso hasto rely on

the analysis of the system behavior to understand its charaderistics at larger scade.

6.5.3 Challengesfrom the Real World

A red-world environment is aways more @mplicaed than a measurement
environment, and thus harder to measure and undrstand. Even though the measurement
of Revere used the red Revere ade, there muld still be fadors that cannat be catured in
the measurement. Some of those fadors are hidden and hard to dscover and determine,
and some of them are very difficult to manipulate due to the tremendous complexity. The
following isapartial list of those dhall enges:

First, the real world is heterogeneous. We a@3med a homogeneous stup in
measuring Revere. However, taking a snapshat of the Internet at any moment, one would
see ahighly heterogeneous composition in almost every asped (even the Internet
Protocol, regarded as the only invariant by many, is represented by both 1Pv4 and IPv6)
[Floyd et al. 200]]. From the viewpoint of Internet elements, autonamous domains are

different in that they enforce different routing and seaurity pdlicies, routers are
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heterogeneous in that they run dfferent routing protocols with dff erent capabiliti es; links
are heterogeneous in that they have different cgoadty and quality; haosts are different in
that they have different performance on top d different platforms with dfferent seaurity
and mohility constraints.

The heterogeneity can also be exemplified by two common padices over the
Internet: routing and TCP. Routing is often asymmetric. According to [Paxson 1996, a
path through the Internet in 1995 vsited dfferent citiesin ead dredion 50% of the time
and dfferent autonamous g/stems 30% of the time. TCP, while being widely used, has
more than 400 different implementations and wersions as identified uwsing the
“fingerprinting” tedhnique (a technique that compares protocol behavior in resporse to
different inpu) [Fyodar 2007.

Seowond, the real world is always moving. The Internet has been drasticdly
changing since its inception, including changes to its various elements, protocols, and
traffic. We plotted Figure 6.14 acwrding to data reported by netsizer.com as of May 13,

2002. Interestingly, we can observe that, beginning in January 2002, the increase to
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spead switches from linea to logarithmic. While it is interesting to watch this growth
trend, it indicaes that predicting the growth o the Internet is clealy not an easy task.
For example, anyone trying to predict Internet growth in the year 2001 could have eaily
made abig mistake in predicting growth for the yea 2002,if he had based his prediction
onalinea growth rate.

Treffic is dso nondeterministic and hghly dynamic. For instance [Floyd et al.
2007 reports that USENET traffic has been exporentially increasing since 1984.
Experiments with FTP traffic, web traffic, etc,, aso show this kind d dynamics.
Congestion cortrol, traffic control, etc., onthe other hand, try to smooth o regulate the
traffic to better utili ze Internet resources, further making it difficult to capture traffic
charadristics.

Third, the Internet is a large-scale target to understand. Due to its grea success
the Internet has grown into an immensely large entity. While it is alrealy difficult to
predict Revere performance d larger scde (as discussed in Sedion 6.5.2, the
unpredictability caused by heterogeneity and dynamics at larger scde makes this even

harder.

6.5.4 Measurement of an RBone' s Physical L ayer

So far Revere is only measured in the gplicaion layer. While an RBore is an
applicaion-level overlay network that conreds Internet hosts, its physicd-level
properties are still much lessunderstood.

One important question is: how digoint are aRevere node's multi ple delivery paths?
Although Revere is designed to have them as disjoint as possble, this is mainly dore &
applicaion (logicd) level. If there were arouter that was located onall delivery paths

(which are seamingly digoint at the logicd level) and an attacker could locate this router,



the dtadker could till try to launch interruption threas or other attadks by bre&ing into
this router. Thisis not a problem when the d@tack model only deds with Revere noces,
however, this requires a strong trust model of the underlying routing infrastructure.
Idedly, orne would hope that if delivery paths are digoint at applicaion level, ther
overlapping degree @ the physicd (router) level isalso low. Clealy, more measurements
are neaded to answer the question.

Anocther important question is. would a particular physicd link on the Internet be
overloaded by Revere control messages or seaurity updates? At applicaion layer, every
Revere noce only has a small number of parents and children, and oy communicates
with thase nodes most of the time; as aresult, noRevere (logicd) link will be overloaded.
However, it is unknovn whether thase Revere links might adually share a @mmon
physicd link. If aphysicd link is overwhelmed by a huge anourt of Revere messages,

the performance of the system may degrade rapidly.

6.6 Conclusions
6.6.1 TheOverloading Approach
As more distributed systems run at Internet scade, uncderstanding the performance of a
system at large scde is important. Unfortunately, it can be difficult to measure asystem
that consists of very large numbers of nodes that are part of alarge-scde network.
Withou adual deployment, measurement of alarge-scde system can be performed in
two ways: the first is sSmulation and the secondis the overloading approach. Simulation
is a popuar approach for large-scde systems. However, since asimulation daes not
typicdly use the adua software and canna acarately emulate dl environmental fadors,

it isvery difficult for smulationtodsto capture dl the red effeds of the system.
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Our overloading methoddogy collocaes a large number of nodes of a distributed
system on a madine, while still allowing ead nock to run the red software. This
methoddogy can acarately report those metrics that are invariant with resped to
overloading, and can minimize those inacarades introduced duwe to owerloading and
resource ontention.

Meaningful results can be obtained. We demonstrated this using the overloading
approadc for a seaurity updete dissemination system. Whil e the measurements reported
in this chapter correspond ory to upto-3000node networks, the results were obtained
using only 10 nods. We believe that Internet-scde results can be obtained using only a
few hunded o afew thousand nodks. In addition, we believe that this approad can be
further generalized into a common framework to suppat measurement of different
distributed systems.

As discussd ealier, the overloading approach shares many of the validation
problems that simulation also experiences, whereas it has the singular advantage of

running the red software.

6.6.2 ThePerformanceof Revere

Encouraging results were obtained for al six metrics—dissemination bandwidth,
RBone maintenance bandwidth, join latency, join bandwidth, dssemination latency, and
dissemination resiliency. A new Revere node can quickly join an RBone dter spending a
small amount of bandwidth. An RBone can be maintained using a reasonable anount of
bandwidth, and it can also be made resilient to nock failure or subversion. Moreover,
with a reassonable anount of bandwidth cost, seaurity updates can be delivered to the

whole RBone quickly.
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Whil e Revere provides a dual mechanism for delivering seaurity updates, it is mainly
the pushing medianism that was measured and dscussed in this chapter. If every Revere
noce has the same wnfiguration as the testbed madine used (whose platform and
performanceis that of a common PC in today’s network), dissemination can be atieved
in seconds. It aso shows that a high percentage of Revere nodes can be readied much
ealier than before all nodes are reatied. This push model is superior to the pull model
that is in current use, which has to rely on hgh-frequency pulling to kegp a macine
updated (at the st of bandwidth).

