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Ubiquitous computing environments consist of autonomous domains that are not 

administered centrally and have independent goals and policies. These domains, 

which could be single mobile devices or networks of devices, are capable of 

communicating through standardized protocols and identifying external services. 

But true spontaneous interoperation leading to policy-compliant resource and 

service access agreements across domains is yet to be realized. The large number 



 xxii

of possible interaction contexts, resource heterogeneity, and differing security 

policies of the domains make the use of application level protocols for every 

scenario impractical and non-scalable. Also, every domain cannot expect to 

identify or have a pre-arranged trust relationship with every other domain. 

We have designed and implemented a generic negotiation protocol based 

on illocutionary speech acts that enables domains to reach resource and service 

access agreements. This protocol is guided by the local private policies of each 

domain, which specify system invariants, goals, resource usage, and security 

constraints, in a declarative logical language. Negotiation was achieved within a 

broader policy management and mediation framework, which was designed and 

implemented as part of the Panoply ubiquitous computing middleware. This 

framework also provides other services, including dynamic context-sensitive 

access control through message filtering and event-driven system responses. 

In this dissertation, I will describe mobile and ubicomp applications that 

benefit from policy management and negotiation, and show that the protocol 

performance is adequate for practical scenarios. I will show how the negotiation 

protocol was modeled as a distributed policy resolution, where neither negotiator 

is privy to the other’s policies, and analyze its theoretical correctness properties. I 

will describe how random test cases were generated for the purpose of comparing 

negotiation performance to centralized policy resolution that is optimal in the 

number of negotiation steps. The results indicate the feasibility of using the 

negotiation protocol to generate agreements in ubicomp scenarios. 



 1

Chapter 1 
 

Introduction and Motivation 

 

The past few years have seen rapid growth of technology, both in academia and in 

industry, slowly bringing the ubiquitous computing vision to reality. In our current 

transitory phase, we see a mixture of static desktop computing and mobile computing. 

Widespread deployment of WiFi hotspots, pioneered by cities, private businesses, and 

corporations like Google, and the large-scale adoption of mobile devices by users, 

enables an unprecedented amount of mobile computing. Such computers, and embedded 

systems performing sensory and actuator functions, are getting more powerful, intelligent 

and capable of running more useful applications without explicit user intervention. 

Wireless networks are easier to discover and connect to without requiring technical 

expertise. The services provided by our surrounding environments are not limited to 

connectivity, and a wide variety of smart spaces have been built and deployed, primarily 

in academic and controlled settings. A more widespread deployment would ideally result 

in our smarter devices being able to make use of available services at any time or place. 

Yet this requires a level of spontaneous interoperation among computing systems that is 

currently infeasible, primarily because existing solutions fail to provide optimal security, 

privacy and usability, or some combination of these features. Typical environments 

where users need service are either completely open or are extremely picky about the 

devices with which they interact, and have stringent security policies that infringe on the 
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privacy of the user devices (which must agree to the policies to obtain service). These 

devices and networks should not be, and do not have to be, so rigid in their interaction 

mechanisms. Nor do systems have to restrict interaction to familiar, trusted environments.  

Every computing system, whether a single device or a networked group of 

devices, can specify all its constraints, requirements and system state in the form of 

policies, and these systems can interact with each other to achieve mutually satisfactory 

resource sharing and service access agreements through a process of negotiation. In this 

dissertation, we will describe our research in the management of policies within 

individual systems participating in a ubiquitous computing environment, and the 

necessary operations they support—prominent among which is a negotiation protocol. In 

the remainder of this section, we shed more light on current ubiquitous computing 

research and the challenges that motivate our research. We describe and justify our 

chosen ubicomp interaction models, and conclude by listing the research contributions, 

and an outline for the rest of this dissertation. 

 

1.1. Ubiquitous Computing Environments: State-of-the-Art and Our Model 

In Mark Weiser’s original 1991 vision of ubiquitous computing (ubicomp for short) 

[Weiser1991], computers will pervade the physical space around us without being 

obvious to the human eye. Such an infrastructure will help users perform various tasks, 

offer useful services and allow information access anywhere and at any time. More 

recently, Kindberg and Fox [Kindberg2002] identified physical integration and 

spontaneous interoperation as the two fundamental characteristics of ubicomp systems. 
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1.1.1 Physical Integration 

Thanks to advances in embedded systems technology, our mobile accessories, like cell 

phones, PDAs and watches, run complex applications, offer services like GPS, and 

communicate wirelessly using embedded processors. Even our refrigerators, walls and 

clothing will get as smart in the near future by using sensors, actuators and interfaces. 

Ubiquitous networking is also rapidly becoming a reality. We already have established 

standards for wired and wireless LANs, cellular, satellite and personal area networks, and 

efforts are currently under way to produce standards for wireless MANs, or WiMax 

[IEEE802.16], and vehicular networking. 

Smart space projects are manifestations of computing, networking and sensory 

elements physically integrated into office-like spaces. Examples include Oxygen [MIT-

Oxygen], Gaia [Román2002], One.world [Grimm2004a][Grimm2004b] and Centaurus 

[Kagal2001a][Kagal2001b][Undercoffer2003]. These projects demonstrate infrastructure 

that can dynamically manage resources, enable seamless communication, and adapt to 

changing context using a mix of mobile devices and components integrated into the 

background (apart from the interfaces, these are oblivious to users). 

 

1.1.2 Spontaneous Interoperation 

Smart spaces are designed to govern local hot spots and do not scale to a global 

distributed system. Successful ubiquitous computing can be achieved with widespread 

deployment of such spaces that are connected through the Internet, share resources with 

each other and offer services to mobile devices purely through local interactions. Users 
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will expect to obtain and make use of resources wherever they go and to run their 

applications and obtain private data and information, either through their personal devices 

or local clients. Unfortunately, the heterogeneity of hardware, software, resources, 

networking technologies and applications that each space or device will possess prevents 

these devices and systems from interoperating to the extent required. Smart spaces rely 

on standardization of these features for global interoperation, which is practically not 

enforceable. Even if certain mechanisms, hardware, system software and networking 

technologies become de facto standards through popularity or market forces (like TCP/IP 

networking culminating in the Internet and the World Wide Web), different people 

manage and use local domains, and have different needs and expectations. They might 

use the design and resource management principles proposed by Oxygen or Centaurus, 

but they will have unique resource requirements and expect certain functionality from 

their systems, in addition to having unique security and privacy requirements. The 

infrastructure deployed at physical spaces that will enable ubicomp is growing in a 

decentralized fashion through the efforts of research groups and companies. Though it 

will create the problems described above, bottom-up growth of the infrastructure is both 

inevitable and desirable as it promotes innovation and lets designers and administrators 

make independent choices. The problem is to enable a standard through which different 

devices and networks can interoperate although they are managed and used by different 

people, do not share resource capabilities, security and privacy constraints, or have pre-

decided trust relationships. Such an interoperation standard would not replace the 

research done in building smart spaces, but would rather be complementary to it. 
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1.1.3 Security, Privacy and Usability in Ubicomp Environments 

Ensuring security, privacy and usability in ubiquitous computoing environments is a 

challenge, as these are often at cross purposes. Unfortunately, most systems treat security 

as an afterthought, as something to be retrofitted onto mechanisms or interfaces already 

implemented, an approach that does not work and is not extensible. This is especially true 

of open multi-user ubiquitous computing environments, where external entities (semi-

trusted) are permitted to discover local resources, and such resources are dynamically 

allocated. The wide range of contexts and entities one comes in contact with makes it 

infeasible for any computing system to completely specify security policy, or use off-the-

shelf security mechanisms. Still, both mobile devices and the networks they come in 

contact with (to give one mode of interaction) must guard against malicious attacks and 

resource abuse while preserving the fundamentally open nature of ubicomp. Therefore, 

autonomous systems must have the capability to make intelligent tradeoffs in particular 

contexts when deciding the nature and scope of interactions, based on a limited set of 

policies. These tradeoffs often involve the sacrifice of privacy in order to get higher 

security assurances, and obtain any kind of useful output. 

Looking at this from a higher level, we advocate a top-down approach for 

ensuring security and privacy by looking at ubiquitous interoperation in its entirety while 

permitting a bottom-up, decentralized growth and deployment of ubiquitous services. 

Through this approach, systems could use a wide variety of security enforcement 

mechanisms like virus scanners, firewalls, tools like nmap, intrusion detection utilities, 

and QED [Eustice2003b], but these must be augmented with security policies that dictate 
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how and when such mechanisms should be used. More powerful security and access 

control frameworks like GRBAC [Covington2000], DRBAC [Freudenthal2002], and 

evolving trust models are inadequate in various ways; this will be addressed in Section 

10. The top-down approach to security will be helped only through flexible interoperation 

of the kind that is enabled through our research. 

The more widely addressed challenge in ubicomp is system usability, and the 

building of interfaces that provide intuitive ways for non-technical users to interact with 

their personal devices and with the invisible infrastructure components in the 

background. It would be impractical to expect such users to change configuration settings 

in devices to establish network connectivity, change security and privacy levels, or 

explicitly run commands to discover and obtain resources. Users and system 

administrators should be able to set policy and expect their devices to figure out which 

lower-level resources (such as network connectivity, display and audio devices, and file 

systems) are required and then obtain these from any environment they happen to be in. 

Devices should also adjust service and information provided to users with context. Tools 

like DHCP and Zeroconf [Guttman2001] allow a measure of automated connectivity at 

lower levels, but usually do a proper job only through prearranged configuration scripts 

and when devices and networks know each other, unless neither has a security policy. 

Therefore, in most practical systems, the needs of security and usability often clash. A 

system that enables more ease of use invariably enables more ease of abuse. More 

flexibility is needed to balance security and resource needs, without requiring users to 

make arbitrary decisions whenever default configurations fail. Frameworks deployed on 
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devices and networks should be context-aware and not require users to constantly change 

settings when such parameters change. Our research addresses this issue, with a caveat 

that it will not be possible to let devices make 100% of the decisions by themselves 

without significant advances in AI. There will be situations when feedback must be 

provided to users, and this needs to be done through suitable interfaces. Though our 

research does not address this issue in depth, we do comment on this in the future work 

section (see Chapter 11). 

 

1.2. Interoperability: Flexible and Secure Service Discovery and Access 

In a ubicomp environment, not every device or system of interconnected devices will 

have or require every possible resource or capability, as long as necessary services can be 

obtained through interoperation with the surrounding environment. In the service-

oriented view of computing [Huhns2005], services are available and are offered by 

autonomous entities. The discovery and the setting of terms for obtaining these services 

are left to the runtime environment. Interoperation therefore consists of two processes: 

discovery of external services and resources, and obtaining access (setting terms) to them. 

In addition, information about objects and offered services can also be communicated 

through suitable interfaces. Current systems and prior research have provided separate 

solutions for discovery and access control. (Note: We are concerned here with application 

and middleware layer interoperation.) In open systems and those offering ubiquitous 

services, we will see the functions of discovery and access merge more and more 

[Zhu2005b], and existing solutions won’t work. This is because the resources possessed 
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could include private information that domains don’t necessarily want to advertise to the 

wrong parties. Service providers and consumers also need a common semantic 

framework to describe all kinds of information, resources and protocols; suitable 

standards may result from ongoing Semantic Web [SemWeb] research (see Figure 1). 

These entities also need to be able to reconcile their resource needs, capabilities and 

security policies in order to interoperate. We are not concerned with lower layer 

networking, and significant research has gone into standardizing interoperation 

mechanisms at those layers, such as mobile IP [Bhagwat1996]. Research in application 

session handoff, like IMASH [Bagrodia2003] and the grid, which enables resource 

sharing in a large-scale distributed environment, are valuable but often do not consider 

mobility or trust issues, or both. 

 

Figure 1. Application-Level Interoperation in the Semantic Web 

OUR 
RESEARCH 

SPACE 
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Ensuring spontaneous interoperation among sets of devices and administrative 

domains, typically between user devices and wireless networks, is hard because of the 

following characteristics of ubicomp:  

 Heterogeneity of devices and communication features 

 Differences in the kinds of resources (and services) possessed and offered 

 Differences in capabilities possessed for interacting with external entities 

 Contexts and context-sensitive constraints that cannot be anticipated in advance 

 Diversity of security and privacy policies, and trust relationships 

To elaborate, heterogeneity poses the following problem: how does a computing 

system match requests posed by an interacting system to its local resources while 

maintaining its security and resource management policies? It is impractical to both 

enforce standard application layer protocols and interfaces as well as a uniform standard 

of trust on every administrative domain. Conceptually, multiple protocols and 

mechanisms for service access could be deployed and used on an ad hoc basis. But every 

unique context consists of a service consumer with different characteristics requiring a 

different variation of the service. Creating separate protocol instances for each unique 

context will lead to a combinatorial explosion. To circumvent this problem, designs and 

configurations have been proposed that are inflexible and which adopt an all-or-nothing 

approach. One approach advocates rigid policies governing interactions, which typically 

limit such interactions to devices or domains that have prearranged trust relationships, 

and/or predeployed mechanisms to make use of external services when two 

devices/networks come into contact. Such solutions do not scale globally. At the other 
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extreme, systems use standard open interfaces which allow free interoperation at the 

expense of security and privacy (more about this in Section 1.3). This is the design 

approach of projects like Oxygen’s Metaglue [Coen1999] and Sun’s JINI [Waldo1999] 

which enable resource discovery and access. These and other ubicomp infrastructures, 

until recently, have not considered user and device mobility. Neither do they consider the 

dynamism of the environment, where interaction mechanisms, goals and constraints must 

vary with context. 

The need for interoperation often forces a device to expose more private 

information and allow access to more resources than it needs or wants. This is far from 

ideal, but it is the approach used by various systems for which security or wide-scale 

interoperability is not a priority. Fallback or alternative agreements can be reached by 

exchanging information that allows interacting entities to determine all alternatives that 

could result in a compatible resource sharing agreement; in many cases, constraints could 

be relaxed by determining exactly how much security can be risked or how much privacy 

can be given up. Most systems leave it to users to make these decisions upon failure. This 

not only detracts from usability, but also circumvents a problem for which an automated 

solution can be worked out. Moreover, rigid policies or tailor-made applications for 

domain-specific needs cannot work in an environment where context changes 

dynamically, and all situations cannot be anticipated beforehand. Unanticipated results 

and security holes will invariably occur. The solution is a middleware for policy 

management, based on the use of flexible and domain-dependent policies that can be 

easily specified in a high-level language, and can be easily modified during runtime. 
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In the following subsection, we will show how interoperation occurs, or 

sometimes doesn’t occur, in contemporary mobile and ubiquitous computing scenarios, 

and contrast it with the ideal or optimal corresponding scenario. The rest of this 

dissertation will then describe how our research enables transformations from the 

conventional to the optimal scenario. 

 

1.3. Practical Motivational Scenarios 

There is no one killer application that demonstrates how and why our research is valuable 

in a ubiquitous computing environment. Indeed, the very promise of ubicomp is that it 

can support a potentially unbounded set of applications that make users’ lives easier 

without requiring them to become more tech savvy. Successful ubicomp research projects 

over the past decade have demonstrated the worth of their research in terms of the 

versatility of their frameworks. We make a similar attempt here. We describe specific 

scenarios that motivate the need for our research, and indicate how these can be 

generalized. These scenarios face problems ranging from misconfiguration to security 

and privacy violations that occur due to the lack of spontaneous interoperation-enabling 

technology. 

 

1.3.1 A Ubiquitous Conference Room 

Consider a motivating scenario where interoperation fails in the absence of prior 

configuration. This is due to stringent security policies and a lack of preestablished trust. 
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Figure 2. A Conference Room Scenario 
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An ACM-conducted conference (see Figure 2) is being held in a room containing 

a wireless network, a display device, a projector and a printer. Though this room is 

accessible to valid attendees and conference officials, as well as non-attendees, it may 

offer services only to valid attendees and officials, with varying degrees of access. The 

room network (managed by a server) allows any ACM-certified computer access to these 

services, though the projector display can be accessed only by ACM officials. A 

conference attendee could access these services through his personal mobile devices, like 

the laptop depicted in Figure 2a. A prospective attendee now tries to join the network and 

access these services through his smart PDA-phone. This device possesses a certificate 

from UCLA, which is an ACM-affiliated school, and also has policies restricting release 

of sensitive credentials to a trusted entity, in this case, an NSF-certified entity. As it turns 

out, the conference is NSF-certified, and the server can prove this. The two interacting 

entities, the conference room server and the attendee’s PDA-phone, have compatible 

constraints, which should lead to a service binding of the form indicated in Figure 2b in 

an automated manner. But today, the attendee’s device could, at best, discover the 

wireless network and associate with it if permitted. Accessing the other services would 

require manual configuration of the device. What is lacking is an effective procedure that 

allows the conference room server and the PDA-phone to exchange policy  

and accreditation information, verify that information, and agree on service access. In 

addition, the server could impose policy constraints on the supplicant device, such as an 

audio-silent request during the conference, and grant service access only upon 

compliance. The conference system might choose to offer further privileges (such as 
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copies of presentations or papers) to users who subscribe to a journal related to the 

conference. These tasks can be achieved through a step-by-step progression of trading 

information and making agreement decisions. 

The dynamics of the above scenario are similar to how web services are accessed 

today. Clients and servers interact through rigid protocols, often with user input, because 

of the lack of a viable procedure for dynamic agreement. Standards like P3P (Platform 

for Privacy Preferences) [P3P] have been promoted to make web service access more 

flexible, but these have achieved very limited success or adoption (we will discuss this 

further in the Related Work section). Therefore, a spontaneously interoperating 

conference room could be the model for generic web service access as well. 

 

1.3.2 An Office/Lab Party 

This scenario builds on the Smart Party concept [Eustice2008a] introduced by Eustice et 

al. as a ubiquitous computing application supported by the Panoply middleware (which is 

the subject of a PhD dissertation by Kevin Eustice) [Eustice2008b]. In brief, a smart party 

provides media-based entertainment to guests at a party, being sensitive to the 

preferences of the guests present in the various party locations. For example, our lab at 

UCLA is subdivided into multiple rooms, each room containing a speaker and a wireless 

access point capable of media storage and playback. In the ideal scenario, guests are 

invited to the party and given invitations in the form of digital vouchers (see Chapter 6). 

The guests arrive at the lab, are let in, and move around from one room to another. They 

carry personal mobile devices, such as cell phones, PDAs or MicroPCs, which store their 
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digital credentials and their media preferences. The devices can associate with the party 

environment only upon production of a valid guest voucher. Based on the preferences of 

the guests within a room, a dynamic song playlist is generated, relevant songs are 

obtained from the guests’ devices, and the songs are played on the local speaker. 

The party host H adjusts the playlists from time-to-time. Ordinary guests are not 

permitted to control the playlists, but when H leaves the party for a while, he provides a 

voucher with delegated permissions to one of his trusted guests G through a mobile 

device-to-device transaction, so that G can control playlists in H’s absence. The voucher 

is usable only if G’s device lies within the bounds of the lab. When G’s device attempts 

to modify a playlist, the lab network dynamically allows access on the basis of G 

possessing appropriate credentials (in the voucher) and being able to prove its presence 

within the room where the playlist is being modified. 

In addition to the media entertainment, the scenario also encompasses the door 

that lets guests into the lab. The opening and closing of the door can be controller by 

commands from computers present within the lab. The lab network has a policy not to let 

more than a specified number of guests (say 7) in at a time unless explicitly allowed by 

the host within the lab. In addition, no visitors are let in unless the host (or someone with 

delegated host permissions) is present within the lab. The door can be opened through 

acoustic signals, such as knocks, as well. Therefore, the first 15 guests are allowed entry 

upon knocking, but subsequent visitors are turned away (this scenario assumes that more 

than 15 invitations are sent) as their knocks are unable to open the door, even though they 



 16

can associate with the network. Guests who are turned away can enter if earlier guests 

choose to leave, thereby reducing the instantaneous party population. 

The above lab party scenario demonstrates the variety of policy management 

functions that are necessary for the smooth running of a ubicomp application. Allowing 

guest devices to participate in the party network requires a form of negotiation. 

Preventing unauthorized guests from modifying playlists, as well as allowing temporary 

“hosts” to control the playlists, requires dynamic access control using negotiation or 

some form of challenge-response, which is not easily provided by existing frameworks. 

Context-sensitive control of the smart door requires dynamic event monitoring and action 

triggers. This scenario thus establishes the need for a policy management framework. 

 

1.3.3 Security Perimeter Enforcement 

Professor B takes his personal laptop to a panel meeting conducted under the auspices of 

the IEEE and attended by PIs and graduate students working on the new 802.21 standard. 

The meeting takes place in a secure environment, the network being guarded by the latest 

firewall and DDoS defense technology. Direct access is allowed only to the local LAN, 

and limited Internet access is provided through a proxy. Even with these guards, there is 

always the danger of an insecure or infected device, such as Prof. B’s laptop, bypassing 

the firewall and potentially compromising the IEEE network from within. To mitigate 

these security risks, the IEEE network could deploy more sophisticated guards like 

Cisco’s NAC (Network Access Control) [Cisco2003] or UCLA’s QED (Quarantine, 

Examination and Decontamination) [Eustice2003b] that would prevent the laptop from 
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accessing network services until it has been scanned and certified as patched and clean of 

malware. The problem with this scenario is its one-sidedness and the all-or-nothing 

nature of the interactions. The entering laptop is forced to subject itself to a complete 

examination, or it is not allowed to join the network at all. The network is allowed to 

impose its policies on the laptop, and it need not consider the laptop’s privacy constraints. 

For example, Prof. P may not care for access to any conference room services beyond 

being able to access email using limited bandwidth. In exchange for the permission to 

perform a much less intrusive search on his laptop, he could agree not to run certain 

classes of applications, such as instant messaging and file sharing. The laptop would be 

prevented from accessing all computing resources within the network and prevented from 

communication with other computers on the network. Unfortunately, this result would 

require an IEEE system administrator to manually reconfigure both the network and the 

laptop. Currently available tools do not enable an automated bilateral agreement.  

This scenario illustrates the three-way security, privacy and usability tradeoff 

discussed earlier. A happy medium can be achieved in this scenario, and our research 

yields a solution that produces this in an automated manner. 

 

1.3.4 Peer-to-Peer File Sharing 

File sharing using free or commercial P2P software is largely client-centric and 

ungoverned. Most research in this area has also focused on efficient data and network 

structures, and fast search and data retrieval. There are a number of meta issues such as 

bandwidth and disk usage, as well as security and access control, which are not given due 
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importance. The reality is that most file sharing goes on within administrative domains 

that would like to control how and with whom file sharing occurs, in situations where an 

outright ban would be undesirable or infeasible. 

For example, Bob carries his PDA to his friend John’s house. The PDA attempts 

to run a file-sharing application whenever it can obtain Internet access. John’s network 

will allow Bob’s PDA to join and access the Internet, but it has limited bandwidth. John 

considers P2P to be a frivolous activity, and is not willing to provide more than x units of 

bandwidth to any device wishing to run such an application. On the other hand, if the 

device chooses not to run P2P software, no bandwidth limit is imposed. If a P2P 

application is found to run on Bob’s device, it would immediately be disassociated from 

the network. John is also unwilling to risk lawsuits in case Bob’s PDA downloads and 

shares illicit or copyright material. His network has a blacklist consisting of a set of 

known web addresses that are known vendors of copyrighted media. Also, he does not 

want Bob to download media files that include songs and videos larger than 5 MB. In 

turn, Bob has a list of preferred web addresses he would absolutely like to share files 

with. John’s network and Bob’s PDA could then exchange this information and reach an 

agreement whereby the P2P application works under the constraints that the network 

imposes, and the network in turn permits the kind of file sharing Bob prefers, as long as it 

does not violate its policies. If Bob’s device is found to violate these policies at any time 

(through any available monitoring mechanism), its privileges are immediately revoked. 

John’s network may also choose to provide a proxy P2P service, whereby it could check 

the veracity of the files that are uploaded or downloaded. Such a range of flexible 
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agreements could be achieved in an automated manner, as in the other scenarios 

discussed previously. Our research addresses this type of scenario as well. 

  

1.4. Assumptions 

Certain assumptions about ubiquitous computing environments and the state of 

technology predated our research, and our implementation was predicated upon them. 

These are briefly described as follows. 

A global ubiquitous computing environment governed by a centralized 

administrator is infeasible and impractical both from a technical and logistical standpoint. 

Even though we are seeing companies like Google tie up with cities to provide ubiquitous 

WiFi access [Google2005], these will most likely be restricted to network connectivity, 

and local businesses will independently offer different services and have different trust 

relationships. A large number of scenarios involve resources and services that are only 

usable in a local area, e.g., printers and displays, so the standardization that cellular 

providers have achieved for data communication services is unlikely to be translated to 

the more general ubiquitous computing arena. 

We assume that the global ubiquitous computing system of the future will be a 

vast inter-network of local domains (a term we will define more precisely in Section 2) 

that are completely autonomous and are able to specify policies that govern all activities 

within the scope of that domain. What we envision is that local environments will choose 

to configure themselves in the mold of the smart spaces described earlier, such as Oxygen 

or Gaia, while connecting to the outside world through a network that will be built on our 
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contemporary Internet. Our implementation, for example, is built on and is a part of the 

Panoply middleware [Eustice2008b], as Panoply’s model most closely corresponds to our 

notion of administrative domains. 

We also assume that such domains keep the nature of these policies private by 

default, since exposure of the policy constraints to untrusted entities may leave their 

resources open to abuse. 

We assume that low-level networking compatibility exists. De facto standards 

such as TCP/IP- and 802.11-based MAC protocols already enable mobile devices to 

connect and obtain services for their users. Protocols for secure communication, such as 

TLS, are also fairly ubiquitous. We note that our implementation is a prototype, and it 

could be augmented by adding other communication mechanisms, such as Bluetooth. Our 

implementation deals entirely with middleware and application layer compatibility and is 

independent of the underlying data communication mechanisms. In this respect, we also 

assume that some standardization of Semantic Web technologies is also inevitable, which 

would enable diverse systems to share a common description ontology. We believe that 

the widespread use of XML, a Semantic Web technology, justifies our assumption. Our 

assumptions, and the position of our negotiation framework, are illustrated in Figure 3. 
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Figure 3. A Policy-Guided Negotiation Framework as a Middleware 
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1.5.1 Thesis 

My thesis can be described in three parts, as follows: 

1) Interoperation among devices and domains in the absence of a preestablished trust 

relationship or a common set of service (or application) level protocols can be 

achieved through a generic negotiation protocol. 

2) All devices and domains have established local policies that constrain the way they 

can use and export their services. Negotiation only requires that participants have a 

common understanding of resource semantics, and that these policies be specified in a 

declarative logical language. 

3) A framework for policy management that monitors internal changes as well as 

mediates interactions through negotiation can be designed and implemented to work 

for a generic ubicomp unit, be it a single device, a group, or a distributed system. 

 

1.5.2  Contributions 

 General Purpose Negotiation Protocol for Exchange of Information through 

Speech Acts—The most significant contribution of our research is a minimal and 

lightweight protocol that computers and groups of devices can run, enabling them to 

interoperate, or as described earlier, query each other for information, exchange data, 

offer and consume resources. The high-level message types are generic speech acts, 

such as requests, offers, queries, commands and policy obligations, which is a general 

enough set sufficient for all the varieties of ubicomp applications and scenarios we 

could think of. The protocol itself is completely independent of the type and number 
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of resources and credentials possessed by each negotiator, and the nature of the 

security and resource usage constraints represented by the policies. The interacting 

entities don’t need to have much in common, apart from sharing a common ontology 

and an understanding of how to process speech acts in the form of negotiation 

messages. A negotiation could result in failure, but that would only be because the 

negotiators’ policies are completely incompatible. Our negotiation protocol is 

sensitive to runtime context and policy changes, and supports simultaneous 

negotiation for multiple goals. It goes much further than traditional fixed goal and 

domain-specific negotiations such as DHCP or QoS-guaranteeing network protocols. 

 Decentralized Policy Resolution for Agreement/Contract Generation—

Autonomy of computing systems and differences in policies could prevent 

agreements from being reached in the absence of a procedure through which both 

parties find out more about the each other. Were the parties to surrender their privacy 

to some centralized entity, it would have sufficient knowledge to generate a 

satisfactory agreement by resolving the sets of policies. But this may be unwise in 

most scenarios for privacy reasons, and because none of the interacting parties can 

agree on a trusted third party. Our negotiation framework processes negotiation 

messages and decides what proposals can be made and what information can be 

revealed; we model this as a decentralized and distributed policy resolution 

procedure. It works on partial knowledge, and is thus less efficient than centralized 

policy resolution, but offers more privacy protection. Also, given suitable restrictions 

on the policy language (as we will see in Sections 3, 4 and 8) the results may be 
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identical in quality to the centralized version. We also show, through large-scale 

testing, how negotiation performs in comparison to centralized policy resolution 

along a number of dimensions; these are described extensively in Chapter 9. To the 

best of our knowledge, such a performance study has not been attempted before. 

 Design and Implementation of a Policy Management Subsystem for Groups of 

Devices in a Ubiquitous Computing Environment—We designed and implemented 

a policy management framework as a core feature of Panoply [Eustice2008b], a 

generic group-management middleware for ubiquitous computing. Our design 

principles were faithful to our top-down, holistic approach to thinking about ubicomp 

interactions, as indeed, were the principles that inspired Panoply. A policy manager in 

a Panoply sphere of influence (we will define this term in Section 6) is effectively the 

security manager for a Panoply-enabled computing system. It maintains system state 

and policies in a database, is sensitive to context changes by monitoring events, 

triggers suitable actions as specified by relevant policies, mediates both intra- and 

inter-sphere interactions, and filters information flow to applications. Lastly, policy 

management promotes a non-intrusive paradigm whereby computers, given suitably 

specified policies, can do users’ work without requiring constant manual intervention. 

 Dynamic Context-Sensitive Access Control through Negotiation—Our negotiation 

framework also inspired a procedure for access control which is more dynamic than 

the traditional procedure of local access control policy lookup and verification. The 

implementation is tied to the Panoply model of event communication (we define 

Panoply events in Section 6). The Panoply policy manager filters events to test 
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whether or not events are permitted to flow to the destination application, which is 

conceptually equivalent to testing access control permissions, as Panoply resource 

accesses occur through events. If the event is found to violate policy, a challenge-

response (through a negotiation) could ensue. Resource accesses mediated by the 

policy manager will not violate access policies even though they may change 

dynamically. As we show later, negotiation results could be cached for a limited 

amount of time to ensure better performance, though revocation and integrity issues 

arise (discussed in Chapter 6). Our access control framework is, as we justify later, 

more dynamic and effective than recent advanced models like GRBAC 

[Covington2000] and DRBAC [Freudenthal2002]. 

 

1.6. Dissertation Outline 

The remainder of this dissertation is organized as follows: 

Chapter 2 describes our model of local ubiquitous computing environments, or 

domains, consisting of groups of devices, resources and networks, in more detail. The 

role that policies play in the management of such domains is also described, as well as 

why such policies are needed, and what the characteristics of such policies should be. 

Chapter 3 describes our model of interaction among two or more domains. 

Following that, the concept of negotiation as a way of enabling such interaction is 

introduced. The results of negotiation, as well as the theories backing such negotiation, 

are discussed. 
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Chapter 4 describes our policy language and the semantics of a policy database, 

or collections of policies. 

Chapter 5 describes our negotiation protocol as implemented in a real-world 

system on the basis of local policies. Protocol messaging units, semantics, and the 

algorithms at the message processing back-end are described. 

Chapter 6 describes the implementation of a full-scale policy manager within 

Panoply, a real-world ubiquitous computing middleware. The negotiation support 

provided by the policy manager is emphasized, and the larger roles of policy management 

are also described. These include action triggers upon events, and a dynamic form of 

access control through mediation of information flow. The systems issues in making our 

protocol fault tolerant are described. 

Chapter 7 describes various Panoply applications, some of which benefited from 

the use of policy management functions, and others that were built to demonstrate 

versatility. 

We discuss the characteristics of the negotiation framework from a theoretical 

standpoint in Chapter 8, and from a practical performance standpoint in Chapter 9. 

Chapter 10 discusses the related work in the areas of negotiation and policy 

management, and also discusses complementary research in policy languages, the 

Semantic Web, and security and access control frameworks. 

Chapter 11 describes suggestions for future work, and our conclusions are 

described in Chapter 12. 
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Chapter 2 
 

Policy-Governed Domains and Cross-Domain 

Interoperation 

 

In Section 1.4 we showed why it was reasonable to assume some level of standardization 

and compatibility at the lower networking layers and in the lower Semantic Web layers. 

The purpose of networking standardization is to enable two computers to communicate 

raw data, and the ostensible purpose of Semantic Web standardization is to enable agents 

and applications to communicate. The purpose of our research, which involves policy 

management and negotiation, is to enable interoperation among ubicomp domains, a 

word used multiple times in the previous section. Below, we describe by example what 

we mean by the notion of a domain, and the role that policies play in a domain. 

 

2.1. Devices and Groups as Administrative Domains with Scoped Policies 

We refer to any computing element that can act autonomously and has a fixed and 

defined administrative boundary as a domain. These can come in a variety of shapes and 

sizes, yet have basic common characteristics and interaction semantics. The following 

seemingly diverse computing systems fit in our definition of a domain: 

 A single device, which could be a desktop PC or a mobile device like a PDA or cell 

phone. Such devices possess resources that range from computing power, disk space, 
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and networking bandwidth to media files, digital credentials and agent code. They run 

applications like instant messengers and services (by default, usable only by that 

device) like location sensors and VoIP. The owner of the device subjects it to his 

needs and constraints. 

 A group of computing devices connected by a local network. These can range from 

tightly coupled device clusters to distributed systems to independent devices 

connected temporarily through a LAN. Examples include: enterprise networks in 

offices, department and lab networks within a university; server farms, clusters of 

computers offering a service or performing a task in a collaborative manner. Coffee 

shop wireless networks, and a personal area network connecting a user’s laptop, cell 

phone and e-watch, are also real examples of such domains in a ubicomp world. Such 

domains consist of computers as well as resources (such as printers, speakers and 

displays) that are not tied to a computer. They could offer a wider range of services 

such as Internet connectivity, caching and proxy services. The conference room 

described in Section 1.3 describes such a domain offering display, print and Internet 

services. The constraints that dictate the behavior of devices within and the rules of 

resource usage are typically set by a system administrator. 

 Organizations or social networks that are bound by a shared agreement or contract, 

where the set of participant devices is neither static nor confined to a physical region. 

Examples include organizations like ACM and IEEE, schools like UCLA and 

companies like Intel. The human members of these organizations are more relevant to 

such domains, rather than the computing devices themselves. The use of computing 
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devices enters the picture as a storehouse of credentials that certify affiliation and the 

procedures for accessing group services through web protocols. The kinds of services 

provided (such as access to online documents) and the policies that govern 

organizational membership are shared characteristics of these kinds of domains. 

We can observe from the above examples that these different types of domains 

have well-defined boundaries, and serve as containers of resources and services that are 

accessible within the domain but are by default inaccessible to any computing entity 

outside it. Centralized control exists within a domain with all behavior being constrained 

by a set of policies, whose scope extends only to the boundary of the domain. In addition, 

each domain maintains state or contextual information that is relevant to its needs. As the 

examples indicate, domains are not mutually exclusive; they may intersect, or lie within 

other domains. Intuitively, computing domains are analogous to administrative domains 

in the real world, consisting of local self-governing communities bound by a law whose 

effect extends to the communities’ geographical boundaries. A related project, Law-

Governed Interactions [Minsky2000], uses a similar definition of domains, and we will 

discuss this further in the Related Work chapter. Our notion of domains corresponds to, 

and is borrowed from, the Spheres of Influence concept, which is supported by a 

middleware called Panoply. An introduction and study of this concept is presented in a 

PhD thesis by Kevin Eustice [Eustice2003b], who collaborated on the research presented 

in this dissertation. 
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2.1.1 Interactions Among Domains 

In the scenarios described in Section 1.3, we encountered a number of domains that fit 

into our above definition. The conference room, the party network, the IEEE network, the 

home network, and each mobile device, had clearly demarcated boundaries, services and 

policies. Often, a mobile user might carry multiple devices like a laptop, cell phone and 

smart watch connected through a personal area network. The scenarios therefore describe 

what happens (and what should happen) when two domains try to interact. Modeling 

spontaneous interoperation [Kindberg2002] is easier with our definition of a domain. In 

this model, we treat each interacting domain as a single virtual device. The virtualization 

mechanism is beyond the scope of this dissertation, though Eustice describes it in his 

thesis [Eustice2008b]. Examples of interactions include the following: 

 The simplest case: two computers communicating (e.g., to share files) 

 A mobile device interacting with a local network in proximity; for example, a 

conference attendee’s device interacting with a conference room network 

 Two networks interacting; for example, a party guest’s personal area network 

interacting with the party network 

 Two organizations interacting for the purpose of creating and changing agreements, 

which would be relevant to entities who are members of both organizations. For 

example, ACM might make an agreement with UCLA to allow UCLA terminals to be 

used to read ACM conference papers; any change in the agreement will trigger a 

change in the relationship and constrain the ways in which UCLA students can access 

ACM resources. 
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The nature and purpose of interaction among domains, though of a diverse nature, 

remains identical at a high level: they all involve service discovery and service (and 

resource) access. The domain-dependent variable is policy, which every domain is free to 

set as it chooses, and which guides the decision making of the infrastructure during 

interactions and also local resource management. As an extreme case, a completely open 

system without any security or privacy issues would allow interactions based on a null 

policy. Our premise, one which we justified in Chapter 1, is that different domains in a 

ubiquitous environment are not likely to fall under a common security and trust umbrella, 

and so making them obey similar guidelines and policies is impractical for the same 

reason that centralized management is. Still, ad hoc associations must be supported and 

users carrying their personal devices need to access computing resources and be able to 

network wherever the presence of such infrastructure makes it possible. 

An alternative way of handling dynamic interactions exists. We could treat every 

ubicomp application on its own merit, and have each domain that wishes to support that 

application configured with relevant policies and mechanisms. Unfortunately, this 

solution cannot then be ported to a different application, and all the common features 

would have to be re-engineered whenever one needs to create and deploy a new 

application. Also, this would not be an effective way of handling situations that warrant 

dynamic formation or changes of agreements. Our domain-oriented approach provides a 

more tractable and scalable solution compared to an application-oriented approach, not 

least because of the huge number of combinations of possible policies and contexts. 
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2.2. Policies and Their Role in Ubicomp Domains 

Most domains, including single devices, will have certain common features such as 

networking, display, and audio capabilities. In fact, given a basic networking and 

processing capability, all resources could, in theory, be obtained and accessed across 

domain boundaries. Most devices that mobile users carry around will perform a small 

number of specialized functions through off-the-shelf components. There are mechanisms 

available to do almost anything that is computationally tractable; the number of ways to 

make use of resources and system capabilities is huge and is increasing. Ubicomp 

interaction will be based on the principle of being able to find and use such mechanisms 

wherever available, because user devices will have neither the hardware capabilities to 

perform every conceivable task nor the storage capacity necessary for all the services and 

data that their owners will find useful. 

So why cannot such domains, with their shared characteristics and needs (as 

described in Section 2.1), freely interoperate? It is precisely because two domains that 

wish to interact do not know if the other possesses relevant resources or resource access 

mechanisms or if their policies are compatible. Potentially, any required mechanism can 

be discovered from the external world and used, but how those mechanisms can be used 

and offered is not a trivial issue, given trust and system integrity concerns that every 

domain will have. These concerns fall under domain policy, and so we see that policies, 

though a shared common feature of domains, are an obstacle to interoperation. To aid in 

both internal management and interoperation with external domains, policies should be 

stated in a proper way and must provide an adequate description of domain constraints. 
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This premise both inspired and drives our research; it will be validated through our 

design and the results will be discussed in later chapters. 

 

2.2.1 Policy Expression and Scope 

Policy is essentially an abstraction, or a set of rules that constrain how a system can 

behave and how it ought to behave. It is a set of factual and behavioral specifications that 

are binding on every computing element and resource within a domain. Policy must 

specify entities (as represented by computing devices) and their attributes, security and 

privacy constraints, trust relationships, security credentials, network types, resources and 

protocols, cryptography-based objects and protocols, data and content types, and 

contextual parameters like time and space (see Figure 4 below). This list, which is fairly 

comprehensive, must be supported in a general-purpose ubicomp middleware. Some of 

the more general requirements for policy are the ability to deal with groups and classes of 

objects, and specification of general behavior and exception conditions. Deontic concepts 

like obligations and permissions [Kagal2003a], meta-constraints for priorities, resolution 

of modality conflicts, and setting up precedence ordering among different policy rules are 

other general requirements. 
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Figure 4. Policy Scope and Classification 

Not every domain needs to specify polices describing all sorts of resources, 

contextual parameters, and groups of entities that exist in a ubiquitous computing 

environment, though it should have the ability to do so if required. For example, a 

domain could have policy rules that describe its knowledge about objects that it is aware 

of (such as computer identities as IP addresses, location and time parameters, resources 

like storage capacity, printers and displays) and the relationships among such objects. 

Still, different domains need to agree on some issues in order to interoperate, 

unless their administrators and users wish otherwise. The bare minimum that must 

necessarily be common, while leaving individual users the maximum independence, is a 

shared policy description framework (a common syntax for a high-level description of 

resources of shared interest), a way of describing common resources (a common global 

ontology), and a communication protocol for transaction based on those policies. 

Domain-specific data and objects do not need to be understandable across domains, but 
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the policy language should support description of both domain-specific and global 

objects and constraints. In the future, some resource types, protocols or policies may get 

standardized on a global scale because of wide usage. Our research will still be useful in 

that situation because it would help in settling the terms concerning use of resources as 

constrained by policy rules, which may still differ from one domain to amother. 

 

2.2.2 Classification and Applications of Policies 

As illustrated in Figure 4, we classify the use and applications of policies in three broad, 

high-level areas: resource management, security and access control, and context-

awareness. In our view, based on a study of ubicomp literature and by observing the uses 

that ubiquitous systems and middleware have been put to, this is a fairly exhaustive 

classification. More relevant to our research is the fact that all three classes of policies 

impact the nature and result of an inter-domain interaction. 

This classification serves only to illustrate the aspects of a domain that users and 

administrators might be interested in controlling, and for which policies would be 

enforced in an automated manner. Individual policy rules may not fall strictly under one 

class or another; for example, it would be easy to frame a composite policy that specifies 

“how much of a resource can be used by a user accessing it through an insecure channel 

in a particular location.” Our ontology (see Figure 4) provides a more basic classification 

that is used to compose policies. No policy framework has rules for resources, security 

and context awareness written in complete isolation from each other. Every domain will 

maintain a database of policy statements, including facts and rules of behavior; 
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statements can be added to and removed from this database by the users or by the system. 

The interplay of these different functions can get very complex in a dynamic and 

heterogeneous environment. 

 

2.2.2.1 Resource Management 

Every domain possesses resources ranging from high-level ones like printers, displays, 

audio devices, sensors, actuators, and network connections to more basic resources like 

amount of bandwidth, disk space, files, data, and even memory blocks. It must export 

interfaces for such resources to users and applications. A single device manages 

resources through an operating system, and a network or cluster can manage its resources 

in many ways, ranging from a distributed operating system with tightly coupled devices 

to a loose federation of devices that share a single server or gateway to the outside world. 

Policy can be used to describe and constrain the way each of these resources can be used, 

and to perform resource allocation when multiple clients or applications have similar 

requests. It can describe how the usage of one resource is dependent on (or constrained 

by) another. High-level resources usually are dependent on lower-level resources, and 

any actions that are requested by clients could impact the behavior of multiple resources 

at different levels. Also, requests for resources at a high level, common when neither the 

requester nor the owner have knowledge of each other’s possessions, could be translated 

into requests for access to lower-level resources at the owner’s end. For example, Bob 

carries a PDA with him to a coffee shop expecting to get Internet connectivity and be 

able to use a particular network protocol through the shop network’s gateway. The shop 
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network’s policy for connectivity and protocols impacts low-level resources like network 

bandwidth and the amount of buffer space it is has available. Therefore, what is a simple 

requirement from the PDA’s point of view involves a more complex interplay of policy 

rules governing resources at the network’s end. In a highly dynamic environment, with 

the number and nature of clients in constant flux, a policy-based framework would be 

necessary to enable interoperation and to make sure that desired system behavior is 

exhibited. Such a system could be used to monitor conflicts and either solve them using 

meta-policies, or report them through appropriate interfaces. Systems like Keynote 

[Blaze1999] do such conflict checking, though in a static manner and using a restricted 

policy language. Our research has dealt mainly with variable high-level policies (set up 

by users) and their interplay with more static low-level policies in different contexts. 

 

2.2.2.2 Security and Access Control 

Security and access control policies often define the boundary of a domain, and are based 

on a local measure of trust and an idea of what it could take to compromise a system and 

misuse its resources. Examples of security policies include filtering remote service access 

based on identity and port (this is done using firewalls), and memory and file access 

restrictions to prevent buffer overflow attacks and mitigate the threat of viruses. Access 

control and privacy policy rules are used to answer questions like “who is allowed to 

access a particular resource?” and “what kind of authentication is necessary?” In 

ubiquitous computing, mutually unknown computing entities need to have a certain 

measure of trust in one another before they are ready to interact and share resources. 
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Access control policies will be specified using a local idea of trust, since it is impossible 

to establish trust relationships between every possible pair of devices in the world. As 

with resource management, it should be possible to describe security and access control 

rules at a high level, with the policy manager deciding what mechanisms to use in an ad 

hoc manner. This approach is highly flexible compared to many existing security 

frameworks that would require re-engineering when faced with new requirements. 

Different resources may have different access policies, and it is impossible to anticipate 

all permutations and side effects of these beforehand. Also, higher-level security policies 

(like setting security levels in the Internet Explorer browser) could impact behavior at a 

lower level (for example, which ports must be opened). Meta-policies, such as those 

pertaining to security/privacy conflicts, could help a policy manager with decision 

making. For a system in which new modules could be added dynamically, policy can be 

used to monitor the security impacts and prevent violations. Often, it might be important 

to have local policy rules kept private, since the exposure of these may inadvertently 

release private and sensitive information. This could enable malicious entities to discover 

security holes or make use of the nature of the policy itself in order to mount attacks. For 

example, domain A may have stringent policies for access to its resources (requiring 

intrusive checks) but may also provide such access to entities that are certified by domain 

B (which is more lax than A) and present in the vicinity. The latter is a much lower bar 

for entities to pass, and it is not in A’s interest to let everyone know that. In another 

scenario, if A has a policy of allowing resource access to entities affiliated with 

organization X between 8 pm to 9 pm, an attacker could attempt denial-of-service attacks 
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on A and X within that timeframe; knowledge of A’s policy would result in a more 

effective attack with fewer resources expended by the attacker. 

 

2.2.2.3 Context-Awareness 

Context-aware computing makes computer systems more intelligent from the point of 

view of a user since they provide customized service to users based on users’ context. In 

a ubiquitous computing world, the same application or resource provider would behave 

differently based on its perceived context. A context-specific application of a general 

policy would resolve to a set of lower-level policies. Learning a user’s behavior and 

anticipating his needs is an artificial intelligence problem, but there are systems issues in 

determining exactly what the context is and what is of relevance to the current context. 