The measurement further shows that an RBone can be made resili ent to fail ures and
attadks. It proves that a self-organized resilient RBone can be made robust withou
employing powerful servers over the Internet. In the 3000node RBone tested, for
instance, even with a 15% nodke failure, 93% of remaining nodes can still recave seaurity
updates. Note that in the measurement, every noce is configured to have only two
parents. We believe that if Revere nodes chocse to have more parents, better resili ency
results will be redized.

The measurement also demonstrates that Revere scades well. The join bandwidth
cogt, the join latency, the (average and maximum) hop count, the (average and maximum)
dissmination latency, and the time to reat a cetain percentage of Revere nodes, all
appea to closely follow logarithmic trendliines as the total number of Revere nodes
increases.

In conclusion, the Revere overlay network is fast, resilient, lightweight, and

aff ordable.
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CHAPTER /

Related Work

7.1 General-Purpose Distribution Services

Viewed in the most general context, Revere fits within the broad scope of information
distribution ower the Internet. In this sdion we look into those general-purpose
distribution services, including preliminary techniques (unicasting, broadcasting,
floodng, etc.), IP multicasting, applicaionlayer protocols, email, replicaed data
management, content-deli very networks, and some wmmercial products.

Many of the low-level neeals of the Revere system can be met by use of these and
other existing message delivery and retwork seaurity services. Recdl that Revere dlows
two Revere nodes (parent and child) to negotiate the delivery mecdanism for forwarding
seaurity updates. On the other hand, these services do nd solve the aentire problem that

Revere aldresses.

7.1.1 Preliminary Tedniques. Unicasting, Broadcasting, and Flooding

The simplest approach to information dstributionisto unicast, bu it is not scadable to
unicast seaurity updates to millions of nodes from a dissemination center, ore by one.
There ae tens of millions of madines conreded to the Internet, and eaty madiine is a
patential participant. Because the Internet is ever growing, it is impossble for a single
machine, or even dazens of macdhines, to store global knowledge concerning all potential
participants. Even were this feasible using powerful madines, the task of keeing
information upto date is daunting. The unicast approacd, which is based on centrali zed

management, is thus difficult, if not imposgble. Further, high scde ensures that
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significant numbers of nodes will be disconneded at the moment a seaurity updete is
being diseminated. A unicast-based approach must also include fedures to make
updates avail able to those nodes that missed them during dissemination.

Existing Internet broadcast medhanisms that work at the IP level use abest-effort
delivery [RFC919, [RFC922. They do nd guarantee delivery, and they have no
concern for seaurity. Further, they are not designed to ded with the kind d scde that
Revere will handle. They are meant for broadcasting to subrets or small colledions of
subrets. However, the number of subrets over the Internet is gill alarge number, andthe
broadcasting mecdhanisms must read al those subrets that have redpients sparately,
still one by onre.

Multi-network broadcasting uses a "broadcast repeaer” to forward broadcast
messages over IP networks [RFC947). The forwarding address is read from a
configuration file, which is nat adaptive. The aldresses of ead repeaer's downstrean
nodes are fixed. Revere neals to ded with more dynamic networking. Again, this
solution assumes the @rred participation o all nodes, particularly of al broadcast
repeders, and daes not include provisions for seaurity.

A simple floodng agorithm might be used that does not require maintaining any
state or topdogicd information [Goldreich et al. 1997, [Bertsekas et al. 1997, [Bauer et
al. 1997. Ead nock that recaves the broadcast message transmits on al interfaces
except the incoming one. After sufficient steps, the message will read all nodes.
Floodng methods tend to be inefficient in their use of bandwidth, becaise they usually
send a opy of the message over every possble link. Also, they usually provide no
suppat for disconreded nodes, and assume the @rred participation o al nodes.

Clealy, using afloodng algorithm at Internet level isnot feasible & all.
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7.1.2 |P Multicasting

Multicast services, such as MBONE [Deeaing 1989, [Macealonia et al. 1997,
[Venkateswaran et al. 1997, alow disemination d information to a large number of
users. Like Revere, multicast is recaver-based, bu typicd multicast services offer no
guarantee of delivery [Floyd et al. 1995 and have no redundancy. A grea ded of
reseach has been performed on multicast and many different multicast systems hande
some Revere-like isaies. However, no existing multicast service arrently handes al of
those problems, nar can ore be made extensible in arelatively smple manner in order to
hand e them.

Multi cast services typicdly use treestructured routing, implying a single path from a
disseminating machine to any redpient. These services are thus nat resili ent to attadks on
individual links and noas. If a node on the treeis broken, all the descendents of this
noce will be disabled from recaving the seaurity updates.

Furthermore, most existing routers do nd provide multicast routing capabiliti es,
limiting the use of multicast protocols. If Revere is to be deployed into the eisting
Internet and supdy services even to legacy systems that do nd provide multicast, it
canna rely on the presence of such protocols.

Reliable multicast protocols [Chang et al. 1984, [Kaashoek et al. 1989, [Moses et
al. 1989, [Yavatkar et al. 1999, [Levine et al. 1994, [Lin et al. 1994 seek to ensure
that all recevers get complete and corred information, typicdly by adknowledgments for
al padkets, which leals to an adknowledgment implosion problem. The use of negative
adknowledgments alows many multicasting systems to avoid adknowledgment
implosion, bu this technique is not suitable for Revere's needs, becaise aRevere node
canna asert that it missed a diseminated seaurity update or did nd. Seaurity update

dissmination is not a periodic behavior, and a disemination center sends out updates
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whenever new updates are available. Repair-request methods are dso used by some
multi casting systems to solve this problem, bu, like negative ak&nowledgments, they
require the recaving nodes to be aware that they missed something. Last, reliable
multi cast medhanisms are designed for padket lossor damage due to transmisson errors,
not for lossor damage due to interruption threds.

Multicast systems vary tremendously in their details. In atypicd multicast system, a
multi cast tree (shortest path treeor Steiner treg is built for efficiently sending a message
to a given set of destinations [GarciaLunes-Aceves 1993. The tree ca be qute
unbalanced in terms of performance for different senders. An owerlay hypercube
topdogy was aso used for multi casting, significantly improving the performance for any
sender. [Moser et al. 1997 uses a SeaureRing protocol to proted against Byzantine
faillures, an ursuitable solution (and owerprotedion) for the scde ad requirements of
Revere. Other reliable multicast reseach includes consistent totally ordered delivery of
data to all recevers [Birman et al. 1991 [Whetten et al. 1995, handling large numbers
of acks[Pingali et al. 1994, using minimal network resources[Y avatkar et al. 1993, and
managing the multicast groups [Yavatkar et al. 1999, [Liebeherr et al. 1997. These
objedives are different from rapid dsemination d a smal amount of data sent to all
nodes.

In aword, IP multicast till faces many problems for deployment at a large scde, and
canna distribute to all redpients unlessthey are dl conreded simultaneously. Reliable
multicast is better, but it mainly handes padet loss caused by transmisson errors, na

losscaused by attadks guch asinterruption threds.
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7.1.3 SMTP,NNTP,FTP,HTTP

At a higher layer, smtp, nrtp, ftp, htp, etc., al provide cetain dstribution
cgpabilities, bu it is difficult to talor these capabilities to med the diallenges of
providing a successul seaurity update dissemination service None of these provide a
resilient network to address man-in-the-midde delivery thredas, nore provide bath
pushing and puling mecdhanisms for best large-scde delivery coverage, and nae fully

address ®aurity.

7.1.4 Email

Emall has been used as a carier for alerts [Frank 200Q. Unfortunately, email could
also be a carier for malicious functions, and an email that caries aerts of a malicious
function dften arrives later than an email that carries the malicious function. This makes
email an urredistic solution for delivering important seaurity information. For example,
when fadng the love bug in yea 2000, @nicked federal agencies completely shut down
their mail servers, making them urable to receve amailed aerts from the federa
computer incident resporse cgability team. The seaurity team ended up sing phores
and faxes to send aerts, clealy a scheme not suitable to Internet-scde information

dissmination.

7.1.5 Replicated Data Management

Reseach in replicaed data management, particularly optimistic pee replication,
provides insight into methods for ensuring that different sites sare the same view of the
data. Client/server solutions [Satyanarayanan et al. 199Q, [Kistler et al. 1997 and
primary copy solutions [Liskov et al. 1997 are lessrelevant, since they canna allow
update dissmination between arbitrary participants (a requirement of the Revere

system).
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Ficus all owed multi ple replicas of files, any one of which could initiate an updite and
any pair of which could exchange updetes [Guy et al. 1990, [Page et al. 1999. This
functionality is close to what would be required for Revere. Other work dore in the
Ficus projed addressed isaues of ensuring consistent views of changing replicated data
[Goel 1999. Truffles, arelated projed, provided some forms of seaurity for optimistic
replicaed file systems [Reiher et al. 1993. Rumor provided a more portable version o
the functionality of Ficus [Reiher et al. 1994, and also more diredly addressed isues of
mobility and replicaion. Recent reseach onthe Roam replication system has dedt with
replication and mohility at higher scdes, with hundeds or thousands of replicas [Ratner
1999, an isue of gred relevanceto Revere. Still, noreplicated file system reseach has
claimed to suppat scding to millions of replicas. Simulations of the behavior of
repli cated fil e systems have off ered important insights into the proper way to dsseminate
shared data anong large numbers of participants [Wang et al. 1997. This and aher
relevant replication research [Birman 1989, [Alonso et al. 1989, [Hisgen et al. 1990,
[Badrinath et al. 1997, [Golding et al. 1993, [Danzig et al. 1994, [Demerset al. 1994,
[Gray et al. 1996] provide insights on dita @nsistency and dssemination issues in
Revere, bu these works are direded at solving much more general problems than is
Revere. Revere uses smpler, lighter-weight solutions than the fil e replicaion systems

mentioned abowe.

7.1.6 Content-Delivery Networks

Much reseach has also been dore on content delivery networks (CDN), using
distributed cadiing or overlay techniques. InformationWeek compared seven networks:
Adero, CacheWare, Cidera, Digital Island, epicRedm, iBeam, and Mirror Image Internet
[Patrizio 200Q.
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Adero focuses on E-commerce gplication services, with servers in more
than thirty countries. Its GlobalWise Applicaions and GlobaWise
Commerce Business are designed to work with a company's existing

network to interad with worldwide austomers.

CadeWare spedalizes in content distribution and cadiing from an arigin
server to edge servers. Its CacheWare Content Manager takes the load off
an aigin server by ading as the intermediary between arigin and edge
servers. Rather than requiring ead edge server to contad the origin

server, CacheWare pushes updated content to edge servers.

Ciderads world-wide network is stellite-based and spedalizes in
transporting data streams. In addition, it also dffers datic content cading
and Usenet, allowing customers gnd huge files withou choking network

SEervers.

Digital Island was the first company to dffer content delivery in 1996. It
has 160 access points in 25 courtries, and povides content-delivery and
applicaion services for seaure transadions and network awareness It aso
uses Tracevare, a product that uses IP addreses to predict client
geographicd locaions. In this way, its customers can deliver targeted

content in any region.

EpicRedm focuses on the businessto-business market and lets customers
be served by locd servers, regardless of their locaions. It cades gatic
and dynamic content, database-driven content, and even encrypted

content.



* iBean speddizes in streans via satlite rather than terrestria lines,
reducing the number of hops to transmit the stream and thus reducing
padket loss A terrestria transmisson can go through as many as 20 hoys,
while iBeam sends the stream from the source straight to the satellit e, then
badk to edge servers at ISPs and mgjor data ceters. The datatravels over

only the last mile to the user on landlines.

* Mirror Image Internet spedalizes in cading techndogy and is building
what it cdls a “content access points’ network designed for integrating
into existing data centers and acceerating the mirroring, cading, and

delivery of content.

Unlike Revere, where seaurity updates are usualy of small size and low frequency,
CDN must hande large blocks of data Because of this, Revere structure is
fundamentally different from a CDN structure, where the latter does not suppat parall el

redundancy of information celivery.

7.1.7 Commercial and Research Products

Many commercial prodwcts and reseach projeds suppat data broadcasting
[Bannister et al. 1997. For example, SATX is an asynchronows communicaions
program designed to transfer binary files over a data broadcasting network through direa
broadcast satellites (DBS). More sophisticated schemes maintain topdogy information
to minimize resource wastage and avoid dupicate messages. Broadcast mecdhanisms
generally do nd guaranteedelivery to al sites, or hande disconneded and mobil e nodes,
or authenticate messages.