Here, context can be used but as an added dimension to resource management and 

security policies. Location and time are the most common and widely used contextual 

parameters. For example, if I am in my car and need to find a gas station, I would like the 

application on my PDA to find the closest gas stations, rather than give me a complete 

list or prompt me to specify my location. Here the policy simply states that a gas station 

be located when gas runs out; the device has some way of sensing gas level, or could get 

such information explicitly from the user through some interface. I might like my home 

TV to change maximum volume levels gradually based on time, or prevent R-rated 

content from being screened during certain hours. Other types of contextual parameters 

could be considered, like applications behaving differently on my PDA based on whether 

I am in a public bus or in my car. Of course, for a truly intelligent environment, any 
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system would require sensors that provide context information; various sensors are in use 

today, and innovative ways of using them is the focus of a lot of ongoing research. 

Lastly, any policy framework that supports context awareness must allow generalizations 

over objects and context to be specified as well as exceptions, which can be used by 

systems to make quick and appropriate decisions. In practice, it is usually not necessary 

to completely specify context-adaptive behavior, which may be an impossible problem; 

partial specification and probabilistic reasoning could be used for decision making. 

Policies should be extrapolated to a context when direct rule lookup is not possible or 

cannot be inferred. Our expansive view of a policy management framework, which 

includes observation and recording of state changes, enables such extrapolation, as will 

be seen later in Chapter 6. 

 

2.2.3 Policy Management in a Domain 

We have seen how policies can be indispensable in a domain’s internal and external 

functions. To harness their power in an automated manner, policies need to be specified 

in particular ways and should have certain defined characteristics. Automated handling 

and manipulation of policies requires a policy management subsystem or infrastructure 

for every domain, which maintains a database consisting of all the state information and 

behavioral rules that comprise that domain’s policy. 

 

Policy Characteristics: Any system that we use to describe and reason about policy 

must have an ontology that defines what policy can specify, and also how it can specify 
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the elements of that ontology. We just described the “what” part, which is also illustrated 

in Figure 4. With respect to the “how” part, we assert that such policies should be 

declarative, and that such policies can be specified independently by users and 

administrators alike, leaving dependencies and conflict management to the subsystem. 

This also requires that policies have a logical underpinning, because logical reasoning 

frameworks provide formal and well-researched tools for the analysis of a collection of 

policies and the management of their inter-dependencies. 

Let us look at the alternative to declarative, logical policies, and our reasons for 

rejecting it. A domain administrator with sufficient programming skill could write up an 

application that implements the collective system policy. But this approach is obviously 

less flexible, as it ties policies to mechanisms; an application is written based on a 

particular specification of what is to be done (policy) and how to do it (mechanism). 

Using a declarative policy language, both online (i.e., while the system is running) and 

offline changes, and the addition and removal of policies are possible; in contrast, an 

application (whose implementation combines policy with mechanism) will have to be 

examined, modified, recompiled and redeployed. A number of policies will be specified 

by naïve users; neither will such users be able to modify system applications nor can 

designers anticipate all possible preferences that users might have, especially since such 

preferences may have a cross-application impact on the system [Zhu2005b; 

Toninelli2006; Agrawal2005]. A policy manager also allows a modular approach, so that 

resources can be added or removed easily, and the manager takes care of resolving newly 

added policies with existing ones. Policies must therefore be easy to write at a high level, 
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and can be ambiguous in certain ways, notably related to context. It is the policy 

manager’s task to clear ambiguities and make context-dependent decisions. 

 

Policy Engineering: From an engineering perspective, a policy management subsystem 

must deal with domain-specific requirements while targeting interaction from a global 

perspective. Since every domain will possess policy, but not possess every possible 

mechanism to deal with every possible situation, this subsystem must necessarily favor 

policy over mechanism for flexibility and extensibility. It should have the ability to 

reason with a set of policy rules and provide some guarantee of correct results when 

action decisions are made on the basis of local policy. The presence of such a framework 

precludes the need to invent specialized protocols and mechanisms for diverse security 

and resource access requirements. 

Structurally, a policy manager would lie as a middleware between the operating 

system layer and the application layer, being independent of both. It would mediate 

applications’ access to a domain’s computing resources and interactions between two or 

more domains. Our conception of a policy manager within a domain is illustrated in 

Figure 5. 
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Figure 5. Domains with Policy Management Middlewares that Mediate Interactions 

The variety of policies that such a middleware might need to handle and the range 

of issues involved in managing a collection of declarative policies looks like a huge 

burden for a research project. But we can leverage a large body of research in formal 

models or schemas for policy description and inference as well as formal logics, 

databases, and Semantic Web tools like RDF/XML. For implementation and evaluation 

purposes, we will select certain representative scenarios and ubicomp applications, and 

will also illustrate how these can be extended to other environments for which new 

policies can be written without having to reimplement the infrastructure.  

Using policy to control system behavior is not a novel concept introduced by us. 

Most systems use policy for flexibility and extensibility and also to impose constraints on 

the usage of system resources. While traditional uses of policy have been domain-specific 

and meant for local interpretation, I propose to use policy as a tool for ubiquitous 

bidirectional interoperation. 
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Chapter 3 
 

Negotiation Concepts 

 

We have seen how seemingly incompatible policies of interacting domains could prevent 

them from reaching mutually beneficial resource sharing agreements. In this chapter, we 

model such interactions in terms of the resources, services and policies possessed by 

domains. We describe how to develop interactions around the concepts of negotiation, 

thereby leading to the desired agreements illustrated in the scenarios in Chapter 1. 

 

3.1. Interaction Model 

Based on the example scenarios described in Chapter 1, and our definition of 

interoperating domains described in Chapter 2, we defined interoperation as a dynamic 

procedure discovering services and resources as well as obtaining access to them. We 

formalize the process of inter-domain interaction in this section. Each interaction starts 

off with domains possessing resources, policies and goals, and ends with a working 

agreement or relationship, consistent with the participants’ policies, that involves cross-

domain service and resource access. In practice, such an interaction is initiated by the 

need to obtain resources not available within the local domain but which are offered by 

the other. The set of resources and services that are ultimately shared is expected to be 

larger than the original goal set, including pieces of data and credentials that are 

necessary for fulfillment of the policy constraints. An agreement that results in a 
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satisfaction of the original goals may or may not be possible; the latter is an acceptable 

result if satisfaction would entail the violation of the policies of one domain or the other. 

Interaction is not restricted to two domains. Multiple domains may interact 

simultaneously, but the dynamics remain the same. We outline below the two-party 

model, and then briefly mention what an n-party case would look like. 

 

Pre-Interaction: 

 We have two computing domains, D1 and D2, which could be devices, groups of 

devices, or small networks that can operate autonomously (See Figure 6). 

 D1 possesses a triple < S1, P1, G1.> 

• A collection of resources, services and data, S1. 

S1 is general enough to incorporate high-level services like printing or display, 

and also low-level items like individual data items, memory space. 

• A set of policies, P1 = {P11, P12, …….. P1m}, m = number of policy facts and rules. 

P1 is general enough to describe both the state of a device or a network, values of 

relevant context parameters like time and location, operating rules that describe 

access control of resources and data objects, resource allocation, use of security 

mechanisms, context-sensitive behavior, and deontic concepts such as obligations. 

If C1 is a network, P1 would include information about resources allocated to or 

accessible to individual computers within the network. 

• A set of goals or requirements, G1. 
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G1 describes a set of resources, data or services that are not available locally at D1 

but which are necessary for the performance of local tasks or the running of user 

applications. These can be obtained from the external environment, which 

consists of other domains (though D1 is only interacting with D2). 

 Likewise, D2 possesses a triple <S2, P2, G2>, where P2 = {P21, P22, ……….. P2k}, k = 

number of policy facts and rules. 

 Local private policy assumption: 

• By default, D2 is assumed to have no knowledge of S1, P1 or G1. 

• Likewise, D1 is assumed to have no knowledge of S2, P2 or G2. 

 

Interaction Procedure 

 D1 attempts to find and obtain all or part of the resources specified in G1 from the set 

of resources S2 possessed by D2. 

 Likewise, D2 attempts to find and obtain all or part of the resources specified in G2 

from the set of resources S1 possessed by D1. 

 Both attempts (discovery leading to obtaining of access) occur concurrently, with no 

imbalance of power or influence between D1 and D2. 

 

Post-Interaction: Outcome 

 The result of D1 interacting with D2 is a relationship or agreement as follows: 

• D1 gains access to a set of resources Q1 ⊆  G1 ∩  S2. 

From D2’s point of view, D1 gaining access to Q1 (we can represent this as ‘grant-



 47

access(D1, Q1)’) is consistent with P2; i.e., when grant-access(D1, Q1) is suitably 

framed as a policy statement, grant-access(D1, Q1) ∧  P21 ∧  P22 ∧  ……….. ∧  

P2k is not a contradiction. 

Q1 is a subset of G1 ∩  S2 because some elements of the goal set G1 will be 

granted and others not; also, some goals will be satisfied partially or at a degraded 

level (e.g., the amount of bandwidth granted is lower than the requested level). 

• D2 gains access to a set of resources Q2 ⊆  G2 ∩  S1. 

From D1’s point of view, D2 gaining access to Q2 (we can represent this as ‘grant-

access(D2, Q2)’) is consistent with P1, i.e., when grant-access(D2, Q2) is suitably 

framed as a policy statement, grant-access(D2, Q2) ∧  P11 ∧  P12 ∧  ……….. ∧  

P1m is not a contradiction. 

• Q1 and Q2 are sets of resources obtainable within the constraints imposed by P1 at 

D1 and P2 at D2, and the partial knowledge possessed by either entity. It may not 

be the case that all the goals of either domain can be satisfied by the other based 

on what it possesses, which is why the maximal resource binding is the 

intersection of the sets Gi and Si. 
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Figure 6. Inter-Domain Interaction Model 

 In an ideal (or optimal) interaction outcome, Q1 and Q2 are maximal sets within the 
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an outcome. But it is not obvious that such optimality can be achieved through a 

decentralized procedure and with partial information. A deeper analysis and 

comparison (through practical measurements) are presented in Chapters 8 and 9. 
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and joining a network) starts off with goals. Let us map our conference room scenario 

  

DOMAIN 1 

G1 

S1 

P1 

Goals/Requirements Resources and Services Policies 

Decentralized policy resolution
Bi-directional protocol 

Multiple simultaneous objectives 

Q1  ⊆   G1 ∩  S2  

DOMAIN 2 

G2 

P2 

S2 

Q2  ⊆   G2 ∩  S1  
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from Chapter 1 onto this model. We add some features not present in Figure 1 just to 

make the example richer. 

 Interacting domains: 

• D1: PDA-Phone carried by the conference attendee 

• D2: Conference room network that offers various services 

 Interaction goals: 

• G1: {Web access, Projector display service, Print service} 

• G2: {Expand organization (IEEE) subscription base} 

 Domain resources and services: 

• S1: {UCLA-certified voucher, IEEE-membership Voucher, Credit card info.} 

• S2: {Network connectivity and Internet access, Print service, Projector display 

service, Journal subscription service, NSF-granted certificate} 

 Domain policies: 

• P1: {I will release my vouchers only to NSF-certified domains; 

           I will block services on vulnerable ports in return for network access} 

• P2: {I will release my NSF certificate to whoever requests it; 

           I will allow printing access to any valid conference attendee; 

           I will allow projector display access only to conference officials; 

           I will allow network and Internet access to conference attendees who provide 

either a valid ACM voucher or a voucher from an ACM-affiliated school (UCLA 

being one of them), is willing to block incoming traffic on ports 25 and 110, and is 

willing to provide specification information about its OS} 
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 Final Outcome: 

• Q1: {Network connectivity and Internet access, Print service, NSF-granted 

certificate presented by D1, Journal subscription} 

• Q2: {UCLA-certified voucher, Credit card info.} 

 

n-Party Interaction 

Modeling an interaction among n (n >= 2) domains can be done in a straightforward 

manner by extending the 2-party model. 

 We have a set of domains {D1, D2, …..... Dn}. 

 Each domain Di :  

• Possesses a triple <Si, Pi, Gi>, where Pi = {Pi1, Pi2, ……….. iipP }, pi = number 

of policy facts and rules. 

• Is assumed, by default, to have no knowledge of Sj, Pj or Gj, (j varies from 1 to n, 

excluding i). 

• Attempts to find and obtain all or part of the resources specified in Gi from the set 

of resources U
n

1j

jS
=

 – Si. All attempts occur concurrently, with no imbalance of 

power or influence among the Dis. 

• Gains access to a set of resources Qi ⊆  Gi ∩  (U
n

1j

jS
=

 – Si), so that from the point 

of view of each Dj (j varies from 1 to n, excluding i), Di gaining access to Qi (we 

can represent this as ‘grant-access(Di, Qi)’) is consistent with Pj; i.e., when grant-
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access(Di, Qi) is suitably framed as a policy statement, grant-access(Di, Qi) ∧  Pj1 

∧  Pj2 ∧  ……….. ∧  jjpP  is not a contradiction. 

A full (multi-party) interaction involving more than two domains is easy to model 

but possesses very complex dynamics, because each bilateral interaction affects others in 

unpredictable ways. A strictly less complex interaction among n domains has multiple 

concurrent bilateral sessions, where each interaction proceeds as if it were the only one. 

We refer to this as a multi-thread interaction, and our framework supports this in addition 

to the basic 2-party interaction. 

 

3.2. Agreement through Negotiation 

In the previous section we modeled an interaction as a constraint-satisfaction problem. 

Disregarding the complexity of solving such a problem for the moment, obtaining a 

solution is made much harder simply because the inputs (resource and policy sets) for 

each interacting domain are private by default, and not available to the other domain. 

Therefore, reaching an agreement through an interaction necessarily requires some 

exchange of information between the two sides. We provide a procedure for agreement 

using an application-level protocol, which takes the form of a negotiation (an interaction 

of influences). Inter-domain interactions have similar characteristics to negotiations: 

 The domains have competing influences or interests. 

 A dispute arises because of policies that prevent one domain from immediately 

granting access to all requested resources. 
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 The final resource-access agreement is the course of action the domains settle on, the 

set of resources granted access to, and the level of access granted depends on the 

interests of each domain. 

 It is advantageous to gain as much as possible while conceding as little as possible 

(including the nature of the policies), thereby necessitating bargaining. 

At a practical level, we follow Zartman’s definition of negotiation as a process of 

combining conflicting positions into a common position under a decision rule of 

unanimity, a phenomenon in which the outcome is determined by the process 

[Zartman1993]. Conceptually, our negotiation protocol (described in technical detail in 

Chapter 5) achieves a tradeoff through a process of give-and-take. What must be given 

and taken is inferred from the policy rules. Once the other negotiator’s goals are known, 

local policies governing (and relevant to) those goals can be checked for compliance. It is 

obviously not in the interest of a domain to concede to a request at the expense of 

violating its policy. Alternatively, obstacles to goal satisfaction can be inferred from the 

policy statement, and these can be restated in the form of different goals that can be 

considered in turn. In some cases, the incompatible policy rule could be communicated as 

a goal; the other negotiator could examine and attempt to satisfy this rule. Negotiation is 

perpetuated by such trading of information, guided by the examination of policies and the 

evaluation of competing interests at every step. Satisfaction of a goal (e.g., obtaining 

resource access) might involve some sacrifice on a negotiator’s part, or some behavioral 

obligations could be imposed upon it; in the larger picture, one is willing to make such a 

sacrifice because a larger interest (of obtaining resource access) is served. 
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Sometimes, the nature of resources and policies may require a re-evaluation of 

goals, and the negotiation would result in a compromise. For example, resource access 

goals may be compromised upon in three ways: (i) negotiation for a quantitatively 

measured resource (e.g., bandwidth) could eventually settle on a point where the quantity 

granted is less than or equal to the originally requested level; (ii) negotiation for a 

resource that can only be granted whole or not at all (e.g., access to a display device) 

could eventually result in access to an alternate resource that serves the purpose but is 

less desirable in qualitative terms than the originally requested one; (iii) the original 

request could be granted with certain restrictions on the use of the resource (e.g., it cannot 

be accessed during the night).  

The salient features of our negotiation protocol are listed below: 

 It is a policy-guided operation through which domains can make a request to each 

other for access to locally available data and resources in a sequential manner, and 

decide whether to grant such access. Each domain starts with a goal set, though only 

one initiates a protocol session. Each party’s interests, framed as meta-policies and 

heuristics, guide the negotiation towards a compromise agreement. 

 The final result must be consistent with the policies of each domain, and a number of 

policies of different domains may conflict. Therefore, negotiation is a decentralized 

process of policy resolution and conflict management, where none of the domains 

have complete knowledge of the others’ policies, state and goals. It is a best effort 

procedure, or theoretically suboptimal compared to centralized policy resolution 

using an oracle with full knowledge. We compare centralized policy resolution (a 
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non-trivial operation) with negotiation in Chapter 8. 

 In the most general case, each participant’s local policies are private and unknown 

to the other. Keeping policy private is not a random assumption; exposing policies, 

especially access control rules, could open up a system to abuse and have serious 

security implications. A malicious agent may potentially take advantage of such 

knowledge to compromise systems; this has been demonstrated in widely used 

network security protocols. For example, the knowledge that resource R can be 

accessed only between 8 pm and 9 pm, and only by X, could invite denial-of-service 

attacks targeted both at the resource host and at X. 

 Unlike many other interoperation protocols, ours is bidirectional, without any 

negotiator constrained to be a client or a server, since both entities may possess 

objects that the other desires. The model in Section 3.1 makes no distinction between 

any of the interacting domains. For example, a patron’s PDA and a coffee shop 

network could derive mutual benefit from interaction; the former obtains network 

access, while the latter could expand its customer base through incentives that include 

network access. Our protocol enforces an ordering: only one domain may initiate a 

negotiation, and each party must send a message in turn. These constraints are 

necessary to avoid race conditions and other synchronization problems. 

 Negotiation is dynamic. For a negotiator, each step results in the discovery of the 

other negotiators’ characteristics, services and policy constraints. Intermediate goal 

satisfactions (through requests and responses) result in change of state and policies of 

the domains. The original goals are therefore continuously re-evaluated. Such re-
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evaluation is guided not just by local policies, but may also involve meta-issues like 

the time taken and the level of trust gained in the other negotiators. A negotiation 

does not follow a script (in other words, a template that specifies a limited set of 

defined states and actions that is known to all negotiators); rather, the steps vary 

depending on the nature of the negotiators’ policies. 

 The negotiation protocol is not domain-specific, but is designed to be independent of 

the nature of the resources and policies. Two domains can negotiate as long as they 

share a common semantic framework for the description of their resources and 

policies. An infrastructure like the Semantic Web and an expressive policy language 

are sufficient for such a negotiation scheme to be applicable ubiquitously. For 

example, negotiation is going to be difficult, if not impossible, between entities that 

have a totally different idea of what the resource “display” signifies. (Note: this does 

not preclude security domains from using diverse strategies and heuristics, which 

need not be understandable or familiar to other domains.) 

 

Protocol Engineering: To negotiate, two domains must know about (or discover) each 

other’s presence and establish a low-level data communication channel [Eustice2008b]. 

Different interaction scenarios use different communication channels. Ubicomp 

interactions typically involve wireless communication between mobile devices and 

network access points. Software agents on the Web interact through the application-layer 

HTTP protocol, and are not device-based. Policy-guided negotiation protocols are 

applicable to these seemingly diverse sets of negotiators and communication media, as 
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they all involve private data and policies. Related research in web interactions includes 

the P3P standard [P3P] and automated trust negotiation [Winslett2003]. 

 

3.3. Negotiation Theories and Strategies 

Certain dynamics are common to all negotiation instances, namely that they involve 

proposals and counter-proposals. Proposal message contents are determined by the input 

(primarily goals and policies). A number of other extraneous factors determine the 

priorities of the negotiators, guide the actual process, and consequently determine the 

outcome; we will discuss these at the end of this section. But even though these factors 

vary with the target application, the negotiation protocols have the following in common:  

 They support arbitrary starting points and inputs (equivalent to our resource and goal 

sets) and generate outcomes that have unanimous agreement, i.e., the outcomes are 

acceptable to all negotiators based on their constraints (policies in our framework) but 

may not necessarily yield the best result for all. 

 They have the notion of a strategy, which can be loosely defined as an algorithm or a 

function that determines the path a negotiation instance follows, given that there 

could be many different paths leading to different outcomes. 

 The participants cannot coerce one another to bend their rules and do something 

against their will; every participant is completely autonomous and can withdraw from 

a negotiation whenever it chooses to. 

Our negotiation protocol, as we will see in Chapter 5, has all the above characteristics. 
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Now we briefly survey the dimensions along which negotiations could be 

categorized, and which affect the choice of negotiation protocol for a given application. 

Then we discuss various factors that affect negotiation strategies, and consequently, the 

outcomes. 

 

3.3.1 Characterization and Analysis of Negotiations 

Negotiations can be categorized based on the following criteria: 

 Types of expected outcomes and propensity to compromise: Broadly, one could 

classify negotiations as being rigid or flexible. In a rigid negotiation, the purpose is 

simply to determine whether goal satisfaction is possible through the process of 

proposals and counter-proposals; the participants are not willing to back down from 

their maximal demands, resulting in a largely binary (yes/no) agreement. A flexible 

negotiation has participants willing to settle for a degraded level of goal satisfaction 

(the logic being that something is better than nothing) based on the others’ 

willingness to compromise as well. A scenario involving sensitive resources and 

private information, the compromise of which could be disastrous, would be an 

example of a rigid negotiation. A bargaining process, where the participants’ 

resources are known but their compromise levels are not, would be flexible, resulting 

in a compromise agreement. 

 Purpose of negotiation: Some negotiations are done purely for the purpose of 

discovering and matching the appropriate resource to a prospective consumer. The 

process results in a semi-free information exchange among participants, resulting in 
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everyone having collectively more information in order to make the right decision. 

DHCP and Jini service discovery protocols fall under this category. Negotiations for 

resources such as disk space on the Grid, or network bandwidth for better QoS, can 

be considered as distributed resource allocation protocols. Both of these classes of 

negotiations have minimal or no associated security risk, and take the form of 

negotiation simply because the necessary information to solve the overall problem is 

distributed among the participants. Distinguishable from this category are 

negotiations among service owners and consumers, where security and validation 

play an important role in reaching an agreement. The KeyNote trust management 

system [Blaze1999] is an example. 

 Relationships among the negotiators: Negotiators may not have identical powers and 

roles. Broadly, one could classify negotiations as being of the client-server type or the 

peer-to-peer type. In the former case, services are owned by one of the negotiators 

and the others are forced to compromise by virtue of their supplicant status. The 

service provider could terminate negotiations without losing anything. In the latter 

case, participants have an equal interest (or disincentive) in compromising and 

guiding the process towards a mutually beneficial conclusion. 

 Negotiation process: Drawing from game theory, one could broadly classify 

negotiations as being either cooperative or competitive. In a cooperative negotiation, 

participants are more willing to share information with each other and help each 

other, as such cooperation is likely to lead to better results for all. A competitive 

model is used either when the payoff is zero-sum or each participant feels that it 
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stands to gain more by denying certain information to the other side. 

These categories are not mutually exclusive, and most scenarios would be drawn 

from combinations of categories of each criterion. Our negotiation model is not restricted 

to a specific category, as it could be used for different purposes, could be competitive or 

cooperative, and accommodates negotiators with different levels of influence. The 

flexibility of the protocol could be varied by framing suitable policies that indicate how 

strict a domain must be in satisfying others’ resource requests, how sensitive it is to its 

privacy, where its interests and priorities lie, and its trust and influence over others. In 

practice, we concentrate on scenarios that involve secure guarded resources and private 

information because that is the primary motivating factor driving our research, and one 

that will be most beneficial to the advance of ubicomp. 

There are various perspectives through which we can view and analyze 

negotiations. The purpose of such analysis is to model negotiations with more specificity 

and predict the outcomes. Briefly, the modes of analysis prominent in literature are the 

following [Zartman1988]: 

 Structural Analysis: In this mode, elements of power or leverage are distributed 

among negotiators, resulting in a power structure or power relationship among them. 

This power differential can be used to predict the outcome, though it may not be 

straightforward in all cases. Power typically represents the ability of a negotiator to 

enforce contracts, and to make its choices prevail. 

 Strategic Analysis: Strategies are forms of heuristics that determine what move to 

make in a given configuration; this concept is drawn from game theory. Utilities or 
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payoffs are assigned to possible outcomes, and the estimations of the payoffs of each 

available move typically guide the strategy. Cooperative strategies are used to reach 

equilibria, or outcomes that are mutually beneficial, though these are hard to enforce 

in practice because of lack of trust and because moves are made nearly 

simultaneously without full knowledge of the game state. 

 Process Analysis: Negotiation is considered a form of haggling, where participants 

start from fixed points and make concessions, eventually converging to a common 

point, or backing out if the cost of concession becomes prohibitive. In this mode of 

analysis, the dynamics of processes, or the behavior of parties in finding the rate of 

concession, are studied. 

 Integrative Analysis: Negotiations are divided into multiple stages, which consist of 

pre-negotiations, where parties make first contact, finding a formula for a positive-

sum outcome, and the settlement. 

These analyses are not exclusive to computing systems, but describe real-world 

negotiations among humans and groups, especially the structural and integrative modes. 

For the same reason, these modes are somewhat difficult to translate to a computing or 

mathematical model. We prefer and use the strategic mode of analysis, as it maps well 

onto our negotiation model.  

 

3.3.2 Factors that Affect Negotiation Strategies 

For a given input, a unique outcome may not exist. Instead, multiple outcomes may be 

possible, depending on the strategies followed by the negotiators. It is generally (though 
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not always) possible to enumerate all possible outcomes and also generate a partial 

ordering of the net benefit of the outcome for each negotiator. A negotiator achieves an 

outcome of maximum benefit when all of its goals are satisfied and it does not have to 

make any concessions. In practice, one can only estimate the best outcome at every 

negotiation step and make an appropriate move. Below we list some factors and priorities 

(besides negotiation goals and policies) that affect the negotiation process and the 

determination of expected outcome: 

 Gain: A negotiator wants to maximize his goal satisfaction irrespective of other 

factors, even if he incurs significant loss in other areas. 

 Loss: A negotiator wants to minimize his loss (things he has to give up in order to get 

something), or minimize the compromises he is willing to make. 

 Net Utility (Gain-Loss): This is the difference between the expected gain and loss. 

This is, in general, a more useful metric than pure gain or loss, and is used in most 

bargaining situations. Utility is a well-studied concept in microeconomics. 

 Security: Most negotiations involving sensitive resources and data take into account 

the potential security violations resulting from granting a request during negotiation. 

The objective is to minimize the probability of security compromise. (The only 

reason why a negotiator would be willing to consider having its security 

compromised is because his net benefit from having some of his goals satisfied 

overrides the security costs). 

 Privacy: Negotiators may also be mindful of the potential privacy loss they incur by 

revealing, for example, identity-related data, or their policies. A negotiator may be 
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willing to compromise on its goals in order to safeguard its privacy. 

 Time: The total time taken to complete a negotiation is important in many scenarios 

that have real-time constraints. A negotiator could offer certain compromises during 

the process in order to reach a quicker result. 

 Number of Steps: The number of steps is related to the time a negotiation takes, but it 

also incorporates other factors, such as the cost of sending, receiving and processing 

messages, and a network bandwidth cost. Sometimes, negotiators may not have real-

time constraints, but might want to terminate a negotiation in as few steps as possible 

to save networking resources. 

Negotiation strategies commonly consider combinations of the above factors. The 

factors are also not isolated from one another. Probability of privacy loss or security 

compromise, or a long negotiation could be modeled as estimated losses. Utility models 

could be used to estimate gains, and heuristic functions could be designed that would 

estimate a net benefit of doing a negotiation step, where multiple action choices are 

available. In game theory parlance, these would be equivalent to payoff functions. These 

heuristics or payoff functions can also be framed as meta-policies in the same language as 

input policies to a negotiation. In our protocol implementation and demonstrative 

applications, we focused on system-building and performance comparisons. We did not 

experiment with different strategies and heuristics based on the above criteria, but we 

provide guidelines for these in our future works chapter (see Chapter 11).   
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Chapter 4 
 

Policy Language and Database 

 

As summarized in the introduction, policies are sets of rules that describe the behavioral 

constraints and ideals of a ubiquitous computing domain. We take an expansive view of 

what a policy is in this context. System state, knowledge, beliefs, invariants, and 

intentions, in addition to behavior specification rules, are included in our definition of a 

policy. Also, policies cannot be treated in isolation as they impact each other, and are 

impacted by changes in domain state. Therefore, we provide both a language for writing 

individual policies and also establish clear rules that govern the management of a 

database of policy statements. Where do these policies come from? System 

administrators, with knowledge of the resources, devices and applications that comprise a 

domain, will write a large number of policies that are unlikely to change frequently. 

These include both behavioral rules and targets, but also the more static limitations and 

constraints inherent to the domain components. Events and dynamic changes in context 

during regular operation, and the resultant changes in the state of the components, would 

be registered as policies in an automated manner, as programmed by the designers and 

system administrators. A large number of policies, and goals or requirements, will be 

specified by the users themselves. 

Our interest in conceiving and building a policy language was limited to the 

purpose it would serve in our policy management and negotiation framework. We start 
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off by listing both the challenges inherent in designing a policy language for a ubiquitous 

system and the key principles underlying such a design. We survey existing policy 

languages ranging from those designed for system administration purposes to those that 

were explicitly designed for use in dynamic ubiquitous computing applications and for 

Semantic Web applications. Following that, we describe the characteristics and 

limitations of our policy language and database. We conclude with a description of the 

design and implementation. 

 

4.1. Design Requirements and Challenges 

Our language and database management procedures must not only allow the expression 

of the objects and constraints described in Chapter 2 but also enable the goals outlined in 

Section 1.6. The syntax and semantics of our policy language must enable the following: 

 Information can be extracted from policies in an unambiguous way so that a 

negotiation can proceed in an automated manner towards a conclusion. It should be 

possible to infer what is permissible and what is not through logical or mathematical 

means by examining those policies. 

 It should be possible to pose queries and extract answers pertaining to current system 

state or goals by examining policies. 

 One should be able to tell what action ought to be performed in a given situation (and 

consequently, when a situation changes owing to an event) to maintain inviolable 

rules and invariants. 
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Nature of Policies: Policies can assume different levels of stringency depending on the 

applications they are used in. They could be treated as mere guidelines, or default 

constraints that could be overridden as the situation warrants it. Systems that allow 

deviations from specified policies can be incorporated into a formal logic model, such as 

default logic [Antoniou1999]. When policies are meant to be examined and updated in 

real-time, they must be specified in a form that is computationally tractable. Therefore, 

we chose to state our policies as being statements with hard truth constraints; i.e., each 

statement must unambiguously hold a true/false value at every instant, and if it can be 

evaluated to be false, action must be taken immediately to rectify the situation and bring 

back consistency. 

There are different views of what policies could be. They could be intentions or 

actions that are performed upon some event (e.g., the light must be turned off at 8 pm); 

goals or requirements that may have no immediate relevance but must be achieved in a 

suitable context (e.g., running a peer-to-peer application requires obtaining ‘x’ amount of 

bandwidth); system configuration, state or invariants that must always be maintained 

(e.g., no more than five occupants may remain in the lab at any instant); result or 

constraint policies that when queried, return a response (e.g., an access control policy that 

specifies whether or not Bob can access resource R). Our challenge is to have a language 

that provides a unified syntax and semantics to represent each of these forms, because a 

policy management framework of our scope should support these. These different views 

of policies are tied together through events, such as devices demanding admission into a 

domain. Such an event could trigger querying of a policy database to infer whether it is 
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permissible, examination of invariants to determine whether such admission would result 

in an inconsistency, and the performance of certain actions if admission is granted (which 

results in a change of state). 

We discussed policy expressivity in Chapter 2, and gave an informal classification 

that was relevant to our application targets. One of the requirements of our policy 

language is that the syntax and semantics should not inherently limit expression of policy 

constraints when presented with a new scenario. We were less interested in providing 

ready-to-use policy constructs for a particular class of applications than a more general 

framework that would require some extra syntactic definitions for each application but no 

re-engineering of the semantics. The following is a list of requirements that our policy 

language needed to fulfill. This list is inspired to some extent by research in the area of 

policy languages for automated trust negotiation [Seamons2002]. 

1. Well-defined logical semantics: Statements in the language have truth values, and a 

policy management framework should be able to extract unambiguous meaning from 

a collection of policies. Therefore, our policy language should be backed by a formal 

logical reasoning framework. 

a. This makes the policy language usable in domains with diverse resource 

capabilities and constraints, without being tied closely to any one domain in 

particular [Kagal2003a]. 

b. Decision-making on the basis of policies described in a logic-based language 

ensures correct and consistent behavior. 
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A logic-based language also enables formal analysis of the negotiation protocol 

that makes use of it, and one could prove properties like soundness, completeness 

and optimality using that logic. 

2. Declarative semantics: As we discussed in Chapter 2, the language should allow easy 

specification of intent and goals, leaving the enforcement procedure to the runtime 

system. Thus, while the vocabulary describing objects could be specific to a domain, 

the semantics of dealing with the specifications will be common across domains. 

3. Individuals and groups: The language must allow expression of attributes and 

constraints on individual elements, as well as classes (or groups) of individuals. 

4. Generality and specificity: The language must allow expression of inter-policy 

constraints so that a general policy can be synthesized to a more specific policy in a 

given context. 

5. High- and low-level policies: The language must allow specification of high-level 

policies that express user preferences in the same language as low-level policies that 

express system invariants, and the relationships between them. 

6. Local and global constructs: The language must allow the writing of rules pertinent 

to local objects and constraints in the same way as global objects and constraints, and 

have the ability to separate the two for the purpose of external interactions. 

7. External functions: The language must have the ability to specify external or helper 

functions for interfacing, mainly with the operating system. 

8. Causality: The language must have the ability to express causality or consequences. 

9. Exceptions: The language must have the ability to specify or add on exception 
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conditions to a general rule. 

10. Monotonicity: The language must allow a negotiation to proceed in a monotonic, non-

contradictory way. That is, promises made during negotiation should not be 

contradicted at a later stage owing to defects in language syntax or semantics. 

11. Constraint extraction: The language must enable extraction of unsatisfied constraints 

in order to drive forward a negotiation. 

Designing a multi-layer policy language for different policy classes, such as high- 

and low-level policies, or local and global policies, would make design and 

implementation too cumbersome. Since the different policies must coexist in a database 

and be consistent with each other, it is advantageous to have a unified policy language; 

there could be some syntactic separation between the different policy classes but the 

semantics would be identical, which would serve our purposes. 

Being compatible with legacy frameworks of policy managements or with 

domains that use other policy languages was not a priority for us. Still, if a legacy system 

used a policy language based on the same logical semantics as our language, 

interoperation would be possible, and relatively minimal work would be involved in 

gluing together the constructs of the local and global policy languages. 

 

4.2. Key Language Characteristics 

As mentioned above, we wanted a policy language that would be independent of the 

domain or applications it was used in, and still be usable by the negotiation framework in 

diverse scenarios. The constructs or syntactic features provided by the language were 



 69

important only to the extent that scenarios could be constructed. To minimize our initial 

effort, we chose to adapt a policy language from an existing language that would provide 

a syntactic base and basic reasoning semantics, retaining the option of modifying or 

augmenting it later. (Note: We did not need to exercise this option while implementing 

the policy manager and our demonstrative applications.) Though a number of desirable 

features of a policy language can be found in existing languages (more in Section 4.5), 

the combination of features needed for a negotiation framework was not available in any 

existing policy language. 

Our policy language is built on Prolog, which is based on first-order logic. Recent 

implementations [Roy1990] have significantly advanced its computational efficiency, 

making Prolog satisfactory for use in a real-world framework, especially as mobile users 

are unlikely to perceive appreciable response time lag (see Section 4.4). The structure of 

predicates, variables and other terms in Prolog allows us to specify categories and 

instances of entities, objects and contextual parameters in policy rules. The semantic 

nature of a logic-based policy language also enables specification of high- and low-level 

policies, and the specification of relations between these. We use the SWI-Prolog code 

base and API [SWIProlog], which offer important features that will be discussed later. 

System state and policy rules are defined in the form of Prolog facts and rules (clauses). 

Using Prolog as our language base, the first two requirements in Section 4.1 are 

satisfied. First-order logic has well-defined and sound semantics, and those properties 

transfer to Prolog, as Prolog is based on a more restrictive logic, and our language 

restricts it even further (as we will see later on in this section.) Policy statements in 
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Prolog are also declared in the form of intents and goals, leaving the enforcement 

procedure to the runtime system. Below, we describe the salient features of our language, 

and show how they satisfy the requirements from Section 4.1. 

 

Ontology: In Chapter 2, we discussed the fact that most system information must be 

understood only within a domain, and need not be part of a global specification language. 

Interoperating devices still must understand and interpret the objects that they trade. Such 

specification issues have been researched in the context of the Semantic Web and other 

open frameworks, examples being RDF/XML (which have been widely adopted), 

DAML+OIL [DAML] and OWL [OWL]. Our policy ontology is inspired by SOUPA 

[Chen2004], which defines a set of core components and optional extensions that can be 

used to model ubiquitous computing applications. Our ontology is described in Figure 4, 

and to reiterate, includes the following: entities and agents, resources and content, 

properties and metadata, mechanisms (e.g., sensory, networking, cryptography), context, 

relationships between entities and resources, quantitative limits, precedence rules, 

deontic constraints (e.g., permission, obligation), actions and events. Our interest in 

ontology here was limited to making sure that our language would have the capability to 

describe the various elements in Figure 4, and not be inherently limited in some respect. 

Our motivation was similar to that of the designers of XML in this respect. Therefore, we 

do not describe each and every possible keyword that represents each element here, but 

rather give examples indicating that it would be possible in a given domain. 
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Syntax and Semantics: Our language uses almost all syntactic features of Prolog. Each 

statement in the language is either a fact or a rule. Each fact (or term) has the form 

“predicateName(argument1, argument2, ……. argumentn)” where n >= 0. Each 

argument is either a constant (includes random strings, arithmetic numerals, lists, 

Boolean values, or functions) or a variable (a string beginning with a capital letter). Each 

rule has the form “term1 :- term11, term12, …… term1n” where n >= 1. The head is the 

term on the left of the ‘:-’ operator and the body consists of the terms on the right. 

A rule is a Horn clause, or a conjunction of terms implying another term (the ‘:-’ 

operator denotes reverse implication). The comma implicitly denotes the conjunction, or 

AND, operator (∧ ). In addition, the terms could contain the disjunction operator (∨ ) 

denoted by the semicolon (;), the implication operator (→ ), and the cut (!) operator. 

Negatives are denoted by a ‘not’ operator, which takes the form of a predicate name. 

The semantics of these operators are identical to those in first-order logic. Each 

term has a binary truth value. In the rule written above, term1 evaluates to TRUE if and 

only if each element in the set {term11, term12, ………. term1n} evaluates to TRUE. A 

term in the body could be a head of another rule. Given a set of Prolog statements, one 

can pose queries, which are answered by a process of search for all possible proofs of the 

query statement. Evaluation takes the form of a depth-first search of a tree of rules, with 

facts being the leaves or terminal points. Backward chaining, a well-known first-order 

logic algorithm, is the evaluation technique followed in Prolog derivations. This 

procedure uses unification, or the matching of two terms to return a valid variable-to-

constant binding, to process queries. Our collection of policy statements is thus a logic 
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program that consists of certain provable facts, and the semantics of the language are the 

semantics of query processing. 

Two features of Prolog need to be noted by policy writers; these features result in 

deviations from first-order logic, though a large number of Prolog statements can be 

written in such a way that they are faithful to the logic. First, evaluation of the conjuncts 

in a rule body is strictly left to right, which implies that the way one writes policies 

impacts query processing. As we will see later, this has an impact both on the 

completeness property of negotiation as well as its performance. The other feature is the 

omission of the occur-check [Marriott1989] from the Prolog unification procedure. This 

operation comes into play if one of the arguments of a term is a function whose 

arguments might contain a variable that the function itself is being matched against. This 

is a heavy operation and is commonly omitted for performance reasons, but the result is 

that the Prolog inference procedure is unsound. 

In our language, as in Prolog, negatives cannot be asserted directly. The way to 

prove negatives is through negation-by-failure; i.e., the absence of a proof of an assertion 

is considered to be a proof of its negation. 

Due to soundness issues, we generally prohibit functions in the statements in our 

language. We don’t lose any expressive power this way, since a function can be specified 

in the form of a relation (a predicate having a truth value). For example: the function 

fileType(‘song.mp3’)=audio and the relation fileType(‘song.mp3’,audio) (which 

can be asserted in Prolog) are equivalent. We allow functions only in a couple of places 
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and ensure that the functions are never matched with variables they contain, thereby 

preserving soundness (we will see examples of this later). 

A depth-first search procedure is incomplete, and may not terminate when cycles 

(directly or transitively self-referential rules) exist in a set of policies. To avoid this 

completeness problem, we prohibit cycles in our language. This does not lead to a loss of 

expressivity, since a set of statements with a cycle can be transformed into an equivalent 

set of statements without a cycle [Han1991]. In practice, especially when naïve users are 

allowed to write policies, it may not be possible to avoid cycles. But our inference 

procedure could be augmented with additional checks that prevent a rule from being 

examined more than once for a given query. We don’t currently do this because the space 

and time complexity of such checks are prohibitive. 

Some examples of policies in our language are given below, with explanations in 

English.  1-3 indicate facts, whereas 4-5 indicate rules or if-then clauses. 

1) fileType(‘song.mp3’,audio). 

[‘song.mp3’ is an audio file] 

2) relation(alice,bob). 

[‘alice’ and ‘bob’ are relations] 

3) certificate(‘UCLA’).possess(john,’UCLA’). 

[‘UCLA’ is a certificate, and is possessed by ‘john’] 

4) member(X) :- teamMember(X), numChildren(N), maxChildren(M), N<M. 

[X is a member if it is a team member and the current number of children is less 

than the maximum] 
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5) access(S,V) :- candidate(S), teamMember(S), voucher(location,V). 

[S can be granted access to voucher V if S is a ‘candidate’ and a team member, 

and if V is a ‘location’ voucher] 

Variables allow the expression of groups or classes. Every statement containing a 

variable has the implicit for-all qualifier (∀ variable_name) attached to it. For example, 

statement 4 above defines a class of ‘members’, each ‘member’ being denoted by the 

variable ‘X’. Thus our language satisfies requirement 3 from Section 4.1. 

There are a number of designated predicate names which we use in our policy 

language to denote special kinds of objects, actions or states that are necessary for 

negotiation. Negotiation requires the expression of speech acts that can be translated into 

messages of give-and-take and communicated to the opposite negotiator during the 

course of a protocol session. We will describe speech acts and messages in detail in 

Chapter 5, but briefly give examples of the predicates that express these below. 

 Possessions of resources and data are denoted by possess(arg0) or possess(arg0, 

arg1). Correspondingly, access to a resource is denoted by access(arg0, arg1). 

 Actions that can be performed are denoted by action(arg0, ……. argk), with a 

variable number of arguments. Correspondingly, rules governing agreement to an 

action request by another entity are denoted by the predicate obey(arg0, arg1). 

 A number of scenarios might involve simple information transfer. For example, a 

domain could have a predicate location(loc) asserted, indicating that its current 

location is ‘loc’. Predicates that govern the release of such information are denoted by 

accessInfo(X, Pred); e.g., accessInfo(X, location(loc)). The predicate 
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‘location(loc)’ is used as a function here. Other cases where functions are 

permitted are described in Chapter 7 and in Appendix I. 

Certain keywords, namely constants and predicate names, are asserted as global 

through the global predicate. Predicates that denote ‘request types’ (describing elements 

that can be requested by one negotiator to another) are asserted using the requestable 

predicate. Not all predicates can be global or requestable, thereby providing a simple 

way of satisfying the local vs. global requirement in Section 4.1. 

The following examples illustrate low-level rules: in (1), a low-level JPL (see 

Section 4.4) query (jpl_call) is required to call a Java method to translate a group 

member name to a player name; and in (2), the action of closing a port  ‘Po’ requires the 

execution of the ‘iptables’ shell command. 

1) teamMember(X) :- groupMember(X), playerName(Y), 

jpl_call('panoply.policy.Helper','sphereName',[X],Y). 

2) action(closePort,Po) :- atom_concat('iptables -A INPUT -j DROP -p 

tcp --dport ',Po,C1), atom_concat(C1,' -i lo',C), shell(C,0). 

These rules describe static configurations of a domain, and are usually set by 

people with knowledge of the system. Such rules also indicate how external functions 

(calling a Java method in rule 1, and running an operating system command in rule 2) can 

be invoked; thereby we satisfy both requirements 5 and 7 from Section 4.1. 

Causality can be specified in our language using implications in two ways. The 

clause construct by itself denotes causality, whereby the head of a clause happens to be 
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the consequence of the terms in the body. We also use the implication operator (→ ) to 

specify causality constraints. 

In Chapter 5, we will show how the monotonicity and constraint extraction 

properties are satisfied. 

 

Inter-Domain Translation: All domains do not have the same ontological range, and 

this range will be fairly limited for most domains. For instance, expressing concepts such 

as a display device is relevant only to domains that either possess or would require the 

use of such a device. A vast number of credentials and pieces of data would be useful 

only for selected domains and entities. Therefore, building a comprehensive database of 

syntactic elements, or keywords for predicates that represent all of these elements, is 

unnecessary and practically difficult to enforce as a standard. Therefore, we take a similar 

approach to this problem as that adopted in Semantic Web technologies, namely XML 

and RDF. Using standard (and extremely minimal) ways of describing XML schemas 

through Document Type Definitions (DTD), an XML document could be parsed by 

entities other than that which created it. Thereby, one can specify different keywords in 

different domains, but the core structure and semantics of the language are platform 

independent. In our framework, when different domains interact, or when diverse 

applications, resources, or groups are brought under the same policy domain, one could 

easily add a small number of policy statements that would aid in cross-translation. For 

example, if a display device is represented using the predicate disp(D) in domain D1, 
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and display(D) in domain D2, the following Horn clauses could be added to the two 

domains for a common understanding of what a display device would be: 

D1: display(D) :- disp(D). 

D2: disp(D) :- display(D). 

If a legacy domain were made part of a bigger domain (e.g., a network is 

expanded to include more computers), one could make their policy databases compatible 

by adding suitably written translation policies like these. Such compatibility can only be 

ensured manually through out-of-band channels. If two domains with different keywords 

representing the same objects were to attempt a negotiation, it would likely fail. 

 

Limitations of the Policy Language: As mentioned before, Prolog, and consequently 

our language, is a restriction of first-order logic, whereby we can talk about functions and 

relationships between predicates, constants and variables, and use existential and 

universal quantifiers. What we cannot express are policies about policies. This would be 

a form of second-order logic, whose reasoning semantics are not so clearly understood as 

those of first-order logic. We therefore deal with policies in a non-logical manner, 

through manipulation by the external policy management system, rather than through the 

reasoning engine. This means that the expression of precedence or priority is somewhat 

limited. One could express something like the following: a color display is preferred to a 

black-and-white display for application A; but one could not express the following: 

policy rule R1 is preferable to policy rule R2 in context C. 



 78

Another area that we have not investigated rigorously is the writing of temporal 

policies. There is a large branch of temporal logic that deals with constraints involving 

time, events in the past and future, and so on. We did not feel the need to actively pursue 

research in this area. There is no inherent limitation in our policy language that prevents 

the expression of temporal constraints; rather, when we deal with events in the future, 

using timers and alarms, our policy engine may incur high overhead, or stored state 

information may increase fast over a period of time. This occurs because of the 

continuous nature of time, which can be divided into arbitrarily fine granularities. 

Consider an example involving a policy that governs when an automatic door can be 

opened or closed. We could specify a constraint that the door must not be open longer 

than 5 seconds. This would entail writing a policy that schedules a door closing event 

within 5 seconds of the door opening event. But what happens when someone else opens 

the door within that 5 second window? If we were to retain the originally scheduled 

event, the door might close too early for intermediate arrivals. So our policy engine 

would have to examine the entire database and invalidate the scheduled close events. 

Since time can be divided into arbitrarily fine granularities, the number of such events 

(however small the time window) are potentially unlimited. There is no straightforward 

logical way of handling such situations. We could use an external scheduler that would 

be invoked as needed but would not be part of the policy engine. We avoided this issue 

while designing our policy language because it impacted our research tangentially at best. 

The language can express policies relevant to the door closing example, but does not go 
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far enough to resolve the state or the event scheduling problem. The language does allow 

expression of event triggering actions, which we will see in the following section. 

 

4.3. Database Semantics and Operations 

Every domain maintains a policy database, consisting of the facts and rules written in our 

language. Such a database has collective logical properties, whereby each statement 

cannot be treated in isolation. One of the requirements stated earlier was that a policy 

management framework must return an unambiguous answer to a posed query. This 

implies that all database statements must be consistent with each other, i.e., if the policy 

database = {statement1, statement2, ……….. statementn}, then statement1∧  statement2∧  

…………….∧  statementn must not be a logical contradiction. 

A policy database supports various operations that can be roughly classified into 

examination functions and modification functions. Examination functions include 

database querying, which does not result in the change of any statement in the database. 

Modification functions are intended to cause a change in the database contents, and these 

must be performed in such a way that the above consistency property is maintained. 

These consistency issues have been studied in logic-based AI systems as truth 

maintenance [Doyle1979]. We list the operations supported by a policy engine database 

manager, and provide specifications, examples and intended uses in a real-world domain. 
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4.3.1 Examination Operations 

Each function below uses the default database (having been initialized prior to operation) 

unless specified otherwise. 

QueryResult: 

Input: Query string in Prolog; Database file containing Prolog statements 

Output: Solution as a set of variable bindings 

At its core, this method runs a Prolog query on the input string. If a null database 

argument is passed, the default database is examined; otherwise the passed database file 

is examined. The Prolog query procedure uses backward chaining and unification. 

Substitute: 

Input: Prolog term (string), Variable binding (map: variable_name  constant) 

Output: String with variable occurrences from binding substituted with the 

corresponding constants in the given term 

IdenticalTerms: 

Input: Two Prolog strings, Variable mapping 

Output: Success indicated by returning a non-null variable mapping; failure 

indicated by returning a null mapping 

This operation can be performed using standard unification. It is not a trivial 

string matching operation or a unification because it should succeed only if the constants, 

including predicate names, of both strings match, and variables at corresponding 

positions match each other’s modulo names. For example: pred(A,B,t) should match 

pred(C,D,t) but not match pred(C,C,t). 
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DominatingTerms: 

Input: Two Prolog strings, Variable mapping 

Output: Success indicated by returning a non-null variable mapping; failure 

indicated by returning a null mapping 

This operation can be performed using standard unification. Term T1 dominates 

T2 if T1 is more general than T2. This can happen in two ways: (i) if T1 and T2 are 

conjunctions, and the conjuncts in T1 are a subset of the conjuncts in T1; (ii) if both T1 

and T1 are single predicates that can be unified, and if all constants in the resulting 

variable binding occur in T2, then T1 dominates T2. For example: pred(A,B,t) 

dominates “pred(A,B,t), pred1(K)” because the former is less restrictive; 

pred(C,D,t) dominates pred(C,d,t) because the former is less restrictive, the resulting 

variable binding being {D=d}, where the variable occurs only in T1. 

By default, if T1 is identical to T2, it is said to dominate T2. 

PresentStatement: 

Input: Prolog statement (fact/rule) 

Output: Success if the input is either directly or indirectly asserted in the database 

A given statement can be asserted, or present, in two ways: i) it is directly 

asserted as a fact or rule and its presence can be inferred just by examining the database; 

or ii) a statement is asserted that dominates (is more general than) the input statement. A 

fact T1 is more general than a fact T2 if the function dominatingTerms succeeds. A rule T1 

:- T11 dominates a rule T2 :- T21 if T1 dominates T2 and T11 dominates T21. 
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4.3.2 Modification Operations 

AddStatement: 

Input: Prolog statement (fact/rule) 

Output: Returns success (if addition was successful) or failure 

Task: First, we check to see if the given statement is asserted either directly or 

indirectly within the database using the presentStatement function. If it is, the function 

returns with success. Otherwise, the statement is added to the database. 

Conceptually, this function should not return a failure; if the input (say S1) is 

contradictory to a statement (say S2) already present in the database (i.e., has the opposite 

effect), S1’s addition simply complements S2. Since Prolog reasons through negation-by-

failure, it perceives no contradiction. In practice, addStatement returns a failure only if 

the input is invalid (e.g., a SWI-Prolog meta-predicate that should not be modified). 

RemoveStatement 

Input: Prolog statement (fact/rule) 

Output: Returns success (if removal was successful) or failure 

Task: First, we check to see if the given statement is asserted either directly or 

indirectly within the database using the presentStatement function. If it is not, the 

function returns with success. Otherwise, the statement is removed from the database. 

The effect of this removal should be the following: after the function returns, if 

presentStatement is called with this statement as input, it will return false. 
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ChainEventAction: 

This function serves to accomplish a form of forward chaining, though not exactly 

the way it is classically defined. 

We define a special category of event-action-trigger rules that respond to events. 

An example of such update rules is given below: 

• update :- (((numRelatives(X,N), door(X), closeD(X)), doorOpen(X), 

N>0)  (retract(doorOpen(X)), retract(closeD(X)))). 

The function chainEventAction is called whenever a change is made to the state 

of the database through the addStatement or the removeStatement functions. It in turn 

makes a Prolog query ‘update’, and all such update rules are evaluated as a result. If all 

conditions on the antecedent of the body of the clause are proved true, the consequents 

are also evaluated. In the above rule, ‘update’ results in a change to the state of a 

ubiquitous door service. For every known door (asserted as ‘door(X)’) that is open 

(asserted as ‘doorOpen(X)’), if a close event has been initiated (asserted as ‘closeD(X)’) 

and the number of occupants (asserted as ‘numRelatives(X,N)’) is greater than 0 

(‘N>0’), the door’s open state is retracted from the database, using the statement 

‘retract(doorOpen(X))’ (implicitly indicating that the door is closed.) The event-

initiating predicate is also retracted, using the statement ‘retract(closed(X))’. In a real 

scenario, if X=’door3564’, an assertion of ‘closeD(door3564)‘ may cause the 

antecedent to be true (if N>0), resulting in the consequent (the retract statements) being 

evaluated. This function results in appropriate state changes being made in response to 

policy-specified events. 
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4.4. Policy Engine Implementation 

A policy engine is the back-end of any policy management framework that uses policies 

written in our language for the purpose of negotiation or state/action monitoring. It 

abstracts the policy database from the programmer as well as the user, and provides ways 

of accessing and manipulating the policies through suitable interfaces. Such an engine 

must implement and offer the functions listed in Section 4.3, which then can be called by 

the higher layers of a policy management framework (which can be implemented in a 

variety of ways for a variety of purposes). The declarative model of writing policies 

makes such a policy engine model (whose role is analogous to that of an interpreter for a 

regular programming language) most appropriate for use with our language. 

Though we go into further details about the implementation of a policy 

management framework, we recommend here that irrespective of the framework, the 

policy engine should be designed and deployed as a static, or persistent, module, 

providing hooks or functions into the database for any domain. A single policy engine 

should be maintained per domain. It is not necessary that there be a single unified 

database managed by such an engine; there could be multiple such databases that are 

accessed in isolation for different purposes. This might be useful in situations like the 

following. A domain could choose to apply different, often contradictory, policies in 

different contexts. Obviously, combining the different policies into one database would 

introduce logical inconsistencies. A higher-level policy collection that simply consists of 

contextual assertions could then be invoked, first by the policy engine, and the relevant 

policy database invoked based on inferred context. The policy engine would require 
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additional internal functions to abstract away these multiple databases and present a 

unified view to the higher layers. Therefore, in addition to offering basic manipulation 

and query functions, a policy engine must support importing and reconciliation of whole 

databases into the existing repository. 

To be able to perform the tasks listed in Section 4.3, the policy engine must be 

built using a Prolog subsystem that offers ways of manipulating individual logic 

statements. There is a large body of free software available for this purpose, and many 

such frameworks are open source, licensed under GPL. These include SWI-Prolog 

[SWIProlog], CiaoProlog [CiaoProlog], TuProlog [TuProlog], and Minerva 

[MinervaProlog]. We selected SWI-Prolog, which offers various policy examination and 

manipulation features in the same syntax (predicate and arguments) as regular ISO-

Prolog. These include assert, retract, clause, term_variables and functor, just to 

name a few. In addition, arithmetic and string operations are also supported. The biggest 

advantage to using SWI-Prolog is that it offers bidirectional APIs to programming 

languages like C and Java (the Java library is called JPL), offers operating system and 

networking features, and supports Semantic Web technologies like RDF and XML. The 

implementation and query processing is based on the Warren abstract machine technique 

[Aït-Kaci1991], which makes performance reasonably efficient on modern computers. 

This ensures that the policy engine implementation does not have to worry about 

inefficient indexing and retrieval of predicates in, say, Java. 
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4.5. Comparison with Existing Policy Languages and Frameworks 

Here we describe how our policy language and database management framework differs 

from prominent related frameworks that support some form of negotiation, ubiquitous 

applications or Semantic Web applications. (For a more comprehensive list, see Section 

10.2.) We will see why adopting those frameworks will not work for our stated aims, and 

also to what extent our framework can support those applications. 

A large part of our work was inspired by research in trust negotiation 

[Winslett2003], and Seamons et. al. have provided a comprehensive list of requirements 

and challenges in designing a policy language for trust negotiation [Seamons2002]. Our 

framework was intended to be more general than trust negotiation, but these requirements 

provided a start for our research. As in trust negotiation, our language has well-defined 

semantics, is monotonic, and provides support for external functions. The former requires 

some very specific support for credentials and operations on credentials, whereas our 

system deals with more than just credentials. It requires support for expressing credential 

attributes, dependencies and chains, expression of transitive trust, and support for local 

credential variables. As our ontology and language specification indicate, all of these 

things can be expressed in the language of Prolog. In addition, our language has the 

capability of describing actions, states, events and meta-constraints, none of which are 

required in trust negotiation. Our language does not directly support authentication of 

credentials and policy rules as core language constructs, but these could be handled 

through external functions added as constraints to relevant policies (policies governing 

credentials could have added validation constraints that would succeed only upon 
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execution of say, a Java method, that verifies digital signatures; see policy rule 1 from 

page 78, for example). Thus, our language, with some straightforward extensions, could 

facilitate trust negotiations. On the other hand, a trust negotiation language will not be 

general enough for our purposes. Seamons et. al. [Seamons2002] also show that 

languages like PSPL [Bonatti2000] and KeyNote [Blaze1999] do not satisfy all the 

requirements for trust negotiation, making them too restrictive for our purposes as well. 

One of the goals of this research is to support a more flexible form of access 

control for open systems. Advanced access control frameworks like Generalized Role-

Based Access Control (GRBAC) [Covington2000] and dynamic Role-Based Access 

Control (dRBAC) [Freudenthal2002] have been proposed for applications in ubiquitous 

environments. Our policy language and framework can be easily used to express GRBAC 

and dRBAC policies as well. The former defines roles for subjects or entities, objects or 

resources, and environments or contexts. Roles effectively classify subjects, objects and 

contexts. As we have shown, we can express classes and groups in our language through 

the use of constraints involving variables. Role names could be defined as predicates, and 

subject, object and contextual names can be specified as constants and variables. 

Dynamic RBAC enhances RBAC by allowing policies specifying varying levels of 

service access and delegation of permissions. We can specify varying both of these using 

our policy language. Through a combination of digital credentials called vouchers (which 

we will encounter in Chapters 6 and 7) and credential validation through external 

functions, our policy management framework can actualize the concept of delegation. 

Similar to the proof tree generation in an application of dRBAC, our framework also 
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enables dynamic proof generation involving multiple entities for the purpose of access 

control. Thus our policy language has the capability of supporting applications that are 

based on GRBAC and dRBAC. 

Negotiations for resources on the grid take the form of proposals and counter-

proposals consisting of resource levels that one side is willing to grant and the other side 

is willing to take. These are evaluated against resource utility functions, specified in 

terms of maximum and minimum permissible values. Our policy language can express 

resources, utility values of resources, and preferences between discrete levels. Therefore, 

we can support grid negotiation. We will discuss a related example in Chapter 7. 

Policy languages for the Semantic Web, Rei being one example, must be domain-

independent with logical semantics [Kagal2003a]. Rei is written in Prolog syntax and is 

based on deontic logic, a subset of first-order logic that deals with permissions and 

obligations. Our language, like Rei, supports descriptions of actions, action classes and 

speech acts (see next chapter). Though our language does not directly support 

specification of policy precedence, it does support inter-resource constraints, contextual 

policies, external functions, and a host of other things that Rei does not support. But our 

language could potentially be used for Semantic Web applications, many of which will 

deal with negotiation-like scenarios, as it is designed on the same basis as Rei. Ponder 

[Damianou2001] is another policy language used to specify distributed systems security 

policy, but it is an object-oriented language rather than a logical language. 

WS-Agreement [Andrieux2007] and WS-Policy [WS_Policy] are Web services 

standards intended to enable XML-based services to negotiate requirements. These 
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standards are purely XML-based, and by implication, very likely to acquire widespread 

adoption; but the policy rules that can be specified using these standards refer to 

particular services and applications that make use of those services. In a ubicomp 

domain, there will be dependencies among different resources, services and contexts. It is 

not directly apparent (in the absence of a logical framework underlying WS-Policy) how 

such dependencies can be efficiently declared and captured for the purposes of ubicomp 

negotiation. This is why we did not choose these standards as the basis for our research. 
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Chapter 5 
 

Negotiation Protocol 

 

In its simplest form, a protocol can be defined as the set of rules governing the syntax, 

semantics, and synchronization of communication. Our negotiation protocol uses the 

interaction model described in Chapter 3 as its basis. The discussion in this chapter 

restricts itself to a protocol between two negotiators, though multiple parties could 

perform pair-wise negotiations. We first discuss what the basic units of the protocol (the 

messages) consist of; following that, we describe the semantics at three different levels. 

At the highest level, we can describe the semantics through a fairly simple state machine 

that is run by both negotiators, and has high-level messages as its units. In an 

intermediate level of processing, message contents can be examined (based on message 

type) and a suitable output message with different contents generated; this processing can 

be described through a lower-level state machine. Finally, we describe the logical 

operations on the database offered by the policy engine back-end, which ultimately 

determine exactly what goes into the contents of each message. 

 

5.1. Protocol Units 

Negotiation messages, or units of the protocol, are defined and classified to allow the 

most general expression of a negotiation. Our model in Chapter 3 was based on logic, as 

was our policy language, the sentences being first-order propositions. But since we 
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assume that there is no omniscient entity with knowledge of both sets of policies, first-

order logic is not enough to deal with negotiations. Illocutionary logic [Searle1981], a 

branch of linguistics describing the logic of speech acts, provides the additional glue that 

ties together first-order propositions and negotiation messages. Such speech acts are a 

suitable basis for a general-purpose and closed set of negotiation message types, as we 

determined with some inspiration from the Rei policy language [Kagal2003a]. The 

special predicates describing actions, possessions, release and agreement (see Chapter 4) 

provide the context that enables appropriate interpretation of their contents, which could 

vary arbitrarily. These contexts can be captured and classified formally using 

illocutionary logic. An entire subject in itself, we won’t go into the details of this logic, 

but briefly describe how and why it enables a better understanding of negotiation and to 

what extent our protocol is based on its principles. 

 

5.1.1 Speech Acts and Illocutionary Logic 

In their book “Foundations of Illocutionary Logic,” Searle and Vanderveken define a 

speech act as an utterance that expresses intent to perform an action. An illocutionary 

speech act consists of an illocutionary force and a propositional context. The force of an 

act describes the purpose (or point) of the act and the strength of the intention conveyed 

by the utterer. The propositional context of an act describes the nature and context of the 

intended action itself [Searle1981]. As it turns out, all acts can be constructed through 

operations on a small closed set of primitive speech acts, consisting of the following: 

assertives (‘assert’ or ‘state’, denegation of which is ‘deny’), commissives (‘commit’, 
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denegation of which is ‘refuse’), directive (‘direct’, denegation of which is ‘prohibit’), 

declarative (‘declare’), and expressive (e.g., ‘apologize’, ‘complain’, ‘protest’, 

‘compliment’). All speech acts are variations of these basic ones, which vary based on the 

following properties: degree of strength of the act, mode of achievement (authority of the 

speaker), propositional content conditions, preparatory conditions, and the nature and 

degree of the speaker’s sincerity. The purpose of illocutionary logic is twofold: (i) to 

enable inference of consistency of speech acts and to derive commitments (one act entails 

the performance of another); and (ii) to describe conversations, or sequences of speech 

acts, where an act is constrained by the nature of its predecessor, and such constraints can 

be established through the rules of illocutionary commitment. 

A negotiation is effectively an illocutionary conversation, and can be engineered 

based on what would make sense in a given state. That is, a message from A to B 

constrains the kinds of messages that B can subsequently send to A. Our negotiations are 

targeted towards transactions, or something that results in the transfer of information, 

objects, and change of state at the ends. Therefore, we can exclude expressive acts, since 

apologies, protests and compliments are irrelevant to computers. Our basic message types 

do cover the other four categories: 

1. Requests: These encompass the directive illocutionary forces. Depending on the 

negotiation context, a request could have the force of a command, order, supplication, 

query, demand, etc. Examples include requests for access rights, permissions to 

perform actions, and queries for information. 

2. Policies: These encompass both assertive and some directive illocutionary forces. 
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They include permission, prohibition, obligation, notification, and statement, among 

others. Examples are rules or obligation statements that a listener must comply with. 

3. Offers: These encompass the commissive illocutionary forces, including commitment, 

refusal, promise, and acceptance, among others. These are replies to requests, with 

supporting objects, proofs, information; e.g., data files, certificates, etc. 

4. Termination: This has the illocutionary force of a declaration, indicating that goals 

have been met, or nothing further can be achieved. 

These message types cover the range of illocutionary points that are relevant to 

transactional negotiations. Therefore, we found them to be necessary and sufficient to 

support negotiation scenarios, as well as being domain-independent. Illocutionary logic 

can also be used to build compound (or complex) speech acts, and to establish rules for 

consistency and commitment. A negotiation is a sequence (or conversation) of speech 

acts; for our purposes, we needed to construct a protocol that ensured: 

 Success: negotiator has requisite authority to make a request or propose an offer, and 

 Non-defectiveness: conditions necessary for performance of the proposed act are met. 

Our criterion for a successful and non-defective negotiation is that a result 

consistent with both sides’ policies be achieved, as described in Chapter 3. Therefore, a 

request message containing a proposition P has the following illocutionary force and 

point: I request that you perform P if you can do so in a way that is consistent with your 

policy. A policy message has the following force and point: I assert that my policy 

constraint is P and I would like you to comply with P if it is consistent with your policy. 

Since policy dependence is implied, both these messages implicitly assert that the speaker 
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would like to receive an affirmative or a negative reply. An offer message has the 

following force and point: I agree/refuse to ‘perform P’/‘comply with P’, and I provide 

supporting evidence E. A counter-request can follow a request, which has the following 

point: I will comply with your request/policy if you agree to perform ‘proposition’ (and 

will not comply if you do not perform ‘proposition’). Every speech act is accompanied by 

conditions that implicitly express the sincerity of the speaker. Lack of sincerity results in 

a defective negotiation; e.g., a negotiator makes an offer with no intention of keeping the 

promise. It is then incumbent upon the hearer to verify (if at all possible) the speaker’s 

sincerity. An example of this is: A agrees to apply firewall rules requested by B (using 

iptables); B can verify this by probing A (using nmap). 

 

5.1.2 Classification of Negotiation Message Contents 

The internals of messages can vary, and we classify the contents further based on the 

propositional contents of the speech acts and their modes of achievements, and action 

modes (affirmatives and negatives). 

A request can refer to one of the following: 

• Action <Do A>: This has the force of an order or a command. Example: I command 

you to run a piece of code, such as anti-virus software. 

• Action <Permit me to do A>: This has the force of a supplication. Example: I would 

like to run a P2P application. 

• Possession <Give me P>: This has the force of a demand or a supplication. Example: 

Give me access to a particular resource; show me your credentials (e.g., certificate) 
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• State Change <Let me change to state S>: Example: I would like permission to 

become a member of your network/domain. 

• Question <Tell me T>: Example: Please tell me what your current location is; tell me 

what kinds of display devices you have, if any. 

A policy refers to the following: 

• Obligation <Promise to abide by O>: This has the force of a command. Example: 

You must not play any sound on your device during the presentation hours (say, from 

3 to 5 pm). 

An offer can be one of the following: 

• Agreement <Yes, I agree to do what you ask>: Example: I agree to run the code you 

have provided me; I will give you the certificate you demanded. 

• Refusal <No, I will not do what you ask>: These are essentially negations of the 

above. 

• Rejection <I cannot accept your offer>: An “Agreement” offer must be accompanied 

by verifiable proof. If such proof is not offered, or the recipient is unable to verify the 

integrity of the offer, it will send a rejection in response to the sender. The latter 

implicitly understands that it must attempt to resend the offer. 

• Answer <Here is what you asked/inquired>: Example: My current location is ‘3564 

Boelter Hall’. 

With offers indicating agreement, proof consisting of objects could be supplied. 

For example, a ticket indicating permission to access a resource could be provided, or an 
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encrypted piece of code could be provided. Validation could be done if the receiver has 

the relevant key(s). 

 

5.1.3 Negotiation Message Structure and Methods 

Every negotiation message is identified by its high-level type, and consists of a set of 

policy-derived statements. The fields of a message are as follows: 

 Source (or sender) name: In our implementation, this is typically the name of a 

Panoply Sphere (to be explained in Chapter 6). 

 Destination (or receiver) name: Same as above. 

 Message Type: Set of values = {REQUEST, OFFER, POLICY, TERMINATE}. 

 Message Subtype: Set of values = {ACCEPT, REJECT}. This field is used only with 

an OFFER message. In practice, we end up using only the REJECT subtype, since 

acceptance is implied by the absence of a REJECT message. 

 Array of entries: Each entry indicates a particular speech act relevant to the message 

type. A request message contains entries referring to demands for objects 

(possess(printer_HP)) and commands to perform various actions 

(action(closePort,25)); likewise for policy messages. An offer message contains 

affirmatives, negatives, or answers to the posed requests. A termination message does 

not contain any entries. 

 Array of unique IDs corresponding to the entries: Each entry has a unique ID. A 

request or policy message entry has an ID that is set by the source. Entries in an offer 

message are sent in response to requests or policies; the ID of an offer is identical to 
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the ID of the corresponding request or policy. Certain offers could be gratuitous (not 

sent in response to a request but just because that particular negotiation context 

requires it); the IDs of these offers do not overlap with the request/policy IDs. 

 Array of entry referrals: If request R1 is sent in response to received request R2 

(counter-request), the referral ID for R1 is the ID of R2. 

 Extra (support) information describing the entries: These are lists of predicate 

statements or objects that support, or describe, the main entry predicates. For 

example, an entry referring to an object possess(V) could have an extra predicate 

certificate(V), which indicates that the requester wants a voucher. An offer 

message could contain the objects requested, or proof of compliance (e.g., certificate). 

 Optional information: This field is used in offer messages to send information in the 

form of variable bindings. For example, a request for information pertaining to 

location could be posed as location(L), and the option field in the offer reply would 

contain the answer in the form of {L=’BoelterHall’}. 

 Timestamp: This field contains the time (as monitored by the message source) at 

which the message was sent. It is used for fault tolerance. The role of this field will be 

described in Chapter 6 when we discuss fault tolerance. 

The only reason (but an important one) for bunching several entries in one 

message is to make communication more efficient, otherwise a negotiation will take 

many more steps (and consume a lot more bandwidth) than is necessary. 
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5.2. Protocol Semantics and State Machine 

At the highest level, the negotiation protocol is a lightweight procedure that involves 

exchange of request, policy and offer messages, culminating in a terminate message. The 

protocol state machine is illustrated in Figure 7. It is deterministic and facilitates peer-to-

peer communication between two peers. After one entity initiates the protocol, all 

ensuing communication is completely symmetrical. The machine consists of five states, 

though the stop and start states are identical from the point of view of a policy manager 

(they are different from the point of view of the middleware that incorporates the policy 

manager, and must perform certain cleanup actions after the stop state). 

 

Figure 7. Negotiation Protocol: High-Level State Machine 
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Only the entity that initiates negotiation goes into the initiate state. Once 

negotiation is under way, either entity can go into the service/process or the expecting 

states. In the expecting state, a reply could be received from the remote policy manager 

and nothing needs to be done locally; local considerations might indicate whether a 

timeout is required, in case the remote entity can’t communicate due to failure or network 

partition. In the service state, a message consisting of directive speech acts (requests and 

policies) is received from the remote policy manager; the local policy engine makes a 

decision on whether or not to satisfy them, and sends a suitable reply. In the process 

state, a message consisting of commissive speech acts (offers) is received; the policy 

engine decides whether the offer is satisfactory and sends a suitable reply. The processing 

actions are different in these two states, and are described in more detail in Figure 8. This 

state machine also handles faults (see Section 6.6), as indicated by the timeout link from 

the expect state to the stop state. 

The message processing and reply procedure is described through the flowchart in 

Figure 8, divided into two parts for better understanding; the color code is identical to 

that in Figure 7. Negotiation starts with one entity sending request(s) to the other; these 

requests are derived from the initiator’s goals and requirements. Each negotiator 

maintains two lists, one consisting of directives (requests and policies) posed to the 

negotiator, and the other consisting of directives received from the negotiator. A received 

request can be ‘satisfied’ by sending either an affirmative or a negative offer. Both of 

these are definitive, indicating whether the posed request can be obeyed under current 

circumstances. When an offer is received at the other end, the corresponding request is 
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removed from the list. The list is like a stack in some ways, since later requests must be 

satisfied prior to earlier requests; the exception is that requests sent in a single message 

have no ordering, and therefore violate the last-in-first-out property of a stack. If 

definitive offers cannot be returned, counter requests and policies can be sent in response 

to a request, causing the list of posed requests to grow at the sending end and the list of 

received requests to grow at the receiving end. 

We classified the negotiation messages of the directive type broadly into requests 

and policies. There is no particular reason to separate the two in an implementation of the 

negotiation protocol, because the ‘satisfaction’ of a policy results in an offer that is 

similar to an offer that ‘satisfies’ a request. (In our original implementation, the two were 

separated because we assumed that requests and policies would be processed in different 

ways, but further research and application development unearthed no substantive reasons 

to do so. Hence the flowchart in Figure 8 uses two lists, one for the received requests and 

another for the posed requests. This also makes the flowchart simpler to understand.) 

Offer messages contain either logical truth values (true or false to indicate 

satisfaction or dissatisfaction of requests) or query answers in the form of variable 

bindings in the ‘options’ field. Objects (such as requested credentials, files, or proofs in 

any form) may also be appended to an offer message. A negative offer results in the 

removal of the corresponding posed request from the list that contains it. If this request 

(say R1) is a counter in response to a prior request received (say R2), and there are no 

alternatives to R1 (we will discuss the concept of alternatives later), R2 is invalidated and 

the lists are rolled back through the removal of ‘satisfied’ requests at the top. On the other 
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hand, a positive offer results in certain policy assertions being made to the database. But 

before assertions are made, the objects sent as attachments are verified for integrity, if 

valid verification procedures exist. If verification fails, an OFFER-REJECT is sent; the 

other side now has an opportunity to resend a valid offer (for example, if network errors 

caused an integrity check to fail). It is not absolutely necessary to have this feature in the 

negotiation protocol, since it has a couple of serious drawbacks: (i) it results in extra steps 

and wasted bandwidth, and (ii) a malicious negotiator could keep resending a different 

invalid offer in multiple rounds, thereby effecting a denial-of-service attack. One could 

limit the number of offers received for the same request to mitigate such an attack, but 

the resulting bandwidth usage would still be suboptimal. 

The procedure that generates counter-requests is explained in detail in Section 

5.3. For our current purposes, it is sufficient to say that if N1 receives a request R from 

N2, the former generates multiple sets of alternative counter-requests by running this 

procedure. R is satisfied by N1 only if every counter-request in a set is satisfied by N2. 

One alternative is selected at a time, and formatted into a set of requests; these requests 

are then sent in a single negotiation message. N1 saves the remaining alternatives in a 

hash table indexed by the unique ID of R. If any one of the counter-requests results in a 

negative offer, a different alternative is selected and sent. If no more alternatives remain, 

R is removed from the received request list and rollback occurs. 

The negotiation protocol terminates when both the posed request and received 

request lists of either side become empty. If a negotiator N receives an offer, cannot find 

any alternatives, and also finds both of its request lists empty, it will send a terminate 
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message. As Figure 8b illustrates, as long as the list of received requests contains a single 

entry, an offer is sent (which, in the absence of alternatives, will be a negative offer). 

Therefore, since every received request has a corresponding posed request at the other 

end, it is enough to check if the received request list is empty. If N not the initiator, then 

its posed requests list must be empty, as its received requests list is populated first and 

any requests posed are counters to those. (By the nature of the algorithm, counters to 

request R must be satisfied and removed from the list before R can be removed.) If N is 

the initiator, it must have already received offers for all the requests it posed; hence its 

posed requests list must also be empty. Therefore, we can prove that the algorithm 

terminates only when the request lists on both sides are empty. We prove this termination 

property formally in Chapter 8. 
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Figure 8a. Negotiation Protocol: Request Queue Processing: Servicing Requests 
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Figure 8b. Negotiation Protocol: Request Queue Processing: Processing Offers 
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5.3. Negotiation Query Resolution Algorithms 

As Figure 7 indicates, message processing takes place in the service and process states. 

The flowchart in Figure 8 illustrates the parsing of request and response messages. Before 

appropriate actions are taken, the policy database must be examined and manipulated. We 

describe the procedure exported by the policy engine to generate a set of counter-requests 

and policies when a request cannot be granted right away. We also describe the procedure 

to find matching alternative offers if satisfactory counter-requests cannot also be found. 

 

5.3.1 Generating Counter-Requests and Policies 

In Chapters 3 and 4, we stated that policies in our language have the syntax and 

semantics of Horn clauses (i.e., a conjunction of predicates that implies another 

predicate) by virtue of being written in Prolog. For example, a service access predicate 

could take the following form: 

access(ServiceName) :- P11 ∧  P12 ∧  …………… ∧  P1m. 

A query run on the policy database would check whether access (ServiceName) 

returns a true result or a set of variable bindings {ServiceName=’S1, ................., 

ServiceName=’Sn’} if and only if none of the conjuncts Pij evaluate to false. In any such 

evaluation, some of these conjuncts will be satisfiable while the rest will not. The 

counter-request generation procedure is run when a request posed as a query evaluates to 

false. The procedure tries to infer which of the conjuncts are satisfiable and which are 

not, and candidate sets of counter-requests are drawn from the pool of currently 

unsatisfiable conjuncts. For example, if m=5 in the above access policy, {P11, P12, P14} 
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is satisfiable while {P13, P15} is not, then counter-requests could be generated from P13 

and P15 and sent to the negotiator. The latter would run queries to see whether it could 

satisfy these predicates (suitably formatted); if it can, it sends back an offer, and if not, it 

runs a counter-request generation procedure on its own database. 

The high-level procedure that generates counter-requests is given below. We 

implicitly assume that the query predicate provided as argument is not currently 

satisfiable. If it is satisfiable, the procedure will return the null set. We outline a full 

example later, though we relate each step in the algorithm below to a relevant portion of 

the example for better understanding. 

1. Given a query, all the matching (or relevant) policies are looked up. A relevant policy 

is a clause in the database whose head matches both the predicate name and the set of 

arguments of the query. This step involves generating a meta-query (provided by 

SWI-Prolog, our implementation framework); this procedure is quite efficient, taking 

only a few milliseconds (see Chapter 8), as it is performed completely in the Prolog 

subsystem. 

2. Conjuncts in the body of each matching clause are separated into two sets. One set 

consists of all the predicates Pij whose satisfiability depends on properties and 

policies of the opposite party (negotiator). The remaining predicates should (if at all 

possible) be satisfiable locally. This separation is performed by matching the variable 

referring to an autonomous (and in this context, negotiating) entity in the clause head 

with the variable arguments in the other predicates. For example, consider the clause: 
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access(S,F) :- file(F), location(S,L), groupSize(G), G<=4, 

closedPort(S,25). 

This policy governs access to a particular file (most real policies would have 

additional constraints on the file, but let us consider a small policy for simplicity). 

The argument that refers to a negotiating entity is S in the clause head access(S,F). 

Therefore, we classify the conjuncts in the body in the following way: 

 Predicates that must be locally satisfiable (local set) = {file(F), groupSize(G), 

G<=4} 

 Predicates that depend on the state of the negotiator (remote set) = 

{location(S,L), closedPort(S,25)} 

Predicates in the latter set contain the variable S as an argument. 

The request that would trigger the lookup of such a policy would be of the form 

{possess(F), file(F)}. At the receiving end, a query “possess(F), file(F)” 

would be run to verify that a file does exist in the database and could conceivably be 

sent to the requestor. After that, the request would be reformatted into the form 

access(S,F) with suitable variable bindings {S=<negotiator_ID>,F=<filename>} 

so that the appropriate policy clauses can be looked up. 

3. The conjunction of the predicates in the local set is evaluated to obtain suitable 

variable bindings. If the result is false (for example, if groupSize=5), no counter-

requests can be generated that could satisfy this policy, and the procedure returns the 

null set. Otherwise, a set of variable bindings is generated. 

4. For each such set, the predicates in the remote set are unified with the binding. 
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5. Each unified predicate is now examined, first to see if it is currently satisfiable (based 

on known state of the negotiator, as asserted in the policy database). If not, the 

predicate name is examined to see whether it is part of the globally understood 

vocabulary. For example, the predicate location is understood across domains, and so 

can be saved and sent as a counter-request. On the other hand, a predicate closedPort 

is only part of the local vocabulary. So now, the predicate closedPort(S,25) is 

examined recursively (starting from step 1 of this algorithm) to generate a set of 

counter-requests. For example, the following clause would be examined: 

closedPort(S,P) :- pred1, pred2,......, predk, action(S,closePort,P). 

Assuming that the remote set for this clause is {action(S, closePort, P)}, and 

the local set is satisfiable, and the predicate action is part of the global vocabulary, 

this set will be returned. This process proceeds recursively until global predicates are 

reached, or leaves (or database facts) are reached. 

6. The contents of this set will be added to the ones gathered through examination of 

other predicates at the higher level (in this case, the access clause). In our example, 

we have seen only one clause being examined, but in practice multiple relevant 

clauses of the form access(S,F) and closedPort(S,P) will be present in the 

database, leading to multiple sets of counter-request predicates being generated. At 

any recursion level, if a null set is returned (indicating failure of a conjunct), our 

counter-request generation procedure returns a failure. 

7. At the end, the collection of request predicate sets generated is minimized; i.e., any 

request set that is dominated (see Section 4.3: DominatingTerms) by another is 
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eliminated in order to generate the most general and fewest possible alternatives. This 

step results in fewer negotiation steps, but in practice increases the running time of 

this algorithm; hence a tradeoff is involved here. 

The above algorithm is a simplified version, and depending on the policy rule, 

additional inference steps would be required. Policy rules could also contain 

dependencies between predicates in what we refer to as the remote and local sets. For 

example, let us augment the access clause above to get a new policy: 

access(S,F) :- file(F), location(S,L), groupSize(G), G<=4, 

closedPort(S,25), possess(S,V), voucher(V). 

When possess(S,V) is selected to be a counter-request, voucher(V) is also 

selected and associated with it as it describes possess(S,V) with more precision. The 

dependency between the two predicates is inferred from the fact that they share the 

variable V. If recursion on a selected predicate is required, the associated predicates are 

passed down as arguments. As indicated in Figure 8a, if multiple counter-request sets are 

generated, one is immediately sent, and the others are saved as alternatives indexed by 

the ID of the original request received. 

 

Example: 

 Let the request posed by a negotiator (whose ID is ‘neg’) take the form 

{possess(F), file(F)}. This request is reformatted to the following query: 

<possess(F), file(F), access(S,F)>; the binding is {S=’neg’}. This query is 
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posed to the policy database, which contains the following statements, among others. 

We only list the statements that are relevant to the procedure.  

Facts: {possess(‘SomeFile’), file(‘SomeFile’), groupSize(5), 

trustedDomain(‘ACM’), trustedDomain(‘UCLA’)}. 

 

Relevant policies: 

(I) access(S,F) :- file(F), location(S,L), groupSize(G), G<=4, 

possess(S,V), voucher(V,M), trustedDomain(M). 

(II) access(S,F) :- file(F), groupSize(G), G>4, closedPort(S,25), 

possess(S,V), voucher(V,M), trustedDomain(M). 

(III) access(S,F) :- file(F), location(S,L), groupSize(G), G>4, 

closedPort(S,25), possess(S,V), voucher(V,M), trustedDomain(M). 

(IV) closedPort(S,P) :- pred1,  pred2, ........ action(S, order, 

closePort, P), ......., predk. (All predicates apart from the action 

predicate are irrelevant to this example). 

 Policy statements indicating what the global vocabulary is are listed below: 

{global(closePort), global(file), global(voucher), 

requestable(possess), requestable(location), requestable(action)}. 

 The generated query fails, because evaluating every clause with the access predicate 

in the head results in failure. The sub-query <possess(F), file(F)> is first tested 

and found to result in a solution {F=‘SomeFile’}.  

 Now a counter-request generation is triggered. First, every clause corresponding to 

access(S,F) as the head is looked up using the following query 
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<clause(‘access(S,F)’,Body,Reference)>. The bodies of policies I, II, and III 

are returned, bound to the variable Body. From each body, the local and remote sets 

are computed as follows: 

(I) Local Set = {file(F), groupSize(G), G<=4, voucher(V)}. 

Remote Set = {location(S,L), possess(S,V)}. 

(II) Local Set = {file(F), groupSize(G), G>4, voucher(V,M), 

trustedDomain(M)}. 

Remote Set = {closedPort(S,25), possess(S,V)}. 

(III) Local Set = {file(F), groupSize(G), G>4, voucher(V,M), 

trustedDomain(M)}. 

Remote Set = {location(S,L), closedPort(S,25), possess(S,V)}. 

 Queries are constructed by the conjunction of predicates in each remote set. The 

query fails if the body of clause I is evaluated, because groupSize(5) is asserted as a 

fact. The query partially succeeds for clauses II and III (voucher(V,M) is not 

satisfiable). But in these cases, we still continue with the examination by binding the 

unsatisfied variables to free variables, rather than constants. For example, M is bound 

to ‘ACM’ or ‘UCLA’ in turn, whereas V is bound simply to V. This lets us generate 

requests that, if accepted, would also result in additional predicates like 

voucher(V,M) being satisfied. Here, if this negotiator poses a request 

{possess(S,V), voucher(V,‘ACM’)} and receives a voucher named ‘voucher’ in 

return, it will be able to assert the predicate voucher(‘voucher’, ‘ACM’)}, thereby 

resulting in the satisfaction of the query derived from the local set. Such predictive 
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binding results in negotiation success wherever possible. The bindings resulting from 

our query are {F=‘SomeFile’, G=5, V=V, M=‘ACM’} and {F=‘SomeFile’, G=5, 

V=V, M=‘UCLA’}. 

 Each predicate in the remote set is unified with each binding generated above in turn. 

In our scenario, this does not result in any change, since predicates in the remote set 

do not share any variable with those in the local set, apart from V. Each unified 

predicate is queried in turn, using the binding {S=’neg’}. We ignore predicates 

whose queries result in success. In this scenario, each unified remote predicate 

location(‘neg’,L), closedPort(‘neg’,25), possess(‘neg’,V)} results in 

failure. Therefore, we may add these predicates to our candidate counter-request sets 

as long as they are part of the requestable vocabulary. But the asserted facts 

{requestable(possess), requestable(location), requestable(action)} do 

not indicate closedPort as being a candidate request. We therefore recursively run 

the counter-request generation algorithm on closedPort(S,25), with S=‘neg’ as a 

binding. This results in the examination of clause (IV) and the extraction of 

action(S,order,closePort,25) as a counter-request. The predicates pred1, 

pred2,…….predk are low-level JPL predicates [SWIProlog] that always evaluate to a 

true value. 

 The arguments of each extracted request predicate are examined to see whether they 

are global arguments (by running the query <global(‘argument’)>). In the 

predicate action(S,order,closePort,25), closePort and 25 are global, because 

the former is asserted through the global(closePort) fact and the latter is a 
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number. Any argument that is not found to be part of the global vocabulary is 

replaced by a variable (i.e., it is obfuscated). 

 For each request predicate, support predicates are extracted from the corresponding 

local set. location(S,L) and action(S,order,closePort,25) do not have any 

support predicates. possess(S,V) has a support predicate, which is voucher(V,M), 

because they share a common variable V. 

 Examination of clause I thus results in no candidate counter-requests. 

Examination of clause II results in two alternative sets: A1 = 

{action(S,order,closePort,25); possess(S,V), voucher(V,’ACM’)} and A2 

= {action(S,order,closePort,25); possess(S,V), voucher(V,’UCLA’)}. 

Examination of clause III results in two alternative sets: A3 = {location(S,L); 

action(S,order,closePort,25); possess(S,V), voucher(V,’ACM’)} and A4 = 

{location(S,L); action(S,order,closePort,25); possess(S,V), 

voucher(V,’UCLA’)}. 

 Running the minimization procedure, we find that alternative A1 dominates A3, and 

A2 dominates A4, since they share action and possess predicates with identical 

arguments, but both A3 and A4 have extra location predicates. Since a request set 

always dominates its superset, the counter-request generation procedure returns the 

sets A1 and A2. 

 Though not part of this procedure, we will note that the requests in A1 and A2 are 

formatted to {action(closePort,25); possess(S,V), voucher(V,’ACM’)} and 

{action(S,closePort,25); possess(S,V), voucher(V,’UCLA’)} respectively, 
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and are sent to the negotiator in turn, based on some (application dependent) heuristic 

selection. 

 

Comment on Policy Language Features: In Chapter 4 we mentioned that a policy 

language for negotiation should be monotonic and support constraint extraction. Counter-

request generation is a procedure of extracting constraints in various ways. One, it finds 

the set of relevant policies that affect a request (that drives negotiation), and two, it finds 

the unsatisfied conjuncts that could be formed into counter-requests that the opposite 

party must satisfy. The monotonicity property can be observed from the fact that once 

these constraints are satisfied (as offers in reply to requests), the negotiation moves 

forward (i.e., in a negotiation step, a pair <request, true-offer> always results in a policy 

being more satisfiable that it was before that step.) 

 

5.3.2 Generating Matching Alternative Offers 

The procedure for generating alternative offers is somewhat simpler. The aim is to find 

the matching satisfiable predicates that are closest to the one that was requested (and 

could not be satisfied). As in the counter-requests generation algorithm, the clauses that 

are relevant to the given request are looked up and queried at a higher layer of abstraction 

(all arguments in the request predicate are replaced with variables). All the predicates that 

can be associated with the primary request predicate (as voucher(V) was associated with 

possess(S,V) above) are generated. All possible sets of such associated predicates are 

generated along with the variable bindings that make them satisfiable. These are then 
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ranked based on their closeness to the original request predicate. The closest match is 

sent as an alternative offer, and the remaining sets are saved in case this offer is rejected. 

 

Example: Consider the case when a request is made to turn off sound from 1200 to 1600 

hours through the request predicate sound(prohibit,1700,1800). The recipient has 

policies that prevent it from complying with this request, but it does have other facts in its 

database that enable it to agree with prohibitions on sound during different times, such as 

sound(prohibit,0,1500) and sound(prohibit,1750,2400). The alternative offer 

generation procedure finds all asserted facts and rules matching the sound predicate with 

three arguments. It finds the above two predicates, and attempts to rank them. In this 

case, both predicates differ from the original request in their second and third arguments, 

so there is nothing to choose between them. One is selected based on some heuristic 

(perhaps the one with lower time duration) and sent as an alternative offer. 

 

5.3.3 Generation and Verification of Affirmative Offer Messages 

Suitable proofs or objects associated with request predicates are generated or fetched 

using pre-programmed helper functions (or methods). For example, a predicate 

voucher(‘UCLA’) would indicate that a voucher granted by UCLA must be looked up 

and attached. A predicate voucher would indicate that a voucher must be generated and 

granted to the requestor. A predicate voucher(‘UCLA’,‘5/16/2008’) would indicate 

that a voucher from UCLA that is valid upto at least 16 May 2008 must be looked up and 
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attached. If a suitable object cannot be sent as attachment (for example, if a voucher has 

expired), a negative offer is sent. 

Correspondingly, an attached object is verified in the offer processing stage at the 

receiving end. As in the generation case, the predicate names and arguments would 

indicate the appropriate test to be conducted. This does not necessarily have to involve 

the inspection of objects. A request to close port 25 could be verified (with some level of 

confidence) by using a port scanning tool like nmap. Failure of a verification test results 

in an OFFER-REJECT being sent, as indicated in Figure 8b. 
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Chapter 6 
 

Design and Implementation of a Policy Manager for a 

Ubiquitous Computing Environment 

 

In this chapter, we describe the design and implementation of the negotiation protocol 

(see Chapter 5) within a full-featured ubiquitous computing platform called Panoply 

[Eustice2003a; Eustice2008b]. As mentioned in the introduction (see Chapter 1), the 

negotiation protocol is the most prominent (though not the only) contribution of this 

research. We show how a policy management framework was designed for Panoply, and 

list the services it provides to the infrastructure and to applications. We describe the 

design and implementation of a dynamic access control framework that utilizes the 

negotiation protocol. Other important features and challenges, including handling 

multiple negotiations, either concurrently or sequentially (renegotiation), are also 

described in detail. We show how the protocol was augmented to make it tolerant to local 

and network faults. We conclude by describing how users can visualize negotiation and 

interface with the policy engine during runtime. 

 

6.1. Device Communities and a Ubicomp Middleware Platform 

The theory and design of device communities that can manage resources (in a centralized 

manner), impose policy, and ensure secure communication, both within and with the 
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outside world, is an important research topic in its own right. We described the properties 

of such communities in the form of domains (see Chapter 2) that interoperate within a 

global scale ubiquitous computing system. Modeling device groups and handling 

associated research issues like device and group discovery, event management, secure 

networking and firewalling, and providing primitives for building context-sensitive 

applications, which are orthogonal to the policy management and negotiation issues, were 

contributions of Kevin Eustice in his PhD research [Eustice2008b]; this project is called 

spheres of influence. The spheres concept combined with negotiation resulted in a 

middleware for ubicomp called Panoply. The remainder of this section summarizes the 

key contributions of his dissertation that impact or are complementary to policy 

management. Details can be obtained from Eustice’s dissertation. Our research does not 

absolutely depend on spheres, since groups or domains can be virtualized by a single 

computer, and existing security and MAC protocols could be used for wireless 

communication. The policy management and negotiation mechanisms are independent of 

the Panoply design, and could work for other ubicomp platforms with minor adjustments. 