Products such as Pointcast send individually customized information to large numbers

of users periodicdly. It sends different information to dfferent users using standard
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Internet protocols, and is essentialy a cantralized approach. Clients of Pointcast cannat
benefit eat ather by forwarding information.

Salamander is a wide-areanetwork data dissemination substrate designed to suppat
push-based applications [Maan et al. 1997]. Salamander uses a dynamicdly constructed
tree of distribution servers to pwsh data from supgiers to clients. Salamander is not
meant to provide seaurity, narisit meant to handle temporarily disconneded nodes.

The Cleainghouse projed at Xerox PARC [Demers et al. 1987 addressed the
problem of efficiently disseeminating name-to-addressmappings for a corporate dedronic
mail environment spanning several hunded LANs <atered aroundthe world. A server
on eat LAN hosted a replica of the mapping database (the Cleainghouse), and could
independently generate updates. The Cleainghouse dgorithms propagated updites using
several different mechanisms, the most important and effedive being “rumor
mongering,” a constrained floodng/goss ping approach with relatively low overhead and
high probabiliti es of effedive, ressonably quick update distribution. While this work has
many surface similarities to Revere, it handles a different problem and hes other
disamilar charaderistics. First, Revere's <deis svera orders of magnitude larger, and
it must hande a more rapidly changing network topdogy than does Cleainghouse.
Frequent medium-term disconredions of nodes are the norm, and Revere must ded with
noce and link failures online and automaticdly. Sewnd, urike Cleainghouse, Revere
canna trust al its nodes completely. Third, Cleainghouse's operational constraints
alow for adaily six-hour window in which to propagate updates among replicas. Revere
must share dl resources with namal demands, and it must propagate much more rapidly
than daily in some predefined period. Last, Revere faces a much larger heterogeneity

problem than Cleainghouse faces.
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Other commercia products that provide information dssemination services include
BadkWeb, Ifusion, InCommon, Intermind, Marimba, NETdelivery, and Wayfarer. Many
of these mmmercial systems require dients to periodicdly pal the servers for new data,
fetching it if available. This approadc has performance problems at high scde, espeaally

if pullingisfrequent. But if pullingisinfrequent, data disseminationis dow.

7.2 Spedal-Purpose Distribution Services

Given that there ae many spedal-purpose distribution services, one might think of
tailoring or extending those services for seaurity update disemination. Unfortunately,
from those spedal-purpose distribution services surveyed, thisis not an easy task. In the
following sedions, we describe severa such dstribution services, including virus
signature distribution, NTP (network time protocol for clock time synchronization and

distribution), event natification, key distribution, and software distribution.

7.2.1 VirusSignature Distribution

When considering applicaion pupose, virus sgnature distribution, as one of the
ealiest pradicd purposes for seaurity information dssemination, is probably the most
smilar to Revere service Many indwstrial groups devote substantial efforts to
identifying and combating new viruses, including Symanteg IBM, and McAfee
Asciates. For example, Symantec has anti-virus tools for protedion against known
viruses, and takes aggressve adions to find rew viruses as they occur, producing
detedion and repair mecdhanisms for them soon after they are discovered. These groups
offer signature distribution services to their customers, allowing a austomer to dovnload
newly discovered virus sgnatures and resporse medhanisms on demand.

This drategy for virus sgnature distribution does not make use of the eisting

network except in the most trivial way. Ead participant must diredly contad the virus
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protedion groups ste to receve updates. Updating is typicdly dore in a pull fashion,
either when scheduled by the user's madiine or on command. This often fails to
instantaneously keep a user’s machine updated, uriessthe user probes very frequently,
which urfortunately incurs high bandwidth cost; the web site would also be overwhelmed
by requests from a multitude of users.

At IBM, reseachers are developing anti-virus techndogy based on human immune
systems. In their approach, a potentially infeded computer sends a suspicious file to a
central site where it is analyzed for the purpose of determining a virus sgnature. This
signature is ent bad to the mmputer that foundit, presumably including an antidote to
the virus, as well. This antidate is then sent from computer to computer via asimple
distributed dissemination medhanism designed for a locd areanetwork. This anti-virus
system is not designed to be seaure from attacks. The authors have not yet reported on
extending it to handie mobile and dsconreded systems [Kephart et al. 1997.

Some groups st up central servers to automaticaly broadcast new virus sgnatures to
every individual user, bu difficulty in managing user records at the central servers grew
quickly as more users participated. Pee-to-pea techndogy has been used recently to
address ®me of these problems, where information can be forwarded along a dhain o
redpients [McAfee Rumor]; however, the design techndogy to hande disconreded
nodes, strengthen seaurity (including combating interruption threas), and maintain the
chains has nat been reported. Revere, in addition to suppating the pulling medanism,
provides a noncentralized push model that better addresses efficiency, resiliency and
seaurity.

Revere is able to ensure wider, faster distribution o virus sgnatures and similar

seaurity information whil e proving strong seaurity and resili ency.
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7.2.2 NTP—Network Time Protocol

The Network Time Protocol solved a problem with some simil arities to problems that
Revere addresses [Mills 1991. The Network Time Protocol (NTP) ensures that large
numbers of networked sites substantially agreeon the airrent time. The designers of the
protocol foresaw possble seaurity problems, and dedt with them in the protocol.

The NTP dissminates clock information to a large, diverse Internet system over
subretworks operating at speeds from mundane to light-wave speed. Like Revere, the
messages in question tended to be small. NTP uses badkup peths to adhieve robustness
echoing Revere's use of reduncdant delivery paths. NTP suppats multiple service dasses,
based onthe needs of particular nodes. NTP addresses ®aurity isaues including adadress
filtering for accesscontrol, authentication via digital signatures, protedion from untrusted
time servers by datafiltering and pee seledion and combining algorithms.

However, the problem that NTP solves is different from Revere's in important ways.
NTP requires manual configuration, while Revere must do automatic configuration.
Moreover, a bakup peth can evolve into a primary path in NTP, a strategy that works
better in NTP than it does in Revere, since an NTP node has reasonable expedations of
when NTP messages soud arrive, and can switch paths when expeded messages do nd
arrive. Revere messages are unpredictable, and a Revere node canna locdly distinguish
between a situation where no Revere messages are being sent and a situation where
subversion prevents delivery of messages.