Still, management of policies and addition of the negotiation concept to Panoply will 

demonstrate a powerful ubiquitous computing model. 

 

6.1.1 Spheres of Influence and Panoply 

Panoply provides functions for applications to manage individual devices and groups. In 

Panoply parlance, such groups are called spheres of influence; a sphere can be built up 

recursively from smaller spheres, a single device being a unit sphere. Membership of a 
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sphere within another is equivalent to a child-parent relationship. Devices in a group or 

sphere are united by a common interest or attribute such as physical location, application, 

or social relationship. Spheres unify disparate notions of groups, such as device clusters 

and social networks, by providing a common interface and a standard set of discovery 

and management primitives. 

  
Figure 9. Overall System Architecture 

The building of a sphere that acts as a unified entity when interfacing with the 

outside world is facilitated by Panoply. Figure 9 indicates what a Panoply-enabled system 

would look like, clearly differentiating between our and others’ research. A Panoply 

sphere manager manages all activity and relationships within a sphere, and as such is the 
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equivalent of an operating system for a sphere. In every Panoply-enabled device, the 

sphere manager lies above the operating system and below the application layer (see 

Figure 9). A more detailed schematic of the Panoply middleware, with the functions of 

the sphere manager broken down into various components, is given in Figure 10. 
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Figure 10. The Panoply Middleware (Borrowed from Eustice’s PhD Dissertation [Eustice2008b]) 

A detailed discussion of the components in Figure 10 is beyond the scope of this 

section, and can be obtained from [Eustice2008b]; however, we list the relevant features 

in Table 1. Panoply provides group management primitives that allow the creation and 

maintenance of spheres of influence, including discovery, joining, and cluster 

management. All inter-sphere and intra-sphere communications are carried out via a 
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publish/subscribe event model that propagates events between devices and applications, 

subject to scoping constraints embedded in events and interest. An external sphere 

interface serves as the security boundary for a sphere and for interactions with external 

spheres, while an internal sphere interface is used to communicate with child spheres and 

to interact with applications. The sphere manager contains both a relationship manager 

and a policy manager. The latter manages local policy, answers queries, and negotiates 

with external spheres; it interfaces with other spheres and applications through special 

policy events. 

Table 1:   Core Panoply Services (Borrowed from Eustice’s PhD Dissertation 

[Eustice2008b]) 

High-Level Panoply Functionality Core Services Provided 

Group (Sphere) Management 
Sphere creation 

Mediation of membership changes (join and leave) 

Event Communication 

Generation of events 

Interest-based subscription for events 

Event delivery 

Scoping of events 

Network Configuration 

Network discovery and association 

Reachability verification through beacons 

Secure connection management 

Context Sensing and Inference 

Location discovery 

Mapping of physical to semantic locations 

Discovery of social group peers 

Policy Specification and Enforcement 

Inter-sphere negotiation 

Secure attestation using vouchers 

Event-condition-action triggers 

Access control through event filtering 
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Eustice’s and my research have proceeded in tandem within the broad framework 

of the Panoply project. His sphere management and event dissemination implementations 

have provided a suitable platform for an implementation of negotiation, maintenance of a 

policy database with components that observe how the state of a sphere changes over 

time, and experimentation with event filtering on the basis of dynamic policy. Our 

experiences have taught us that there is a symbiotic relationship between the Sphere of 

Influence framework and the policy-guided negotiation framework. The latter ensures the 

integrity of sphere joining and communication, and provides a security blanket. Panoply 

ensures that appropriate events are sent to the policy manager, enabling it to keep its 

database updated and make suitable decisions about when and how to negotiate. 

 

6.1.2 Role of the Policy Manager Within a Panoply Sphere 

Within a sphere, the policy manager module serves as a container for policies, which are 

enforced through both passive and proactive means. As indicated in Figure 10, this 

module forms a semi-envelope around the event processor, forcing all interactions of 

sphere modules (like the relation manager) and the sphere interfaces with applications to 

go through the policy manager. One function of this manager is to observe what is 

happening in a sphere that affects its state and register these changes as facts in its 

database. These changes can be observed by subscribing to relevant events. Some of 

these changes will also require the fulfillment of certain policy obligations; it is the role 

of the policy manager to trigger the fulfillment of these obligations. The formation of a 

relationship between two spheres always occurs through negotiation (through the 
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protocol described in Chapter 5). Also, applications obtain information and control 

sphere resources through events. By forcing the policy manager to mediate the flow of all 

such events, it can filter a number of these events based on policy (choosing to send, or 

drop, or modify the events) so that the interactions do not violate policy. Since policy 

could change at any time, the policy manager could negotiate with an application to make 

it prove that it has the necessary rights to receive/send events, thereby demonstrating its 

right to access a resource. 

 

6.2. Panoply Policy Management Architecture 

The architecture of the policy manager can be functionally decomposed into three layers 

(see Figure 11). This choice of design was driven by the need to support negotiation as 

the core function, and made the most sense given our conceptualization of the protocol 

described in Section 5.2. We could clearly delineate three functions: 

1) The negotiation protocol as a sequence of messages, based on the state machine 

illustrated in Figure 7. 

2) The interpretation and parsing of the speech acts encoded within the messages, 

management of the request lists, interfacing with helper functions, and strategizing 

based on external heuristics and trust models. 

3) An engine containing and maintaining sphere policies, and offering logical reasoning 

mechanisms such as the counter-request generation function to extract information. 

These three parts are functionally independent of each other, proving the 

necessary flexibility. Even though we tied the high-level state machine in Figure 7 and 
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the message processing in Figures 8a and 8b (see Section 5.2), we could replace our 

flowchart with a different one that maintains request lists and strategizes in a different 

way. Also, helper functions, as plug-ins, could be replaced if required. Heuristic 

functions (based on resource needs, trust and risk models) that dictate whether alternative 

offers are acceptable, or the order in which alternatives are to be proposed, could be 

completely disassociated from the policies themselves and from the protocol state 

machine. Similarly, one could replace the knowledge engineering mechanisms offered by 

the policy engine with others, keeping the state machine and parsing mechanisms intact. 

 
Figure 11. Policy Manager Functional Diagram 
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Our policy manager design is illustrated in Figure 11 above, with the three 

functions mapping to the three layers in the diagram from top to bottom. The front end is 

the policy manager shell that interfaces with other local sphere components, as well as 

interacting with remote spheres through Panoply events. It receives state change events 

from the sphere and applications, and communicates them to the policy engine, which 

updates the policy database and triggers suitable actions. It mediates information flow to 

Panoply applications by monitoring events. The negotiation protocol state machine runs 

here. Multiple simultaneous negotiation threads and the flow of negotiation messages are 

managed at this layer. Concurrent independent negotiations with multiple peers are 

supported, though all threads share a common policy database. More discussions of 

multiple negotiations, both concurrent and sequential, take place in Section 6.4. It is the 

front end layer that ensures that the negotiation protocol is reliable and tolerant to policy 

engine and network failures. Users can also observe and modify policies through a 

graphical interface that runs at this layer. 

The policy engine manages the database containing state information and policy 

rules. It interfaces directly with the SWI-Prolog  subsystem using a bi-directional Java-

Prolog API; the actual facts and rules are maintained by this subsystem, which uses 

efficient compilation, indexing and retrieval techniques provided by the Warren abstract 

machine [Aït-Kaci1991]. It recognizes policies written in the language described in 

Chapter 4, and exports methods for manipulating the database and extracting information. 

These methods include the simple querying operations, addition and removal operations, 

which were described in Chapter 4, as well as the counter-request and alternative-offer 
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generation mechanisms described in Chapter 5. Exactly one instance of a policy engine 

runs within every Panoply sphere. 

The controller guides and controls the rate and the strategy of negotiation. Every 

negotiation thread has its own controller. It is responsible for unpacking the contents of 

the negotiation messages received from the front end, examining them and formulating 

an appropriate response. The controller effectively runs the algorithm illustrated in the 

flowchart described in Figures 8a and 8b. It maintains the lists of requests received, 

requests posed, and alternative offers. It interfaces with the policy database through the 

policy engine layer, invoking the methods offered by the latter. The decisions regarding 

which alternative requests to send, or whether to accept an alternative offer, and what 

criteria to apply when making such a selection, are performed at this layer. One could fit 

any heuristic into this layer that would guide such selection, which would directly impact 

the negotiation strategy, since a prudent selection could result in a shorter and less risky 

negotiation. Negotiation heuristics could include trust and risk models, so that the risks of 

making an offer and the trust one has in the opposite negotiator could be evaluated 

against each other. We currently do not have such a trust/risk model in place, but a lot of 

related work exists in building heuristics based on game-theoretic, utility-theoretic and 

economic considerations [English2004]. We will discuss these models in Chapter 10; 

such models can be plugged into the controller with minimal additional work. 

The controller also interfaces with external (helper) functions, which perform 

various operating system operations or object processing functions that are separable 

from the logic of the negotiation protocol and independent of the policy database. 
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Referring to the negotiation message format described in Chapter 5, a message could 

contain not just queries and responses, but also supporting objects and requested proofs, 

ranging from simple string tokens to credentials, data files and mobile code. It is the 

controller’s task to attach suitable objects to each message, which are then extracted and 

verified through a converse operation by the controller at the opposite end. For example, 

in the case of a message containing a request to run a virus-scanner, the controller would 

find the scanning code and attach it to the message. In a message containing an offer of a 

certificate, the controller would look for, extract, and validate the certificate object; 

different decisions are made depending on whether the correct offer was sent. We cannot 

handle all possible objects of interest in every ubicomp scenario, so the controller allows 

pluggable helper functions and mechanisms for different objects as the need may arise. 

 

6.3.  Features Supported Through Policy Management 

The Panoply model of ubiquitous computing consists of self-contained units (spheres) 

that scope policy within security perimeters and obtain services or resources not available 

locally through event-based interactions with external units. These spheres grow or shrink 

based on certain imperatives; these imperatives could be immediate (service or resource 

access) or long-term (sharing a common purpose, interest-based groups, etc.). Spheres 

host applications that access resources and interact with other applications (running both 

on local and remote spheres). The policy manager tries to ensure that all sphere activities 

are conducted in a proper manner. The only Panoply service it relies upon is the message 

passing framework, modeled on event publishing/subscription. From the point of view of 
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the rest of the sphere, the policy manager fulfills its goals purely by sending and 

receiving (subscribing to) events. Broadly, it serves three purposes, which we detail 

below. These services are proactive in nature.  

 

6.3.1 Mediated Interactions: Negotiation 

Spheres can grow by allowing other spheres in as members, they can shrink when 

members leave, and they can form sibling relationships with other spheres. Panoply 

provides the mechanisms for the initiation of such interactions and the breaking of 

relationships, but the terms and limits of these relationships are set by the policy manager 

through the negotiation protocol. The most common case we have seen in practice is 

when one sphere wishes to be a member of another. Panoply enables this through a 

simple JOIN protocol as follows: 

Step I: The client (C) sends a JOIN-REQUEST to the prospective host (H). 

Step II: If H is willing to accept C as a member, it replies with a JOIN-SUCCESS, 

otherwise it replies with a JOIN-FAILURE. 

Step III: In case of a JOIN-SUCCESS, H adds C as a member, registers its event 

interests, and brings it within its security perimeter. 

The policy manager mediates Step II, and is responsible for deciding whether H 

would be willing to accept C as a member. Deciding whether or not a sphere should be a 

member of another could result in a negotiation with arbitrary possibilities, and allows us 

to experiment with a variety of scenarios and policies. At the basic level, C would initiate 

negotiation by sending a NEGOTIATION-REQUEST message containing a request for 
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membership. H would examine its policies governing negotiation, and make a positive 

offer, negative offer or send counter-requests. Counter-requests could include credentials 

and promises of resource-sharing, and obligations that C must abide by as a sphere 

member. When this negotiation instance terminates, H examines the result of the original 

membership request and continues the JOIN protocol as indicated above. 

In such a negotiation, the client C may initiate negotiation by making multiple 

requests, one of which would be a membership request. For example, a mobile device 

sphere (represented by a laptop) may wish to gain entry into our office sphere, and in 

addition, obtain a certain amount of network bandwidth and Internet access. H would 

evaluate the requests against its policies that allow network bandwidth and Internet 

access only to valid members, and continue the negotiation in a way that would result in 

granting those requests pending satisfaction of the membership request. Also, H could 

grant offers gratuitously as a consequence of granting a membership request. In this 

example, the office sphere may offer a certificate indicating presence within the office 

location for a particular duration; this could be used in future negotiations between the 

laptop sphere and other spheres. A Panoply-supported Interactive Narrative application 

(to be described in Chapter 7) [Eustice2007] that was deployed in the UCLA campus 

made use of this feature. Also, the conference room scenario in Chapter 1 indicates an 

offer of journal membership being made to a conference room attendee that has been 

granted network access. 

Two spheres could interact without one trying to be a member of another. These 

could be spheres that have no prior relationship with each other and have discovered each 
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other through a mechanism that Panoply provides, or could be siblings that share a 

common parent. In either case, there exists a communication channel that permits bi-

directional event flow. The spheres can negotiate through this channel for access to 

resources, permission to run certain services, change the terms of earlier agreements, and 

impose additional policy constraints.  

 

6.3.2 Dynamic Access Control Through Event Filtering 

Sphere components and applications communicate through events. Some components and 

applications guard resources and information that are not meant to be easily accessible to 

everyone and under any situation. For example, a sphere component called the relation 

manager maintains a repository of the sphere’s relationships, which is information that 

can be obtained through a pair of query-response events of a designated type. In another 

scenario that we call the Smart Party [Eustice2008a], dynamic song playlists are 

generated and played based on the collective preferences of the guests. The playlist offers 

the option to skip to the next song on the list or repeat the previous song. Such options, 

by their very nature, change the core behavior of the music–playing application. 

Therefore, the playlist is a guarded resource and options to change it must be restricted to 

authorized users. A simple access control policy would allow such access only to party 

hosts and not to temporary guests. A more complex policy would have associated 

contextual constraints, such as allowing anyone to change playlists as long as there are 

not more than three guests present. In another example, an office could have policies that 

mandate how its smart doors open and close and how its smart lights turn on and off 
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based on who is present in the office and the identity of the person who is manually 

attempting to change the state of the resource. 

These resources are managed at runtime by either a core sphere component or a 

Panoply-enabled application. Access to these resources occurs through the sending of 

events to the resource controllers, which then perform the requested state-changing 

actions or send information through responses. By inserting the policy manager in the 

path from the sender to the resource controller, it can control access based on the policies 

in its database. First, before the event reaches the destination, its attributes—including the 

source, event type, subtype and application or user type (this can be expanded if 

required)—are extracted and a suitable query is formulated for the policy engine to 

evaluate. If the policy engine determines that the query is valid, the event is allowed to 

pass. If not, unsatisfied constraints are extracted (see Section 5.3), a new negotiation 

thread created, and these constraints are sent in the form of requests to the source of the 

event. A negotiation ensues (which could be as simple as requesting proof in the form of 

a credential), and upon a satisfactory conclusion, the event is allowed to pass; or, an 

unsatisfactory conclusion results in the event getting dropped. 

The utility of this form of event filtering for access control is evident when 

policies, sphere state, and context dynamically change. For example, on “demo day” in a 

lab, the professor in charge of the lab sphere could temporarily grant permission to the 

students to open/shut the door without additional constraints. An event from a student’s 

sphere would be permitted to change the state of the door only when such a policy is 

active. When the policy reverts back to its original state, a door-state-changing event 
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would trigger a (presumably failed) negotiation with the student’s sphere. Since access 

must necessarily occur through events, and events are matched with policy at the end of 

the event stream, revocation is not a problem. The distributed nature of the policies 

among the resource controllers (spheres and applications) avoids the scalability issues 

that afflict traditional modes of access control like security capabilities. Also, on-the-spot 

negotiation makes our model more dynamic and flexible when compared to existing 

access control models for open systems. 

 

Performance Issues: Querying the policy engine for every query results in a huge 

performance hit. To avoid that, we run a query (and possibly, a negotiation) only for the 

first event in a stream, and if successful, save the result in a policy cache (which maps a 

tuple of event characteristics to a true/false value) that is unique to that particular 

recipient. Subsequent events of identical type are allowed to pass through without going 

through the policy engine if, and only if, the policy cache returns a true value, which 

indicates that the event source has proved its right of access. A FIFO policy is used to 

clear and populate the cache. This scheme has the obvious drawback that if a policy 

changes in the meantime, a number of unauthorized events may pass through. 

 

6.3.3 Context-Sensitive Responses to Events 

Our policy manager provides the additional service of observing and recording sphere 

state and context changes, and triggering suitable actions as dictated by policy. As in the 

case of the above two services, building an observer module is made easier using the 
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subscription feature of the event processing framework. There are a number of ways in 

which sphere state and context can change, and these must be reflected in the policy 

database. Sphere relationships can change: a sphere could gain or lose members, 

contextual parameters (such as location) of a sphere could change, applications may start 

and shut down, and sphere components and applications could send state-changing events 

to each other (as described in Section 6.3.2). All these phenomena are accompanied by 

the publishing of events, and the policy manager registers its interests with the sphere 

manager by subscribing for these events. The only extra work the policy manager has to 

do here is to translate the contents of the events into logical statements that can be added 

to the policy database. 

The policy database contains update policies (as described in Section 4.2) that 

dictate what actions must follow observations and database updates. For example, the 

satisfactory admission of a child to a sphere (through negotiation) could necessitate the 

creation of a credential certifying this newly created relationship. A smart door 

(mentioned in Section 6.3.2) could have a policy dictating that it must never be open for 

longer than five seconds during the daytime; the contextual parameter that changes and 

triggers a door closing action is time. The list of actions are inferred through the 

chainEventAction operation (see “Modification Operations” in Section 4.2) and then 

acted upon using available sphere mechanisms (either using Java method calls or by 

publishing Panoply events). 
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6.4. Multi-Threaded Operation 

It is neither practical nor efficient for a policy management framework to support only 

one negotiation session at a time, making other potential negotiators wait for their turn. 

The Panoply policy manager supports multiple concurrent negotiations; each negotiation 

runs in its own thread but is dependent on, and impacts, the others. All negotiations are 

bilateral (one-to-one). Neither our protocol nor a Panoply policy manager support true n-

party negotiation, where the n parties are actively aware of one another. Therefore, in our 

design and implementation, N1 ↔  N2 and N1 ↔  N3 may be concurrent negotiations, but 

from the point of view of N2 and N3, N1 is the only negotiator they are aware of. The 

policy manager also supports sequential renegotiations, which we will describe later. 

 

6.4.1 Multiple Concurrent Negotiations 

As indicated in Figure 11, the policy manager front end handles multiple negotiation 

threads and message switching. A sphere can negotiate with multiple other spheres 

concurrently, using the common event processing framework. These negotiations are 

direct communications between policy managers, and are transparent to the rest of the 

spheres, as indicated in Figure 12 below. Each negotiation thread is uniquely identified 

by the identity of the sphere it is negotiating with and maintains its own controller, and 

associated request/offer state. 
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Figure 12. Four Concurrent Negotiations 

Issues: In our implementation, concurrent negotiations are unaware of each other. But 

since a sphere maintains only one policy database, which is shared by all negotiation 

threads, any changes made to the contents of the database through an intermediate step in 

one negotiation could impact and change the course of another negotiation. Two kinds of 

changes could occur in a database, assertion and retraction of facts and rules; 

modification is simply a combination of a retraction followed by an assertion. Granting 

and receiving offers typically result in database changes, and also any updates that are 

triggered by event-condition-action policy rules. Such changes could impact other 

negotiations in the following ways: 

 Pending requests posed, and alternatives, could be invalidated: This could occur if a 

database change results in an earlier evaluated policy (to generate counter-requests) 

becoming more stringent. So even if the opposite negotiator were to respond with an 
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affirmative offer, it would not satisfy the current policy. The result of negotiation 

would be consistent with current policy, since any requests satisfied after this change 

would necessarily have been satisfied in the absence of the change. The correctness of 

negotiation (dealt with in more depth in Chapter 8) requires that no requests be 

granted that would violate policy, and concurrent negotiations maintain that standard. 

 Potentially, more alternatives could be generated for pending requests received: This 

could occur when database changes result in policies becoming less stringent. 

Therefore, more alternatives could potentially be generated if the counter-request 

generation procedure were to be re-run. In our implementation, we do not do this, 

because it would increase performance overhead and is prone to bottlenecks. As a 

result, a received request that would be satisfiable under the changed database 

conditions would not be satisfied, leading to a more conservative result. This result is 

less than ideal, yet maintains the correctness property defined above. 

 

Fixes and Tradeoffs: The problems we encounter here have strong parallels with the 

problems in database transactions. Database scientists deal with these problems by 

enforcing the ACID properties (atomicity, consistency, isolation and durability) through 

serializable schedules. It is somewhat easier to enforce this on databases, with the only 

operations being reads and writes on individual data items. In our policy engine, the 

individual facts and rules can change dynamically, and rules and facts depend on each 

other. Keeping track of all the impacts produced by a change is exponential in 

complexity, thereby being prohibitively expensive in a real-world policy negotiation 
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protocol. Even if we chose to do this, arbitrary delays could be introduced in individual 

negotiation threads; a sphere could send an offer, and then keep waiting indefinitely 

because the recipient must finish negotiating with a third sphere before registering the 

offer in its database. This is practical for a typical database scheduler, but not in the 

environments where we would like to use negotiation. 

We therefore just allow concurrent negotiations to proceed, with negotiations 

being allowed to change the contents of the database at any instant. The addition and 

removal operations are atomic (enforced using locks and synchronization), but different 

negotiation threads, in effect, race with each other. As mentioned above, the correctness 

property is maintained, but completeness (ideal result) is sacrificed for efficiency. 

In practice, we leave it to individual spheres to attempt renegotiations even after 

the failure of the first attempt. In a typical Panoply deployment in our lab, a sphere 

attempts three joins before declaring failure. As we mentioned earlier, some negotiations 

may deliver more conservative results because they do not repeat the counter-request 

generation procedure upon change of database state; attempting multiple sequential 

renegotiations could rectify this problem. 

 

6.4.2 Dynamic Renegotiation 

As we saw in the above section, negotiation steps result in changes to the database and 

are also affected by dynamic changes. Negotiation decisions, such as the granting of 

requests, are made on the basis of invariants specified in policy rules. Consider an 

example where sphere A negotiates with sphere B for the privilege of becoming its 



 138

member. Sphere B has a policy that allows member spheres to enable sound alerts on 

their devices only if they are the lone member in the sphere. Sphere A is granted 

membership because there are no other constraints and it was the first supplicant. Sphere 

C now comes along asking to be a member in B. B imposes the “turn off sound alerts” 

policy, which C agrees to abide by. Now that C has become a member, B reviews its 

prior agreement made with A, and determines that A was not obligated to abide by the 

policy of “no sound alerts permitted when there are two or more members.” Therefore, it 

initiates a renegotiation with A for the membership privilege. If A is willing to abide by 

the policy, it remains a member; otherwise it is forced to leave (after all alternatives have 

been exhausted). 

This example is implemented for general negotiation agreements (not just for 

sphere joins). Whenever a negotiation session terminates, earlier negotiated agreements 

are reviewed, and renegotiated if necessary. The procedure to infer the need for, and to 

perform, renegotiations is given below. 

 Preliminary: Sphere S maintains a set of tuples T = <SID, OfferSet>, each tuple 

mapping unique sphere IDs to the set of affirmative offers that have been made to it 

as part of the negotiation. 

 At the conclusion of a negotiation, the list of offers granted as part of the agreement is 

saved as the set CurrentOffers. 

 For each SID in T, RequestsForRenegotiation = OfferSet∩CurrentOffers is 

computed. If RequestsForRenegotiation is null, there is no need to renegotiate with 

SID. Otherwise, these entries are removed from OfferSet and a negotiation thread is 
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started by simulating an initiation message from SID consisting of requests from the 

set RequestsForRenegotiation. Based on the results of this new negotiation, earlier 

granted offers may be revoked by retracting statements from the policy database. 

We conclude with a caveat. By their very nature, some agreements cannot be 

renegotiated; the act of sending a file that was requested cannot be undone. But in the 

case of a sphere, the act of granting membership can and is revoked when change in 

context demands it. 

 

6.5. External Helper Functions 

The controller module within the policy manager is an expandable framework which 

external functions can be plugged into. These functions perform non-logical tasks, such 

as returning objects, information, or simple yes/no answers. There are two places where 

such functions can be called. Referring to the flowcharts in Figures 8a and 8b, the 

formulation of an OFFER message, and the verification of an offer, involve external 

function calls. What is the purpose of such calls? They typically involve operations on 

software resources; in our framework, these are Java objects. Often, the functions at both 

places are complementary, as we will see through examples. 

An OFFER message may contain affirmative and negative entries. For the latter, 

nothing else needs to be done before sending the message. But for an affirmative offer, 

which indicates the acceptance of a request, just sending a message indicating affirmation 

(or agreement) may not be enough. Some kind of object, or piece of data, may also need 

to be attached to the message. Such an object could represent something that was 
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explicitly requested, such as a file (e.g., media file, sensitive document), a credential 

(e.g., certificate, voucher), or a generic object (e.g., public key, agent code, Java class 

file). Alternatively, some objects could be implicitly requested, such as a credential 

indicating that the offering entity possesses valid authorization, or a proof of some kind 

(such as the result of running anti-virus software, which may indicate a clean bill of 

health). Exactly what the context is and what the appropriate object is that needs to be 

attached is determined by the external function, which takes the request and its support 

predicates (including the variable bindings) as input. The returned object is then attached 

to the outgoing OFFER message. 

Correspondingly, when an OFFER message containing such attachments is 

received, the objects are extracted and verified using integrity checks. Such checks are 

carried out through external functions, which also take the request and support predicates 

as arguments. If the sent attachment has been encrypted or signed, the received 

attachment is decrypted or verified through a complementary operation. 

Termination: Helper functions are not considered in our discussion of negotiation 

protocol and termination semantics (Chapter 8). Therefore, a helper function that triggers 

an exception or goes into an infinite loop will result in an erroneous or non-terminating 

negotiation. Care must be taken before such functions are used in a negotiation. 

 

Vouchers: For application-layer security in Panoply, we designed and used a generic 

multipurpose cryptographic credential, similar to SPKI [RFC2693] called a voucher 

[Eustice2008a] (see Figures 13a and 13b below). 
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Figure 13a. Voucher Data Structure 
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Figure 13b. Opaque Field Data Structure 
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certifying voucher. The voucher data structure can be subclassed (we do this in two ways: 

a Location Voucher and a Social Voucher) to make it certify more specific properties. 

Many of our experiments with negotiation involve generation of signed vouchers, 

which are then verified using public keys at the receiving end. As vouchers also specify 

start and expire times, we use predicates of different lengths to differentiate between 

general vouchers and vouchers that are requested and granted for a particular duration. 

Vouchers are stored in a separate database for each sphere, and can either be dynamically 

generated using a helper function or retrieved from the database, as the scenario may 

require. When a voucher is received, the possession of the voucher and properties it 

certifies are asserted in the policy database. 

We have also used helper functions that retrieve and attach appropriate X.509 

certificates, audio files and public key data structures in our applications. 

 

6.6. Protocol Reliability and Fault Tolerance 

The state machine illustrated in Figure 7 does not handle reliability issues, or system and 

network faults. It does indicate a transition to the STOP state upon a timeout, which is a 

trivial (though efficient) form of fault tolerance. Given that the policy manager supports 

multiple concurrent negotiation threads, and inter-sphere interactions depend on 

negotiation, we need to have a better and cleaner notion of protocol reliability, and gear it 

towards avoiding race conditions and conflicting negotiation sessions. 

There are a number of scenarios that could result in faulty or unreliable behavior 

if the policy manager were to implement just the state machine in Figure 7. This is not 
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only because of real failures in local computation or on network links, but also because 

the policy manager’s actions are transparent to the rest of the sphere manager. Since the 

policy manager was supposed to mediate interactions, it was reengineered to take into 

account these systems faults as well as the responses triggered by other sphere modules. 

We sought to make the negotiation protocol resilient to three basic faults: 

1. Remote engine/network failures: When a negotiation thread is in the expect state, it is 

waiting for a message from the policy manager at the other end of the communication 

channel. It could end up waiting indefinitely, either because of some problem in the 

remote policy engine (event was not sent) or in the event processing framework 

(event was dropped in transit). The latter scenario includes basic network link 

failures, which are uncommon in modern networks but may occur when a mobile 

device lies at the periphery of a wireless LAN’s range. 

2. Local engine failures/delays: There is no bound on the time a policy engine might 

take to process and send a response to a negotiation message. It could vary arbitrarily 

with the number of entries in the message, helper function run times, and the size of 

the policy database. Alternatively, there might be some latent bug in the Prolog 

subsystem (as we have found in practice) which simply causes the policy engine to 

get stuck or go off into exception mode. In practice, though, one cannot spend an 

unlimited amount of time on negotiation, so a non-response (or a timeout) from the 

local engine is treated as a fault. 

3. Race conditions and conflicting negotiation sessions: Unlike the above two classes of 

failures, which can occur in any network protocol, race conditions occur because of 
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the nature of the role the policy manager plays in building sphere relationships. We 

allow multiple concurrent negotiations, but only one per negotiation pair at any given 

instant. This is enforced to prevent multiple redundant requests, and to a lesser extent, 

to avoid potential policy conflicts and loops, which could result from the policy 

database being modified independently by each negotiation thread. Race conditions 

may occur because of the decoupling of the sphere JOIN mechanism from the 

negotiation protocol. A sphere may time out when trying to join another, and be 

programmed to retry the procedure. But spheres are not obliged to have identical 

timeout values, and have no time synchronization. So the sphere that has timed out 

might trigger a new join, and consequently a new negotiation, while the other sphere 

still thinks that the old negotiation is valid. This could cause multiple such 

negotiations and joins going back and forth, with the request lists on both sides 

building up; clearly this is an undesirable and unpredictable situation. 

The three types of faults are illustrated in Figure 14. All faults are illustrated in 

the context of a policy-manager-mediated JOIN protocol. 
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Figure 14. Faults and Recovery in a Negotiation Protocol Instance 
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Fixing the Problems: 

We use two techniques to recover from these faults, which have been commonly used in 

network protocols and in distributed systems: 

1. Timeouts: Each negotiation/JOIN thread tracks the time taken both by the local policy 

engine to return a reply and to receive a message from the remote sphere. If either of 

them exceeds a pre-decided timeout value, the negotiation instance is terminated. 

This value is a core property of the sphere. Upon termination, the request lists 

maintained by the controller are purged. Since negotiations can have intermediate 

requests and offers, it is likely that the policy database would have been modified by 

the partial negotiation. We do not make any effort to attempt a rollback of negotiation 

at this stage. First, such rollback would impact performance, and second, it produces 

no observable benefit. This is because negotiations are not equivalent to atomic 

database transactions, where updates are made final (through commit protocols) only 

at the end. Intermediate offers to requests must necessarily result in some tangible 

change in state; otherwise a negotiator has no incentive to proceed. For example, a 

file or a credential sent to the other side cannot be un-sent. On the other hand, 

acceptance of certain policy obligations, and promised access rights, could be reneged 

upon. We do not perform a rollback for these types of offers upon negotiation failure 

(in case a negotiation is attempted again shortly), but do so when the spheres 

explicitly break their relationship. 

The timeout values must be chosen with care so as to maximize overall 

efficiency. The local timeout should be less than the remote timeout, simply because 
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of the extra latency of event transmission and communication. The local timeout 

should also be more than the default timeout value of the communication channel (in 

our case, a Java socket). Also, these timeout values should not be too low, which 

might result in premature terminations and unnecessary negotiation sessions. 

2. Timestamps: Timeouts avoid unnecessary delays and a waste of resources upon 

failure, but could cause race conditions (see Figure 14) when the sphere manager at 

one end decides that it needs to restart a JOIN while an older negotiation is still going 

on. We cannot avoid the creation of multiple conflicting negotiation threads, but we 

can enforce a policy whereby only one thread among a pair of negotiators will be 

considered legitimate at any given instant. Timestamps, which indicate the instants at 

which negotiation threads are started, act as unique identifiers for these threads. They 

are set by the initiator, thereby synchronizing between the two entities. Each 

negotiation message within a thread is stamped with this timestamp value, indicating 

which thread it belongs to. A table indicates the current legitimate timestamp value 

for a given negotiator. A negotiation message that arrives carrying an older timestamp 

is dropped without consideration. Conversely, if a message carrying a newer 

timestamp value arrives, the currently running negotiation thread is terminated and a 

new thread created to process the received message. 

Could security problems arise because we do not attempt rollbacks of partial 

negotiations? It is unlikely, except in cases where an entity knows about the other side’s 

policies. This entity could then engineer the negotiation in such a way that intermediate 

offers are made, which benefit it in some way, and then simply terminate the negotiation. 
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Also, some actions are reversible and some permissions are revocable, but all are not; we 

will discuss the consequences of this further in Chapter 8. But as our entire negotiation 

model is based on the presumption that policies are local and private, these kinds of 

security breaches are unlikely to occur as long as that property holds. 

  

6.7. Visualization and Administration Tools 

The Panoply middleware provides primitives for the design and implementation of 

applications that can make use of the physical and social context provided by the hosting 

sphere without necessarily being aware of it. Because these applications perform their 

activities using events, they can be easily coupled to, or decoupled from, an individual 

sphere. Any subsequent changes in behavior can be made easily by adjusting the set of 

events the application is interested in. Such a loosely coupled model also enabled us to 

build tools that users and system administrators would find useful when interacting with 

the policy manager of a sphere. Not only would this allow us to change the functionality 

of these applications without having to modify the core behavior of the policy manager, 

but this would also provide better performance, as the activities of these applications lie 

outside the policy manager’s processing loop. 

 

6.7.1 Policy Browser 

A real-world policy manager is not very useful if it does not provide an option to observe 

and manipulate its entries (policies in the database) during runtime. This is especially 

useful to a system administrator who would like to see a snapshot of the policy database 
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at a given instant, and the changes that have occurred in sphere state. Both the 

administrator and an ordinary user may want to change individual policy rules during 

runtime without having to shut down and restart the entire Panoply subsystem. The policy 

browser application, a snapshot of which can be seen in Figure 15, provides a window to 

the policy engine that is not unlike a database view. As we can see, the individual policy 

rules are listed in the rows of a table. The antecedent of every clause is displayed on the 

left column and the consequents on the right column. The browser offers options to add 

and remove policies, modify entries in individual cells and update the database, and 

import policies from an external file, among others. 

 
Figure 15. Policy Browser Snapshot 

By default, the browser displays both system (low level) and user policies. We 

can also prevent core system policies from being modified by ordinary users (indicated 
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by the grey rows in the table in Figure 15). Though not implemented, manipulation of the 

database (or particular sections of it) could be controlled using a mechanism similar to 

the one we use to control resource access (see Section 6.3.2); the browser itself could 

allow the user to perform an action but the policy manager would then negotiate with the 

user for the privilege of changing database contents. 

 

6.7.2 Negotiation Timeline 

A user can observe the progress of a negotiation on a dynamically updated protocol 

timeline diagram, which indicates the kinds of messages and their contents, as well as the 

time taken for each step. This tool does not provide any inherent value of the kind a 

policy browser offers, but is very useful as a way of tracking and visualizing how a 

negotiation is proceeding, in a way that is similar to how one would observe the activity 

of a network being simulated using NS2 through a Tcl/Tk GUI. It is also useful for 

demonstration purposes. An example of such a timeline is illustrated in Figure 16. A user 

could move his mouse over the individual negotiation message boxes and observe the 

contents of the messages, as indicated in the figure. 
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Figure 16. Negotiation Timeline Example 
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Chapter 7 
 

Demonstrative Applications 

 

The Panoply policy manager was exercised in various application scenarios that either 

occur in the real world or emulate those that occur in the real world. These applications 

were designed and implemented under Panoply, and they depend on Panoply’s event 

publish/subscribe framework for communication. Sphere join (one sphere attempting to 

be a member of another), which is the most common type of inter-sphere interaction, is 

carried out as a negotiation, and we show how this works in the context of our flagship 

Panoply applications. We describe a range of applications scenarios and variations that 

result in different protocols and outcomes. These scenarios exercise all aspects of the 

policy manager, namely negotiation, policy filtering, and event-action triggers. 

 

Policy Complexity: Before we proceed, we should mention that a number of policies that 

will be described in this chapter are quite hard to read and understand for someone who is 

not familiar with logic, Prolog, and more specifically, SWI-Prolog. Our goal was to 

design a policy language that primarily served the purposes of negotiation, and usability 

was not a top priority. Still, usability needs can be met without changing or replacing our 

current language in its entirety. We will discuss how this can be achieved in Section 

11.4.3. More specifics on understanding the syntax and semantics can be found in both 

Chapter 4 and Appendix A. 
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7.1. Negotiation in Prominent Panoply Applications 

In this section we describe the most prominent uses of the policy manager in Panoply and 

its applications. First, we describe some simple negotiations that occur as part of sphere 

join operations, where the goal is simply the following: a supplicant sphere wishes to be a 

member of a host sphere (representing a home or a lab network), and the latter has 

constraints and standards it would like to impose upon prospective members. Following 

that, we describe the role played by the policy manager in two flagship Panoply 

applications: the Interactive Narrative and the Smart Party. 

 

7.1.1 Membership in a Home/Lab Environment (Sphere Joins) 

Typical negotiations for membership are initiated by a supplicant sphere. In response, the 

host sphere examines its policies governing member eligibility; it either makes a decision 

to admit or reject the supplicant, or continue the negotiation by posing counter-requests. 

Our scenarios typically consist of the following: 

 A computer (H) in the laboratory/home running a sphere that represents and manages 

the lab/home. We used a variety of machines for this purpose, ranging from desktop 

computers to IBM Thinkpad laptops and Sony MicroPCs. The sphere serves as a 

container for various pieces of information, including what kinds of displays and 

printers it controls, how much bandwidth and disk space is available, what credentials 

it possesses or can create for certification purposes, and policies that govern these. 

 A prospective client sphere (C) hosted on a mobile device like a laptop or a MicroPC 

that requires membership within the lab/home. It serves primarily as a container for 
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credentials and for information like its current location and team affilitation that may 

have to be released for the success of a negotiation. 

 A regular user, or a guest, carries his/her computer and walks into the lab/home. The 

mobile device C detects the host environment H (as represented by the sphere), 

connects to the appropriate wireless network and initiates a Sphere Join, and a 

negotiation ensues. Such detection, connection, and initiation could be done manually 

as well, but the Panoply framework provides an automated mechanism that uses 

network information embedded in the vouchers, combined with localization maps for 

this purpose. The full procedure is described in Eustice's PhD thesis [Eustice2008b]. 

 

Open environment: H could be a completely open environment, having a tautological 

membership policy: 

member(Sphere) :- true. 

C would become a member, or a child sphere of H, in a three-step negotiation: 

REQUEST<member> 

 OFFER<affirmative> 

 TERMINATION 

An event-action-trigger policy is used to register the requests that must be posed 

in C's policy database. For example, C would want to be a member of a sphere if it 

currently is not a member of one, and is newly associated with a new location. A location 

update event results in the registering of a new location in the policy database, which in 

turn results in the assertion of a membership request through the following policy rule: 
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update :- (candidateInSphere(Sphere) -> 

(not(request(member,r)) -> assert(request(member,r)))). 

 

Negotiation with credentials: A voucher certifying presence in the vicinity of the host 

sphere could also be part of the transaction. Such a voucher could either be explicitly 

requested by the client, or the host may grant one in a gratuitous manner because it has a 

policy of granting one to any sphere that gains membership privileges. 

In the former case, the negotiation would be initiated by the REQUEST message 

containing the entries <member; (possess(LV),locationVoucher(LV))>. H has an 

access policy of the form: access(Sphere,LV) :- locationVoucher(LV). The 

predicate locationVoucher(LV) has a helper function associated with it that creates and 

digitally signs a voucher and attaches it to the OFFER message. 

In the latter case, H has a policy rule of the form: 

update :- ((negotiator(Thr,Sphere),member(Sphere)) ->  

((locationVoucher(LV),(LV='voucher_location=LASR'), 

(not(possess(S,LV))), 

not(offer((possess(V),locationVoucher(V)),nil))) ->  

(assert(offer((possess(V),locationVoucher(V)),nil))))). 

This policy has the effect of obligating H to offer a location voucher to a member 

sphere that has not already been granted one. The negotiation again involves three steps: 

REQUEST<member; [possess(LV),locationVoucher(LV)]> 

 OFFER<affirmative; {LV=’voucher_Object’}> 

 TERMINATION 
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Other requests for information and resources could also be requested using similar 

policies. The following policy statement expresses the need to find out whether the host 

owns a color printer: 

update :- (candidateInSphere(Sphere) -> 

(not(request((possess(X),printer(X),type(X,color)),q)) ->  

assert(request((possess(X),printer(X),type(X,color)),q)))). 

 

7.1.2 Membership and Interaction in an Interactive Narrative 

The Interactive Narrative [Eustice2007] is a location- and team-aware application that 

was designed and deployed throughout the UCLA campus. It was built on the Panoply 

platform, and the interacting parties were modeled and implemented on spheres. In a 

nutshell, the application allows people playing the role of characters in a story to visit 

designated locations in the campus through an unscripted trajectory, uncover more of the 

story, find new clues, and perform actions given available choices at each location. 

Actions and location visits drive the narrative forward. Participants are represented in this 

virtual narrative by their mobile computers, either laptops or Sony MicroPCs or OQOs. 

The content is already available and associated with each location; dynamism arises from 

the random nature of inter-sphere associations. These associations occur through sphere 

joins: specifically, characters' device spheres joining and negotiating with location and 

team spheres. The negotiations are constrained by the policies of the overall game, and of 

each location. 

To join a team (social) sphere, a character’s device negotiates with it typically in 

the following way: 
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 The device asks to join the sphere by sending a REQUEST message containing a 

member entry: 

REQUEST<member> 

 The team sphere has a membership policy like the following: 

member(S) :- 

 candidateSphere(S), 

 teamMember(S), numChildren(N), maxChildren(M), N <= M, 

 possess(S,V), socialVoucher(V,G), localSphereID(G), 

 location(S,L), permissibleLocation(L). 

This policy allows granting of membership to a sphere S that is already a 

candidate (an intermediate stage in a sphere join procedure whereby a prospective client 

sphere is partially associated) and if S’s ID identifies it as being a team member, if the 

current team size does not exceed the maximum supportable, if it can prove its affiliation 

by providing a team voucher formerly acquired, and if its current location is known. 

 If the team size constraints are met, the social sphere sends a counter request with two 

entries: request for a social voucher as proof, and an inquiry of the device’s location. 

 REQUEST<possess(LV),socialVoucher(LV); location(L)> 

 The device has open access policies for these requests: 

access(S,V) :- socialVoucher(V,R), negotiator(Thr,R). 

accessInfo(S,location(L)). 

These state that social vouchers can be revealed to whoever issued them, and 

location information can be released to anyone. 

 The device returns affirmative offers containing its location information and its social 

voucher. 
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 OFFER<LV=’voucher_Object’; L=’Location_A’> 

 The team sphere examines the voucher cryptographically, and matches the device’s 

location with the predicate permissibleLocation(L). If they check, the 

membership request is granted. 

 The team sphere also has an event-action policy of the following form: 

update :- ((negotiator(Th,S),member(S)) -> 

((locationVoucher(LV),(LV='voucher_location=LASR'), 

(not(possess(S,LV))), 

not(offer((possess(V),locationVoucher(V)),nil))) -> 

(assert(offer((possess(V),locationVoucher(V)),nil))))). 

When the decision to make an affirmative offer to the membership request 

registers in the policy database, the database is updated with a statement which indicates 

that a location voucher must be granted to the device visiting the location. Though not 

explicitly requested, this voucher is gratuitously offered to the device. The offers are 

made, and the negotiation terminates. 

 OFFER<affirmative; {LV=’voucher_Object’}> 

 TERMINATION 

A device that has already joined a social sphere wanders around (carried by its 

owner) and associates with different locations, getting content appropriate to its 

immediate context. The application design allows each location to have its own location 

sphere, or have the social sphere host multiple virtual location spheres, and act as a 

narrative content provider. For ease of implementation, we followed the latter approach. 

Various application-independent tasks are performed through policy management when 
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devices dynamically associate with locations. First, obtaining content is a process of 

negotiation. The social sphere's state manager gets requests in the form of <STATE, 

REQUEST> events (the type field of the event is set to STATE and the subtype field is 

set to REQUEST) that are filtered by the policy manager, which could initiate a 

negotiation with the device for the privilege of providing content. The low-level policy 

rule that is evaluated whenever an event is diverted to the policy manager is given below. 

action(pass,event,EID) :- 

jpl_call('panoply.policy.EventPolicyMediator','currentEvent',[

EID],E), 

eventType(E,T), eventSubType(E,ST), eventUserType(E,UT), 

eventSource(E,So), condition(So,T,ST,UT). 

The condition predicate represents the customizable portion of the above policy 

rule; example policies that govern event filtering (with which we experimented) are given 

below. 

condition(So,T,ST,UT) :- 

T='STATE', 

ST='REQUEST', 

obey(So,pass). 

obey(So,pass) :- not(player(So,'William')), 

location(So,L), not(L='InvertedFountain'). 

obey(So,pass) :- 

 player(So,'William'), location(So,'InvertedFountain'), 

 numLocationsVisited(So,N), N >= 4. 

obey(So,pass) :- 

 player(So,'William'), location(So,'InvertedFountain'), 



 161

 numLocationsVisited(So,N), N < 4, 

 action(So,order,changeCharacter,'Amanda'). 

The 'obey' policies indicate the restrictions on characters getting content at 

particular locations (equivalently, joining those location spheres). The first indicates that 

any character not assuming the persona “William” can join locations other than the 

“InvertedFountain.” Only player “William,” if he has already visited four or more 

locations, may join the location “InvertedFountain.” If he has visited fewer than four 

locations, he must change his persona to “Amanda” in order to access content at the 

“InvertedFountain” location. If the predicate numLocationsVisited(So,N), N < 4 

evaluates to true, a negotiation is initiated and a counter-request is sent to the device 

hosting the character “William,” as follows: 

REQUEST< action(So,order,changeCharacter,'Amanda)> 

If the device has a policy “obey(S,changeCharacter) :- true”, it will send an 

acceptance offer indicating that it will change its persona to “Amanda.” 

 OFFER<affirmative> 

 TERMINATE 

The changing of the persona occurs through he following low-level policy: 

action(changeCharacter,CharacterName) :- 

 string_concat('LMPersona:',CharacterName,S), 

 send_event('APPLICATION','SET',S). 

This triggers the sending of a Panoply application event to the application running 

the Interactive Narrative at the client, resulting in a change of persona. 
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Thus, we can see how negotiations can be used to make character joins and 

content access procedures dynamic and flexible, as the constraints are independent of the 

story outline and can be modified during runtime. The predicates like player and 

numLocationsVisited are updated whenever a state change is detected through events 

received by the social and location spheres' policy managers. 

An example of an event-action trigger can be illustrated through the following 

policies: 

nextLoc('LASR','BoelterGarden'). 

nextLoc('BoelterGarden','BombShelter'). 

update :- 

 ((player(S,P),location(S,'LASR'),numLocationsVisited(S,N),N>4, 

 nextLoc('LASR',Loc),not(visited(S,Loc)), 

 atom_concat('Head off immediately to ',Loc,Hint)) -> 

jpl_call('panoply.policy.Helper','execAction',['Hint',S,Hint],

@true)). 