Also, NTP does nat require retransmisson o missed messages. Time updates are, by
their nature, ephemeral. A mised updite is of no vaue shortly afterwards, so

disconreded nocdes have no reed to aaquire them.
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7.2.3 Event Notification

Event natificaion services, which usually adopt a centralized approad, focus on
different issues and dten view the mapping between event subscribers and event
pubishers as akey isuue [Krishnamurthy et al. 1995 [Gruber et al. 1999.

[Cabrera et al. 2001 proposes ancther event natification service cdled Herad.
Similar to Revere, Herald is designed to operate arredly in the presence of numerous
broken and dsconrneded comporents. Also similar to Revere, Herald also views
madhines as a federation d nodes within cooperating but mutuall y suspicious domains of
trust. In particular, Herald addresses scdability, an isdle less addressed in previous
works on event natificaion service One key difference between Herald and Revere is
the delivery of information. Herald daes nat provide redundant delivery (adualy it tries
to avoid it), and Revere views redundant delivery as a fundamenta basis for seaurity

update dissemination.

7.2.4 Key Distribution

Key distribution mecdhanisms also have some relationship to Revere's design. The
main goal for key distribution, havever, is ®aecy of the keys, while in many cases
seaeqy is of sewmndary importance for Revere. Quick dissemination and high
avail ability will often be more important for Revere than for many key distribution
fadliti es. Generaly, key distribution systems do nd operate & the scaes envisioned for

Revere.

7.2.5 Software Distribution
Many software venda's have adopted the Web for software distribution and updite

distribution, relying primarily on wer pull tediniques where a user downloads the
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software from the Web. Users neal to pul the new releases individualy, which resultsin
heavy traffic and delay when, for example, Microsoft releases upgrades to its browser.

Severa commercia products allow automatic updates of popuar software, such as
Symantecs TuneUp [Symantec TuneUp] and McAfeés Oil Change [McAfee
OilChange]. TuneUp monitors which programs a user has, and automaticdly downloads
and install s the updates when they beaome available. Oil Change software makes clever
use of push techndogy to ndify users automaticdly when updites are available. The
software can be upcdeted with a one-button push from the user. Both products are
designed to fadlit ate software updates for PC users.

In some overlay networks, control software can be updated automaticdly. For
example, in Metricom Ricochet wireless networks, the gateway software is upcdated
automaticdly when new versions are available. Here, the sites to be updated are
controlled by Metricom, and the time delay is nat criticd.

All of these aitomatic software updete schemes are designed for ease of use and
canna provide reliable transfer of data. Their concerns with seaurity primarily relate to
authenticaion d the server diredly to the dient, or vice versa. They also do na take
advantage of broadcast medium in some locd networks, as the downloads are
acomplished using poaint-to-point TCP protocol. Using such automatic distribution
mechanisms in Revere to dstribute seaurity information will not yield a rapid, reliable,

and seaure mechanism.

7.3 Information Delivery Structures
7.3.1 Overlay Networks
Revere’'s RBone overlay network is comparable to various lf-organizing overlay

networks that are also composed of Internet end hests. Yoid, for example, triesto buld a
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general architedure for information dstribution, including a tree topdogy for content
distribution and a mesh topdogy for control information dstribution [Francis 200Q.
Revere instea relies on a single topdogy for bath pupases, enables multi-path delivery,
and enforces arity with the presumption o open membership. ALMI bulds a small-
scde minimum spanning tree anong end hasts, and it relies on a central controller for
treemanagement [Pendarakis et al. 200]. End System Multi cast also targets gnall-scde
treestructured overlay networks, bu it first buil ds a mesh of nodes, and then constructs a
shortest-path tree out of the mesh [Chu et al. 200Q. Scattercast adopts a similar
approach to End System Multi cast, while emphasizing infrastructural suppat and proxy-
based multi cast [Chawathe 2000. Bayeux [Zhuang et al. 2007 uses Tapestry [Tapestry],
an applicaionlevel routing protocol, to arganize recevers into a distribution tree
Overcast focuses on ogimizing network bandwidth when bulding its overlay distribution
tree[Jannati et al. 200Q. A fundamenta difference between RBone and these overlay
networks is that RBone is nat atreelike structure; instead, every Revere node can chocse
to have two o more a-digoint-as-possble paths to recave seaurity updates. Also, in
addition to the pushing mechanism, Revere dlows eah nock to pul missed seaurity
updates from repository servers.

In terms of building resiliency into an owerlay network, Revere shares commondliti es
with RON [Andersen et al. 200]]. Insteal of targeting another distribution service, RON
inserts a new layer of resilient overlay network between the routing substrate below and
network applications abowe, thus providing faster routing falure recovery and
applicaion-spedfic routing. One useful discovery from RON is that a failed router or
physicd link can be avoided if a message is routed through a different node on the RON

overlay.
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7.3.2 Multi-Path Routing

Multi-path routing is smilar to Revere’'s multi-path message delivery [Chen et al.
1999, [Murthy et al. 1994, [Zaumen et al. 199§. However, these systems are primarily
meant for load balancing or congestion avoidance and do n¢ fully consider the
disjointedness between dfferent paths. It is aso dfficult for these systems to address
seaurity issues (such as key distribution, replay prevention, etc.) at router level. They

also facedeployment problems.

7.3.3 Peerto-Peer Computing

Pea-to-pee computing is developing rapidly and gaining prominence & an
infrastructural service. Broadly spe&ing, the relationship between Revere nodes is also
pea-to-pea, and results from pea-to-pea reseach can be leveraged to improve the

Revere overlay network.

7.3.4  Geographic Routing

Geographic routing sends messages to participating macdines located in close
physicd proximity to destination pants [Navas et al. 1997. Primarily used to suppat
mobile computing, geographic routing protocols may prove auseful comporent of the

Revere system.

74 Seaurity

Much reseach has been dore on seauring communicaion channels or strengthening
networking elements. While Revere aldresses its own seaurity issues, as we discussed in
Chapter 5, Seaurity, Revere muld also leverage such reseach. For instance reseach has
been performed onintrusion cetedion [Denning 1984, [Lunt 1989, [Snapp et al. 1991],
[Kim et al. 1994, [Crosbie et al. 1995. Methods that defend retworks or cooperating

distributed systems against intrusion, espedaly when all members are peeas, are
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particularly relevant [Mukherjee et al. 1994, [White et al. 1994, [Zerkle et al. 1994.
Revere is not competitive with these dforts; rather, it will be auser of existing intrusion
detedion techniques. We e&ped that the pradicd experience of applying these
tedhniques to a new problem will uncover new possbiliti es and requirements that will

cdl for further study.

7.5 Conclusions

In this dion, we described works related to Revere. As we can see bah general-
purpose distribution services and spedal-purpose services fail to med the dall enges of
rapid, widespread and seaure delivery of seaurity updates. Information deivery
structures, such as various overlay networks, while am to provide general-purpose
information celivery, do nd fully address the speda need o seaurity update
dissemination. Being aware of those related works, Revere provides a solution for
disseminating seaurity updates quickly, seaurely and resiliently. It is also able to

leverage existing research results, such as eaurity enforcement.



CHAPTER 8

Future Work

This dissertation hes presented key techniques that enable the disemination o
seaurity updates. It also provides a platform for further reseach on on isaues. In the
following two sedions, we will first briefly revisit the open technicd isaues that have
been dscussd in previous chapters, and then ask questions from a broader view of the

Revere system.

8.1 Open Issues Discussd in Previous Chapters
The following is a list of open iswues that were more extensively discussed in prior
chapters. Questions that are relevant to ead item are presented as examples of issues
that need to be aldressed.
» Adaptive redundancy. How shoud a Revere noce aljust its redundancy
degreefor recaving seaurity updates? Would two dfferent delivery paths

be enowgh, for example? (SeeSedion 4.6for more detail s.)

e Seaurity update integrity protedion other than using digital
signature. While digital signature based on pultic key cryptography has
been widely used and is also employed in Revere, could other integrity
protedion techniques under study benefit Revere better? (SeeSedion 4.6

for more detail s.)
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Repository server seledion. Among many repository servers, which
ones $oud a node dhocse to query for missng seaurity updates? (See

Sedion 4.6for more detail s.)

Seaure dissemination processmonitoring. How shoud Revere seaurely
monitor the dissemination process in red time? How shoud every
individual noce provide feadbadk onits recept of seaurity updates? (See

Sedion 5.5.1for more detail s.)

RBone intrusion detedion and reaction. How shoud Revere deted
intrusions? If a noce is deteded as corrupted, hov can it report the

problem? (SeeSedion 5.5.2for more detail s.)

Denial-of-service attack prevention. Can a disemination center be
flooded and paralyzed? Can malicious nodes lock benign nodes out from

recaving seaurity updates? (SeeSedion 5.5.3for more detail s.)

Overloading approach improvement. How to speal up owerloading-
based measurement whil e till colleding redistic results? To what degree

can the gpproadch be generalized? (SeeSedion 6.5.1for more detail s.)

Revere performance understanding &t larger scale. It is prohibitive to
understand a system at very large scde, bu it has always been desirable to
achieve this. How can ore deduce or extrapolates performance of a

system from small er-scde results? (SeeSedion 6.5.2for more detail s.)

Measurement results applied to the real world. The red world is

always more mmplex than any measurement setup. Will the results from
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the latter be gplicable to the red world environment? (SeeSedion 6.5.3

for more detail s.)

8.2 Think More Beyond Today
Certainly more work is required on Revere to refine the general technicad approach
and dcemonstrate its posshilities. The feasibility of a delivery system of such scde and

spee raises a number of serious questions:

1. Would such a system on such a scale be valuable? If so, then the task of deploying
Revere ggents on alarge number of Internet nodes would probably require the pulic-
service @operation d major software distributors, Internet service providers, etc.
This aso includes testing Revere on dfferent platforms, experimenting with its
interadion with ather applicaions, and studying wide deployment issues (some may

not be technicd).

2. Can one depend on its safety? After al, the lure of such atarget to the dtadker can
hardly be overestimated. One could argue that addressng such alarge portion d the
Internet is inherently dangerous, just as one @uld argue that constructing a very tall
building invites disaster. However, there can be variations on the delivery service
One could have several dozen, a even afew hunded Revere networks deployed, so
that a succesdul attadk on one does not immediately affed nodes that are not part of

that compromised system.

How feasible is it to validate the seaurity of Revere? A forma method, o ancother
approach? Can Revere aitomate/improve the discovery of new seaurity problems?
Recdl that in Sedion 5.2.4.1,we discussed the detedion d disemination center

impersonation. Thisisjust astarting point.
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3. What isthe quality of a delivery path at the physical level? This question warrants
study if we caana asume that routers are fully trustworthy. In particular, there is no
guaranteethat if two delivery paths are digoint at the gplication level, they will aso
be digoint at the physicd level. If not, how much owerlap will there be, and is it

posgble that many Revere links multi plex over a spedfic physicd link?

4. Can a path vedor carry richer information? If so, a node would then have more
information from which to selea parents or adjust its own pasitionin an RBone. But
what would such information ke? We know a path vedor currently describes the
latency of a path and the ordered list of nodes on the path, bu how abou the
trustworthiness of a path, for example? A closely related question is, how to define

the trustworthinessof a path?

5. What will be done with the updates once delivered? In some caes, the answer is
simple aad obvous, such as installing new virus sgnatures into a virus detedion
database. In ather cases, there ae greaer challenges. For example, could the system
be used to instal seaurity fixes as fast as the dtadks are made? Few system
administrators today are e@er to accept automated patch instalation, becaise they
ladk confidence that patches will work properly in their systems. If Revere were in
place safe aitomated petch installation would beame more gpeding, bu Revere

itself does nothing to make automated patch install ation more reliable.

Lesons can be leaned from previous incidents. [Fisher 2003 reports that with at
lesst four vaguely defined patch instalation medianisms, Microsoft's Windows
Update caised the aittomated scanning service to mismanage patches. In ore extreme
case, a patch for a austomer adually removed a previous hat fix, causing that macdine

to be infeded by the Nimda virus. Worse, updates from a vendar could even corflict
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with software drealy install ed; for example, in October 2000, Symantec s new update
toward a austomer conflicted with its firewall, causing the firewall to shut down and

leaving the dfeded system open to exploit [Lemos 2004.

. Can Revere be asily deployed in the real world? What are those deading fadors
that affed a widespread deployment of Revere? Are they mostly societal or
psychologicd isues? For example, would another CodeRed worm trigger afast, wide
deployment of Revere? Further, how transparent shoud Revere be to a user? Are
there afew default Revere node configurations that work well for most users? If so,
how do we discover those anfigurations? Clealy, answersto items 1, 2, and 5 above

are dso criticd to thisisae.