 163

 

Figure 17. A Snapshot of the Interactive Narrative Client GUI (Note the Policy-Driven Hint Displayed in 
the Bottom Right-Hand Panel) 

The update has the following effect: if a player visits the location “LASR,” and 

has visited more than four locations, but not the next location, which is “BoelterGarden,” 

it is sent a hint encouraging it to visit “BoelterGarden” through a Helper function that 

sends a suitable event. The hint is displayed on the client GUI (see Figure 17). 
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7.1.3 Membership and Interaction in a Smart Party 

Another application that was successfully designed and implemented using the Panoply 

middleware was the Smart Party [Eustice2008a]. The scenario is identical to the one 

outlined in Chapter 1. The party can be conducted within any bounded geographical 

location of arbitrary size. For demonstration purposes, we hosted one within our 

laboratory (3564 Boelter Hall at UCLA) with three rooms that are distinguishable using 

an 802.11 signal strength triangulation-based localization map. The application itself 

contains a social sphere consisting of all guests to the party, three location spheres that 

represent the three rooms in which guests congregate and which contain speakers. Guests 

enter the party environment with personal mobile devices running Linux (either IBM 

Thinkpad T42 laptops or Sony Vaio UX2800 MicroPCs). Each device contains audio 

files with metadata, and also contains that user's musical preferences (these are weighted 

orderings of songs, genres and artists). 

Policy management plays an important role in various aspects of the party. 

Joining the party after discovering it requires negotiation for membership. The sphere 

managing the overall party (referred to as the Smart Party Master) has already granted 

cryptographic vouchers to the spheres running on devices owned by the people on the 

guest list prior to the party. These vouchers have embedded information associating the 

party with certain wireless networks, and the Panoply framework enables discovery and 

association with those networks once a guest's device enters the vicinity of the party. As 

described earlier in this section, being associated with a sphere automatically registers a 

request for membership within the guest device's policy database, and a sphere join 
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triggers negotiation. Negotiation then takes place as part of the join procedure. A typical 

membership policy is similar to the membership policies in scenarios where a device 

joins a home sphere, an office sphere, or a team sphere in the Interactive Narrative. A 

typical entry policy would be the following: 

member(S) :- candidateSphere(S), possess(S,V), 

socialVoucher(V,G), localSphereID(G). 

This policy indicates that the guest device must possess a valid social voucher 

indicating an invitation to the party; this voucher would have been granted by the party 

sphere that grants entry permission through a variety of mechanisms, including email and 

sphere associations. When a guest first enters the vicinity and associates with the party 

sphere, the latter requests production of the social voucher, and allows the join process to 

complete upon successful verification of the voucher. If the guest wanders away 

temporarily and tries to rejoin the party, his device will not be prompted to show the 

voucher because the party sphere's policy database has registered the knowledge that the 

device possesses a valid voucher. 

The door of our laboratory can be controlled remotely using OPEN/CLOSE 

events to a Panoply application that directly interfaces with the door through the serial 

port of the computer it is connected to [Eustice2008b]. A guest's device can negotiate 

upon entry for the right to be able to open the door automatically from the outside. In this 

case, the request message will contain the following entries: member, 

(action(permission,open,D),door(D)). Example party sphere's policies governing 

who has the right to open the door are as follows: 
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obey(S,open,D) :- door(D), possess(S,V), socialVoucher(V,G),  

localSphereID(G), numChildren(N), N<=5. 

obey(S,open,D) :- door(D), possess(S,V), socialVoucher(V,G),  

localSphereID(G), numChildren(N), N>5,  

runApp(S,prohibit,'panoply.apps.smartparty.SmartPartyUserDevic

eApplication') 

These policies enforce the constraint that only a guest device with a valid social 

voucher will be allowed to control the door as long as there are five or fewer guests 

currently associated with the party. If there are more guests, additional guests will be 

allowed to control the door as long as they are willing to refrain from running the 

SmartPartyUserDeviceApplication application, thereby allowing them to join the party 

but not participate in suggesting and offering songs. The guest device enforces this 

prohibition through the following low-level policy in its database: 

runApp(S, prohibit, 

'panoply.apps.smartparty.SmartPartyUserDeviceApplication'):- 

obey(S,runApp), assert(runApp(prohibit,App)),  

assert(prohibitedSoUT(L,'MediaSearch')),  

assert(prohibitedSoUT(L,'MediaSuggestion')). 

This ensures that MediaSearch and MediaSuggestion events will be blocked, 

thereby rendering the SmartPartyUserDeviceApplication ineffective. 

The party sphere on the other hand asserts the following in its policy database: 

condition(guestDeviceSphere,T,ST,UT) :- 

UT='DoorControl', T='APPLICATION'. 
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Here, guestDeviceSphere is the sphere name of the particular guest device that has 

been granted permission to control the door. Whenever a door control event originating 

from that device is received by the DoorController application run by the party sphere, it 

is allowed to pass because the query condition(S,T,ST,UT) evaluates to true when S= 

guestDeviceSphere, T='APPLICATION', and UT='DoorControl'. Thus the guest 

device is authorized to control the door. 

Using the rules stated below, the party sphere can enforce the following policy on 

the door: “the door must not be open for longer than ‘t’ seconds”. 

% Policy governing duration of door opening 

maxOpenDuration(door3564,'5'). 

openDuration(D,T) :- 

 maxOpenDuration(D,T). 

% Policy that triggers event for closing of the door 

update :- 

 ((openDuration(X,T), door(X), openD(X), not(doorOpen(X))) ->  

 (assert(doorOpen(X)), retract(openD(X)), 

 send_event('APPLICATION','STOP','DoorControl',T))). 

These policies have the effect of setting the maximum permissible open time for 

the door to be five seconds. When a door is opened, the predicate openD(door3564) is 

asserted in the database, and the resulting event-action policy indicated above evaluates 

the send_event predicate with the argument five. Consequently, the low-level policy 

below is evaluated; this rule calls a helper function that schedules a door closing event to 

be sent to the DoorController application after five seconds. 
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send_event(EventType,EventSubType,UserType,Time) :- 

string_concat(EventType,':',S1), 

string_concat(S1,EventSubType,S2), 

string_concat(S2,':',S3), 

string_concat(S3,UserType,S), string_to_atom(S,E), 

jpl_call('panoply.policy.Helper','execAction',['Event',E,Time]

,true). 

Once the guest device has associated with the party, it obtains a localization map 

from the party sphere. Using this map, it can localize to one of the designated rooms 

within the party (in our implementation, we have three cubicles within our office that our 

localization map can distinguish). Each room has its own sphere associated with it, and 

the guest device negotiates with a location sphere in order to be able to join it, and 

suggest and share music files. The negotiation is initiated by the guest device requesting 

membership, and the location sphere asks for a valid social voucher in return. The guest 

device produces the voucher and completes the join successfully. The membership 

policies could also be framed in such a way that no guests are allowed to associate if the 

room size exceeds a certain capacity. 

In our default implementation, the voucher carried by the guest device lets it 

know that it must start the SmartPartyUserDeviceApplication (SPUDA) application in 

order to be able to suggest and share music. This can alternatively be done as part of the 

negotiation process. In return for membership privileges, the party environment can 

oblige the guest device to run the SPUDA application using an action predicate (in the 

same way a location sphere was able to oblige a change of persona on the character’s 
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device in the Interactive Narrative scenario). The counter-request therefore contains both 

a request for production of a voucher (a possession predicate) and a request to run the 

SPUDA (an action predicate). The guest device’s policy allows release of the voucher to 

anyone who asks for it, and has an obey policy that authorizes it to obey any action 

request to run a Smart Party application. The negotiation therefore could complete 

successfully with the guest device starting the SPUDA. 

 

Figure 18. Smart Party GUI: Enables Manual Playlist Control 

During the party, each guest device can run a GuestPreferencesGUI application, 

an instance of which is indicated in Figure 18 above. It allows one to control the music 

playlist within a room (moving the playlist marker forward or back). When a guest tries 

to manipulate the playlist, the events are filtered through the policy engine, which checks 

to see if the manipulator possesses a valid voucher indicating ‘host’ privileges (indicated 

as a predicate within the voucher). If the query fails, a negotiation could result, and if the 
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guest device does possess a valid voucher indicating host privileges, the playlist 

manipulation events are permitted to go through. 

 

7.2. A Conference Room Environment 

We describe here how a negotiation along the lines of the conference room scenario can 

be performed using our framework. The device owned by the conference attendee and the 

conference environment are both modeled as Panoply spheres, and both run on separate 

computers. Our setup is not a real conference room, but it accurately simulates the set of 

devices and resources that comprise the scenario. 

In the experimental scenario, a user carries a laptop (an IBM Thinkpad T42 

running Linux) into our lab (which emulates the conference room). The lab is represented 

by a sphere hosted by a desktop computer (specs) running Linux. The appropriate 

wireless network-sphere/IP address association is made in a voucher stored in the laptop. 

This enables the laptop to discover the sphere and initiate a join; a negotiation ensues. 

The initial goals of the attendee device (the laptop) are to obtain membership, 

access to a printer, and access to a display device. The following message is created and 

sent to the conference room computer, thereby initiating negotiation. 

REQUEST<member, (possess(P),printer(P)), (possess(D),disp(D),ipAddress(D)> 

The latter has the following policies governing membership. 

member(X) :- 

 possess(X,V), credential(V), sound(X,prohibit,1700,1800). 

member(X) :- 

 possess(X,V), credential(V), sound(X,prohibit,T1,T2), 
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 acceptable(sound(X,prohibit,1700,1800), 

sound(X,prohibit,T1,T2)). 

credential(V) :- socialVoucher(V,'UCLA','UCLA'). 

credential(V) :- socialVoucher(V,'ACM','ACM'). 

These policies mandate the following: membership can be granted to anyone who 

possesses a valid ACM or UCLA credential (which is a social voucher in our 

implementation) and which is willing to shut off sound between 1700 and 1800 hours. 

The policies governing access to the printer and display device are as follows. 

possess(hp4150). 

printer(hp4150). 

possess('PROJECTOR'). 

disp('PROJECTOR'). 

ipAddress('PROJECTOR','131.179.192.200'). 

access(S,P) :- candidateSphere(S), printer(P). 

access(S,D) :- 

candidateSphere(S), disp(D), conferenceOfficial(S). 

global(conferenceCertification). 

conferenceOfficial(S) :- possess(S,V), 

socialVoucher(V,'ACM_Officials','ACM_Officials'), 

 conferenceCertification(V,'ACM_Conference'). 

These policies mandate that access to a printer can be granted to any device that is 

currently a candidate for membership, whereas access to a display device can be granted 

to any conference official (someone in possession of a valid social voucher). 

The conference room sphere therefore responds with a counter request message 

that contains the following: 



 172

 ACM-certified social voucher (<possess(V), socialVoucher(V,'ACM','ACM')>). 

(There are two alternatives: an ACM certified voucher and a UCLA-certified 

voucher; the selection process depends on internal SWI-Prolog algorithms; in this 

description, we assume that the ACM voucher is requested first.) 

 A voucher that certifies one to be an ACM official. 

 A prohibition on sound from 1700 to 1800 hours (<sound(prohibit,1700,1800)>.) 

The message contents are given below. 

 REQUEST<possess(V),socialVoucher(V,'ACM','ACM');  

       possess(V),socialVoucher(V,'ACM_Officials','ACM_Officials');  

      sound(prohibit,1700,1800)> 

The attendee device sphere does not possess either of the two kinds of vouchers 

that have been requested. It also has the following policies governing when it can play or 

turn off sounds. 

sound(play,1201,1720). 

sound(prohibit,X,Y) :- 

 (sound(play,A,B), ((nonvar(X),nonvar(Y)) -> 

((X<A,Y<A);(X>B,Y>B)))). 

sound(prohibit,0,1200). 

sound(prohibit,1721,2400). 

sound(S,prohibit,X,Y) :- sound(prohibit,X,Y), obey(S,sound). 

obey(S,sound) :- candidateInSphere(S). 

Some of these policies involve low-level SWI-Prolog predicates, as we can see 

above. These policies indicate that the attendee device sphere needs sound to be turned 

on between 1200 and 1720 hours, and can be turned off at all other times. It is also 
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willing to obey prohibitions on playing sounds if asked by anyone it is currently in 

negotiation with for membership (as indicated by the candidateInSphere predicate). 

These sets of policies are incompatible with the sound prohibition request received (from 

1700 to 1800 hours). Therefore, the following alternative offers are generated. 

 Agree to turn off sounds between 0 and 1200 hours 

 Agree to turn off sounds between 1721 and 2400 hours 

Either may be offered as a first alternative, depending on SWI-Prolog internals. In 

this description, we will allow the first one to be offered. The resulting offer message 

therefore contains two entries: 1) decline the two ACM voucher requests, and 2) offer to 

turn off sound between 0 and 1200 hours. 

 OFFER<negative; negative; sound(prohibit,0,1200)> 

The conference room sphere checks to see if the offer regarding sound prohibition 

is acceptable. It does that by evaluating the following policies. 

overlap(T1,T2,T3,T4,O) :- 

 not(T4<T1),not(T2<T3), 

 (((T4<T2,T3>T1) -> O=T4-T3); 

 ((T4>T2,T3>T1) -> O=T2-T3); 

 ((T4<T2,T3<T1) -> O=T4-T1); 

 ((T4>T2,T3<T1) -> O=T2-T1)). 

acceptable(P1,P2) :- 

 P1=sound(S,prohibit,T1,T2), 

 P2=sound(S,prohibit,T3,T4), overlap(T1,T2,T3,T4,O),O>30. 

member(X) :- 

 possess(X,V), credential(V), sound(X,prohibit,T1,T2), 
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acceptable(sound(X,prohibit,1700,1800), 

sound(X,prohibit,T1,T2)). 

These policies indicate that an overlap of 30 minutes or greater with mandates on 

sound prohibition between 1700 to 1800 hours would be acceptable, and would be 

sufficient to grant membership. The given offer (prohibition between 0 and 1200 hours) 

does not satisfy this requirement, and is therefore rejected. In response, the attendee 

sphere tries the other alternative offer (prohibition on sound between 1720 and 2400 

hours). This offer satisfies the conference room's policies and is accepted. 

 OFFER<REJECT> 

 OFFER<sound(prohibit,1720,2400)> 

Now the conference room sphere attempts the other counter-request—a UCLA-

certified social voucher. 

 REQUEST<possess(V), socialVoucher(V,'UCLA','UCLA')> 

The attendee sphere does possess one, but its access policy for the voucher is the 

following. 

access(S,U) :- 

socialVoucher(U,G,G), candidateInSphere(S), possess(S,V), 

socialVoucher(V,‘NSF’,‘NSF’). 

This generates a counter-request to the conference room sphere for an NSF-

certified voucher. 

 REQUEST<possess(U),socialVoucher(U,‘NSF’,‘NSF’)> 

The latter produces such a voucher in an affirmative offer, and the former then 

replies with an affirmative offer containing its UCLA-certified voucher. 
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 OFFER<U=‘voucher_Object’> 

 OFFER<V=‘voucher_Object’> 

Request rollbacks occur, resulting in the attendee sphere getting membership and 

access to a printer. It is denied access to the display device as it cannot produce a voucher 

certifying it to be an ACM official. It is also offered a journal subscription in the form of 

a voucher, which the conference room is mandated to offer to a new member because it 

has the following update policy: 

update :- 

 ((negotiator(Th,S), member(S)) -> 

 ((socialVoucher(SV,G), (SV='ACM_Journal_Subscription'), 

(G='ACM_Journal'), 

(not(possess(S,SV))), 

 not(offer((possess(V),socialVoucher(V,VG)), 

(V='ACM_Journal_Subscription', VG='ACM_Journal')))) -> 

 (assert(offer((possess(V),socialVoucher(V,VG)), 

(V='ACM_Journal_Subscription', VG='ACM_Journal')))))). 

The negotiation steps are given below. 

 OFFER<affirmative; P=’hp4150’; negative;  

((possess(V),socialVoucher(V,VG)),(V='ACM_Journal_Subscription', 

VG='ACM_Journal'))> 

 TERMINATE 

Helper functions are involved in various ways during this negotiation. Whenever 

a voucher is received in an offer, it is verified for cryptographic integrity using a helper 

function. Upon conclusion of the negotiation, a helper function schedules an event to 
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mute sound at 1721 hours and another event to un-mute it at 2400 hours (we used the 

amixer command offer by Linux for this purpose). Helper functions were also used to 

turn on firewall rules allowing access to the display device and printers for this particular 

attendee device. 

We did not use a real projector display but simulated one through stub helper 

functions. Given a real projector display, these stub functions can be replaced with real 

mechanisms. These mechanisms are orthogonal to the negotiation protocol itself, so they 

do not detract from the veracity of the latter. 

 

7.3. Peer-to-Peer File Sharing 

We designed and implemented a simple peer-to-peer application that can be configured 

and run in a customizable manner, and that illustrates both the negotiation and event 

filtering aspects of the policy manager. This application was built using the Panoply 

application API and is called the P2PClient. Many of its key features were incorporated 

from the Smart Party application described earlier in this chapter, and which was built to 

demonstrate the benefits of Panoply. A sphere must run the P2PClient and the 

SmartPartyUserDeviceApplication (SPUDA) applications in order to share files. The 

P2PClient application searches for files specified by a user by sending search events and 

selecting suitable spheres from which to download files. The pattern can be exact or 

partial; if the latter, all matching files are displayed and the user can select the one to 

download. The SPUDA application acts as a file server, responding to media search and 

delivery requests, whereas the P2PClient application receives the corresponding 
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responses. The P2PClient application also keeps track of the status of files that have been 

partially downloaded. If sessions are interrupted, they may be resumed at a later time 

without requiring a full re-download. Also, if the needed file is obtainable from multiple 

sources, pieces of the file can be obtained from each source, resulting in saved bandwidth 

at the sources. A snapshot of the P2PClient GUI is illustrated in Figure 19. 

 

 

Figure 19. Snapshot of the P2PClient Application GUI 

The peer-to-peer client application is useful in itself as a demonstration of the 

benefits of the Panoply middleware, but it also serves to demonstrate certain aspects of 

policy management as described in the example scenario in Chapter 1. 

The scenario consists of a guest bringing a device into an environment that offers 

connectivity. We emulate this in a similar way to our other applications by having a lab 

member bring his personal device sphere (hosted on an IBM Thinkpad T42 laptop or a 
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Sony Vaio MicroPC) into the lab and attempting to join the lab sphere as a way of 

obtaining connectivity and being able to run the P2PClient application. 

We discuss below three negotiation cases involving the peer-to-peer application. 

In the first case, the application is prevented from running as a condition of joining the 

lab sphere. In the second case, the guest device is allowed to run the application but with 

limited privileges agreed upon through negotiation. The third case illustrates the 

negotiation for a quantitative resource, where the parties settle on an ideal level that is 

dependent on the degree to which the guest device is willing to comply with the lab 

sphere's policies. 

 

First case: The lab sphere has a policy of not letting anyone run a network application 

while they are members, as indicated below. 

member(X) :- runApp(X,prohibit,App), networkApp(App,[]). 

global(runApp). 

global(networkApp). 

Therefore, when the guest device initiates negotiation by asking for membership, 

it is presented with a counter-request asking it to prohibit the running of network 

applications, which includes the P2PClient application. The counter-request contains the 

following entry: <runApp(prohibit,App), networkApp(App)> (the predicate 

networkApp is part of the global vocabulary). In order to be a member, the guest device 

agrees, sending back an affirmative offer, based on its policies (which are listed below). 

obey(S,runApp) :- candidateInSphere(S). 

networkApp('panoply.apps.p2pfilesharing.P2PClient',[]). 
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The first policy rule (with obey(S,runApp) at its head) indicates that the guest 

sphere is willing to agree not to run applications in exchange for membership. The 

negotiation steps are as follows. 

REQUEST<member> 

 REQUEST< runApp(prohibit,App), networkApp(App)> 

 OFFER<affirmative> 

 TERMINATE 

The guest sphere now enforces this prohibition using the following policy. 

runApp(S,prohibit,App) :- 

 networkApp(App,[]), obey(S,runApp), 

 assert(runApp(prohibit,App)), 

 assert(prohibitedSoUT(L,'MediaSearch'), 

 assert(prohibitedSoUT(L,'MediaDelivery')). 

The above low-level policy when evaluated changes the policy database in such a 

way that MediaSearch and MediaDelivery events are prohibited from reaching 

applications. Whenever such events reach the guest sphere, the policy filter check will 

result in them being dropped. (Note: Both the lab and the guest sphere recognize that the 

MediaSearch and MediaDelivery events are necessary for the peer-to-peer application to 

work.) Also, the guest device is not permitted to start the P2PClient application (which is 

asserted as a network application through the statement: networkApp('P2PClient',[])) 

because of the following low-level update policy. 

update :- 

 ((parentSphere(S), networkApp(App,P), 

 not(runApp(prohibit,App)), not(running(App))) -> 
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 ((((is_list(P),length(P,L),L>0) -> 

 (jpl_datums_to_array(P,Parr0), 

 jpl_datums_to_array([Parr0],Parr), 

jpl_call('panoply.utils.ApplicationLoader','launchApplication'

,[App,Parr],Res))) ; 

 ((is_list(P),length(P,L),L=0) -> 

jpl_call('panoply.utils.ApplicationLoader','launchApplication'

,[App],Res))), 

 assert(running(App)))). 

The above policy is supposed to trigger the start of network applications 

whenever a sphere has been joined (thereby obtaining connectivity). But it results in the 

start of only those applications that are not prohibited (which can be checked by 

evaluating the runApp(prohibit,App) predicate). In our scenario, since the guest device 

agreed not to start this application as part of the negotiation, it will not start the 

P2PClient application after joining the sphere. 

This of course does not prevent the guest device from cheating; for example, 

manually launching a P2PClient application irrespective of the negotiated agreement. 

The lab sphere can perform limited intrusion detection. In the same way as events are 

filtered through the policy engine before reaching an application, events of interest 

(MediaSearch and MediaDelivery events) that are routed to the guest sphere through the 

lab sphere can be filtered at the latter and dropped. Such a filter is not currently in place, 

but could be added with minimum effort, and would be guaranteed to work in the same 

way as event filters for applications work (for which ample evidence has been presented 

in this chapter). 
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Second case: The lab sphere has the following policies governing membership. 

member(X) :- runApp(X,prohibit,App), networkApp(App,[]). 

member(X) :- 

prohibitCommunicationWith(X,App,Sphere), 

networkApp(App,[]), blacklistedSphere(Sphere). 

blacklistedSphere(sphere_A). 

blacklistedSphere(sphere_B). 

global(runApp). 

global(networkApp). 

global(prohibitCommunication). 

These policies have the effect of either prohibiting members from running a 

network application (which includes the P2PClient application) or permitting members to 

do so while preventing them from communicating with certain blacklisted spheres. 

Blacklists for commonly used peer-to-peer systems consist of websites and IP addresses, 

which are the basic communication units. Since spheres are the basic communication 

units in Panoply, and our P2PClient application communicates on the basis of sphere 

events, our blacklists consist of sphere IDs. 

When the lab sphere receives a membership request, it computes two alternative 

counter-requests: <runApp(prohibit,App), networkApp(App,[])> and 

<prohibitCommunicationWith(App,[sphere_A,sphere_B]),networkApp(App,[])>. 

The selection in this case is non-deterministic. In this scenario, the guest device sphere 

does not have a policy rule of the form obey(S,runApp) (absence implies negation in 

Prolog) but does have the following rule: 

obey(S,prohibitCommunication) :- candidateInSphere(S). 
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Therefore, if the request runApp is attempted first, the guest device replies with a 

declination offer. When the request prohibitCommunicationWith is attempted, an 

acceptance offer is sent back. Also, the guest device updates its policy database through 

the following policy rules that prevent MediaSearch and MediaDelivery events destined 

for the P2PClient from crossing the policy engine filter. 

prohibitCommunicationWith(S,App,SIDS) :- 

 SIDS=[SID|RSIDS], RSIDS=[], prohibitCommunication(S,App,SID). 

prohibitCommunicationWith(S,App,SIDS) :- 

 SIDS = [SID|RSIDS], not(RSIDS=[]), 

prohibitCommunication(S,App,SID), 

prohibitCommunicationWith(S,App,RSIDS). 

prohibitCommunication(S,App,SID) :- 

 networkApp(App,[]), 

 obey(S,prohibitCommunication), 

 assert(prohibitedSoUT(SID,'MediaSearch')), 

 assert(prohibitedSoUT(SID,'MediaDelivery')). 

Thus the lab sphere is able to enforce its blacklist policy on members that run the 

peer-to-peer file sharing application. The negotiation steps are listed below. 

REQUEST<member> 

 REQUEST< runApp(prohibit,App), networkApp(App)> 

 OFFER<negative> 

 REQUEST<prohibitCommunicationWith(App,[sphere_A,sphere_B]),  

 networkApp(App,[])> 

 OFFER<affirmative> 

 TERMINATE  
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Third case: The guest device in this case initiates the negotiation by asking for 

membership as well as for a desired quantity of disk space. The following policies trigger 

such a request. 

update:- 

 (candidateInSphere(S) -> 

 (not(localRequest(needForResources,r))  -> 

 assert(localRequest(needForResources,r)))). 

maxDiskSpaceNeeded(16000). 

minDiskSpaceNeeded(6000). 

diskSpaceDecrement(2000). 

ints(K,Max,Min) :- 

 Max>Min -> (K=Max). 

ints(K,Max,Min) :- 

 diskSpaceDecrement(Dec), Max>Min -> 

 (Max1 is Max-Dec,ints(K,Max1,Min)). 

ints(K,Max,Min) :- Max=Min -> (K=Max). 

ints(K,Max,Min) :- Max<Min -> (K=Max). 

needForResources(S) :- 

 possess(S,diskSpace,D,Path), 

 maxDiskSpaceNeeded(MAX), minDiskSpaceNeeded(MIN),  

 diskSpaceDecrement(DEC), ints(D,MAX,MIN). 

These policy rules have the effect of setting the maximum desired disk space to be 

16000 KB and the minimum to be 6000 KB. Also, the diskSpaceDecrement predicate 

dictates a constant concession of 2000 KB if the currently desired level cannot be 

obtained through negotiation. The counter-request generation algorithm computes the 
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possible alternative requests for disk space as the following: 

<possess(diskSpace,16000,Path)>, <possess(diskSpace,14000,Path)>, 

................, <possess(diskSpace,6000,Path)>. These different alternatives are ordered 

according to the following policy rule: 

preferable(P1,P2) :- P1=possess(diskSpace,D1,Path), 

 P2=possess(diskSpace,D2,Path), D1 >= D2. 

The preferable predicate is evaluated at the time of selecting an alternative to 

send as a request; the first one selected is <possess(diskSpace,16000,Path)>. The 

Path variable is meant to return a link to the relevant filesystem where a certain amount 

of disk space has been allocated. 

The lab sphere has the following low-level policies governing where disk space is 

available and how much of it is available. 

allocatableFreeDiskSpace(FS) :- 

 freeDiskSpace(FDS), allocatedDiskSpace(ADS), FS is FDS-ADS. 

sumList(L,0) :- length(L,0). 

sumList(L,S) :- length(L,1),L=[S|L1]. 

sumList(L,S) :- length(L,K), K>1, L=[F|L1], sumList(L1,S2), 

 S is F+S2. 

allocatedDiskSpace(FS) :- 

 findall(D,(sphere(S), 

 possess(S,diskSpace,D,'131.179.192.222:/mnt/tmp/')),LS), 

 sumList(LS,FS). 

freeDiskSpace(FS) :- 

 action(run,'df /dev/hda5 | grep hda5',Result), 

 string_to_atom(Result,Res), kthToken(Res,T,3), 
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 atom_to_num(T,FS). 

possess(diskSpace,S,'131.179.192.222:/mnt/tmp/') :- 

 freeDiskSpace(F), allocatedDiskSpace(A), 

 ((var(S) -> S is F-A); ((integer(S);float(S)) -> S =< F-A)). 

The policies that govern access to the disk space are given below. 

access(S,diskSpace,X,'131.179.192.222:/mnt/tmp/') :- 

 possess(diskSpace,D,'131.179.192.222:/mnt/tmp/'), 

 minDiskSpaceGrant(G), G =< D, X =< G. 

access(S,diskSpace,X,'131.179.192.222:/mnt/tmp/') :- 

 possess(diskSpace,D,'131.179.192.222:/mnt/tmp/'), 

maxDiskSpaceGrant(G), minDiskSpaceGrant(H), 

G =< D, X > H, X =< G, 

 runApp(X,prohibit,App), networkApp(App,[]). 

minDiskSpaceGrant(9000). 

maxDiskSpaceGrant(11000). 

Theoretically, the maximum amount of disk space that the lab sphere is willing to 

grant anyone is 11000 KB. It will freely grant requests of 9000 KB or less to anyone 

without imposing any conditions. In practice, these numbers may be adjusted based on 

the amount of disk space currently used up or allocated. The above policies result in the 

lab sphere denying requests for disk space above 11000 KB. A request lying between 

9000 KB and 11000 KB will result in a counter-request to prevent the running of a 

network application, including the P2PClient. 

Let us consider the case where the guest device has a policy rule which states that 

it is willing to prevent network applications from running if requested. 

obey(S,runApp) :- candidateInSphere(S). 
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networkApp('panoply.apps.p2pfilesharing.P2PClient',[]). 

runApp(S,prohibit,App) :- 

 networkApp(App,[]), obey(S,runApp), 

 assert(runApp(prohibit,App)), 

 assert(prohibitedSoUT(L,'MediaSearch')), 

 assert(prohibitedSoUT(L,'MediaDelivery')). 

The negotiation starts by the guest device requesting 16000 KB; in response to 

this, it receives a declination offer. It then asks for 14000 KB and 12000 KB respectively; 

both requests are denied. Then it asks for 10000 KB, which lies below the maximum 

limit of the lab sphere but above its minimum limit. The lab sphere then responds with a 

counter-request asking the guest device to prohibit the running of network applications. 

The guest device can comply with this request, and sends back an affirmative offer. The 

request for 10000 KB is therefore granted and the negotiation terminates. 

If the guest device does not have a policy dictating that it can stop network 

applications when requested, it will deny the lab sphere's following request: 

<runApp(prohibit,App),networkApp(App,[])>. The lab sphere, in turn, denies the 

request for 10000 KB of disk space. Now the guest sphere attempts another request, for 

8000 KB. As this is less than 9000 KB, the lab sphere freely grants the request and the 

negotiation terminates. The negotiation steps are listed below. 

REQUEST< possess(diskSpace,16000,Path)> 

 OFFER<negative> 

 REQUEST< possess(diskSpace,14000,Path)> 

 OFFER<negative> 

 REQUEST< possess(diskSpace,12000,Path)> 
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 OFFER<negative> 

 REQUEST< possess(diskSpace,10000,Path)> 

 REQUEST<runApp(prohibit,App),networkApp(App,[])> 

If the guest device is willing to agree not to run a network application, the 

remaining steps are as follows. 

 OFFER<affirmative> 

 OFFER<Path='131.179.192.222:/mnt/tmp/'> 

 TERMINATE 

If the guest device is not willing to agree to prohibit the running of network 

applications, the remaining steps are as follows. 

 OFFER<negative> 

 OFFER<negative> 

 REQUEST< possess(diskSpace,8000,Path)> 

 OFFER<Path='131.179.192.222:/mnt/tmp/'> 

 TERMINATE 

After an offer of disk space is granted, the lab sphere uses helper functions to set 

quotas on the amount of space that the recipient sphere can access. On Linux and Unix 

systems, this is done using the quota command. 

 

7.4. Network Access Control Based on the QED Model 

We outlined a scenario in Chapter 1 where maintaining a secure perimeter around a 

network of IEEE panel attendees requires either manual reconfiguration of attendees' 

computers or intrusive and inflexible automated patching mechanisms. Panoply 
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researchers originally designed and implemented an automated framework for this 

purpose called QED (Quarantine, Examination and Decontamination) [Eustice2003b], 

through which incoming devices can be isolated from the network temporarily, examined 

for vulnerabilities, and patched if necessary. Here, we demonstrate how our negotiation 

protocol can provide a functionality that is identical to that which QED provides, and 

which enables more flexible security perimeters from both the network's and the client's 

point of view. 

In our scenario, the IEEE network was emulated by our laboratory's wireless 

network, and a lab member's IBM Thinkpad T42 laptop was treated as an attendee's 

device. The laptop communicated with the laboratory sphere, which ran on the wireless 

network's gateway. The scenario starts with the laptop discovering and joining the lab 

sphere, and initiating the negotiation process by requesting membership. The lab sphere's 

membership policies are given below: 

(I)  member(X) :- 

action(X,order,run,C,ubuntu),checkDistribution(C),file(C,'.'). 

(II) member(X) :- 

action(X,order,run,C,redhat), checkDistribution(C), 

file(C,'.'), 

action(X,order,run,'uname -a | cut -f 3 -d \' \' | cut -f 

1,2,3 -d \'.\'','2.6.20'). 

(III) member(X) :- 

action(X,order,run,C,redhat), checkDistribution(C), 

file(C,'.'), 
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action(X,order,run,'uname -a | cut -f 3 -d \' \' | cut -f 

1,2,3 -d \'.\'',V), not(V='2.6.20'),  

action(X,order,run,PF,Result), patchFile(PF), file(PF,'.'), 

Result='SUCCESS'. 

file(check_os_distro,'.'). 

checkDistribution(check_os_distro). 

file(patch_redhat_oldver,'.'). 

patchFile(patch_redhat_oldver). 

These policies indicate that the network is willing to provide free membership to a 

computer that is running Ubuntu Linux (rule I). The constraints for a computer that runs 

RedHat Linux are greater. However, acomputer running RedHat may get free access if its 

kernel version is 2.6.20 (rule II), presumably the most up-to-date version; otherwise it 

must run patch software (rule III). These are extracted as different alternative sets by the 

counter-request generation method. The attendee's laptop is sent a counter-request 

containing any of these alternative sets. If it is running Ubuntu, it will eventually receive 

the appropriate alternative request, and send back an affirmative reply stating that it is 

running Ubuntu. In return, it will be granted membership rights and the negotiation will 

terminate. The negotiation steps for this scenario are given below. 

REQUEST<member> 

 REQUEST< action(run,C,ubuntu),file(C,'.')> 

 OFFER<affirmative> 

 TERMINATION 

Likewise if it is running RedHat and the 2.6.20 kernel, it will eventually send 

back an affirmative reply. The steps for such a negotiation are given below. 
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REQUEST<member> 

 REQUEST< action(run,C,ubuntu),file(C,'.') {C=’check_os_distro’}> 

 OFFER<negative> 

 REQUEST< action(run,C,redhat),file(C,'.') {C=’check_os_distro’}; 

  action(run,’uname -a | cut -f 3 -d \' \' | cut -f 1,2,3 -d \'.\'','2.6.20')> 

 OFFER<affirmative; affirmative> 

 TERMINATION 

Helper functions are used to attach the file ‘check_os_distro’ to the REQUEST 

messages above. Counterpart helper functions are used to extract and save the files to the 

local filesystem at the destination. 

The low-level action policies that are used to run code are given below. 

action(run,Prog) :- shell(Prog,0). 

action(run,Prog) :- 

 file(Prog,Dir),atom_concat(Dir,'/',COM1), 

atom_concat(COM1,Prog,COM),shell(COM,0). 

action(run,Prog,Result) :- 

jpl_call('panoply.policy.Helper','generateTemporaryFileName',[

],TF), 

atom_concat(Prog,' 1> ',C1), atom_concat(C1,TF,C), shell(C), 

open(TF,read,Stream), 

(readFile(Stream,Result1) -> 

(close(Stream), delete_file(TF))), string_length(Result1,L), 

 ((L>0 ->  (L1 is L-1, sub_string(Result1,0,L1,1,Result))) ; 

  (L==0 -> (Result=''))). 

 



 191

action(run,Prog,Result) :- 

 file(Prog,Dir), atom_concat(Dir,'/',Prog1), 

atom_concat(Prog1,Prog,Prog2), 

jpl_call('panoply.policy.Helper','generateTemporaryFileName',[

],TF), 

atom_concat(Prog2,' 1> ',C1), atom_concat(C1,TF,C), shell(C), 

open(TF,read,Stream), 

 (readFile(Stream,Result1) -> 

(close(Stream), delete_file(TF))), string_length(Result1,L), 

 ((L>0 -> (L1 is L-1, sub_string(Result1,0,L1,1,Result))) ; 

 (L==0 -> (Result=''))). 

If the laptop is not running either Ubuntu or RedHat, its membership request is 

denied and the negotiation results in failure. 

In a variation, if the laptop is running RedHat and the 2.6.17 kernel, it is asked to 

run a patch file. This patch file is sent by the lab sphere along with the request (a helper 

function attaches the file object to the negotiation message). The file is extracted and 

saved by the laptop sphere (through another helper function). The steps for this part of the 

negotiation are given below. 

REQUEST<member> 

 REQUEST< action(run,C,ubuntu),file(C,'.') {C=’check_os_distro’}> 

 OFFER<negative> 

 REQUEST< action(run,C,redhat),file(C,'.') {C=’check_os_distro’}; 

  action(run,’uname -a | cut -f 3 -d \' \' | cut -f 1,2,3 -d \'.\'','2.6.20')> 

 OFFER<affirmative; negative> 
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 REQUEST< action(run,C,redhat),file(C,'.') {C=’check_os_distro’}; 

  action(run,’uname -a | cut -f 3 -d \' \' | cut -f 1,2,3 -d \'.\'',V); 

  action(run,PF,Result),file(PF,'.') {PF=’ patch_redhat_oldver’}> 

But the following policies govern how the laptop runs arbitrary binary code. 

obey(S,run,A,B) :- 

obey(S,run), file(A,D), executable(A), possess(S,V), 

socialVoucher(V,'UCLA','UCLA'), 

action(S,permission,runApp,App), networkApp(App,Params). 

obey(S,run,A,B) :- 

obey(S,run), file(A,D), not(executable(A)). 

obey(S,run,A,B) :- 

obey(S,run), not(file(A,D)). 

executable(A) :- 

file(A,D), atom_concat(D,'/',C), atom_concat(C,A,C1), 

atom_concat('file ',C1,C2), 

atom_concat(C2,' | grep executable 1>/dev/null',COM), 

action(run,COM). 

These policies are currently unsatisfied, resulting in a counter-request for a valid 

UCLA voucher and permission to run a network application (which is understood by 

both interacting domains). The lab sphere has policies allowing it to release its UCLA 

voucher to whoever asks for it, but it is not willing to permit the running of network 

applications unless the requester shuts down any service that is listening on port 25. The 

policies (both high- and low-level ones) are given below. 

access(S,V) :- socialVoucher(V,'UCLA'). 
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action(S,permission,runApp,App) :- 

networkApp(App,Params), closedPort(S,25). 

closedPort(S,Po) :- 

(negotiator(Thr,G) ; childSphere(G)), ipAddress(G,IP), 

atom_concat('nmap -sS ',IP,C0), 

atom_concat(C0,' -p ',CP), atom_concat(CP,Po,C1), 

atom_concat(C1,' | grep ',C2), 

atom_concat(C2,Po,C3), atom_concat(C3,'/tcp',C), 

action(run,C,Result), 

string_to_atom(Result,Res), kthToken(Res,'open',1), 

action(S,order,closePort,Po). 

 

closedPort(S,Po) :- 

(negotiator(Thr,G); childSphere(G)), ipAddress(G,IP), 

atom_concat('nmap -sS ',IP,C0), 

atom_concat(C0,' -p ',CP), atom_concat(CP,Po,C1), 

atom_concat(C1,' | grep ',C2), 

atom_concat(C2,Po,C3), atom_concat(C3,'/tcp',C), 

action(run,C,Result), 

string_to_atom(Result,Res), (kthToken(Res,'filtered',1) ; 

kthToken(Res,'closed',1)). 

The laptop is willing to shut down services on port 25, and does so through the 

following low-level policy. 

action(closePort,Po) :- atom_concat('iptables -A INPUT -j DROP -p 

tcp --dport ',Po,C1), atom_concat(C1,' -i lo',C), shell(C,0). 
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It sends back an affirmative reply. Rollback of requests occurs through multiple 

affirmative offers, resulting in the laptop gaining membership within the lab sphere. The 

steps of this portion of the negotiation are listed below. 

 REQUEST<possess(V),socialVoucher(V,’UCLA’,’UCLA’); 

  action(permission,runApp),networkApp(App,Params)> 

 REQUEST<action(closePort,25)> 

 OFFER<affirmative> 

 OFFER<V=’voucher_Object’; affirmative> 

 OFFER<affirmative; V=’2.6.17’; Result=’SUCCESS’> 

 OFFER<affirmative> 

 TERMINATE 

 

7.5. Opportunistic Configuration 

Successful interactions between domains (with or without negotiation) often combine 

transaction with configuration. In our framework, negotiations that result in affirmative 

offers are logically equivalent to transactions. But these transactions may be functionally 

incomplete unless the recipient has the ability to recognize, parse, or utilize the offer in a 

meaningful way. Often, supplementary objects or mechanisms that are not currently 

available to the recipient must be obtained from the provider for a successful transaction. 

Consider these examples. A negotiation results in one domain offering an image or audio 

file to the other. The file is encrypted using DRM technology, and the recipient may (if it 

has a prior relationship with the sender) or may not (if this is a new relationship) have the 

encryption key. In the latter situation, the received file is of no use if it cannot be read. In 
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keeping with the principles of our overall research objectives, the necessary keys should 

be transacted along with the primary requested file through negotiation. Similarly, a 

credential (a certificate or a voucher) can be verified using the owner's public key, and 

the recipient ought to be able to get that public key from the sender so that it can verify 

the integrity of the received credential. In a different scenario, a negotiation can lead to 

one domain offering access to a service, but without the ability to use that service through 

a suitable interface or proxy (typically a piece of code), the access rights are meaningless. 

The recipient may already possess the knowledge and a suitable interface; if it does not, it 

ought to be able to get that information (and code if necessary) through negotiation. 

The last example above is related to early research in open and ubiquitous 

computing, a significant portion of which was motivated by the need to discover local 

services and use them. JINI [Waldo1999] was one such framework that solved the 

problem by combining lookup directories with portable Java class files as service proxies. 

Our framework can provide an identical functionality through negotiation, given that the 

requester has suitable policies framed in its database. Though these frameworks provided 

protocols for configuration, we can specify arbitrary constraints in addition to the basic 

object of the transaction, creating more flexible and realistic scenarios. 

Below, we describe two examples of opportunistic configuration through 

negotiation. The examples we show are simple negotiations with no variations, and serve 

to demonstrate only the kinds of configurations discussed above. 
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7.5.1 Negotiation for Credential and Associated Key 

We have two spheres S1 and S2 negotiate with each other. S1 initiates the negotiation by 

requesting membership from S2. The latter has the following membership policies: 

(I)  member(S) :- possess(S,U), socialVoucher(U,G), 

negotiator(Thr,G), verifiable(X,U). 

(II) member(S) :- possess(S,U), socialVoucher(U,G), 

negotiator(Thr,G), verifiable(U). 

 verifiable(S,V) :- 

possess(S,K), voucherKey(V,K), publicKey(K,F,D). 

 verifiable(V) :- 

voucherKey(V,K), possess(K), publicKey(K,F,D). 

S2 sends back a counter-request for a social voucher, and S1 replies with an offer 

of a social voucher because its access policy is the following: 

access(S,U) :- socialVoucher(U,G), localSphereID(G). 

This policy allows a social voucher to be released to anyone who asks for one. S1, 

in turn, grants membership and the negotiation terminates. 

Variations in this scenario are dependent on S1's possession of S2's public key 

which is necessary to verify the integrity of the voucher received. If S1 already possesses 

the public key prior to receiving the membership request, membership policy II is 

evaluated, and a counter-request for a social voucher is sent to S2. S2 sends back the 

social voucher in response. The negotiation steps are listed below. 

REQUEST<member> 

 REQUEST< possess(S,U), socialVoucher(U,’ S2’)> 
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 OFFER<U=’voucher_Object’> 

 OFFER<affirmative> 

 TERMINATION 

If S1 does not possess the public key prior to the negotiation, its counter-request 

consists of both the voucher and its public key. The extra support predicates (voucherKey 

and publicKey) let S2 know that it must append its public key to the voucher in its reply. 

The steps are listed below. 

REQUEST<member> 

 REQUEST<possess(U),socialVoucher(U,'S2'),voucherKey(U,K),publicKey(K,F,D)> 

 OFFER<U=’voucher_Object’> 

 OFFER<affirmative> 

 TERMINATION 

The controller module within S2's policy manager invokes the appropriate helper 

function that retrieves the public key and attaches it to the extra field of the negotiation 

message. Correspondingly, S1's controller module invokes a dual helper function that 

extracts the key object, stores it, updates the policy database, and verifies the integrity of 

the voucher object. The helper functions consist of 10 to 15 lines of code that implement 

data extraction from files, serialization, and storage of the bytes into files. 

 

7.5.2 Negotiation for Service and Associated Access Mechanism 

We have two spheres S1 and S2 negotiate with each other. S1 has the following policies 

governing its resource needs, which currently include only printer access. 
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needForResources(S) :- 

 possess(S,U), printer(U), printerCommand(P,C). 

needForResources(S) :- possess(S,U), printer(U), 

 not(printerCommand(P,C)), printerCommand(P,C). 

S1 initiates negotiation by requesting access to a printer, and S2 replies with an 

affirmative offer promising access to a printer because its access policy is the following: 

access(S,P) :- printer(P). 

This policy allows granting printer access to anyone who asks for it. The 

following facts indicate the type of printer possessed by S2 and the command used to 

invoke the print service. 

possess('HP7100'). 

printer('HP7100'). 

printerCommand('HP7100', 'printCommand'). 

file('printCommand'). 

The negotiation terminates when S1 receives the offer. The printerCommand 

predicate indicates that the printer can be accessed by running the printCommand file. 

Variations in this scenario are dependent on S1's possession of a suitable piece of 

code that would enable it to actually use the printer. If S1 already possesses the 

appropriate piece of code, the predicate printerCommand(P,C) is satisfied, membership 

policy II is evaluated, and the corresponding counter-request consists of the following: 

<possess(U), printer(U)>. S2 sends back an affirmative offer in response, with the 

binding {U='HP7100'}. S1 can access the printer through the code it already possesses. 

The negotiation steps are listed below. 

REQUEST< possess(U), printer(U)> 
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 OFFER<U=’HP7100’> 

 TERMINATION 

If S2 does not possess the appropriate piece of code, its counter-request message 

consists of the following: <possess(U), printer(U), printerCommand(U,C)>. The 

extra support predicate printerCommand lets S2 know that it must append a piece of code 

or a command to its reply. The steps are listed below. 

REQUEST< possess(U), printer(U), printerCommand(U,C)> 

 OFFER< U=’HP7100’, C=’printCommand’> 

 TERMINATION 

The controller module within S2's policy manager invokes the appropriate helper 

function that retrieves the printCommand file and attaches it to the extra field of the 

negotiation message. Correspondingly, S1's controller module invokes a dual helper 

function that extracts the printCommand file, stores it, and updates the policy database. 

In our test implementation, we simply had the following command within the 

printCommand file: '/usr/bin/lpr -P ficus'. The following update policy enabled S1 to print 

a test page as soon as printer access was obtained. 

update :- ((printer(P),possess(P),not(printedTestPage(P))) -> 

 (action(print,TestPage),assert(printedTestPage(P)))). 