. Can Revere be easily ported to awirelessworld? This includes the situation where
evey nock is wirelessand the situation where the are of a network is wired bu the
edge is wireless If Revere is not reaily portable here, what would those new
constraints be and what redesign of Revere shoud be made? As we can see when
individual nodes beacome more mobile, the delivery paths for every Revere node will
become more volatile. Meawwhile, is there something in the wireless environment
that is adually more useful? For instance will node locaion information as reported

from GPSbe aiticd in determining multi ple physicdly digjoint delivery paths?

. Last, can an RBone be theoretically analyzed? [Singh 1993 proposes a way to
evaluate the global reliability of a communicaion retwork. Unfortunately, his method
requires knowledge of the global topdogy of the network. In Revere, no noe@ has
such knowledge. Isthere adistributed version d the dgorithm where every node only

has partial knowledge of the whole system?
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CHAPTER 9

Conclusions

This work demonstrates that fast, seaure and resili ent delivery of a modest amourt of
information through a very large-scde network is feasible, withou employing huge
server farms. To summarize the work, in this chapter we will recapitulate the problem
Revere tries to solve, summarize the solution Revere provides, and ouline Revere's

contributions. Broad lessons learned from this work will also be presented.

9.1 Summary of the Problem

Threds such as viruses, worms, or Trojan hases are ale to propagate throughou the
network quickly. However, paentia victims do nd have up-to-date knowledge of new
threds, and are therefore susceptible to those threds. This indicaes that any defense
against threas must read at the same speed as the threa (if nat faster), and that a strong
need exists for a service that diseeminates ity updates in a fast, efficient manner.
Unfortunately, despite these indicaions, an effedive disemination service has not
existed in the past.

Although it is usualy quick and easy to determine the solution to a new thred,
natifying an Internet-scde network of the solution—or disseminating seaurity updates at
Internet-scde—is challenging. Such a system must outpacethe spread of threds, address
the complexities in a large-scde environment, ensure the delivery toward a large

percentage of redpients (if not all), and seaure the system itself.
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Simple transmisgon techniques can hardly med thaose requirements. Unicast requires
adissemination center to send upaites toward ead individual redpient, ore by one; here,
leaving aside the ladk of bullet-proof protedion d the delivery process the sequentia
delivery of updates is nat efficient, and the dynamic management of redpient records is
not scdable. Broadcast allows al nodesin a subret to be readied smultaneously, but the
number of subrets over an Internet-scde network is gill large. |P multicast builds a tree
structure to deliver information, all owing atrusted sourceto read al nodes conneded to
the treeduring disssmination; however, IP multicast lacks sufficient resiliency due to its
use of atreestructure. It often fails to read nodes that have no stable wnredion. It has
also been dfficult to deploy.

Applicaionlayer protocols and services, as e today, can hardly be tailored or
extended to fulfill the requirements, either. None of them provides an adequately
resilient network to address man-in-the-middle delivery threas. Also, many of them
require redpients to pul information from a source. To ke upto date, every redpient
has to probe the source frequently (unless it is able to predict the availability of
information in a timely fashion), paentialy incurring a prohibitive bandwidth cost and
processng overheal. Further, becaise these gplicaion-layer protocols and services
have not been designed for the purpose of delivering criticd updates, seaurity concerns
have been less addressed; for example, if an attadker steds the key of a disemination

source, it then can send forged information uncer the identity of the source

9.2 TheRevere Solution

Revere enploys a dual medchanism for seaurity update delivery: push and pul. Push
allows a disemination center to broadcast updates to al conreded nodes once new

updates are avail able; pull alows anodeto cach upwith missed seaurity updates.
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Push is performed through an applicaion-layer Revere overlay network. Withou
relying on huwe, powerful server farms, Revere alops a non-centralized approad to
build self-organized resilient overlay networks, on which every node is a redpient
(except that the roct is the dissmination center or arepasitory point), and every link isa
unicast conredion between a parent node and a dild node. During a push sesson, a
dissemination center only neels to forward updites to a very small number of nodes,
eahh of which then further forwards the updates to its own children, a reaursively
repedable procedure.

Whil e the push model allows immediate delivery, the Revere overlay network further
meds other chall enges as foll ows:

* Resiliency is suppated through redundancy. At its own discretion, every

redpient can chocse to have multiple a-digoint-as-possble delivery
paths, leading to multiple parents for the reapient in the Revere overlay

network.

o Scdability is adiieved through the distributed reture of the overlay
network itself. In a Revere overlay network, ead nock need nd know all
the other nodes in the network. For instance a dissemination center only
needs to know al of its own drect children to begin dssemination, and a
normal noce only needs to knaw its parents, its children, the dissemination

center, and asmall amourt of information regarding its deli very paths.

* The complexities in a large-scde environment are handled by designing
the Revere overlay network to be self-organized and withou a central
control. A Revere overlay network can be fairly dynamic, and the large

scde of the overlay further compli cates the problem: nodes may come and
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go, links could go upand davn, and the whole overlay can hardly stay in a
steady state. Via self-organization, rew nodes can join through the three
way-handshake, existing nodes can deted problems and reposition
themselves. The redundancy built in the overlay network also provides a
cushion period while anoce is adjusting its position—it still can receve

seaurity updates during the transient period uriessall it s paths are broken.

» The overlay network operates at the goplicaion layer. New functionaliti es
can be eaily added, and dfferent configurations st up withou difficulty.
Implemented in Java, Revere can be redily installed and started. Once a
noce begins to run Revere, it will automaticdly join a relevant Revere
overlay network and beaome aRevere noce. Leasing Revere is equaly

easy. Inlight of these fedures, deployment of Revere becomes easy.

Pull is performed through contading repository servers. Repository servers, either
staticdly configured or dynamicdly eleded, allow a reconneded nock to pul missed
seaurity updates. To oltain higher certitude when puling missed seaurity updates, the
noce can independently contad multiple repository servers. The pull mecdhanism aso
provides a means for a noce that is conreded al the time to determine if al its parents
have been compromised and are blocking him from receving seaurity updetes.

Both puwsh and pul processes are seaured. Revere uses pulic key cryptography to
proted seaurity updates. Every seaurity upcete must be signed by its dissemination
center, and every node must verify the authenticity and integrity of an updite (whether
the upckte is pulled from a repository server or pushed from a parent node). Moreover,
once adisemination center deteds that its private key is golen, it will immediately

initiate the key invalidation process Upon the recept of a (verified) key invalidation
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message, a noce will discard the aurrent puldic key in use and switch to the next one.
There is an important property regarding the key invalidation messge: whether injeded
by a trusted dssemination center or an attadker, it will not degrade the seaurity of a
Revere overlay network.