The following low-level policy results in the printing of the test page. 

action(print,F) :- file(F), printer(P), printerCommand(P,C), 

 atom_concat(C,' < ',C1), atom_concat(C1,F,COM), shell(COM,0). 
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Chapter 8 
 

Theoretical Analysis and Commentary 

 

Our negotiation framework has two aspects, or roles: 

1)  The negotiation protocol is a system/middleware mechanism for information and 

object exchange and agreement generation. 

2)  The negotiation model is a decentralized way of policy resolution, which manifests 

itself through the protocol. 

We cannot completely separate these two roles, but it is useful and illuminating to 

deal with these separately. We have already mentioned some of the systems properties of 

the negotiation protocol in Chapters 5 and 6. We will first expand on those properties 

here, and then discuss more theoretical formal properties of negotiation when visualized 

as a distributed search tree. 

 

8.1. System Analysis of the Negotiation Protocol 

From a system/network designer or administrator's point of view, certain properties of a 

protocol are of paramount importance. These properties impact practical considerations 

like robustness and efficiency. It would be desirable to have the protocol either anticipate 

or be tolerant to failures, and be self-correcting. Also, such faults should not disrupt the 

normal workings of other components of the framework which the protocol is part of. In 

Chapter 6, we described how our negotiation protocol is tolerant to failures and race 
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conditions. There, we dealt with the protocol itself as being one unit, or a black box. 

Here, we go into the internals of its workings, and prove its termination properties. We 

draw upon the operations described in the flowcharts in Figure 8a and b, as well as the 

steps outlined in the policy engine algorithms (see Section 5.3) to infer properties, and 

show why any instance of the protocol is guaranteed to terminate, given that certain 

conditions can be imposed on the policies within the database. In particular, any 

distributed system procedure, which is what the negotiation protocol is, is susceptible to 

deadlocks and livelocks, and theoretical guarantees for the absence of either are 

necessary for it to be usable in a real-world system. We must note that eventual 

termination is not the only consideration; if a negotiation instance takes many hours and a 

huge number of steps, manual intervention would be preferable. Also, eventual 

termination does not say anything about the quality and nature of the agreement reached. 

We analyze these properties, from both a theoretical point of view and through 

measurements, later in this chapter, and in the next chapter. 

 

Negotiation Protocol Termination 

Both the controller layer (which maintains request lists and formulates responses) and the 

policy engine layer (which runs counter-request and alternative-offer generation 

algorithms) run complex procedures, which were described in Chapter 5. We state certain 

properties of each of these procedures in the form of theorems, and provide an analytical 

proof for termination of the protocol irrespective of the policy contents, number of 
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negotiation steps, and the number of generated alternatives. These properties were 

mentioned in Chapter 5, but we state them here in a formal way. 

Policy Engine Features: 

Property 1: The policy database is of finite length; i.e., the number of statements (facts 

and rules/clauses) is bounded at any instant. 

Property 2: Each policy rule is of finite length; i.e., the number of predicates in the body 

of a clause is bounded. 

Property 3: There are no cycles in the policy database; i.e., predicates are not self-

referential either directly or through transitive links. 

Property 4: A policy rule is examined for the purpose of generating counter-requests no 

more than once during a negotiation session. 

 

Theorem 1: The counter-request generation procedure always terminates. 

Proof: 

The algorithm takes as argument a request predicate in the form of a string. 

I) At each level of recursion, only the relevant clauses are examined, which are 

those clauses whose heads match the argument string (predicate name and arity 

for both are identical). 

II) The number of relevant clauses is bounded by the number of clauses in the policy 

database, which is finite. 

III) The number of recursive calls that are made for each clause examined is bounded 

by the number of predicates in the body of the clause. Since each clause has finite 
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length, the number of recursive calls is bounded.  

IV) The total number of recursive calls made is bounded, since there are no policy 

cycles. 

V) Each clause, or predicate, or recursive call is made exactly once during a run of 

the algorithm. Since the total number of these operations is bounded, the 

procedure is guaranteed to terminate within a bounded amount of time. 

Analysis: 

Let the number of facts in the policy database be F and the number of rules be R, the 

maximum number of predicates in the body of any rule be S, and the maximum arity of 

any predicate be A. 

At each level of recursion, a set of matching clauses is extracted and examined. 

The number of matching clauses is bounded by R. For each such clause, the predicates 

that can be sent as counter-requests are extracted. This is bounded by S. A Prolog query is 

run over the body of each matching clause. This query processing time, denoted by QPT, 

can be roughly assumed to be constant for practical purposes; this is evident from the 

performance measurements in Section 9.1, where the processing time does not change 

with change in clause body size. The number of solutions is bounded by 2F, which is the 

total number of subsets of the set of facts in the database. For each such solution, the 

variables in the relevant clause body are substituted with the solution; time complexity 

for this substitution is O(AS). For each possible request predicate from this body, we test 

for satisfiability, which takes QPT (roughly constant) time. If unsatisfiable, the counter-

request generation algorithm is run on that predicate in a recursive manner. Let us 
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temporarily assume the running time for the recursive call to be REC. Extracting support 

predicates then takes O(AS) time. Therefore, the total running time complexity is 

O(R)*[O(S) + QPT + O(2F)*[O(AS) + O(S) [REC + O(AS)]]]. Since we have mandated 

that our policy database cannot have cycles, the maximum number of recursive calls (or 

the number of nodes in the recursion tree) is bounded by R+F. Therefore, we can 

eliminate the REC term from the above expression and instead multiply the entire term by 

R+F. We can eliminate the constant term QPT as well. Therefore, the running time of the 

entire procedure is O(R(R+F)(S + 2FS2A)) = O(R(R+F)2FS2A). 

 

Theorem 2: The alternative-offer generation procedure always terminates. 

Proof: 

The algorithm takes as argument a request predicate in the form of a string. 

I) First, the given argument predicate is made more general by replacing argument 

constants with variables. Since the arity of each predicate is bounded, this 

procedure is linear in the size of the predicate. 

II) Each clause whose head matches the request string is examined for a potential 

alternative offer. The number of such clauses is bounded by the number of policy 

rules in the database (Policy Engine: property 1). 

III) The body of each satisfiable clause is then examined in order to extract 

descriptive or support predicates. Each examination is bound by the size of that 

particular policy rule, which in turn is bounded (Policy Engine: property 2). 

IV) The set of obtained alternative offers are ranked in order of relevance (closest 
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match) to the original argument string. This procedure terminates in polynomial 

time in terms of the size (arity) of the request string and the size of the set (of 

alternative offers) generated. 

 

 

Analysis: 

Let the number of facts in the policy database be F and the number of rules be R, the 

maximum number of predicates in the body of any rule be S, and the maximum arity of 

any predicate be A. 

The first step in the above procedure runs in O(A) time. Selection of matching 

clauses takes O(R) time. For each clause, a Prolog query is run on the body. This query 

processing time, denoted by QPT, can be assumed to be constant (as we assumed in the 

counter-request generation procedure case). Support predicates are extracted in O(AS) 

time. Since the set of alternative offers obtained is bounded by R, the ranking algorithm 

runs in the time it takes to sort the set, or O(R * log R) time. Hence the entire procedure 

runs in O(R(AS + log R + QPT))  = O(R(AS + log R)) time. It would be extremely 

uncommon for predicate arities (A) to be larger than 3 or 4, which is effectively a 

constant. In most cases, S will also be relatively small compared to the number of rules. If 

the database is small, QPT is approximately constant. On the other hand, since query 

processing is exponential in complexity, it would dominate in medium- and large-size 

databases. Therefore, we can conclude that the run time complexity is O(R * log R) for 

small databases, and is O(R * QPT)) for large databases. 
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Controller Features: 

Property 1: A request is added to the MADE_REQUESTS list only if: 

 It is an initial request (goal). 

 It is a counter-request posed in response to a (currently unsatisfiable) request just 

received. 

 It is an alternative counter-request posed in response to a request received earlier. 

Property 2:  A request is added to the RECEIVED_REQUESTS list only if it is an entry 

in a REQUEST message just received. 

Property 3: A request is removed from the RECEIVED_REQUESTS list only if an 

OFFER message going to be sent contains a corresponding entry. 

Property 4: A request is removed from the MADE_REQUESTS list only if: 

 An affirmative reply is received through an OFFER message. 

 A negative reply is received through an OFFER message and there are no 

alternative counter-requests available to send. 

Property 5: An offer to a received request is sent only if: 

 That request is satisfiable. 

 No counter-requests can be posed in response to that request. 

 

Theorem 1: The number of requests made, starting from the original goals and including 

all counter-requests, is bounded by the total number of request predicates occurring in the 

bodies of all policy clauses within the local database. 

Proof: Follows from Policy-Engine properties 1, 2, 3, and 4. 
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Theorem 2: The MADE_REQUESTS list will become empty within a finite number of 

steps. 

Proof: 

I) The number of requests made during a negotiation session is finite (Controller: 

theorem 1). Let us denote this set by RMADE. 

II) The set of alternative counter-requests is a subset of RMADE, and hence is finite. 

III) The number of counter-requests available for a particular entry in 

MADE_REQUESTS is finite. 

IV) If that entry keeps receiving negative offers in reply, it will eventually be taken 

off the list. 

V) An affirmative offer will result in the entry being taken off immediately. 

VI) Every request must receive a reply. 

VII) Each entry in the MADE_REQUESTS list will be removed in a finite number of 

steps (IV, V, and Controller: property 4). 

VIII) The number of additions to the MADE_REQUESTS list is bounded (I), and each 

entry added will be removed; hence the list will eventually become empty. 

 

Theorem 3: The RECEIVED_REQUESTS list will become empty within a finite number 

of steps. 

Proof: 

I) There are a finite number of requests received during a negotiation session. 
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(Controller: theorem 2, tells us that the number of requests made will be finite, 

hence the number of requests received by the other side will be finite.) 

II) A request received will either be satisfiable, unsatisfiable, or engender counter-

requests. 

III) The size of the counter requests set is bounded (Policy Engine: properties 1, 2, 3, 

and 4). 

IV) An offer is always sent in response to a request received (II, III). 

V) The RECEIVED_REQUESTS list eventually becomes empty (I, IV). 

 

Theorem 4: The negotiation protocol is guaranteed to terminate in a finite number of 

steps. 

Proof: This follows from the above theorem. Referring to Figure 8b, a negotiator sends a 

TERMINATE message when its RECEIVED_REQUESTS list becomes empty. Since 

this list will become empty within a finite number of steps, the protocol will terminate 

within a finite number of steps. 

 

Deadlocks: The negotiation protocol does not suffer from deadlocks. 

A procedure is said to be deadlocked when it ends up in a state where all participants are 

waiting for an event to occur, but none of them is able to initiate an action that would 

advance the overall state. Referring to the high-level negotiation state machine (see 

Chapter 5, Figure 7), there are potentially four states in which a deadlock could occur: 

 Initiate: This state only checks whether or not there are needs that must be met 
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through negotiation. These needs are inferred by running a Prolog query, which 

terminates because the policy database is finite and does not contain cycles. 

 Service: The following operations are performed in this state: database queries (in 

Prolog) to verify satisfiability of received requests, counter-request generation, and 

alternative-offer generation. We have proved that these procedures terminate. Since a 

message is always sent in response to a request, this state does not deadlock. 

 Process: In this state, a received offer is checked for veracity, and one of the 

following is guaranteed to be returned: an OFFER REJECT, an alternative offer if 

available, alternative counter-requests if available, offers in reply to requests received 

(rollback). The default response, when no alternative offers or requests exist, is to 

consider requests in the RECEIVED_REQUESTS list to be unsatisfiable, and send 

back negative offers. If the RECEIVED_REQUESTS list is empty, a termination 

message is sent. A response is always sent; therefore, this state does not deadlock. 

 Expect: When a negotiator is in this state, it is waiting for a response from the other 

party. The dynamics of negotiation indicate that the other party must then be in the 

process or service state. As we have seen, those states do not deadlock. Hence, a 

response is always received, and the expect state never deadlocks. 

 

Livelocks: The negotiation protocol does not suffer from livelocks as long as the 

collective policies of the two parties contain no cycles. 

A procedure is said to be in a livelock if the state transitions are cyclical. This results in 

participants performing repetitive actions that do not lead to overall progress, or achieve a 
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useful result. Whereas a deadlock implies being stuck in one particular state, a livelock 

implies being stuck in a set of states. In practice, this is harder to avoid and detect than a 

deadlock, since there is apparent progress being made. 

Referring to the state machine, we can see that the only possibility of a livelock 

involves a cycle of expect and process/service states. Such a cycle could conceivably 

result only if the contents of the requests themselves form a cycle. In the simplest case: 

 Negotiator N1 sends a request R1 to negotiator N2 

 N2 replies with a counter request R2 

 N1 replies with a counter-request that is identical to R1 

Other livelock scenarios could be imagined that would have such a cycle 

interspersed with more requests and offers. Incidentally, this could cause the state to blow 

up at both ends, since duplicate requests keep getting added to the request lists. The core 

reason for the occurrence of such a livelock is a cycle in the combined database 

containing policy statements of both negotiators. 

There are two ways of handling a livelock situation. 

1) One way is to mandate that there be no policy cycles. On the relatively rare occasion 

where such a cycle exists, the protocol would fail to reach a result in the following 

way: the parties would have set limits on the amount of state they are willing to 

maintain, and once that limit is exceeded, they both declare failure by one negotiator 

sending a termination message to the other. 

2) The other way is by enforcing Policy Engine: property 4. Every individual policy rule 

has a unique identifier associated with it (in practice, SWI-Prolog provides this 
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feature). Each negotiator can then keep track of which policy rules have already been 

examined for counter-requests, and none is examined more than once. This has the 

advantage of avoiding the blowing up of state at both ends, though it would incur 

additional overhead in all scenarios where no livelock exists. The result would still be 

a negotiation failure, since the negotiators would eventually run out of policy 

statements to examine. 

We will discuss the correctness and completeness properties of a negotiation 

protocol with potential livelocks in the following theoretical analysis section. 

 

8.2. Theoretical Analysis of Negotiation 

Our system analysis of the negotiation protocol did not consider the logical aspects that 

are fundamental to the operations of the back-end policy engine. The facts and rules in 

the policy database have logical properties, and consequently, the algorithms for 

generation of counter-requests and alternative offers can be formally analyzed on a 

logical basis. The messages being communicated contain parts of policy rules; hence, the 

collective operations performed by two negotiating domains, starting with goal requests, 

have properties that can be evaluated against standard logical metrics. In the remainder of 

this section, we state what the important metrics are, and compare our negotiation 

procedure to them. 
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8.2.1 Policy Resolution 

As described through our negotiation model in Chapter 3, the purpose of interaction 

between two domains is the satisfaction (partial or full) of their goals within the bounds 

of their collective policy constraints. Through this process, the goals and policies of one 

domain are resolved against the other’s goals and policies. Resolution here refers to 

evaluation of logical consistency among the policies and requirements of the interacting 

domains. It is not to be confused with logical resolution, a standard theorem-proving 

technique in AI. In the ubiquitous interoperation context, policy resolution is a way of 

inferring whether or not a set of goals can be satisfied, and if so, how they can be 

satisfied. 

A goal can be resolved against a set of policies, and a policy rule can be resolved 

against a set of policies, by evaluating whether they are logically consistent, and if so, 

what is the set of ways in which they are logically consistent. Our policy language is 

Prolog-based, and the requests/goals of a negotiation are formatted as Prolog queries. As 

described in Chapter 5, the policy engine algorithms use the Prolog querying framework 

to infer whether requests are satisfiable, or whether counter-requests or alternative offers 

are available. Our counter-request generation algorithm is a process of extracting 

unsatisfied constraints and presenting them as requests to the negotiator. The negotiation 

protocol results in the execution of this algorithm multiple times in a sequence, and is 

equivalent (as we will see further below) to the backward-chaining algorithm used by 

Prolog (and by first-order logic theorem provers). 
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The backward chaining algorithm is used to find all possible solutions to a goal 

predicate consistent with a given database consisting of facts and rules. It generates a 

search tree, with each intermediate node representing a rule (a policy with constraints and 

dependencies) and each leaf representing a fact (a policy without constraints and 

dependencies). Paths are inspected in a depth-first manner, and the lack of a matching 

fact triggers backtracking (or a rollback of the recursion). A search tree with valid paths 

and leaves (excluding the backtracked paths) contains goals (at the root), policy rules and 

facts (nodes at lower levels) that resolve (are logically consistent) with each other. The 

set of leaves returns a set of solutions, all of which could satisfy the original goals. Figure 

20 illustrates an example of such a search tree. Resolving goals and policies with each 

other using a search tree is an inherently centralized operation, but we envisioned 

negotiators simulating such a resolution in a distributed manner in order to reconcile their 

needs and constraints. The differences between the centralized and distributed cases are 

described in the following sections. 

 

Figure 20. Centralized Search Tree Representing Policy Resolution by an Oracle 
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We must note that all scenarios that involve domains policy resolution are not, 

and do not need to be, based on logic. All policy frameworks have some notion of 

matching though; i.e., there is a list of policies, and goals are matched with those policies 

(or rules) to find out whether or not the goal fits within the constraints. This ranges from 

applications like games (using game-theoretic strategies), resource allocation in an 

operating system or a distributed system, to role-based access control frameworks. We 

use logic because it provides formal correctness metrics, and also makes the protocol 

general-purpose in a way that others are not. Matching predicates through unification and 

having rules stated in the form of Horn clauses provides a model powerful enough to 

express constraints on resource allocation, game moves and access control policies. For 

example, a distributed resource allocation framework would have goals expressing 

resource needs in a quantitative manner, and the rules would be expressed in terms of the 

amount of resources available. The operations to be performed are straightforward 

quantitative comparisons. The resource allocator would have to be re-engineered to 

handle other scenarios where resolution does not involve quantitative comparisons. 

 

8.2.2 Centralized Policy Resolution Using an Oracle 

Performing policy resolution using the backward-chaining procedure is straightforward 

when global knowledge is available. Such resolution is performed by an AI knowledge-

based system or expert system (such as theorem provers, Prolog, and Datalog) by 

generating search trees. These systems make wide use of the unification procedure, 

through which goal queries can be matched against facts and predicates within rule 
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bodies. But all of them are based on a single database, the contents of which are 

completely visible to the query processor. If a centralized entity, or an oracle, had 

complete access to the goal and policy sets of two interacting ubiquitous computing 

domains, it could run a backward chaining algorithm, starting with the goals of both 

domains at the root of the search tree. The two policy sets would be combined into a 

single policy database, after suitable reformatting of the individual rules. Since rules and 

facts typically refer to beliefs and rules held by the owning domains, conflict would be 

unlikely. There may still be global beliefs that could contradict. Self-contradicting rules 

would be eliminated in the process of merging. Given this merged database, the oracle 

assumes as its goal an expression that is the logical conjunction of all the goals in the two 

goal sets and formats it into a Prolog query. All valid solutions to the combination of 

goals are obtained from the leaves of the generated search tree, an example of which is 

illustrated in Figure 20. 

Because an oracle can perform an exhaustive search through the database, it can 

find all possible solutions, and thereby infer what the best solution is. The running time is 

exponential in the number of policies. If cycles are present, depth-first search may not 

terminate; otherwise, the maximum size of a search tree will always be bounded (the 

number of nodes in the tree = O(sr), where s is the maximum number of predicates in the 

body of a clause, and r is the number of facts and rules). 

Considering only the quality of the result, an oracle is our gold standard for policy 

resolution, and any other framework must be evaluated against it. Its efficiency in terms 

of the time taken is still open to question, and we present sample performance numbers in 
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Chapter 8. In real life, using such an oracle is not practical or desirable because domains 

need to keep their policies private. 

 

8.2.3 Visualization of Negotiation as a Distributed (or Decentralized) Search Tree 

Figure 20 illustrates how an oracle would resolve goals and policies by running a 

backward-chaining procedure with the given goal set as argument on the given policy 

database. A negotiation simulates this procedure and generates a similar search tree, 

which is different from the oracular tree in one respect: the nodes are distributed among 

the negotiators. As indicated in Figure 21, some nodes in the tree are processed at domain 

N1 and the rest at domain N2. The transition from a node of one color to a node of another 

color indicates an unsatisfied constraint at the former, which is communicated in the form 

of a request to the latter. The contents of the nodes reflect the private policies of the 

respective domains. Leaves represent validated constraints at a domain, and could also 

represent an acceptance offer. Backtracking in this tree represents failed requests and 

declined offers. The more available alternative requests there are, the more the tree 

diverges (i.e., the average branching factor, or breadth, of the tree increases). 
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Figure 21. Distributed Search Tree Representing Policy Resolution through Negotiation 
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Quality Metrics: We define three metrics for evaluation of the negotiation protocol: 

1. Correctness: A negotiation protocol is defined as correct if the result, which is a 

mapping from the goal set to the level of satisfaction (either modal: true/false, or an 

alternative of lower utility compared to the original goal), is an improper subset of the 

oracular result, and is also consistent with the policies of the negotiators. This was 

stated in Chapter 3 as part of the negotiation model, as follows: 

• grant-access(D2, Q2) ∧  P11 ∧  P12 ∧  ……….. ∧  P1m, and 

• grant-access(D1, Q1) ∧  P21 ∧  P22 ∧  ……….. ∧  P2n 

Here (Q1, Q2) represents the result, are not logical contradictions. The result set is a 

subset of the oracular result in the following ways: 

• If a goal G maps to true in the negotiated result set, it must map to true in the 

oracular result set. 

• A goal G that maps to true in the oracular result set may map to false in the 

negotiated result set. 

• A goal G that maps to a result Q in the oracular result set may map to a result 

Q’ of strictly lesser value (or utility) than Q to the requestor. 

As we can see, correctness is a rather weak metric, and is the most basic 

property that our negotiation framework must possess. We exclude the trivial result 

from our correctness definition, however. A trivial result would be the null set, where 

neither negotiator satisfies any goal of the other even though their policies are 

consistent with some or all of those goals. A correct negotiation would have to 

generate a non-null result, given that an oracle generates a non-null result. 
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2. Completeness: A negotiation protocol is defined as complete if it always generates a 

result comparable to that an oracle would generate, given the same goal and policy 

sets as arguments. The negotiated result need not be identical to the oracular result, 

but must be equivalent to it in the following ways:  

• A goal G that maps to true in the oracular result set must map to true in the 

negotiated result set. 

• A goal G that maps to false in the oracular result set must map to false in the 

negotiated result set. 

• A goal G that maps to a result Q in the oracular result set must map to a result 

Q’ of equal value (or utility) than Q to the requestor. 

Based on the above definition, a complete negotiation protocol is correct. 

If multiple goals/requests are provided as input to a policy resolution 

procedure, and the satisfaction of a subset of these goals conflicts with the satisfaction 

of a different subset, a variety of results may be achieved. This scenario deserves a 

deeper analysis. For example, consider a scenario where negotiator N1 poses requests 

R1, R2, R3, and R4 to negotiator N2. Due to the way N2’s policies are framed, it can 

satisfy one of the following request sets: {R1}, {R2, R3}, or {R2, R4}. Each set 

contains entries that don’t conflict with each other but do conflict with elements in a 

different set; i.e., R1 conflicts with all the others, R2 conflicts only with R1, R3 

conflicts with R1 and R4, and R4 conflicts with R1 and R3.  One could jump to the 

intuitive conclusion that a best result is the request set of maximal cardinality; i.e., the 

policy resolution procedure is complete only if the final result is {R2, R3} or {R2, R4} 
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but not {R1}. But since the protocol does not know beforehand what the relative 

values of R1, R2, R3, and R4 are to N1, this is not an objectively best measure of 

completeness. Though it may be a useful yardstick to measure negotiation protocols 

by in a particular class of scenarios, such protocols would have to be modeled and 

designed in a different way (with extra preference inputs) than the one we have. On 

the other hand, if a protocol were to satisfy only the set {R2}, we could definitively 

declare it to be incomplete, irrespective of the class that scenario belongs to. 

Therefore, we consider a negotiation protocol to be complete if it generates one of the 

non-conflicting sets. In our example, a complete negotiation would generate one of 

the sets {R1}, {R2, R3}, {R2, R4}. We will see how our protocol measures up to these 

standards in the Section 8.2.5. 

 

3. Optimality: A negotiation protocol is considered to be optimal if it always generates a 

result that is identical or comparable to the oracular result in the minimum number of 

steps, or using the least number of messages. An optimal negotiation is complete, 

based on the above definition with this added constraint of being maximally efficient. 

 

These metrics are related to each other through the following inequality, where 

the relation A < B indicates that metric A is less stringent than metric B, and also that if 

the protocol measures up to metric B, it will measure up to metric A by implication. 

Correctness < Completeness < Optimality 
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By definition, an optimal negotiation protocol will always be complete and 

correct, and a complete protocol will always be correct.  

 

8.2.5 Metric Evaluation of Negotiation 

Correctness: The trivial correctness property of the negotiation protocol is evident from 

the two following properties that have already been proved: 

 A negotiation result is consistent with, and does not violate, the collective policies of 

the negotiators. This is proved by our use of Prolog to obtain answers through 

queries. Prolog semantics are logically correct. Since we avoid predicates that would 

require occur-checks (see Chapter 4) in Prolog unification, any queries run by our 

policy manager are guaranteed to return correct results. Specifically, any affirmative 

offer is made only when the policies governing that offer can be provably satisfied by 

running a Prolog query. Therefore the individual negotiation steps are guaranteed to 

be correct. 

 The protocol is guaranteed to terminate, as the policy databases have finite size, the 

length of each policy statement is bounded, and there are no policy cycles. 

We can also show that the protocol is non-trivially correct. The procedure, by 

inferring alternative sets of counter requests, exhaustively examines the search space. If a 

solution exists, it will be eventually found. Multiple invalid alternatives may be examined 

before a satisfactory one is followed, but if such an alternative exists, it is guaranteed to 

be examined and a correct result generated. 
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We still need to reexamine the issue of intermediate requests and offers and the 

effect they will have on the overall result. Affirmative offers are registered in the policy 

databases of the negotiators in the form of Prolog facts; the resulting state changes may 

have effects on the remainder of the negotiation. Can an intermediate offer made during 

the examination of a failed alternative prevent a subsequent alternative from succeeding? 

This could happen if two requests made in two different alternative sets (under different 

subtrees in the negotiation policy tree) happen to be related through one or more policy 

constraints at the receiver’s end. To state this problem in more concrete terms and in the 

simplest form, a negotiator receives a request R and generates counter-request sets C1 and 

C2. A successful negotiation would result if C2 were to be explored first, whereas a 

failure would result if C1 were to be explored first. Now C1 is partially satisfied by the 

other party, i.e., some of its requests are satisfied while others are rejected. But the 

satisfied requests are related to some other requests in C2 (explored after the failure of C2) 

in such a way that now C2 cannot be satisfied in its entirety, resulting in a negotiation 

failure. As we will see below, we can handle some of these situations, but not all of them. 

All situations in which offers are revocable can be handled. Examples of these are 

the following: if the requests in C1 and C2 involve granting access to disk space, and the 

receiver of the request has a finite amount of disk space, it may not be able to satisfy the 

request in C2 after it has already conceded access to come portion of its disk space in C1. 

Another example: requests in the two alternative sets are related through a policy 

involving opposite modalities; i.e., granting one request is incumbent upon not granting 
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the other, and vice-versa. The underlying concept is the same: attempting to satisfy both 

requests results in a logical contradiction. 

We can make the negotiation protocol correct in these situations. All we need to 

do is to track the intermediate requests that have been satisfied, and simply revoke them 

upon failure and backtracking. If request R2 is sent in response to request R1 (received 

earlier), R2 contains a reference to R1; hence this tracking is straightforward. We have not 

currently implemented this feature, but it can be added with minimum difficulty. But in 

practice, this scheme is not foolproof. Not all offers are revocable (though the odds would 

improve if negotiation used a heuristic that gives revocable alternatives higher priority). 

If offers are simply promises to abide by obligations, or promises of future access to 

resources, or the performance of an action (e.g., starting or stopping a service), revocation 

is straightforward. Revocation is accompanied by the removal of policy statements from 

the database, returning it to the pre-offer state. But there may be offers that cannot be 

revoked. A private piece of information, once given, cannot be un-given. Sending a file 

(as a string of bytes) is another irrevocable action; this may occur in the smart party 

scenario where media files are transmitted from one domain to another. Thus negotiations 

may fail in these scenarios because of a bad alternative selection, even though it is 

potentially successful. Theoretically, the rollback added to negotiation results in a correct 

procedure if we consider rollback to be equivalent to a reversion of the policy database to 

its original state. But revocation also involves non-logical operations; hence it may not 

yield a non-trivial result in some scenarios. 
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Completeness: Our negotiation protocol attempts to satisfy the original (maximal) 

demands first before falling back to alternatives (in the form of alternative offers). It 

generates all possible counter-request combinations at every step, and exhaustively 

examines the search tree. A number of equivalent best solutions may exist, and a 

negotiation will result in the first encountered one being picked. Hence, the correctness of 

negotiation also implies completeness. As we have shown, negotiation is correct in 

scenarios where offers are revocable, and trivially correct in all the remaining scenarios. 

Likewise, negotiation is complete in the former class of scenarios and incomplete in the 

latter class. 

When negotiation starts with multiple requests (refer to the completeness metric 

discussion in Section 8.2.4), our negotiation protocol is complete in the more general 

sense, where one of the several non-self-conflicting request sets is granted as the final 

result. Referring back to the example, the negotiation protocol will generate one of the 

following results: {R1}, {R2, R3}, or {R2, R4}. Which of these it will generate depends 

entirely on the order in which the requests are evaluated, and the way the negotiation 

plays out. But the protocol is definitely guaranteed to generate a maximal cardinality 

result if every maximal cardinality result set dominates (is a super-set of) another valid 

result set. If we exclude R1, our protocol is guaranteed to return {R2, R3}, or {R2, R4} and 

will not return just {R2}. For example, let R1 = {Access to local file system/repository}, 

R2 = {Permission to run networked applications}, and R3 = {Access to ‘x’ amount of disk 

space}. N1 may end up getting either access to the repository, or disk space plus the 

permission to run networked applications. The protocol does not know what value either 
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negotiator has assigned to R1, R2, and R3, and so it could generate either result. But any 

negotiation that results in N2 granting R2 will also result in N2 granting R3. Therefore, our 

protocol is complete even if it results in N2 granting only R1 to N1. 

This looks non-intuitive at first glance; if the alternative to granting R1 were a set 

of ten other requests (instead of two), it may seem obvious that a protocol that resulted in 

the set of ten requests would be superior. But just taking numbers (or set cardinality) into 

account is a flawed approach of measuring success, in our opinion. In our example, 

gaining access to the local file system may be very valuable to N1, and correspondingly 

more risky to N2. Perhaps that is why the policies were set up in a way that would cause 

conflicts to occur among the sets {R1} and {R2, R3}. Note: the protocol does not know at 

the beginning what sets are conflict-free; these sets are discovered through the 

negotiation process. The way a negotiation plays out completely depends on the policies 

of the negotiators. Therefore, the resulting sets roughly reflect an equal distribution of the 

weights assigned to them by the request granter (ten rather minor requests may be 

cumulatively as important as one separate unrelated request.) 

Consider a second example: In our conference room scenario (see Section 7.2), 

both the attendee and the conference room may consider the granting of network access 

to be far more important than printer or display services. Therefore, if R1 = {Network 

access}, R2 = {Printing service}, and R3 = {Display service}, and we had the same 

conflict sets {R1} and {R2, R3}, it would turn out to be more advantageous to N1 to get 

only network access. Therefore we do not consider the cardinality aspect in our 

completeness metric, and by our defined standards, negotiation is complete. 
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Precedence ordering among goals can be set to ensure that certain requests are 

given higher priority than others. Referring to the peer-to-peer file sharing example in 

Section 7.4, the request that held the highest precedence among all desired requests was 

selected first and negotiated for; only upon failure were other requests attempted. In that 

example, the precedence relation was explicitly described through policy rules in our 

language, and that guided negotiation strategy. However, if multiple requests are made 

simultaneously, our protocol assumes that there is no inherent ordering among them, and 

runs a best-effort procedure, generating the kinds of results shown in the above examples. 

Still, certain classes of scenarios may consider the cardinality metric to be of 

paramount impotance; in such scenarios, a protocol that does not guarantee a maximal 

cardinality request set would be considered incomplete. Let us see how we can modify 

our protocol to make it complete for this class of scenarios. A delayed satisfaction 

approach can be used. If a goal is found to be satisfiable, it is not immediately granted as 

an offer. That goal is retained in the received requests list (maintained by the controller), 

and an offer is postponed until the satisfiability or unsatisfiability of all the other goals 

can be inferred. At this point, we have a set of goals for which affirmative offers can be 

sent (assuming independence with other similarly satisfiable requests) and others for 

which negative offers will be sent. The controller then runs queries examining which 

subsets of the satisfiable request set are non-self-conflicting (i.e., can be satisfied 

simultaneously). Such a procedure can be optimized so that we don’t actually need to run 

a query for each possible subset. From this collection of satisfiable request sets, we can 

pick a maximal cardinality set to return (through affirmative offers) to the other party. 
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Optimality: Theoretically, we cannot provide any optimality guarantees. Decentralized 

policy resolution, as performed by negotiation, is a best-effort procedure. A number of 

alternative options are available at every step, and in the absence of complete 

information, the probability of selecting the best alternative cannot be guaranteed to be 

unity. Currently the protocol is engineered to pick the first available alternative, and the 

remaining ones are saved. The ordering of the generated alternatives depends on the 

implementation of the SWI-Prolog subsystem, and the order in which individual Prolog 

facts and rules are read into the database. To a policy manager, the nature of the ordering 

is transparent; therefore, the selection process is effectively random over a large number 

of cases. 

We can use heuristics to make more intelligent selections. The one that we use 

simply orders the alternative request sets (returned by the counter-request generation 

algorithm) by the cardinality of the sets. The logic behind this is that the fewer requests 

posed, the fewer computations the opposite party needs to make, and this may result in a 

shorter negotiation. Though this may work well in a large number of cases, there are 

obvious scenarios under which it fails. We can understand this by viewing the policy 

resolution tree with varying branching factor and depth. A subtree rooted at the node 

corresponding to the original request could have two children, one with a small branching 

factor (request set will be small) and a large depth, but another subtree could have a large 

branching factor (request set will be large) but be quite shallow. In this case, it would 

have been better to examine the latter subtree first. But it is impossible to estimate the 

depth of the tree without having more knowledge of the opposite party’s policy rules. The 
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branching factor at the immediate level of the tree is known, and a negotiator can only try 

to make an intelligent guess based on that knowledge. 

Other heuristics can be used if one knows what the other’s constraints are. For 

example, in the interest of maintaining security and privacy, many domains would be far 

more willing to turn off certain vulnerable applications, or agree to obligations dictating 

how it could use its sound and display devices, as compared to allowing intrusive access 

to its system, providing private information, or giving access to resources when the 

access is hard or impossible to undo. Therefore, an alternative drawn from the former 

would be more likely to lead to an agreement through a shorter negotiation. Similarly, if 

alternatives differ only in quantitative terms (such as required bandwidth), and a range of 

values is acceptable, a lower value request would likely result in a shorter negotiation. 

An oracle, having the advantage of complete knowledge, can determine an ideal 

result, and also (by examining the search space) the least-depth tree that would reach that 

result. It generates this tree by always selecting the correct alternative. The complexity of 

this search and the tree construction is exponential. This least-depth tree is equivalent to 

the most optimal negotiation that could be conducted. 

 

Comments on Complexity Analysis: This research was conducted primarily from a 

practical system design viewpoint. We wanted to both establish design principles and 

implement a framework that could be applied in a wide range of real-world scenarios. 

Theoretical rigor was not a primary goal or motivation, though we did want to investigate 

and establish the limits of the negotiation protocol, as we have attempted to do in this 
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chapter. As we made progress in our research, we also made decisions and reached 

conclusions about the nature of the policy language and the nature of the negotiation 

mechanism, all of which have been described with justifications in the previous chapters. 

Describing policies in logic provides various advantages, most prominently domain 

independence and application generality. But this makes our framework similar to an 

expert system that necessarily uses search trees as the basis for its algorithms. For all the 

advances made in Prolog compiler designs, search trees are ultimately generated, the 

theoretical complexity of which are inherently exponential. Various researchers have 

attempted to analyze the complexity of Prolog programs, or any logic programs based on 

Horn clauses [Aarts1995a; Aarts1995b], and they typically use the depth of the search as 

a parameter. We will revisit this metric in Chapter 9 when we describe our testing 

procedure, but we must emphasize that search depth is only one factor, and the real 

complexity is exponential in the value of this depth. We also must take into account the 

branching factor of the trees. The key point to note is that the complexity of our 

negotiation system will necessarily be exponential, which is an unflattering result in 

theory but does not detract from the usability of the system in practice (much as most 

Prolog and Datalog programs provide adequate performance). Also, the number of 

parameters and variables are fairly large; these include not only the branching factor and 

depth of a search tree but also the number of variables in a predicate, the number of terms 

in a clause and the number of related variables among the predicates in the body of a 

clause. We do not attempt to do a heavy theoretical analysis here, since we know a priori 
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that the complexity will be exponential, and from a practical system viewpoint, it does 

not shed any real light. 

Still, we can try to make some rough estimates of the bounds on the number of 

negotiation steps, given certain assumptions. One question we could ask is: What is the 

maximum number of steps a negotiation can take in a given scenario? We can infer a 

simplistic bound for this. If we assume that the examination of a particular policy rule 

yields at most one set of counter-request alternatives, and we have already established 

that each policy rule is examined at most once during the course of a negotiation, the 

maximum number of steps is linearly related to the number of policy rules. Specifically, 

if the number of rules in the two databases is R1 and R2, each possible alternative is 

examined, and some yield affirmative offers and some yield negative ones. Therefore, 

each rule corresponds to two steps (a request and an offer), so the length of the 

negotiation <= 2(R1 + R2) + 1 (adding one step for the termination message). We have 

made a simplifying assumption here: the number of request sets generated by examining 

a policy rule may be more than 1; the exact value depends on the number of facts in the 

policy database. If we can bound the number of sets generated to k, the resulting upper 

bound would be 2k(R1 + R2) + 1, which still linear in the collective size of the databases. 

Can we also get an idea of the average number of steps taken by a negotiation? 

We revisit the search tree for this purpose. Let our search tree have a uniform branching 

factor b and uniform depth d. The branching factor indicates the number of available 

alternatives at each node (where a policy is being examined). We assume that all the 

nodes at a particular level consist of nodes examined at one end or the other, and all 
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backtracking takes place at the lowest level (maximum depth). The number of nodes is 

linearly related to the number of negotiation steps (roughly equivalent to half the number 

of negotiation steps). Therefore, the number of nodes (N), which is 1 + b2 + b3 + ……. + 

bd = (b(d+1) -1)/(b-1) can be used as a measure of the number of steps in the worst case. If 

we assume that a unique best alternative exists in each set, and each alternative is equally 

likely to get selected, then roughly half the number of alternatives (b/2) is examined on 

average. Our search tree on average (assuming the same uniform depth d) now examines 

((b/2)(d+1) -1)/((b/2)-1) nodes (say N’). If we define R = N’/N: as d → ∞, R → 0; i.e., the 

average number of negotiation steps grows much slower compared to the maximum. 

 

8.3. Other Protocol Properties and Issues 

8.3.1 Privacy Maintenance 

One of the motivations and an assumption of this research was that the local policies of 

domains must be private by default and not known to their opposite negotiators at the 

beginning of a negotiation session. We therefore analyze whether, and to what extent, 

negotiations are able to maintain the privacy of their participating domains’ policies. 

As we have seen, a negotiation (or decentralized policy resolution, as we define it 

in this chapter) is a sequence of information exchanges between the two entities. The 

pieces of information could be requests or offers (often accompanied by non-logical 

objects as evidence). Requests are predicate strings accompanied by descriptive 

predicates; they are also components of policy rules in the database of the requestor, 

extracted using the counter-request generation procedure. The act of sending a request 



 232

therefore reveals partial information about policy, since the recipient of the request can 

associate the request it sent with the counter-request it received. If a bunch of requests are 

sent in one message, a counter-request received can only be associated with a request sent 

with a certain probability. For example, if a domain sends requests R1 and R2, and 

receives counter-requests R7 and R9 in reply, R7 may have been a counter to either R1 or 

R2. In our implementation, a negotiation message containing a counter-request contains a 

reference to the original request (see Chapter 5), but this is only for the purpose of 

printing out an explanatory message if a negative offer is made. This reference may be 

omitted if a domain is more interested in privacy than in tracing reasons for failure. 

Affirmative offers also result in some privacy loss, as the recipient of the offer 

now knows that the sender’s policies allow satisfaction of the request. Also, any 

accompanying object or proof appended to the message is also private information. 

Negative offers do not yield any useful information, since the recipient cannot determine 

why the sender denied its request. 

In real scenarios, not all information releases carry equal weight. But the 

importance attached to each piece of information and to every transacted object is 

subjective, non-logical, and dependent on the priorities of the negotiators. For the 

purpose of analyzing negotiations without restricting ourselves to specific scenarios, we 

have to assume that all such releases carry equal weight for the purpose of measurements. 

In Chapter 9 we will see to what extent negotiations maintain privacy on the average. 

The exent of privacy maintenance of a negotiating domain can range from 0% to 

100%. Negotiators start off with 100% privacy, but this percentage gradually reduces 
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during the session. A negotiation that maintains 100% privacy for both its negotiators is 

useless and trivial, since it generates a null result. If a negotiation must result in 

something useful, some privacy loss is inevitable. An oracle falls at the other extreme, 

since the parties (or one of them) completely surrender their privacy, though an optimal 

result is achieved. In practice, though, optimal negotiations are better than oracular policy 

resolutions, since they maintain privacy at a level between 0% and 100% while producing 

the oracular result. This is simply because an optimal negotiation contains the least 

number of intermediate (or counter) requests, and consequently the least number of 

affirmative offers. Every failed alternative attempted before the right alternative was 

explored results in more information released than would be absolutely necessary to 

achieve the same result as the optimal negotiation. 

We can define a quantitative metric for privacy loss. A policy database consists of 

a set of facts and a set of policy dependencies. Each policy rule is a set of policy 

dependencies (whose size is equal to the length of the rule body). Release of knowledge 

of any dependency constitutes privacy loss, as does the release of the knowledge of any 

fact. Policy dependencies are released through posing of counter-requests during the 

intermediate stages of a negotiation, and facts (either stated or provable) are released 

when making affirmative offers. Therefore, the privacy loss for a negotiator can be 

quantitatively estimated to be <#intermediate requests + #affirmative offers>. 
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8.3.2 Limitations of this Negotiation Procedure 

The effectiveness of any negotiation is only as good as the mechanisms that are available 

to the negotiators. Affirmative offers to requests could take the form of information, 

objects, or simple promises in many cases. It is incumbent on the requesting domain to 

have effective verification mechanisms, invoked through helper functions. In the absence 

of foolproof mechanisms, policies that guard sensitive resources should take into account 

the level of security assurance provided by available mechanisms. For example, an offer 

of a piece of mobile code is inherently dangerous, since the code may exploit some flaw 

in the host’s operating system to cause harm. A mechanism employed by the receiver 

could be as follows: if the code carries proof that can be verified [Necula1997], it is 

accepted, and otherwise the offer is rejected. Even proof-carrying code is not completely 

foolproof, so policies may contain extra constraints that refer to the identity or affiliation 

of the domain that is supplying the code. 

Similarly, affirmative offers framed as promises to abide by the terms of the 

request may sometimes have to be taken at face value if the negotiation must yield a 

result. In practice, ubiquitous computing researchers have recognized the difficult nature 

of this problem, and have suggested a combination of access control and a trust network 

that is dynamically reevaluated through constant monitoring of events and actions 

[English2003; English2004]. Interactions between domains are monitored to make sure 

that the domains do not break their promises. If a domain violates a promise, others lose 

trust in it, and may not accept its promises in future interactions. As we have seen earlier, 

the utility of the goals that are designed to be met through requests also plays a part. 
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Alternative request sets could be ordered based on heuristics that take into account both 

the utility of the requested information/object and the level of trust in the negotiator and 

locally available verification mechanisms. These heuristics would be logically separate 

from the policies in the database. Such trust and utility heuristics could also be used by a 

domain considering whether or not to send a piece of information or a guarded object in 

the form of an offer, since the posing of a counter-request contains an implicit promise of 

fulfilling an earlier request. 

 

8.3.3 Security Properties of the Negotiation Protocol 

We try to analyze the security of communication and of the communicators that 

participate in a negotiation. The following standard security properties can be analyzed: 

authentication, non-repudiation, integrity, confidentiality, and availability. 

The process of negotiation itself takes care of authentication, since proof of 

authenticity in the form of keys (or similar non-forgeable information) can be requested 

and obtained as part of a negotiation, assuming that suitable policies are set up. Likewise, 

non-repudiation could be achieved if desired by the negotiators signing and verifying 

transacted objects and keeping records of negotiation. Neither of these properties are 

essential features of negotiations. In ubiquitous computing scenarios, domains may agree 

on the sharing of resources and information without a high level of security assurance.  

We use existing secure communication technology to ensure confidentiality and 

integrity. The Panoply platform allows cross-network communication only through 

secure TLS sockets. Events, including those containing negotiation messages, are 
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communicated over these TLS connections. We could use TLS or any other secure 

communication mechanism if we had to implement negotiation independent of the 

Panoply middleware. 

When we consider availability, we are primarily concerned about denial-of-

service (DoS) attacks that take advantage of the protocol dynamics. Is it possible for a 

domain to prevent another from carrying out its normal operations through malicious uses 

of negotiation? We showed earlier in this chapter that the protocol is guaranteed to 

terminate, and is free of deadlocks and livelocks, so a malicious entity that is nonetheless 

playing by the rules of negotiation cannot keep another entity indefinitely busy. But it is 

definitely possible for a malicious entity to keep inventing dummy requests and counter-

requests that have no purpose but to keep its counterpart negotiating indefinitely. For a 

single thread, this kind of a DoS attack is not as serious as say, ping flooding, because 

negotiation messages are exchanged synchronously. With a malicious entity initiating 

multiple negotiations with the target, a more effective DoS attack could be mounted. We 

cannot avoid this in a theoretically complete way, but there are many practical measures 

one could use to thwart such attacks. For example, a domain could choose to have a limit 

on the number of steps it is willing to undertake in a negotiation. As each party has the 

right to send a termination message at any point, a negotiation that has gone on for too 

long and has used up too many resources could be terminated. 
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Chapter 9 
 

Performance 

 

In this chapter we evaluate our policy management and negotiation framework from the 

viewpoint of its real-world performance. We state and analyze the results of our 

measurements, attempting to leave readers with a good of idea of what to expect if they 

use the negotiation protocol or other policy management features for their applications. 

 

9.1. Overhead of Commonly Invoked Policy Engine Functions 

We described the key operations offered by the policy engine through an API in Chapter 

4. These operations invoke basic SWI-Prolog functions through the JPL (Java-to-Prolog) 

interface. These operations do not just translate the SWI-Prolog output into Java objects 

and data types, but perform additional tasks for the purpose of formatting the results and 

maintaining the integrity of the policy database. Our measurements below indicate how 

fast such operations typically are. All measurements were performed on an IBM 

Thinkpad T42 (1.7 GHz, 512 MB) laptop running Fedora Core 3 Linux. 

 

Running Database Queries—SWI-Prolog offers a simple query procedure that returns 

all valid variable bindings. Our query procedure performs additional tasks: i) checking 

whether or not the predicate names are special predicates, and ii) formatting each query 

string in such a way as to catch exceptions rather than letting the program crash. Also, 
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Prolog backward chaining may return (depending on the nature of the policies) duplicate 

sets of variable bindings. In practice, we found a huge number of such duplicates being 

returned, which forced us to add duplicate set elimination in the query procedure. This 

operation incurs significant overhead, but this additional overhead is still lower than 

would be incurred if the problem of duplicates was deferred to the calling procedures. 

Since the time to run each query is very small (milliseconds or less) and the 

variance is large, we report the time taken to run bunches of 100 queries each. First, we 

asserted a set of facts and clauses in the Policy Engine database, the facts and heads of 

clauses being predicates of arities varying from 1 to 5, and clause bodies containing 0 to 

9 predicates. The policy databases we used in our applications and tests lay within these 

bounds, and we believe these numbers are representative of real policy databases. Even if 

some databases contain policies that fall outside these bounds, reasonable query 

processing overhead estimates can be projected from the charts (shown below in Figure 

22). All numbers are reported with 99% confidence intervals. 
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Query Processing Times for Clauses of Body Size = 1 (100 
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Query Processing Times for Clauses of Body Size = 9 (100 
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Figure 22. Query Processing Times along Various Dimensions 

What we can observe from the graphs in Figure 22 is that the query processing 

times seem not to vary at all when the sizes of the clauses (number of predicates in the 

bodies) change. On the other hand, the times vary significantly with predicate arity and 

the number of possible solutions. The processing time appears to increase either linearly 

or in a gentle exponential way with an increase in the number of matching facts or 

clauses. This is expected, given the way the backward chaining procedure works. With an 

increase in arity of the query predicate, the rate of increase in processing time seems to 

decrease (or equivalently, a roughly logarithmic increase in processing time) or remains 

constant. This variation (linear increase in processing time) is consistent with the nature 

of the unification algorithm for matching predicates, which primarily affects performance 

in this case. Therefore, our results above seem to roughly meet our expectations. 
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Table 2. Variation of Query Processing Times 

Predicate Arity 
1 2 3 4 5 

0 25.25± 0.13 27.61± 0.85 30.69± 2.86 31.39± 0.60 33.31± 0.77 

10 385.32± 29.51 610.15± 51.34 757.82± 65.93 953.06± 45.68 1145.59± 50.97 

20 745.48± 53.66 1393.31± 86.47 1699.44± 74.55 2031.94± 44.56 2418.72± 78.98 

30 1383.58± 72.90 2727.46± 63.91 3272.64± 146.99 3910.80± 130.17 4487.28± 188.58 

40 1871.76± 116.17 3682.65± 213.38 4399.40± 253.86 5250.24± 256.75 5965.99± 199.60 

Number of 
Matching 

Facts/Rules 

50 2555.63± 150.66 5110.94± 194.99 6118.54± 253.82 7173.34± 314.04 8208.24± 249.30 

 
Table 2 summarizes the chart results (see Figure 22) by computing the average 

processing time for each <predicate arity, #matching clauses> pair. The most heavy 

operation here (predicate of arity 5 with 60 matching policies) takes ~8 milliseconds. 

Having more than 20 matching facts/rules is extremely unlikely in a real policy database, 

which would indicate that the typical query processing time would take ~2 milliseconds. 

 

Policy Statement Lookup—Clause lookup is one of the most commonly performed 

Policy Engine operations. This is particularly the case in the counter-request and 

alternative offer generation procedures, where all clauses whose heads match the 

argument predicate must be examined. The SWI-Prolog meta-predicate 

clause(ClauseHead,ClauseBody,ClauseReferenceNumber) is evaluated with 

ClauseHead replaced by the relevant argument predicate. The Policy Engine gets the list 

of matching clauses by invoking the JPL Query method with a suitable clause predicate 

as argument. Each query lookup operation is carried out in milliseconds or less time. 

Therefore, we measured the times taken for 1000 lookups for two cases: i) when no 

matching clauses exist (as a base case), and ii) when 100 matching clauses exist. These 

prove adequate to make proper judgments, since the number of matching clauses for an 
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arbitrary predicate of interest in a real database is likely to be much fewer than 100. The 

trends are illustrated in Figure 23. 
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Figure 23. Clause Lookup Performance 

As we can see, the lookup time seems to increase roughly linearly with an 

increase in arity of the argument predicate. As the lookup procedure utilizes the 

unification algorithm, this linear increase is an expected result. Table 3 summarizes these 

results below. 

Table 3. Clause Lookup Times 
Predicate Arity 

 
1 2 3 4 5 

0 Matching Clauses (M0) 638.09 700.34 786.92 877.93 973.074 

100 Matching Clauses (M100) 1957.2 2164.2 2343 2546.9 2799.2 

Ratio (M100/ M0) 3.0673 3.0902 2.9774 2.9011 2.87665 
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As we can see, lookup time for a predicate when 100 matching clauses are 

available is ~2.8 milliseconds in the worst case (when arity=5). Therefore, this operation 

is very efficient from the point of view of the policy manager. 

 

Database Modification Operations—We also measured the time taken to add and 

remove statements from the policy database. SWI-Prolog offers meta-predicates for 

addition and removal of facts and clauses: assert, retract and abolish. But the policy 

engine modification operations perform more tasks than simply call assert or retract 

queries. First, the predicates in a database fall into two classes: static and dynamic. The 

modification predicates only apply to dynamic predicates. To assert or retract static 

predicates, we need to first abolish them and re-assert them as dynamic predicates. 

Second, both addition and removal operations must be followed by the chainEventUpdate 

method call, which queries all update predicates (See Chapter 4). Therefore, these 

operations are somewhat heavier than they would be if we only had to make a single JPL 

query. The removal operation also has a higher performance cost than the addition 

operation. This is because when we remove a policy fact or rule, a simple string 

comparison to the existing statements in the policy database does not suffice; we must 

invoke the identicalTerms method for this purpose, incurring extra overhead. This is 

reflected in the graph in Figure 24. 
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Figure 24. Database Modification Overhead 

The above graph indicates the performance cost of adding and removing 1000 

predicates of varying arities. As we can see, the general trend seems to be a linear 

increase with increase in arity. When the arity is 3, we observe somewhat anomalous 

behavior. Informal measurements for arities above 5 indicate a general linear increase, 

but with this kind of anomalous behavior replicated at certain points. We believe this is 

an artifact of the SWI-Prolog and JPL implementations, and not reflective of any 

significant issue in our implementation. The actual values themselves are not too high or 

too low to merit further investigation. The performance numbers from the above graph 

are summarized in Table 4 below. 
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Table 4. Overhead of Database Modification Operations 

Predicate Arity  
1 2 3 4 5 

Addition 7590.6± 129.71 8095.57± 118,62 11307.8± 145.19 9267.56± 114.26 10336± 152.96 

Removal 13779± 107.82 14564.2± 97.92 21097.2± 133.91 17049.14± 163.66 18615± 280.13 

 
As we can see, the maximum overhead is ~11 milliseconds for an addition and 

~21 milliseconds for a removal. These operations dominate event processing times and 

therefore might be performance bottlenecks. In practice though, such operations will be 

few and far between, with the highest concentration occurring during a negotiation. 

 

9.2. Negotiation Overhead 

In the above section we saw how policy engine methods typically invoked during the 

course of policy management perform on average. Though negotiations also involve a 

combination of these operations at their core, it would be more illuminating to see how 

much time is consumed by two typical devices negotiating with each other. We limit our 

case studies here to fairly short negotiations, but these results can be projected onto 

longer negotiations. These negotiations also involve helper functions; the overhead 

incurred by these functions could vary greatly depending on the task being performed. In 

a later section, we will see how negotiation times vary with the sizes of policy databases 

and the number of steps, factoring out helper functions completely. 

Below we show the results of tests conducted between two different sets of 

negotiating devices for simple characteristic scenarios. Without perfect synchronization, 

it is more meaningful to consider the negotiation times at each end separately. The tables 

with the performance numbers below indicate the times taken to complete negotiation, 
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from the first message sent or received until termination. Each negotiator spends part of 

its time processing and sending messages, and the remaining time waiting for a message 

from its opposite party. 

 P is the local processing time 

 W is the wait time, and 

 Total is the total time (Total=P+W) 

Negotiator 1 (N1) initiates the protocol by sending a request message, and 

Negotiator 2 (N2) receives that message and resumes negotiation. The protocol time 

measurement starts for N1 when it starts to generate its request message and ends when it 

either sends out or receives a termination message. The time measurement for N2 starts 

when it receives the first negotiation message and ends when it either sends out or 

receives a termination message. R(k) indicates that k is sending a request to its negotiator, 

AO(k) indicates an affirmative offer sent by k, NO(k) a negative offer, and T(k) indicates 

termination. ‘3 C-R(k)’ indicates three counter-requests sent by k. In each case, the 

original request contained a single entry, for membership. The two alternative counter-

requests posed were as follows. Set 1 contains a single request to set up firewall rules to 

block a certain port. Set 2 contains 3 requests, one being a request for the identity of N1’s 

operating system version, another being a request for N1’s current location, and the last 

being a request for a social voucher previously granted to N1 by N2. Policies at N1 are 

formulated in a way to reject the request in Set 1 and to accede to the requests in Set 2. 

Processing in the case of Set 1 involves port scanning, and in the case of N2 involves 

verifying a voucher’s digital signature. 
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Setup 1: The negotiation was conducted between two spheres, negotiator 1 (N1) running 

on an IBM Thinkpad T42 (1.7 GHz, 512 MB RAM) laptop and negotiator 2 (N2) running 

on an Intel P4 (2.53 GHz, 512MB RAM) desktop; both machines ran Linux. Messages 

were exchanged through a TLS connection running over an 802.11b wireless channel. 

The results are reported in the table below (and were published in [Ramakrishna2007]). 

Table 5. Sample Negotiation Performance Measurements (in milliseconds) 
Case I:     R(N1)  AO(N2)  T(N1) 

Case II:    R(N1)  NO(N2)  T(N1) 

Case III:   R(N1)  3 C-R(N2)  3 AO(N1)  AO(N2)  T(N1) 

Case IV:  R(N1)  C-R(N2)  NO(N1)  3 C-R(N2) (alternative)  3 AO(N1)  1 AO(N2)  T(N1) 

Negotiator 1 (N1) Timing Negotiator 2 (N2) Timing 
 

P W Total P W Total 

I 180.5± 7.9 1081.2± 10.6 1261.7± 13 97.5± 7.4 1958.8± 12.7 2056.3± 11 

II 8.7± 0.4 1124.6± 32.7 1133.3± 32.7 112± 16.1 1897.8± 40.8 2009.8± 43.3 

III 387.8± 17.3 4251.2± 113.2 4639± 121.2 2231.1± 110.2 3167.8± 38.5 5398.9± 121.1 

IV 504± 24.2 6871.5± 367.3 7375.5± 376.6 3178.7± 356.7 4886.5± 46.1 8065.2± 370.4 

 

All numbers are reported with 99% confidence intervals. The numbers in the 

“Wait” and “Total” columns include the message processing overhead introduced by the 

Panoply middleware, which explains the discrepancy between the processing and total 

times. Entries in boldface indicate which negotiator’s time dominates the other. As we 

can see, the most complex negotiation terminates in ~8 seconds, and we can project that 

additional steps will introduce a small linear increase in overhead. 

Our counter-request generation algorithm introduced reasonable overheads, at N2, 

of 71.92± 6.6 milliseconds in Case II, 1710.5± 81.4 milliseconds in Case III and 

2573.8± 341.5 milliseconds in Case IV. Using external methods to verify vouchers took 
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13.4± 2.3 msec, which is small, but running shell commands and executing code will 

incur larger overhead, as we learned from the QED framework, an early Panoply 

application [Eustice2003b]. In practice, a few seconds of overhead for negotiation will 

not be noticed by users in a majority of ubicomp scenarios. 

 

Setup 2: The negotiation was conducted between two spheres, negotiator 1 (N1) running 

on an IBM Thinkpad T42 (1.7 GHz, 512 MB RAM) laptop and negotiator 2 (N2) running 

on a Sony Vaio MicroPC UX280P (Intel Core Solo U1400 processor, 1.2 GHz, I GB 

RAM); both machines ran Linux. Messages were exchanged through a TLS connection 

running over an 802.11b wireless channel. 

Table 6. Sample Negotiation Performance Measurements (in milliseconds) 
Case I:     R(N1)  AO(N2)  T(N1) 

Case II:    R(N1)  NO(N2)  T(N1) 

Case III:   R(N1)  C-R(N2)  3 AO(N1)  AO(N2)  T(N1) 

Case IV:   R(N1)  3 C-R(N2)  3 AO(N1)  AO(N2)  T(N1) 

Case V:  R(N1)  C-R(N2)  NO(N1)  3 C-R(N2) (alternative)  3 AO(N1)  1 AO(N2)  T(N1) 

Negotiator 1 (N1) Timing Negotiator 2 (N2) Timing 
 

P W Total P W Total 

I 126.2± 1.8 704.8± 35.1 830.9± 35.4 501.5± 18.4 164.3± 3.5 665.8± 19.2 

II 30.7± 1.2 716.5± 33.5 747.2± 33.3 584.9± 22.5 95.3± 12.2 680.1± 24.6 

III 227.0± 2.1 1276.1± 22.3 1503.1± 22.2 458.4± 5.5 1020.2± 22.7 1478.6± 22.3 

IV 675.8± 15.7 2429.6± 37.2 3105.4± 44.7 1693.8± 27.7 1354.6± 36.3 3048.5± 44.3 

V 1752.8± 42.8 5614.8± 53.5 7367.6± 79.9 5463.1± 51.8 1845.8± 45.0 7308.9± 78.1 

 
Similar negotiations seem to perform slightly better under this setup as compared 

to the previous one. This can be explained partly by the difference in the experimental 
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setup. Also, the two experiments were conducted at different times. The first experiment 

was conducted at a time when the alternative offer generation procedure and the fault 

tolerance mechanisms were not added to the policy manager. Also, the link 

characteristics appear to have been much better under the second setup, leading to vastly 

improved communication times; this explains why the total processing time for each case 

under Setup II is much closer to the total time than in the equivalent case under Setup I.  

Still, as we can see, the actual times are of the same order as in the case of the 

first setup. The maximum time taken by the longest negotiation (Case V) is ~7.4 seconds, 

which is almost the same as the ~8 seconds reported in the other setup. 

 

9.3.  Event Filtering through the Policy Manager 

In this section we discuss the overhead incurred by passing events through policy engine 

filters as a means of access control (see Section 6.3.2). Performing access control impacts 

all communication involving sphere applications, since every event is inspected for 

policy compliance before being allowed to pass through to an application. The 

performance numbers for event propagation are presented in Eustice’s dissertation 

[Eustice2008b]. Here, we focus on the extra overhead incurred by invoking policy engine 

mechanisms. We examine the overhead measurements drawn from two scenarios. All 

numbers in both tables below are reported with 99% confidence intervals. 

 

Scenario 1: A sphere (S) and two applications (A and B) run on the same device, an IBM 

Thinkpad T42 (1.7 GHz, 512 MB RAM) laptop running Linux. Application A sends a set 
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of events sequentially to application B that has subscribed for events of that type. All 

events are propagated through the sphere S. The event flow path is A→S→B. Since the 

time taken to process each event on its way to the application is too small to measure 

without high variance, we measured the total time taken to process a set of events as well 

as the total overhead introduced by passing the events to the policy manager and getting 

back replies. We considered three cases: 

1. Each event triggers a policy engine query which returns a negative response. 

2. Each event triggers a policy engine query which returns an affirmative response. 

3. Only the first event triggers a policy engine query, which is saved in the policy cache; 

this value is looked up for all subsequent events. 

The values are indicated in Table 7 below. The left-hand column indicates only the policy 

manager overhead, whereas the right-hand column indicates the total time taken from 

when the first event was received to when the last event is dispatched to the application. 

Table 7. Event Filtering Performance on a Single Device (in milliseconds) 
 

 Policy Manager 
Overhead Total Time Policy Manager 

Overhead Per Event 
(1) 1000 Events 2473.43± 21.30 3188.93± 34.90 2.47± 0.02 
(2) 1000 Events 3244.66± 31.05 4567.10± 42.99 3.24± 0.03 
(3) 10000 Events 261.79± 7.68 18584.13± 62.78 0.03± 0.00 

 
As expected, the overhead is least in case (3), where the policy cache is consulted rather 

than passing the event to the policy manager, a much more expensive task. In case (3), 

the time taken to pass each event is ~1.8 milliseconds, with the overhead being 

negligible. In the first two cases, though, the policy filter contributes significantly to the 

total event processing time, ~77% and ~71% respectively. Therefore, even though the 
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policy filter overhead is only ~3 milliseconds per event, it becomes a performance 

bottleneck if the cache is not used. Also, we can see that the average time to process a 

valid query (~4.2 milliseconds) is higher than the time to process an invalid query (~2.5 

milliseconds). 

 

Scenario 2: A sphere (S) runs on an IBM Thinkpad T42 (1.7 GHz, 512 MB RAM) laptop 

and joins (becomes a member of) another sphere (T) running on a Sony Vaio MicroPC 

UX280P (Intel Core Solo U1400 processor, 1.2 GHz, I GB RAM); both machines ran 

Linux. Messages were exchanged through a TLS connection running over an 802.11b 

wireless channel. Application A running on the laptop associates with S and sends a 

number of events sequentially, the destination being application B running on the 

MicroPC and associating with T. The event flow path is A→S→T→B. We considered 

the total time for a set of events, and the values indicated below have the same meaning 

as in the case of Scenario 1. We considered four cases: 

1. The policy engine filter is completely omitted. 

2. The policy engine filter is used, but the policy cache is not; the policy governing the 

event evaluates to true. 

3. The policy engine filter is used for the first event, and the saved value looked up for 

all subsequent events. 

4. The policy engine filter is used, and a cache miss triggers a negotiation requiring S to 

produce a valid social voucher; T verifies the voucher and lets the event pass to B. 
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Table 8. Event Filtering Performance when Two Devices Interact (in milliseconds) 
 

 Policy Manager 
Overhead Total Time Policy Manager 

Overhead Per Event
(1) 10000 Events 404.23± 5.26 31355.85± 487.70 0.04± 0.00 
(2) 1000 Events 9351.55± 42.52 11623.34± 116.00 9.35± 0.04 
(3) 10000 Events 452.10± 86.75 30941.15± 481.45 0.04± 0.01 

(4) 1 Event 2575.93± 64.90 2575.95± 64.90 2575.93± 64.90 
 

The numbers in cases (1) and (3) are statistically identical, as expected. The time 

indicated in the left-hand column for case (1) is the time taken by the SphereAppChannel 

module to dispatch events to the application, and looking up the policy cache incurs 

almost no extra overhead. In each case, an event takes ~3.1 milliseconds to propagate on 

average. Running a policy engine query increases the total time ~4 times to ~11.6 

milliseconds, and the overhead is ~9.3 milliseconds per event, or ~80% of the total event 

processing time. The policy engine processing time is different from that observed in 

Scenario (1) because the queries were processed on the MicroPC rather than the 

Thinkpad, and because the policies were different on the former (though both evaluated 

the event pass query to true). In case (4), the first event requires ~2.6 seconds to process, 

but subsequent events will be processed in ~11.6 milliseconds (no cache) or ~3.1 

milliseconds (with cache). The average performance will therefore not change 

appreciably even if a negotiation is required. 

 

9.4.  Renegotiation Overhead 

When sphere S successfully negotiates with sphere B1, it incurs some overhead in 

deciding whether or not a renegotiation is required with other spheres that S is currently 

interacting with. We investigated how this overhead varied with the number of spheres 
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that S is currently related to, as a parent or a child. First, B1 negotiates successfully for 

membership in S. Then sphere B2 negotiates successfully for membership in S. The latter 

then tries to infer whether or not a renegotiation is required with B1. This incurs some 

overhead. Such negotiations continue (without resulting in renegotiations), until sphere 

Bk negotiates successfully. At that point, S initiates renegotiations with spheres B1 

through Bk-1. We varied k from 2 to 5, and present the overhead measurements in Figure 

25. The policies that govern these negotiations are stated as follows: 

appProhibitionLimit(k). 

member(X) :- numChildren(N),appProhibitionLimit(L), N>=L, 

runApp(X,prohibit,App), networkApp(App,[]), closedPort(X,111). 

member(X) :- numChildren(N),appProhibitionLimit(L), N<L, 

closedPort(X,111). 

member(X) :- childSphere(X),numChildren(N), appProhibitionLimit(L), 

N=L, closedPort(X,111). 

The graph in Figure 25 below indicates how the renegotiation overhead varies with the 

number of existing relationships. We found that the overhead for a given number of 

existing relationships remained almost constant with a change in the parameter k; hence, 

the measurements in the graph are averaged over all values of k. 
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Figure 25. Variation of Renegotiation Overhead with the Number of Existing Associations 

We can see a significant increase in the overhead as the number of existing 

associations increases; discounting the overhead at zero associations, this increase is 

roughly linear. This overhead is incurred by the process of running policy engine queries 

for every sphere that sphere A is currently associated with. The policies involve testing 

closedPort(…), which includes the time taken to make operating system calls, which 

results in the overhead. This overhead increases (roughly linearly for r >= 2) with the 

increase in the number of spheres for which such function calls have to be made. 

The overheads incurred when examination actually results in renegotiations are 

indicated by the graph in Figure 26. 
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Figure 26. Variation of Renegotiation Overhead with the Number of Attempted Renegotiations 

The above graph indicates a gentle, and roughly linear, increase in overhead with 

the number of spheres that A must renegotiate with. In absolute numbers, the timings are 

significantly lower than in the table above because the queries that resolved to false took 

significantly less time than queries that resolved to true. 

 

9.5.  Comparing Negotiation to Centralized Policy Resolution 

As we described in Chapter 8, it is possible to design an oracle that takes as inputs the 

policy sets and goals of the negotiators and outputs an optimal negotiation. Examining 

performance numbers and micro-benchmarks (see Sections 9.1 to 9.5) is useful, but a 

more realistic assessment of negotiation performance can be made by comparing its 

performance against the optimal case. Such comparisons vary widely with the 

characteristics of the input sets, and yield useful and illuminating results only when 
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conducted on a wide variety of inputs. Therefore, we are interested in obtaining statistical 

results from which we can draw useful conclusions and also predict policy resolution 

(both centralized and distributed) in the average case. We are primarily interested in how 

the number of negotiation steps (and predicted optimal number of steps) varies with 

different input sets, though we can observe other properties as well, such as the number 

of nodes in the policy resolution trees, the number of intermediate requests posed and 

granted, etc. Statistically, the nature of policy databases, as well as the number of optimal 

and negotiation steps in particular instances, affect the values of these metrics. 

In this section we show how negotiation performance was measured by 

generating a large set of test cases and running both the oracle (centralized policy 

resolution) and the negotiation protocol (distributed policy resolution) for a large number 

of test goals/requests. First we list the evaluation metrics. Then we characterize test 

inputs and list the parameters that can be varied to produce meaningful results. Following 

that, we describe the procedure through which we generated a large number of 

parameterized test cases, and conclude with the measurement results. 

 

9.5.1 Test Metrics 

 Steps: The number of steps taken for a negotiation can be compared to the number of 

optimal steps computed by an oracle for the same (or statistically similar) test case. 

The number of steps is related to the amount of network activity, and we would like 

the number of negotiation steps to be as close as possible to the number of oracular 

steps. We can also observe how the number of negotiation steps varies with the 
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characteristics of the policy databases (to be discussed later). 

 Size (number of nodes) of the Policy Resolution Tree: The number of nodes in the tree 

that is generated, either by the oracle or collectively for the negotiators, is a measure 

of the amount of computation performed. An associated metric is the number of 

nodes per database unit (#nodes / #policy rules in database), as the size of the 

database is likely to inherently affect the size of the generated tree. 

 Processing Time: Measuring the actual system processing time is useful for the same 

reason as in the case of the nodes metric. Though this metric is expected to highly 

correlate to the number of nodes, differences are likely because the processing time 

for nodes may vary. The average time taken per step of negotiation (measured for 

each negotiation or oracular resolution instance) is a useful metric as well, because 

negotiation steps involve actions (such as counter-request generation and offer 

evaluation) that could vary widely in the amount of time taken. As in the case of the 

nodes metric, we also need to observe the time (total, and average per step) taken per 

database unit. 

 Number of Alternatives: In a negotiation, the counter-request generation procedure 

produces a number of alternatives, some of which may succeed (i.e., sending them as 

requests may yield an affirmative offer). Were the negotiation protocol to select the 

correct alternative at every step, it would terminate in the number of steps predicted 

by the oracle. But in the absence of complete knowledge, this is not possible. We 

must therefore investigate how many alternatives are examined on average compared 

to the number of alternatives generated. This is a measure of protocol efficiency. The 
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fewer the number of alternatives examined, the better. Our negotiation procedure uses 

a simple heuristic of selecting the alternative (set of requests) of least cardinality. 

 Position of Valid Alternatives: In the alternatives metric, there might be various cases 

when all alternatives are examined, none yielding an affirmative offer. This implies 

that a particular branch of the policy resolution tree failed. To observe how many 

alternatives are examined on average before a valid one is found, we count only those 

examinations that eventually lead to an affirmative offer. 

 Intermediate Requests Granted: A number of intermediate requests and offers are 

generated by the negotiation protocol. The number of such requests satisfied (by 

either negotiator) gives a measure of the privacy maintained. Observing the number 

of intermediate requests generated, the number of requests granted, and the fraction of 

the requests generated that are granted, tells us how good the privacy-maintaining 

properties of negotiation are. 

We did not consider the nature of the generated agreement as a test metric, 

because it is not very meaningful in this context. This is because the negotiation protocol 

is agnostic of the nature of the policy rules and the goals. Negotiation finds one among a 

number of equivalent goal assignments; i.e., if an oracle can find a way to satisfy a set of 

goals, a complete negotiation protocol must do so as well. A different but equally “good” 

agreement is acceptable within this definition. For example, in our ubiquitous conference 

room (see Section 7.2), any one among a set of printers may be offered, since the guest 

device simply requested a printer. To a user, a color printer may be qualitatively superior 

to a black-and-white printer. But the negotiation protocol cannot distinguish between 
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them unless the user explicitly expresses a preference in his goals. For every scenario, a 

theoretically optimal negotiation exists, whereby negotiators can reach one among a 

number of qualitatively equivalent agreements in the least number of steps. The number 

of steps in an actual negotiation depends on the heuristic used to select an alternative 

counter-request at any step. In an optimal negotiation, the first alternative selected always 

succeeds, whereas multiple “false leads” are followed in real negotiations, resulting in 

increase in the number of steps. 

 

9.5.2 Characterization of Test Inputs 

The key challenge in producing statistically meaningful performance results for 

negotiations is the generation of test cases whose characteristics can be controlled 

through well-defined parameters. Our test cases consist of policy databases and initial 

goals, though once we generate the databases, we could generate a set of goals simply by 

examining the list of policies and extracting the heads of clauses. In randomly generated 

databases, a large fraction of such goals are likely to result in failure, but a significant 

fraction (the remainder) will result in success. Given a suitably large number of test cases 

generated randomly (through a procedure we will describe later), we can generate a large 

number of negotiation scenarios that produce successful negotiations of varying length. 

For simplicity, each negotiation instance consists of exactly one initial goal/request. The 

metrics described above can be measured using single-request negotiations. Though some 

multiple request negotiations will shed some light on the solution quality (certain 

intermediate requests may conflict, as we discussed in Chapter 8), the vast majority of 
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negotiations will only tell us how processing overhead increases with more requests. 

Also, the time taken to run our tests was quite large for single request negotiations, and 

the running time would have been prohibitively high for multiple request negotiations. 

Policy databases consist of statements, i.e., facts and rules. One measure of 

database size is simply the total number of facts and rules in the database. Another 

measure is the total size of all policy rules. But these parameters, though relevant, may 

have little or no correlation with the actual performance of policy resolution (either 

centralized or decentralized) as reflected by our metrics. This is because not all facts and 

rules are relevant to a particular negotiation goal. Indeed, it is hard to characterize a 

policy database (or pair of databases given as inputs) quantitatively in an exact manner. 

Therefore, we turn to the next best option—the expected size of a derivation tree (the 

number of tree nodes) that results from providing a random input (requests) to a policy 

resolver that knows what facts and rules are present in one or both databases. Whether the 

resolution is centralized or distributed, each node in the tree (which represents a database 

element, either a fact or a rule) is examined once, so the number of nodes has a direct 

impact on performance. We implicitly assume uniform processing time per node (i.e., 

time varies linearly with number of nodes). This does not hold true in real-life scenarios, 

as helper functions associated with requests and offers increase processing time 

arbitrarily, but the assumption is reasonable for testing purposes. We did not use or 

simulate helper functions, which is a simplifying assumption but one that preserves the 

theoretical correctness and completeness properties of the negotiation protocol. To 

generate non-trivial database pairs, we set bounds on the maximum size of derived trees. 
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A tree can be bounded by two parameters: breadth, or branching factor, and depth. 

Random database pairs that generate policy resolution trees whose sizes are bounded by a 

given <breadth, depth> tuple can be generated. Negotiation and oracular policy 

resolution characteristics (the metrics listed above) will vary directly with variations in 

breadth and depth of the input databases. 

Our performance measurement strategy involved generating a large number of 

database pairs for a range of breadth and depth values. Both oracle and negotiation tests 

were conducted for a set of requests for each input, and readings recorded. (Note: Using 

tree sizes (particularly depth) to characterize the performance of systems is not unique 

[Minami2006] to our framework, though our experience with generation of random test 

cases provides valuable lessons to other researchers. We are also hopeful that our 

experiences will make the case for establishing tree branching factors and depths as 

performance benchmarks for logic-based expert and semi-expert systems.) 

 

9.5.3 Test Parameters 

To generate test cases (pairs of databases), we use the following parameters: 

 Maximum Branching Factor (b): Any database pair constructed using this parameter 

can never result in a policy resolution tree that has a higher branching factor (number 

of immediate descendants, or children, of a node) than b. This parameter indicates a 

bound rather than an exact or approximate characteristic. Also, the trees are not 

guaranteed to be balanced; nodes at an intermediate level could have any number of 

children, varying in the range [1….b]. In practice, a large number of trees with 
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branching factor much smaller than b will be generated as well, depending on the 

goal/request provided as input. 

 Maximum Depth (d): Any database pair constructed using this parameter can never 

result in a policy resolution tree that has a higher depth (distance from the root node 

to a leaf node) than d. This parameter indicates a bound rather than an exact or 

approximate characteristic. Also, the trees are not guaranteed to be balanced; leaf 

nodes could lie at any distance from the root, varying from 1 to d. In practice, a large 

number of trees with maximum depth less than d will be generated as well, depending 

on the goal/request provided as input. 

Why Bounds?—A database consists of facts and rules, whose relations are 

specified through the Horn clause syntax. It is possible to generate a set of random facts 

and rules that will result in exactly one tree with uniform b and d. But this tree would 

manifest itself in practice only if the posed request corresponds to its root. In other words, 

guaranteed values of b and d are characteristic of a tree and not of a database. A database, 

on the other hand, can only be characterized through bounds or averages. A random 

request will result in the generation of a proof tree with branching factor at most b and 

depth at most d. Ensuring that a self-contained set of predicates will always produce a 

tree of guaranteed branching factor and depth is not possible. Generation of rules will 

result in cycles, and our query procedure would fail. Hence, we use bounds rather than 

guarantees on b and d. (Note: We conjecture that average values of b and d may be useful 

characteristic parameters as well. For our study, we just happened to pick maximum 

bounds, and we intend to use averages as our parameters in future work.) 
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The test results for all the database/goal scenarios can also be collected and 

classified on the basis of the following parameters: 

 Predicted Number of Steps for an Optimal Negotiation: The least number of 

negotiation steps computed by the oracle provides a good classification basis. For 

example, we generate statistical results on all result sets (based on the metrics listed 

earlier) for which the oracle-predicted number of steps is 3; likewise for 5, 7, etc.  

(Note: The number of steps is always an odd number because every request must have 

a corresponding offer and every negotiation ends with a termination message.) 

Statistical results could be compiled for the metrics listed above. Instead of using 

predicted bounds on the generated trees, we use actual bounds on the generated trees 

(though the database characteristics could vary across the range of maximum 

branching factors and depths). 

 Number of Negotiation Steps: The actual number of negotiation steps also provides a 

good classification basis. Statistical results are compiled for the metrics listed above. 

 

9.5.4 Generation of Test Cases 

To run a test scenario for policy negotiation as well as centralized policy resolution using 

an oracle, the following must be provided as inputs: 

 Names of the two negotiators, expressed in the form of Panoply sphere IDs 

 An initial request posed by one negotiator to the other (multiple such requests can be 

posed for the same set of policy databases, as we will see later) 

 A pair of policy databases 
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o A policy database (set of policies) consists of a set of facts (f) and rules (r). 

o Each fact will be of the form: 

 pred(arg1,arg2,arg3,……argn). 

o Each rule will be of the form: 

 pred(arg1,arg2,arg3,……argn) :- pred1(arg11,arg12,arg13,……arg1n), …… 

 

The following are inputs to the test generation procedure: 

 The size of a database pair: 

o bmax: Maximum branching factor of derived policy resolution trees 

Random rules (Prolog clauses) are generated so that the body of the clause does 

not contain more than bmax predicates. 

o dmax: Maximum depth of derived policy resolution trees 

Random rules are generated so that a predicate will be added to the body of a 

clause only if the depth of any proof tree generated using the database pair does 

not exceed dmax. 

o initialNumRules: Initial number of rules/clauses in both databases combined 

This does not indicate the final database size. During database generation, more 

rules will be generated to increase the number of available negotiation 

alternatives. 

 Policy statement ontology: 

o As described in Chapter 4, we have a pool of designated (keyword) predicates and 

argument names drawn from our policy language ontology that represent object 
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types, action types, states, requests, characteristics of objects, and instances of 

objects. The predicates have fixed arities (number of arguments). These predicates 

and arities are given below: 

 requestNames = {"accessInfo/2", "obey/2", "access/2-3", "member/1"} 

 stateNames = {"possess/1-2", "action/2", "memberIn/1"} 

 queryNames = {"location/1", "tim/1", "displayName/1", 

"printerName/1", "groupName/1", "groupSize/1", "bandwidth/1", 

"storage/1", "parentName/1", "childName/1"}      

 objectNames = {"voucher/1", "printer/1", "file/1", "disp/1", "door/1"} 

 characteristicNames = {"type/2", "directory/2", "group/2", "brand/2"} 

o All predicate names are drawn from this pool of keywords. This pool is 

representative of real-world scenarios and is sufficient for generating meaningful 

test cases for the range of breadth and depth values we are interested in. 

o Most arguments of the facts are randomly generated Prolog constants (based on 

the Prolog syntax). These constants could be strings as well as integers. Some 

arguments are drawn from a fixed pool, such as the following: 

 actionNames = {"run", "closePort", "prohibit", "play", "open", "close"} 

 possessionNames = {"diskSpace"} 

 constantNames = {"type-color", "type-bw", "brand-hp4150", "brand-

hp7100", "group-ucla", "group-acm","group-ieee"} 

o These random constants introduce variations in the nature of policy databases, in 

addition to the quantitative parameters. 
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o All arguments of predicates in either the head or body of a clause are Prolog 

variables (random strings that begin with a capital letter). 

 

Algorithm: 

1. Drawing from the object name pool, generate at most bmax “ground predicates” that 

will be asserted as facts. All arguments will be stub variables. 

For example: printer(X), door(X). 

2. Count the total number of arguments in this set of ground predicates; let it be equal to 

numArgs. Generate numArgs random Prolog constants. Substitute the stub variables 

in the ground predicates with these constants. 

 For example:  printer(o), door(zp). 

3. Drawing from the query name pool, generate at most bmax query predicates and assign 

arguments as above. 

 For example: groupSize(d), displayName(q). 

4. Drawing from the characteristic name pool, generate at most bmax predicates 

corresponding to characteristics of objects and actions, and assign arguments. 

 For example: type(uf,color), brand(e1,hp4150). 

5. Associate every characteristic predicate with a ground predicate. 

 For example: {printer(o),brand(o,hp4150)}, {voucher(ec),group(ec,acm)}. 

6. Drawing from the state name pool, generate at most bmax state predicates. Associate 

ground predicates with each state predicate. Substitute the arguments in the ground 

predicates within the corresponding state predicates. 
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 For example: {possess(o), printer(o), brand(o,hp4150)}. 

7. Split the set of state predicates generated above into two equal halves, one set to each 

policy database. Assign each state predicate to one set or another in a random manner. 

For every ground predicate associated with the state predicates, assign each to the 

corresponding policy database. Also assign it to the other policy database with a 

probability 0.5. 

8. Drawing from the request name pool, generate at most initialNumRules predicates 

corresponding to heads of clauses. 

 For example: obey(X,closePort). 

9. For each clause, add a suitable state predicate (and associated ground predicates) or a 

query predicate to the body. 

 For example: access(X,VAR) :- voucher(VAR),type(VAR,VAR1). 

10. Assign each clause to the same database that its corresponding state predicate is 

assigned to. 

11. Associate a depth value to each clause and initialize it to -1. Then, for each clause, 

associate a depth value of 0 with probability 1/dmax. The depth value of each clause 

indicates the maximum height of a proof tree rooted at the head of that clause (see 

Figure 21). Here, we force a fraction of the clauses to be leaves. The remaining 

clauses are initialized to have ambiguous depth so that they can be augmented. 

12. Enhance each clause by adding more predicates to its body. Again, based on how a 

proof tree is derived, children of a tree node represent other clauses. Therefore, when 

we add predicates to the body of a clause during test generation, we are effectively 



 268

adding children in a potential policy resolution tree. We must also prevent cycles in 

proof resolution. Therefore, the set of candidate “child” clauses from which body 

predicates can be drawn is restricted. 

13. Initialize the set of candidate children for each clause with depth -1. This set contains 

all clauses whose heads are not similar to the head of the clause under consideration. 

For example: if both clauses C1 and C2 are of the form access(VAR1,VAR2) :- …, 

neither of them can be used to augment the body of the other. On the other hand, if C1 

is of the form access(VAR1,VAR2) :- ………… and C2 is of the form obey(VAR1,run) 

:- …………, C1 would be a candidate child of C2 and vice versa. 

14. For each value in the range 1 to bmax: 

a. For each clause C, attempt to augment the body with a certain probability (we 

selected a probability of 0.5). 

b. To augment the body, draw a clause C’ from the candidate children set of C.  If 

the candidate children set is empty, do not augment the body of C. Format the 

state predicate associated with the C’ and add it to the body of C. Formatting of 

the clause involves adding extra arguments (variables) to predicates that are 

drawn from clauses that have been assigned to a different database. 

c. Update the depth of the C in the following way: depth(C) = max(depth(C), 

depth(C’) + 1). 

d. Update the list of candidate children of every clause. Children include those 

clauses that are not potential parents in a proof tree (we keep track of all 

descendants of each clause for this purpose), are not similar Prolog predicates and 
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whose depth value does not exceed dmax. The last condition enforces the depth 

bound criterion on the generated test database pair. 

e. For every augmented clause C, if the selected child clause (C’) belongs to the 

same database, add an extra clause by duplicating C and modifying the predicate 

associated with C’ by formatting it as if it belonged to the other database. This 

creates two clauses from one, and results in more available alternatives in 

negotiation scenarios. We added this feature after discovering that our preliminary 

attempts at generating database pairs resulted in few or no alternatives during 

actual negotiations. 

 

Realism of Generated Policy Databases: The policy databases generated by the above 

algorithm reflect the types of databases we have used in our example applications (see 

Chapter 7) and also other databases that ubicomp domains will use in practice, were they 

to run a policy manager built along our design. Our test case vocabulary (described 

earlier) is almost identical to the actual vocabulary (see Appendix A). We did use a few 

extra keywords for designated (global) predicate and parameter names (e.g., 

{groupSize/1, type/2, brand/2}). But this does not detract from the realism of the 

generated databases, as the policy engine algorithms and the negotiation protocol itself is 

agnostic of these names. We described in Chapter 4 how different domains could choose 

different local vocabularies and agree on a shared global vocabulary. This agreement is 

domain- and application-dependent, and virtually any names consistent with the SWI-

Prolog syntax will suffice. Apart from the names, our databases contain facts and Horn 
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clauses, using the same operators that we would use in real policy databases. Hence, we 

can confidently assert that our test case generator produces realistic test scenarios. 

 

Generation of Initial Requests: 

The initial requests are drawn from the state predicates and their associated ground 

predicates generated in step 6 above. Therefore, the number of initial requests generated 

for each database pair is equal to the number of state predicates generated in step 6. 

Requests are generated for both negotiators, so that we obtain multiple test scenarios with 

the same policy database pair. This enables the generation of a much larger number of 

test cases than the number of database pairs. Since database generation is a time-

consuming process, especially as the breadth and depth bounds increase, generating 

multiple requests for each pair is practically useful. Below, we list the initial requests 

generated for the pair of databases whose contents are listed above. 

 

Appendix B lists an example policy database and request set pair generated by the test 

case generation algorithm described above. 

 

9.5.5 Test Results 

Platform: The experiments were conducted on an Intel P4 (2.53 GHz, 512MB RAM) 

desktop. Though negotiations in real-world scenarios would be conducted between two 

computers connected by a network, they can be conducted between two distinct spheres 

running on the same computer as well, the only difference being the low communication 
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latency in the latter case. Because we were interested only in the performance of the 

negotiators and their processing times, running both negotiating spheres on the same 

computer made sense, especially as it eliminated network latency and yielded quicker 

results. Each negotiator process waits for a response while the other is running. Since the 

processing times don’t overlap, we were able to record accurate readings. 

 

Test Cases: We generated test cases for the following parameter values: 

 bmax varying from 1 to 10 

 dmax varying from 1 to 20 

 numRules = 28 

Note that this is the initial number of rules input to the test case generators. The 

final number of rules, after generation of alternative clauses, is variable, though always 

greater than numRules. We selected this value based on the size of the request predicate 

pool (which is equal to 4) and used trial and error, whereby 7 clauses of each request type 

will be generated initially. We chose 7 simply because we found lower values provided 

less diverse and meaningful test cases, whereas higher values resulted in higher running 

times than we were willing to tolerate. 

The alternative selection heuristic used by each negotiator running our protocol 

was the least cardinality of the request set. 

For each value of <bmax, dmax>, 40 test cases (database pairs) were generated. 

Therefore, a total of 200*40 = 8000 database pairs were generated. The total number of 
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policy statements in all these databases is equal to 988263, or an average of ~62 

statements per database. 

A variable number of initial requests were generated for each test case. The total 

number of scenarios (<database-pair, initial-request>) generated for any breadth and 

depth value was equal to 194953, or an average of ~24 requests per database pair. 

 

9.5.5.1 Metric Results Based on Parameters 

We ran tests for every database pair and our recorded results are associated with the 

corresponding pair. To make sense of the results, we aggregated them based on certain 

parameters and ran statistical measurements. The parameters and the measured metrics 

are listed in Table 9 below. Following that, we present and analyze the results (in the 

same row and column order as shown in the table): 

Table 9. Roadmap to Results of Optimality Measurements 

Measured Metrics Aggregation 
Parameters Number of 

Negotiation Steps 
Size of Policy 

Resolution Tree
Processing 

Time 
Intermediate 

Requests 
Examined 

Alternatives

(a) Length of Optimal 
Negotiation (lmin)      

(b) Length of Actual 
Negotiation (lneg)      

(c) Database Branching 
Factor Bound (bmax)      

(d) Database Depth Bound 
(dmax)      

 

9.5.5.1.1 Length of Optimal Negotiation (lmin) 

We first aggregated all the results obtained for all <bmax, dmax> pairs and classified them 

based on the optimal negotiation length as estimated by the oracle. From our 
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measurements, we were able to obtain test cases with optimal negotiations in the 

following set: {-1, 3, 5, 7, 9, 11, 13, 15, 17, 19}. The -1 value indicates a failed 

negotiation, i.e., no valid derivation tree exists for the particular goal. All other numbers 

are odd because negotiations typically consist of request-offer pairs and always end with 

a termination message. Results based on individual metrics are indicated below. 

 

Number of Steps: Figure 27 and Table 10 below show how the number of actual 

negotiation steps compares with lmin (the mean is reported with 99% confidence 

intervals). 
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Figure 27. Comparison of Actual and Optimal Negotiation Steps 
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As the values indicate, the mean and median curves almost coincide; therefore, 

we can characterize the number of negotiation steps tightly. The number of negotiation 

steps seems to increase linearly with increase in lmin on the average. This conclusion is 

validated by the fact that running a linear regression on the mean negotiation steps data 

set gives us an R2 value of 0.99, and the slope is 2.11. The minimum number of 

negotiation steps seems to increase linearly as well until lmin=15. In fact, the minimum 

number of negotiation steps is identical to lmin for each value; this indicates that 

negotiations are sometimes optimal in real-world situations. The reason for convergence 

of the curves is simply because the number of data points (frequency) is rather small for 

higher values of lmin; in fact, we have only one data point for lmin = 19. The maximum 

number of negotiation steps seems to oscillate somewhat between alternate data points, 

yet seems to follow a roughly increasing trajectory, being approximately 5 to 12 times the 

mean (or median) number of negotiation steps. 

Table 10. Comparison of Actual and Optimal Negotiation Steps 
OPTIMAL NEGOTIATION 

STEPS ACTUAL NEGOTIATION STEPS 

 Mean Max Min Median 
-1 3.74 79 3 3 
3 3.00 15 3 3 
5 6.33 61 5 5 
7 9.84 37 7 9 
9 13.54 47 9 13 
11 17.69 43 11 17 
13 21.97 51 13 21 
15 27.64 47 15 27 
17 32.71 47 23 33 

 
The special case of lmin = -1 is also interesting to observe. As would be expected, 

more than half the negotiations (~55%) failed, so we obtained a very large number of 
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data points. But both the mean and median values were very close to 3 (actually 3.74), 

which is the shortest negotiation one could hope for even when the result is failure. On 

the other hand, the wide variation can be observed from the maximum number of 

negotiation steps, which was found to be 79; this was a case where the policy databases 

yielded a large number of alternatives that had to be explored. 

 

Number of Policy Resolution Tree Nodes: Figures 28 and 29 indicate how the average 

number of nodes examined varies with the optimal negotiation length. The numbers are 

reported with 99% confidence intervals. 
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Figure 28. lmin: Number of Nodes Examined During Policy Resolution 
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Figure 29. lmin: Number of Nodes Examined per Unit Database (Number of Nodes / Number of Policy 
Statements in the Database) 

The confidence intervals for negotiations are particularly large for higher values 

of lmin. This is simply because there are fewer instances (data points) for such 

negotiations, leading to high variance. Given more time and more instances, we would 

likely obtain tighter bounds. Indeed, based on the shapes of the curves up to lmin = 13, we 

can extrapolate a roughly exponential curve with a high degree of confidence. An 

exponential curve is expected, given that trees grow exponentially with increase in depth 

(which correlates with number of steps). Also, the oracular tree curves indicate a much 

gentler exponential rise compared to negotiation trees. Given that the number of steps for 

a typical negotiation is much larger than the corresponding value of lmin, this is an 

expected result as well. But the ratio between the number of nodes rises more gently, in a 

roughly linear way; the ratio of negotiation tree nodes to oracular tree nodes is ~7 for lmin 
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= 5 and is ~12 for lmin = 13. We cannot control the length of the optimal negotiation, but 

this is an encouraging result for the prospect of optimizing negotiations in the future. At 

the very least, it indicates that negotiation performance does not suffer too badly in 

comparison to oracular policy resolution. 