The Revere overlay network is also seaured to provide asound daivery structure.
While most Revere nodes can be assumed cooperative, Revere is designed to ded with
the @rruption d some nodes. Knowing that al nodes in an Internet-scde overlay
network canna enforce auniform seaurity scheme, Revere suppats pluggable seaurity
boxes to easily enforce new seaurity schemes. For two nodks that enforce diff erent sets
of seaurity schemes, the pea-to-pea seaurity scheme negotiation will allow them to
communicae, and doso seaurely, by foll owing the seaurity preference of ead aher.

Key performance results of a prototype, measured using the large-scde-oriented
overloading approach, suggest that Revere can deliver seaurity updates at the required
scde, speal and resili ency for areasonable @st. For instance, it takes lessthan 1 second
to read al nodesin a 3000noce Revere overlay network, and just a bit over 1 secondto
reatr 93% of working nodes even if 15% of al nodes are broken. The st for joining
such a network is also lightweight, with a lessthan-two-secondjoin latency and abou 20

kil obytes of bandwidth cost.

9.3 Contributions of the Dissertation

The thesis of this reseacch is that without relying on huge, powverful server farms, it is
still feasible to deliver a modest amourt of information in an Internet-scde network
quickly, seaurely and resiliently. Solutions based on dher distribution services or
delivery structures are frequently insufficient when seaurity and resili ency requirements

bemme aiticd. Instea, thisreseach provides a soundsolution for such delivery.



Revere introduces a dual medhanism for delivering criticd information. With push
and pul combined, nd only can information be broadcast to redpients once it becomes
avail able, bu it can also be made avail able for redpientsto query at any time.

Revere builds a self-organized resili ent overlay network for large-scde delivery. In
such an owerlay network, every node can bah recave information and forward
information, ading as both a beneficiary and a benefador. Different from other overlay
networks, a Revere overlay network alows a node to seled multiple least-overlapping
delivery paths, and adchieve best resiliency using a path vedor concept. Also dfferent
from many other overlay networks, Revere suppats open membership, instead o
enforcing closed membership and ensuring that every member is trusted. Because of
such dfferences, management of the Revere overlay network becomes more chall enging;
Revere has built a self-organizing capability into its overlay networks to cope with
complexitiesin a dynamic large-scde environment.

Revere proteds bath the delivery procedure and the delivery structure. For the
former, a digita signature dlows a node to verify the authenticity and integrity of
seaurity updates, redundancy in bah push and pdl allows anocde to gain higher certitude
in recaving seaurity updates, and the key invalidation mechanism alows a noce to
discad a rrupted pubic key and switch to a new one. For the latter, the
implementation d pluggable seaurity boxes allows a noce to flexibly enforce diff erent
seaurity schemes and pdlicies, the pea-to-pea seaurity scheme negotiation enables a
noce to enforceits own spedfic seaurity schemes when communicaing with ather nodes,
and the discretionary seaurity enforcement at individual nodes makes the whae delivery
structure robust.

Revere dso provides a deployable solution. Revere runs at applicatiion level, and it

does not need any changes to underlying operating systems or network infrastructures.
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Any noce can automaticdly join a Revere network by running Revere software (and
catainly it is also easy for a nodce to leave the network). Withou demanding a large
amourt of node or networking resources, Revere suppats lightweight core
functionalities. Revere is moduar and extensible; for example, Revere is easily
extensible for adding new seaurity schemes, readily configurable for repladng the default
pdicy for adopting a new child o parent, and fairly adaptive for taloring to locdly

avail able transmisdon medchanisms.

9.4 Broad Lesons

Withou using large server farms, Revere becomes powerful by aggregating resources
among redpients. every redpient, as beneficiary of the service can aso serve & a
benefador. This liberates a dissemination source from being solely resporsible for
reading all nodes in the system. For this reason, the Revere model is nat a purely client-
server or pubisher-subscriber model, since a normal node dso serves others. It
underpins asimple but profoundfad: anode can oltain information goods not only from
the original servers, bu also from its peas. Instead of being a negative fador, larger
scde in this context adually means more sources from which to gain information. Pee-
to-pee computing, for instance edoes this principle in dstributing data anong al the
peeaing nodes and benefits all the peeing nodes.

Revere is aso an example of a design that crosses threefields: distributed systems,
seaurity and retworking. Composed o mostly cooperative dements but also some
uncooperative ones, its task of synchronizing al elements to have the same information
(seaurity updetes) aaoss the network in the face of seaurity challenges is a typicd
misson for such a field-crossng design. These field-crossng designs face tallenges

similar to those that Revere faces (efficiency, scdability, seaurity, resili ency, etc.), where
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some dements may not be trusted (subjea to corruption), reliable (prone to error), or
always avail able (subjea to failure). The methoddogies adopted by Revere to be robust
to such problems are dso appli cable to those simil ar designs.

Revereis aso a servicethat deliversinformation at application level. It demonstrates
that an application-level Revere-like serviceisfeasible and can be made dfedive withou
changing underlying hardware, operating systems, or network infrastructures. Further,
Revere shows an interesting phenomenon in its incremental deployment: not only can
Revere be eaily deployed (every node can just run Revere software to beacome aRevere
node), bu Revere dso tends to show more dtradive benefits to pdential participants as

more nodes exist in the system and form alarger information pod.

9.5 Final Comments

Since today’ s attadkers already distribute malicious functions rapidly, an even faster
natification system is required. Although additional work is necessary in order to ensure
avery high certainty of safety and to verify feasibility, Revere off ers encouragement that
such asystem isposshble.

Revere dso has a broader applicability for delivering other information rather than
just seaurity updates. For instance when every node in a Revere overlay network
chooses to orly have asingle ddivery path, the Revere overlay network effedively
bemmes a tree structure, and Revere is then equivalent to a system that suppats host-
level multi cast.

Likewise, the overloading technique used for measuring Revere has a broader use.
Other distributed systems may find this large-scde-oriented approach helpful. For

example, this reseach has developed tedhniques to adjust those results that are dfeded
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by the degree of overloading. Our experiences related to this overloading technique can
lend insights for testing other systems.

Broader use of redundhncy is also very appeding. Revere demonstrates that proper
use of redundancy will grealy improve system resiliency and information readiness
Given the a@undance of many kinds of comporents in an Internet-scde distributed
system, chances are that Revere-like redundancy, or redundancy at much greder scde,

will prove very advantageous.
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