The curves in both Figures 28 and 29 have virtually identical shapes. Though that 

does not tell us anything more about how tree size varies with lmin, it does indicate that an 

increase in the database size implies a similar proportional increase in the number of tree 

nodes for both kinds of policy resolution. 

 

Processing Time: Figures 30 to 33 indicate how the processing time for policy resolution 

varies with the optimal negotiation length. 
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Figure 30. lmin: Total Processing Time for Policy Resolution 
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Figure 31. lmin: Average Processing Time for Policy Resolution per Negotiation Step 

Figures 30 and 31 show similar trends to that observed in the case of the number 

of nodes in a policy resolution tree. We see a similar exponential rise up till lmin = 13, and 

variable behavior beyond, owing to lack of data points. On average, the slowest policy 

resolution occurs at lmin = 17, where the oracle takes ~85 seconds to complete, whereas 

the negotiation protocol terminates in ~120 seconds. A more typical negotiation would 

occur at lmin = 11, where the negotiation time is 40 seconds. Though tolerable in many 

mobile and pervasive computing situations, this is nevertheless quite slow and offers 

room for optimization. Faster processors would no doubt help, but one fears that 

limitations in AI techniques (expert and semi-expert systems, which emulate search, have 

inherently exponential growth) are a larger bottleneck. 

The graph in Figure 31 is more encouraging, and indicates that the time taken per 

negotiation step is lower (and increases at a lower rate) than the corresponding time taken 
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per unit step by an oracle. The reason may be straightforward. Processing during a 

negotiation session involves running queries to check whether requests comply with 

policies, and generation of counter-requests and alternative offers. An increase in the 

number of steps would likely result, on average, in a proportional increase in processing 

time. On the other hand, an oracle would have to exhaustively examine a large number of 

tree paths (including paths that eventually lead to failure). The processing time may 

increase, even for a short negotiation, thereby increasing the average processing time per 

step. Therefore, if we were able to optimize negotiations by finding heuristics that could 

decrease the number of negotiation steps on average, we could end up with significant 

savings in system processing time. 
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Figure 32. lmin: Total Processing Time for Policy Resolution per Unit Database (Total Processing Time / 
Number of Policy Statements in the Database) 
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Figure 33. lmin: Average Processing Time for Policy Resolution per Negotiation Step per Unit Database 
(Average Processing Time / Number of Policy Statements in the Database) 

 

The curves in Figures 32 and 33 virtually replicate the results indicated in the 

earlier curves (Figures 30 and 31). As in the case of the tree size, this simply confirms 

that processing time increases proportionally with respect to both the number of tree 

nodes and the size of the policy database. 

The examined nodes and processing time graphs (Figures 28 to 33) indicate that 

failed negotiations (lmin = -1) result in small (or minimal) trees on average. The 

processing time for such negotiations is ~1 second on average. This is a good result, as it 

indicates that our negotiation protocol does not waste processing time when the result is a 

likely failure, irrespective of the database size or the breadth and depth bounds. 
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Number of Intermediate Requests: We measured the number of intermediate requests 

posed by a negotiator to another (intReq) as well as the number of such requests that 

resulted in an affirmative offer (intReqGranted). For each test scenario, the fraction of 

requests granted (intReqGranted/intReq) was measured. We only considered those test 

cases for which a non-zero value of intReq was recorded. Averages of these fractions 

were computed for each unique value of lmin. Figure 34 shows these fractions with 99% 

confidence intervals. 
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Figure 34. lmin: Average Fraction of Intermediate Requests Granted 

We can see that the fraction of intermediate requests granted decreases 

monotonically (disregarding the point on the curve corresponding to failed negotiations: 

lmin = -1) with increase in lmin. The maximum value (0.89) occurs at lmin = 3. Extrapolating 

to higher values of lmin, we may expect the curve to flatten out, eventually reaching a 



 282

terminal value of about 0.6. The nature of the curve makes this assertion plausible. Lower 

values of lmin seem to be outliers. The reason why the fraction is high for lower values of 

lmin may simply be because the number of intermediate requests itself is fairly low. 

Negotiations where lmin = 3 would mostly be of length 3 or 5, as is evident from the 

average number of negotiation steps. Successful negotiations of length 5 comprise one 

intermediate request which results in an affirmative offer, resulting in a fraction value 

equal to 1. The larger number of 1s at lower values of lmin increases the average. This 

does not happen at higher values of lmin. The monotonic decrease of this fraction indicates 

that the negation protocol is effective at maintaining privacy to some extent. 

As the vast majority of intermediate requests in failed negotiations result in 

declined offers, and a large number of fraction values are expected to be 0, it is no 

surprise that the average fraction at lmin = -1 is very close to 0 (~0.13). 
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Figure 35. lmin: Average Fraction of Alternatives Examined 
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Number of Alternatives: We measured the number of alternatives generated by 

negotiators (alts) as well as the number of these alternative requests that resulted in an 

affirmative offer (altsExamined). For each test scenario, the fraction of alternatives 

examined (altsExamined/alts) was measured. Only those test cases were considered for 

which a non-zero value of alts was recorded. Averages of these fractions were computed 

for each unique value of lmin. The graph in Figure 35 shows these fractions with 99% 

confidence intervals. 

We can see a roughly linear (though gentle) increase in the fraction of alternatives 

examined with an increase in lmin, though the curve may eventually flatten out in a way 

similar to the curve representing the fraction of intermediate requests granted. At lower 

values of lmin, fewer alternatives exist, and the correct alternative apparently gets 

examined earlier, leading to a smaller fraction value. In fact, this is reflected in the graph 

below as well, which indicates the average number of alternatives examined before a 

valid one is obtained. When lmin = -1, since negotiations fail, almost all fraction values are 

equal to 1; this is because the negotiation protocol engine attempts an exhaustive search. 

To make this clearer, some alternatives may succeed, but the satisfaction of a few 

affirmative offers may not be enough to allow a negotiation to succeed. Our policy 

resolution tree is an AND-OR tree, and all branches of an AND node must be satisfied 

for the policy resolution to succeed. Therefore, the average fraction of alternatives 

examined is ~0.96. 

The fractions of alternatives examined in Figure 35 between 0.5 and 0.7. But 

these cover a range of negotiations whose steps vary from 3 to 79. For realistic 
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negotiations, the fraction is therefore significantly below 1. Better heuristics based on 

extra knowledge of the negotiating domains may improve the efficiency. 
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Figure 36. lmin: Average Position of the First Valid Alternative 

Given a set of generated alternatives (SA), a negotiator sends PA (PA <= SA) in the 

form of requests. Therefore, PA is the position of the first valid alternative. The above 

graph (Figure 36) indicates the average value of PA; roughly, we can see it increasing 

linearly with an increase in lmin. This conclusion is validated by the fact that running a 

linear regression on the average position data set gives us an R2 value of 0.99 (the slope is 

0.06). But for the wide range of measured negotiations (a large number of which lie 

beyond our estimated “realistic” range), the second alternative appears to be the correct 

one on average. Note: These results are drawn only from scenarios that actually contain 
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valid alternatives; there are a number of cases where no valid alternatives were found, 

and these cases are not represented in the above graph. 

 

9.5.5.1.2 Length of Actual Negotiation (lneg) 

We aggregated all the results obtained for all <bmax, dmax> pairs and classified them based 

on the actual number of steps used by the negotiation protocol. The shortest negotiation 

(either successful or failed) obviously consisted of three steps. Results based on 

individual metrics are indicated below. 

 

Number of Policy Resolution Tree Nodes: Figures 37 and 38 indicate how the average 

number of nodes examined varies with lneg. 
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Figure 37. lneg: Number of Nodes Examined During Policy Resolution 
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Figure 38. lneg: Number of Nodes Examined per Unit Database (Number of Nodes / Number of Policy 
Statements in the Database) 

 

The graphs in Figures 37 and 38 show meaningful trends for values of lneg lower 

than 40-45. This limit well exceeds the length of negotiations in realistic scenarios. The 

number of nodes seems to increase in a roughly linear, or a very gentle exponential, 

manner. Since the number of steps correlates with the depth of the distributed policy 

resolution tree, we would expect an exponential increase in the number of nodes. 

Therefore, an increase that appears to be linear to the naked eye reflects well on the 

performance of the negotiation protocol. 

The reason why the points at higher values of lneg seem to be scattered randomly 

is because the number of data points is very small, and our confidence in those values 

being representative is fairly low. 
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Normalizing the number of nodes with the size of the database yields a virtual 

replica of the earlier curve, conveying no new information in the process. 

 

Processing Time: Figures 39 to 42 indicate how the processing time for policy resolution 

varies with the actual negotiation length. 
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Figure 39. lneg: Total Processing Time for Policy Resolution 

The graph in Figure 39 is, not surprisingly, very similar to the graph in Figure 37 

(number of nodes versus negotiation length). An exponential increase in the processing 

time with an increase in lneg is more evident here. The portion of the curve beyond lneg = 

~40 does not yield any meaningful information due to lack of data points. 
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Figure 40. lneg: Average Processing Time for Policy Resolution per Negotiation Step 

The curve in Figure 40 indicates that the processing time per negotiation step 

increases at a much slower rate asymptotically compared to the total time. This is an 

encouraging result, as it means that longer negotiations are more efficient than shorter 

ones, even though they will end up consuming more time and bandwidth just because 

they happen to be longer. 
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Figure 41. lneg: Total Processing Time for Policy Resolution per Unit Database (Total Processing Time / 
Number of Policy Statements in the Database) 
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Figure 42. lneg: Average Processing Time for Policy Resolution per Negotiation Step per Unit Database 
(Average Processing Time / Number of Policy Statements in the Database) 
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Normalizing the processing time with the size of the databases again seems to 

yield no new information, as is evident from the Figures 41 and 42. 

 

Number of Intermediate Requests: We measured the number of intermediate requests 

posed by a negotiator to another (intReq) as well as the number of such requests that 

resulted in an affirmative offer (intReqGranted). For each test scenario, the fraction of 

requests granted (intReqGranted/intReq) was measured. We considered only those test 

cases for which a non-zero value of intReq was recorded. Averages of these fractions 

were computed for each unique value of lneg. 
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Figure 43. lneg: Average Fraction of Intermediate Requests Granted 

The graph in Figure 43 indicates a general decreasing trend in the fraction of 

intermediate requests granted, though we can observe oscillations between adjacent data 
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points. The oscillations are probably because adjacent negotiations are often 

distinguished by an extra request-affirmative offer pair of steps, thereby changing the 

average fraction value. The fraction falls from a peak of almost 1 (for a short negotiation) 

to almost 0 (for negotiations longer than 50 steps). One reason for this trend may be that 

longer negotiations tend to be failed negotiations, in which a large number of 

intermediate requests are made, but virtually none granted. Still, this curve does indicate 

that the negotiation protocol is fairly good at maintaining privacy, because even though 

the number of intermediate requests granted increases with an increase in the number of 

steps, it is only a small fraction of what could potentially be granted. 

 

Number of Alternatives: We measured the number of alternatives generated by 

negotiators (alts) as well as the number of such requests that resulted in an affirmative 

offer (altsExamined). For each test scenario, the fraction of alternatives examined 

(altsExamined/alts) was measured. Only those test cases were considered for which a 

non-zero value of alts was recorded. Averages of these fractions were computed for each 

unique value of lneg. 
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Figure 44. lneg: Average Fraction of Alternatives Examined 
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Figure 45. lneg: Average Position of the First Valid Alternative 



 293

From the graph in Figure 44, we can see that the fraction of examined alternatives 

seems to rise till lneg = ~20 and remain constant (~0.8) beyond that. Note: most of the data 

points lie below lneg = 20. This indicates that longer negotiations tend to examine a 

roughly constant percentage of the number of alternatives generated. As a metric of 

efficiency, this is an encouraging result as it indicates that using better heuristics would 

result in performance gains (i.e., a lower fraction of alternatives will be examined). 

On average, the graph in Figure 45 indicates the position of the first valid 

alternative roughly increases with an increase in lneg for the range lneg <= ~20. Beyond 

that, the position seems to be roughly constant, and is ~2. This means that even with an 

increase in the number of negotiation steps, the probability of hitting a valid alternative 

after examining two alternatives are high on average. Note: These results are drawn only 

from scenarios that actually contain valid alternatives; there are a number of cases where 

no valid alternatives were found, and these cases are not represented in the above graph. 

 

9.5.5.1.3 Bound on Tree Branching Factor (bmax) 

We aggregated all results and classified them based on the branching factor of the test 

scenarios that yielded them. Results based on individual metrics are indicated below. 

 

Number of Steps: Figures 46 and 47 show how the number of optimal and actual 

negotiation steps increase with an increase in bmax. We can observe not only how the 

number of steps in each type of policy resolution varies (Figure 46) but also how the ratio  
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Figure 46. bmax: Average Number of Policy Resolution Steps 

0.8

0.9

1

1.1

1.2

1.3

1.4

0 2 4 6 8 10 12

Database Branching Factor Bound

R
at

io

 

Figure 47. bmax: Policy Resolution Step Ratio (Number of Negotiation Steps / Optimal Number of Steps) 
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of actual and optimal (least number of) negotiation steps in each test scenario varies 

(Figure 47) with an increase in the branching factor bound. For proper comparison, the 

oracle considers the number of steps in a failed negotiation to be equal to 3, as this is the 

least number of steps in which a negotiation can fail. All quantities are reported with 99% 

confidence intervals. 

We can observe a monotonic increase in the number of optimal steps, actual 

negotiation steps, and the ratio of actual-to-optimal negotiation steps, with bmax. The 

increase of each curve appears to be roughly linear. This conclusion is validated by the 

following regression statistics: 

 Optimal Policy Resolution Steps (Figure 46): R2 = 0.98, slope = 0.11. 

 Negotiation Steps (Figure 46): R2 = 0.99, slope = 0.3. 

 Policy Resolution Step Ratio (Figure 47): R2 = 0.97, slope = 0.04. 

The overall variation with respect to the database breadth bound is quite low. The 

average optimal length of a negotiation increases from 3 (bmax = 3) to 4 (bmax = 4). 

Likewise, actual negotiation lengths increase from 3 to ~5.5 over the same range. The 

ratio increases to a maximum of ~1.3, which means that even for test cases with the 

largest branching factor bound, a negotiation protocol will take at most 1.3 times the least 

possible number of steps on average. 
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Figure 48. bmax: Average Number of Nodes Examined 
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Figure 49. bmax: Ratio of Number of Nodes Examined (Negotiation Tree Nodes / Oracular Tree Nodes) 
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Number of Policy Resolution Tree Nodes: Figures 48 and 49 show how the number of 

nodes examined increases with increase in bmax. The graph in Figure 48 compares the 

numbers obtained for both kinds of policy resolution individually. The graph in Figure 49 

indicates how the ratio (#Negotiation nodes/#Oracular nodes) varies with bmax. All 

quantities are reported with 99% confidence intervals. 

The negotiation curve in Figure 48 indicates a super-linear increase, with a sharp 

increase beyond bmax = 6. We would expect the growth to be polynomial, with the 

exponent lying somewhere between 1 and 20, given that the size of a tree is polynomial 

in terms of its branching factor. The number of nodes examined by the oracle, on the 

other hand, seems to increase very gently (almost linear to the naked eye, though a 

polynomial increase would be a more plausible explanation, because the number of nodes 

in a tree varies as a polynomial function of its branching factor, everything else being 

constant). The ratio curve in Figure 49 is similar in shape to the negotiation curve in 

Figure 48. It grows sharply from a factor of 2 (when bmax = 6) to ~10 (bmax = 10). These 

results show that the tree branching factor may seriously impact performance at 

moderately high values (bmax > 6). In our test scenarios, bmax never reached a value of 6 or 

higher, but there is no guarantee that more complex policy databases in larger ubiquitous 

domains will not reach higher values of bmax. Therefore we seek to find ways to mitigate 

this performance hit as part of future work. 

When we normalize the number of nodes with the size of the database (see Figure 

50), the negotiation protocol curve retains its shape. On the other hand, the oracular curve 

indicates a decreasing trend. A plausible explanation for this is as follows. Database sizes 
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increase with an increase in bmax, but the number of irrelevant statements also increases in 

significant numbers. Especially, failed negotiations involve few or no node examinations 

by the oracle. Since the negotiation protocol exhaustively examines the relevant search 

space until failure, it cannot escape a large number of node examinations at higher values 

of bmax. Therefore, dividing the number of examined nodes by the database size tends to 

have a much more positive effect on oracular performance as compared to the negotiation 

performance. 
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Figure 50. bmax: Average Number of Nodes per Unit Database (Number of Nodes / Number of Policy 
Statements in the Database) 
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Figure 51. bmax: Processing Time for Policy Resolution 
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Figure 52. bmax: Ratio of Processing Times for Policy Resolution (Negotiation Time / Oracular Time) 
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Processing Time: Figures 51 to 55 show how the processing time increases with an 

increase in bmax. The graph in Figure 51 compares the numbers obtained for both kinds of 

policy resolution individually. The graph in Figure 52 indicates how the ratio 

(Negotiation time/Oracular time) varies with bmax. All quantities are reported with 99% 

confidence intervals. 

The processing time for negotiation (see Figure 51) is strongly correlated with the 

number of examined nodes (see Figure 48), i.e., it increases sharply beyond bmax = 6; our 

conjecture is that this is a polynomial, and not an exponential, increase as tree sizes are 

polynomial in terms of their branching factors. The increase in oracular processing time 

increases is not too much lower than the negotiation processing time; in contrast, the 

number of nodes examined by an oracle is much fewer than the number of nodes 

examined by the negotiation protocol (see Figure 48). The average of processing time 

ratios measured for each scenario also increases in a polynomial (super-linear) manner, as 

we can observe from Figure 52. The maximum average time does not exceed 10 seconds, 

even for bmax = 10, which is significantly higher than we would observe in real-world 

scenarios. Realistic scenarios, where bmax <= 6, have significantly low processing times 

on average for both oracular and distributed policy resolution. 

Normalizing the processing times by database sizes, as indicated in the graph in 

Figure 53, seems to make no difference to the nature of the curves. Database sizes 

therefore seem to have no effect on the time comparisons between centralized and 

distributed policy resolutions. 



 301

0

10

20

30

40

50

60

0 2 4 6 8 10 12

Database Branching Factor Bound

(T
im

e 
Pe

r S
ta

te
m

en
t) 

in
 M

ill
is

ec
on

ds

Oracle
Negotiation

 

Figure 53. bmax: Total Processing Time for Policy Resolution per Unit Database (Processing Time / 
Number of Policy Statements in the Database) 
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Figure 54. bmax: Average Processing Time for Policy Resolution per Policy Resolution Step 
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The graph in Figure 54 shows curves that are much closer to each other than the 

corresponding curves representing total processing times. Indeed, at higher values of bmax, 

the average processing time per step for an oracle is higher than the average processing 

time per step for a negotiation. For realistic branching factors (bmax <= 6), both the 

processing times per step and the ratio (see Figure 55) are fairly low. The graph in Figure 

55, which indicates the averages of ratios of processing times per step for each test 

scenario, shows a surprisingly sharp increase beyond bmax = 6. As we can see, the 

confidence intervals for higher values of bmax are quite large; our conjecture is that certain 

individual results with high ratios end up pushing the averages (the average of ratios is 

always higher than the ratio of averages). 
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Figure 55. bmax: Ratio of Average Processing Time for Policy Resolution per Step (Negotiation Time / 
Oracular Time) 
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Figure 56. bmax: Average Processing Time for Policy Resolution Step per Unit Database (Average 
Processing Time / Number of Policy Statements in the Database) 

 

As we have observed in the case of all other parameters and metrics, normalizing 

the processing times by database sizes, as indicated in the graph in Figure 56, seems to 

make no difference to the nature of the curves. Database sizes therefore seem to have no 

effect on these average time comparisons as well. 

 

Number of Intermediate Requests: The graph in Figure 57 below shows how the fraction 

of intermediate requests granted (intReqGranted/intReq) varies with bmax. Only those test 

cases were considered for which a non-zero value of intReq was recorded. All quantities 

are reported with 99% confidence intervals. 
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Figure 57. bmax: Average Fraction of Intermediate Requests Granted 

We cannot discern any significant variation in the fraction of intermediate 

requests granted with change in branching factor, except for very low values of bmax. 

Overall, it appears that ~68% of intermediate requests posed will be granted on average, 

give or take a few percentage points. The fraction seems to be closer to 50% for test cases 

with low branching factor bounds. This may simply be because a larger number of failed 

negotiations occur at lower values of bmax, and has no bearing on the larger issue of 

privacy maintenance. 

Therefore, we can conclude with high assurance that the privacy maintenance 

properties of the negotiation protocol does not vary with bmax. 

 



 305

Number of Alternatives: The graph in Figure 58 shows how the fraction of alternatives 

examined (altsExamined/alts) varies with bmax. Only those test cases were considered for 

which a non-zero value of alts was recorded. All quantities are reported with 99% 

confidence intervals. 
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Figure 58. bmax: Average Fraction of Alternatives Examined 

We can see that the fraction of examined alternatives seems to reach a constant 

terminal value of ~0.7. The reason for the fraction being close to 1 for lower values of 

bmax is probably because the test cases with lower branching factor bounds generate fewer 

alternatives, all or most of which are examined during the course of a negotiation. 

We can conclude that the fraction of alternatives examined decreases roughly 

linearly for bmax <= 5 and remains constant at approximately 0.7 for bmax >= 5. 
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Figure 59. bmax: Average Position of the First Valid Alternative 

The average position of a valid alternative increases linearly with bmax, as is 

evident from the graph in Figure 59. This conclusion is also validated by the fact that 

running a linear regression on the average position data set gives us an R2 value of 0.99, 

(the slope is 0.08). The slope of the line is very low, and the position value does not 

exceed 1.7 on average even for the case with the highest branching factor bound (bmax = 

10). What this implies is that for bmax <= 7, there is a higher probability of hitting a valid 

alternative at the first attempt, whereas for higher values of bmax, there is a higher 

probability that the first alternative will fail. Note: These results are drawn only from 

scenarios that actually contain valid alternatives; there are a number of cases where no 

valid alternatives were found, and these cases are not represented in the above graph. 
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9.5.5.1.4 Bound on Tree Depth (dmax) 

Number of Steps: Figures 60 and 61 show how the number of optimal and actual 

negotiation steps increase with an increase in dmax. We can observe not only how the 

number of steps in each type of policy resolution varies (see Figure 60), but also how the 

ratio of actual and optimal (least number of) negotiation steps in each test scenario varies 

(see Figure 61) with increase in depth. For proper comparison, the oracle was assumed to 

report the number of steps as 3 for failed negotiations. All quantities are reported with 

99% confidence intervals. 
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Figure 60. dmax: Average Number of Policy Resolution Steps 



 308

0.8

0.9

1

1.1

1.2

1.3

1.4

0 5 10 15 20 25

Database Depth Bound

R
at

io

 

Figure 61. dmax: Policy Resolution Step Ratio (Number of Negotiation Steps / Optimal Number of Steps) 

The number of steps can be seen to increase roughly monotonically with an 

increase in dmax. The increase is more pronounced at lower values of dmax (less than 10), 

and the curves almost flatten out for higher depth values. The graph in Figure 61 

indicates that in the worst case, the number of steps taken for a negotiation is at 1.3 times 

the optimal (least) number of steps possible on average. As this ratio does not seem to 

increase (or increases very gently) for high depth values, we can conclude that an 

increase in dmax has virtually no negative effect on the length of a negotiation. 
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Figure 62. dmax: Average Number of Nodes Examined 
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Figure 63. dmax: Ratio of Number of Nodes Examined (Negotiation Tree Nodes / Oracular Tree Nodes) 
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Number of Policy Resolution Tree Nodes: Figures 62 and 63 show how the number of 

nodes examined increases with an increase in dmax. The graph in Figure 62 compares the 

numbers obtained for both kinds of policy resolution individually. The graph in Figure 63 

indicates how the ratio (#Negotiation nodes/#Oracular nodes) varies with dmax. All 

quantities are reported with 99% confidence intervals. 

The size of a balanced tree increases exponentially with an increase in depth. The 

above graphs do not present a picture of exponential increase in the number of nodes 

examined, though. What we can observe is that the number of nodes examined during a 

negotiation increases linearly for smaller values of dmax (less than 10) and remains 

approximately constant (though our confidence intervals indicate significant margins of 

error) for higher values. Similarly, the increase in number of nodes examined by an 

oracle is only pronounced at very low depths, and is almost constant thereafter.  The ratio 

curve (see Figure 63) is almost identical to the curve representing the number of nodes 

examined during negotiation (see Figure 62). This is because the number of nodes 

examined by the oracle is almost constant and is significantly lower (a factor of 4 to 10 at 

higher depths) than the number of nodes examined during negotiation. 
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Figure 64. dmax: Average Number of Nodes per Unit Database (Number of Nodes / Number of Policy 
Statements in the Database) 

 

From the graph in Figure 64, we can see that the number of policy statements in 

the database makes no difference to the comparison between the performance of the 

oracle and the negotiation protocol; increase in database size results in an increase in the 

number of examined nodes by an equal proportion for both. 

 

Processing Time: The graphs below show how the processing time increases with an 

increase in dmax. The graph in Figure 65 compares the numbers obtained for both kinds of 

policy resolution individually. The graph in Figure 66 indicates how the ratio 

(#Negotiation time/#Oracular time) varies with dmax. All quantities are reported with 99% 

confidence intervals. 
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Figure 65. dmax: Processing Time 
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Figure 66. dmax: Ratio of Processing Times (Negotiation Time / Oracular Time) 
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We can draw the same conclusions that we did from the graphs representing the 

number of nodes examined (see Figures 62 and 63). The processing time for a test 

scenario increases linearly for lower depth values and remains roughly constant for 

higher depth values. This is probably because the parameter is an upper bound rather than 

a tight characteristic of the database pairs. As we increase dmax, a relatively low fraction 

of generated trees have truly high depth, resulting in the averages being almost constant. 

The depth parameter (dmax) is therefore less meaningful in this respect as compared to the 

optimal negotiation length parameter (lmin), with which the processing time has an 

exponential relation. 
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Figure 67. dmax: Total Processing Time per Unit Database (Processing Time / Number of Policy 
Statements in the Database) 
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Figure 68. dmax: Average Processing Time per Policy Resolution Step 
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Figure 69. dmax: Ratio of Average Processing Times per Step (Negotiation Time / Oracular Time) 
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The effect of normalizing processing times with the database sizes has no 

meaningful effect, as the graph in Figure 67 indicates an increase in oracular and 

negotiation processing times in equal proportion (irrespective of the number of 

statements in the database.) 

The average time taken per step presents a mixed picture of the relative 

performance of the negotiation protocol and the oracle. As we can see in the graph in 

Figure 68, the processing times per step are statistically identical, at least for higher depth 

values. At lower depth values, the increase is linear, and the time per step taken by the 

oracle is relatively higher than the corresponding time per step taken by the negotiation 

protocol. From a practical point of view, this implies that the efficiency of negotiation is 

higher than that of the oracle, and if we could find good heuristics (with low computation 

times) that result in a reduction in the number of negotiation steps, we would obtain 

significant performance savings. 

As we observed in the case of all other metrics, the graph in Figure 70 indicates 

that the average oracular and negotiation processing times per step increase in equal 

proportion, irrespective of the number of statements in the database. 
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Figure 70. dmax: Average Processing Time per Policy Resolution Step / Database Size 

 

Number of Intermediate Requests: The graph in Figure 71 shows how the fraction of 

intermediate requests granted (intReqGranted/intReq) varies with dmax. We only 

considered those test cases for which a non-zero value of intReq was recorded. All 

quantities are reported with 99% confidence intervals. 
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Figure 71. dmax: Average Fraction of Intermediate Requests Granted 

Inferring a meaningful trend from this graph is difficult, since the fraction of 

intermediate requests granted varies within a range of 0.66-0.75, a 9% variation across a 

wide range of dmax values. We do observe that the fraction is highest at the least value of 

dmax (which is 2 in the above graph). This is because database pairs with low depths 

produce shorter negotiations on average. When shorter negotiations succeed, fewer 

intermediate requests are posed and a larger fraction of those is likely to result in an 

affirmative offer (for example: if intReq=1 and the negotiation succeeds, 

intReqGranted/intReq cannot fall below 1; if intReq=5, the fraction could be anywhere in 

the range 0.2-1.) 

The fraction of intermediate requests granted appears to decrease (albeit with 

oscillations) until dmax = ~10 and then seems to be roughly constant within the margin of 
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error. To conclude, since this fraction represents information leakage (or degree of 

privacy), the fact that we can set an upper bound on it is an encouraging result. 

 

Number of Alternatives: The graph below shows how the fraction of alternatives 

examined (altsExamined/alts) varies with dmax. We only considered those test cases for 

which a non-zero value of alts was recorded. All quantities are reported with 99% 

confidence intervals. 
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Figure 72. dmax: Average Fraction of Alternatives Examined 

The fraction of alternatives examined is as difficult to characterize as the fraction 

of intermediate requests, as all the recorded values (see Figure 72) lie within a 0.6 range 

band (from 0.68 to 0.74.) Unsurprisingly, the fraction is highest (0.74) at the least value 

of dmax (equal to 2 in this graph), probably because a large percentage of results evaluated 
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to unity. On average, the fraction is approximately equal to 0.71 over the entire range of 

dmax values, which implies that not more than 7 out of 10 alternatives will be examined on 

average, irrespective of the depth bound. 
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Figure 73. dmax: Average Position of the First Valid Alternative 

From the graph in Figure 73, we can observe a steady (roughly linear) decrease in 

the position where a valid alternative is hit for 4 < dmax < 11. For dmax > 11, the results are 

less meaningful, though it is likely that the curve will asymptotically converge to a value 

close to 1. In the range dmax > 11, the position value appears to oscillate around the 1.45 

mark. We can reasonably conclude from the above graph that the average position of a 

valid alternative does not increase with an increase in dmax. Note: These results are drawn 

only from scenarios that contain valid alternatives; there are a number of cases where no 

valid alternatives were found, and these cases are not represented in the above graph. 
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9.5.5.2 Conclusions 

To summarize, the set of graphs and tables presented here support the following 

general conclusions: 

 On average, the length (number of steps) of an actual negotiation increases linearly 

with the length of an optimal negotiation for the same test scenario. 

 Failed negotiations (that are unable to satisfy the initial goal) are efficient on average, 

the length being under 4 steps (optimal length = 3 steps). 

 Total processing times for negotiations tend to dominate total oracular processing 

times. But the average processing time per step for negotiation tends to be dominated 

by the average processing time per step for the oracle. The average processing time 

per step (or even per tree node) is lower on average for the negotiation protocol. 

 The fraction of intermediate requests granted and the fraction of alternatives 

examined show meaningful (albeit low) variations with all four of our parameters. 

 An increase in the branching factor bound (bmax) produces a significant increase in 

processing costs (nodes examined and processing times). For realistic values (bmax <= 

6) though, the performance does not exceed the tolerable range. 

 An increase in the depth bound (dmax) results in an observable change to our metric 

values only for lower values of dmax (typically less than or equal to 10). The values of 

the performance metrics (number of steps, nodes examined, and processing times) in 

this range increase at a slow rate, and almost seem to be constant for values of dmax 

greater than 10. Thus, the depth bound does not affect performance in a significant 

way, and is not a bottleneck in the way the branching factor bound appears to be. 
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Chapter 10 
 

Related and Complementary Research 

 

There is a significant body of research in the design of negotiation protocols, policy 

languages and ontology, service discovery and policy management in open environments, 

and distributed trust and access control frameworks. We discuss each of these in this 

chapter and either differentiate those contributions from ours or show how their results 

could complement ours in an effort to advance the state of ubicomp interoperation 

research. 

 

10.1. Negotiation Protocols 

10.1.1 Automated Trust Negotiation 

The work that bears the closest resemblance to my research is automated trust 

negotiation [Winslett2003], through which web entities (typically client-server, but the 

model applies to peer communication as well) can establish trust in an automated fashion, 

the objective being access to a guarded resource. It is a flexible way of doing access 

control, where entities can control what private information is released at fine 

granularities, though it is only a special case of general resource negotiation. Negotiators 

request and expose sensitive credentials based on evaluation of per-credential access 

control policy rules. An earlier protocol, TrustBuilder [Winslett2002], implements trust 

negotiation as an extension of TLS. The policy language is not very expressive, being 
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limited to Boolean expressions of credentials. This has since been superceded by 

PeerTrust [Gavriloaie2004; Nejdl2004], whose policy rules are written in a distributed 

logic programming language based on Prolog, and which targets semantic web 

applications. PeerTrust policy rules can be signed (equivalent to certificates) and their 

evaluation delegated to another peer, thereby enabling distributed and cooperative 

security. 

Automated trust negotiation does not solve the more general problem dealing with 

simultaneous discovery and negotiation of multiple resources. Also, in ubicomp, trust is 

not restricted to the presence or absence of credentials but can have a much broader 

definition where risks can be analyzed using any subjective measure. Both PeerTrust and 

TrustBuilder suffer from drawbacks such as the lack of multiple goal support, lack of 

context-awareness, rigid policies and trust building restricted to exposure of 

cryptographic credentials. Both these systems fail to consider inter-dependence of 

multiple resource and security constraints, because they target explicit and addressable 

connections on the Internet rather than ad hoc ubiquitous connections. Still, our research 

has benefited to some extent from earlier work in trust negotiation, prominently with 

respect to policy language requirements [Seamons2002] and negotiation strategies based 

on policy and trust information. 

Protune (Provisional Trust Negotiation) [Bonatti2005; Coi2007] is the closest 

working system to our own that we can find. It builds on PeerTrust, with declarative logic 

program-based policy rules written as Horn Clauses. The expressivity of their policy 

language as well as the negotiation dynamics are similar to those of our system, with 
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rules being scanned in order to determine counter-requests [Bonatti2005]. Protune uses 

metapolicies to filter policies whereas our protocol uses designated predicates to achieve 

the same effect. Both requests for credentials and requests to perform actions can be 

posed by Protune negotiators to each other. 

In spite of the similarities, there are still salient differences between our system 

and Protune. First, an entire policy rule (though filtered) is sent in a request message in 

Protune, thereby placing the burden of interpreting the policy and satisfying it to the 

receiver. In our protocol, multiple alternative sets are generated and tried one by one. 

Bonatti et. al. claim that their approach is more efficient and that generating multiple 

alternatives will lead to exponential blowup, but our performance results (for realistic 

cases; see Chapter 9) do not seem to bear out their claim. Also, since neither negotiator 

knows about the policy facts or rules of the other, there is no guarantee that a Protune 

receiver will return a reply that the sender is satisfied with; in our protocol, requests are 

more specific and provide better guarantees of agreement. Our policy and negotiation 

framework is also more general than Protune. Negotiators using our protocol can trade a 

variety of possessions and data, and also communicate associated objects as attachments, 

compared to just credential objects and policy rules in Protune. Our negotiation protocol 

is built to handle multiple goals, goal revisions during negotiation, and determination of 

compromises using our alternate offer generation procedure. Protune does not provide 

these features yet, though it could conceivably be extended to support these functions. 

We also have extensive practical test results comparing centralized and distributed policy 



 324

resolution, whereas the designers of Protune have not conducted such tests (to the best of 

our knowledge). 

 

10.1.2 Automated Negotiation for Services 

The growth of web services technology, grid computing [GRID], Web 2.0 and the 

semantic web has prompted significant research in enabling agents to collaborate and 

negotiate for the privilege of obtaining services. A variety of standards have evolved 

around negotiations for web services and in generating Service Level Agreements 

(SLAs). Service-oriented architecture, enabling interoperation of services for business 

applications, has also inspired research into automated negotiation. We describe 

negotiation research in these areas here and differentiate them with our research results. 

Negotiation protocols developed for the grid typically involve matching the 

preferences of service owners and consumers, who often lie in different administrative 

domains. Negotiation steps consist of proposals and counter-proposals, which are 

evaluated against resource utility functions (specified in terms of maximum and 

minimum values) [Lawley2003]. Agreements are reached when no higher-utility counter 

proposal can be generated and basic constraints are met, otherwise the result is failure. 

Negotiation strategies could include heuristics such as the number of messaging rounds 

and could be guided by game-theoretic algorithms like Faratin’s [Lawley2003], or by the 

use of genetic and evolutionary algorithms [Chao2002]. SNAP [Czajkowski2002] 

generates SLAs through a distributed resource allocation protocol, and is agnostic of the 

resource or application type. Policies are private, and clients make requests and counter-
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requests for a level of a service till the server is able to satisfy or reject the request. Grid 

protocols offer valuable guides as far as negotiation heuristics and dynamic agreements 

are concerned, but they do not consider security constraints and service discovery. The 

grid also does not require expressive policy languages or reasoning mechanisms, since 

only the level of a single resource is being negotiated. Last, these protocols are employed 

in static situations, and cannot be used in scenarios that involve mobility and context 

changes. 

More work has been done in developing standards like WS-Policy [WS_Policy] 

and WS-Agreement [Andrieux2007], oriented towards enabling universal negotiation in 

the web services arena. Being based on the widely adopted SOAP and XML standards, 

interoperability is largely guaranteed. Other frameworks independent of WS-Agreement 

have also been proposed [Paurobally2007; Tsai2007]. But the scope of the negotiations is 

largely restricted to SLAs and auction-type applications, both cases involving known 

negotiators, known services and not much effort made to infer semantic information from 

policies in order to engineer a flexible protocol that will explore all ways to reach an 

agreement. Efforts have been directed towards securing legally binding contracts through 

negotiation [Parkin2006] or involving multiple resource requesters in order to ensure that 

needy consumers get a maximal level of service [Abdoessalam2004]. Efforts at 

advancing the WS-Agreement standard have focused on meta-protocols that help select a 

suitable negotiation type for a given instance (this type could be a one-to-one bargain, an 

auction, etc.) [Hudert2006] or act as a broker between a web service and consumers in a 

service-oriented architecture [Ardagna2004]. These efforts largely ignore the actual 
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negotiations themselves, which are deemed to be closely tied to the applications. Our 

negotiation protocol provides more richness and flexibility without sacrificing generality 

through the use of declarative logical policies. Therefore, even though WS-standards 

offer significant advantages, we did not consider them a suitable basis for our research. 

Similarly, Dang and Huhns [Dang2006] propose a protocol to manage multiple 

concurrent negotiations for services among service providers and consumers. Negotiation 

agreements are based on utility functions that must be reconciled, whereas our framework 

is based on security and resource usage policies. Andreoli and Castellani [Andreoli2001] 

outline a negotiation protocol that views negotiation as a distributed proof tree, but use a 

centralized coordinator, which is fundamentally different from our approach. 

Interest-based negotiation (IBN) [Rahwan2005; Pasquier2007] enables goal 

achievement through collaboration, and is both a more general alternative to game-

theoretic and heuristic negotiation. Each negotiator generates a set of alternative plans 

and poses queries and sub-goals in turn. Every proposal is accepted or rejected on the 

basis of a negotiator’s interest (utility) in getting its goals satisfied. This protocol is more 

similar to ours than grid negotiation protocols. Yet there are salient differences. The 

procedure is not modeled as a distributed policy resolution, and its theoretical correctness 

and completeness properties have not been studied as ours have. Also, this model 

assumes negotiation purely for collaboration, and trust and access control issues are not 

considered; our protocol maintains more anonymity and privacy of policies. We have 

studied the role of policies more comprehensively, and also reported results from 

optimality testing, which the IBN researchers have not. 
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10.1.3 Speech Act-Inspired Negotiation Protocols 

The use of speech acts as a way of expressing the language of a negotiation is not unique 

to our system [Jiang2005a; Xu2005]. Chang and Woo designed and implemented a 

speech-act based negotiation protocol (SANP) [Chang1994] based on Ballmer’s and 

Brennenstuhl’s speech act classification [Ballmer1981], whereas we use Searle’s 

classification [Searle1981]; this enables users of our protocol to query information from 

each other, something that SANP does not do. Also, their protocol is suitable only for 

single-issue negotiations, whereas ours generates and offers negotiators multiple 

alternatives. Their protocol also does not leverage user policy in any way, nor does it 

emphasize security. 

 

10.2. Policy Languages and Models 

Before going into comparisons with existing policy models and languages, we will 

briefly describe the Semantic Web [SemWeb]. The Semantic Web is work in progress 

toward a common framework that allows data to be shared and reused across application, 

enterprise, and community boundaries (see Chapter 1: Figure 1). The Resource Discovery 

Format [RDF], which is the semantic data description model that uses XML syntax and 

URI naming procedures in order to allow applications to interoperate, is one notable 

standard to have emerged from this effort. Though the complete scope of the semantic 

web is not very clear, some researchers consider the definition of ubiquitous computing 

ontology and security policies to be within its ambit [Kagal2003b]. Therefore, most 

policy models and languages that target agent communication on the Semantic Web are 
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equally applicable to ubiquitous computing. Local interactions are more common in the 

latter, but the issues related to policies can be formulated in similar ways. Therefore, in 

this section we will discuss related work in policy languages primarily targeted toward 

the Semantic Web. 

 

10.2.1 Policy Languages 

Many research efforts have investigated the use of policies to specify goals, and control 

systems and security, because of their flexibility and adaptability [Sloman2002]. Such 

research has primarily focused on policy specification and expressivity as compared to 

the interoperation mechanism, but we have borrowed concepts from several policy 

languages. A number of languages have adopted a logic-based approach, like Rei 

[Kagal2003a], ASL [Jajodia1997], and others like KAoS [Uszok2004] are based on the 

OWL Semantic Web ontology. Among these, Rei [Kagal2003a; Kagal2003b] is targeted 

primarily toward pervasive computing and provided significant inspiration for our policy 

language. The designers of Rei correctly make the claim that a policy language for 

ubicomp must have well-defined logical semantics because the scope of facts and 

constraints that it must support is huge, and that it needs to be domain-independent. Rei 

treat rules as being part of a system, rather than independent policies. This enables 

inference of dependencies and conflicts among policies. The language is based on first-

order semantics augmented by deontic concepts of obligations, permissions, prohibitions 

and dispensations. It supports specification of actions, action classes, speech acts like 

requests, offers, delegations and revocations, as well as meta-policies like modality (e.g., 
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rule A overrules rule B) or priority for conflict resolution. In addition, we can describe 

common resources, entities and constraints, as can be done with most other languages. 

Our language goes further by providing support for inter-resource constraints, contextual 

description, and high- to low-level policy translation. These are some of the requirements 

for trust negotiation languages [Seamons2002] that are requirements for our language as 

well (see Chapter 4). 

Portfolio and Service Protection Language (PSPL) [Bonatti2000] and DTPL 

[Herzberg2000] are languages designed with these requirements in mind; the former was 

designed expressly for trust negotiation. Services offered by servers are distinguished 

from information possessed by clients, like cryptographic credentials and plain-text data 

declarations, collectively called a portfolio. The language offers support for description 

of service classes, subset and domination relationships (which can be used to specify 

high- and low-level rules and their relation), state information (both persistent and per-

negotiation). Evaluation of requests, release criteria for private resources, and policy 

filtering are some of the other essential functions that are provided. The syntax and rule 

evaluation procedure are Prolog-like, and so some constructs that aren’t directly 

supported, such as more complex trust relationships, delegated credentials and trust 

chains, could be added without significant difficulty. Like other non-semantic languages, 

rules are associated with resources and so inter-resource relationships and complex 

security relationships cannot be handled. Specification of general policies that can be 

adjusted with context, deontic concepts and meta-policies are not supported. 
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Ponder [Damianou2001], a declarative policy language for specification of a 

distributed system security policy, deserves mention as an early piece of research in 

ubicomp policy. One can specify delegation policies, entity roles, application groups, 

constraints and obligations in Ponder. It supports conflict resolution using meta-policies 

and policy enforcement through the triggering of foreign functions. On the negative side, 

it suffers from the same drawbacks as Rei, and in addition is an object-oriented language 

rather than a semantic language. Keynote [Blaze1999] deserves mention too as one of the 

earliest policy languages used for trust management and access control in an open 

system. The language allows specification of credential types and instances, associated 

actions and state constraints, which could be used by a compliance checker when 

validating an object access request. It does not support context-awareness, meta-policies 

or deontic concepts and actions. It is too closely tied to entity names and credentials, and 

has been superseded by languages that are more suitable for ubicomp, though the 

concepts proposed in Keynote still remain relevant. 

As a side note, we must mention Datalog, a declarative logic programming 

language, which has been used to manage database constraints. But even though its 

logical semantics and reasonable efficiency make it an attractive candidate for a policy 

language, its syntax is more restrictive than Prolog, posing obstacles to the kind of 

expressivity that the latter provides. None of the prominent languages like Rei or PSPL, 

and negotiation frameworks like Protune, are based on Datalog, and that influenced our 

decision to use Prolog as a basis for our language. The more widespread availability of 

tools and APIs for Prolog also make it a more attractive base compared to Datalog. 
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Various XML-policy languages have been designed for access control on the web, 

such as IBM’s Trust Policy language [Herzberg2000], X-Sec [Bertino2001] and XACML 

[Lorch2003]. The former two support description of credentials and credential types, role 

types (in TPL), entities and attributes. Policies are used by servers to infer trust 

information through a more complex procedure than Keynote, though support for deontic 

concepts and different types of actions are missing. XACML supports more 

expressiveness in terms of groups of resources, protocols, actions and authentication 

mechanisms, and allows specification of conflict resolution rules. But it is not as suitable 

for our aims as the other two languages, because it lacks a logical reasoning back-end. 

Last, we will elaborate on the WS-Policy standard [WS_Policy] mentioned in Section 

10.1. WS-Policy is based on XML and specifies a general wrapper syntax, leaving details 

of policies to individual domains and applications. Though a widely accepted standard 

that provides support for specification of conjunctions and alternative constraints, WS-

Policy is completely agnostic of enforcement mechanisms. This makes it less suitable for 

a language designed to support negotiation. We feel that policy-writing in Prolog syntax 

is more intuitive and less cumbersome than in WS-Policy. WS-Policy also does not 

specify ways to declare event-condition action rules. 

P3P (Platform for Privacy Preferences) [P3P] is a proposed web user privacy 

standard rather than a language, but we reference it as an important contribution to web 

collaboration research. It provides an XML-based language that allows both websites and 

clients to describe their privacy policies, the goal being a mutual agreement. Feedback on 

policy conflicts is given to the user, who can then make an information release decision. 
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Much of the research in advancing P3P has focused on policy matching and providing 

feedback to users, rather than on automated negotiation. Currently, the standard suffers 

from many limitations, such as the lack of a model for website trust and verification of 

policies, and an expressive policy language, leading to low adoption [Kolari2005; 

Kagal2003b]. Though enhancements have been proposed, such as using the more 

expressive Rei language [Kolari2005], trust management using reputation frameworks, 

and allowing users to set per-website and data item preferences, P3P leaves too much to 

users and depends on rigid adherence to policies, requiring significant additional research 

to make it suitable for ubicomp negotiation. 

As we can see, the above languages adopt a wide variety of approaches. In our 

research, we have taken the approach of building bottom-up from a language with loose 

semantics and a reasoning mechanism (like Prolog) rather than making syntactic choices 

(like XML) and adding new constructs and logical reasoning mechanisms. Though this 

may not be the only valid approach, we have shown that it can work. 

 

10.2.2 Ontology 

As described in Chapter 4, ontology is an important part of a policy language 

[Leithead2004], which enables the language and negotiation methodology to be 

applicable across domains. We have studied semantic web ontologies like DAML+OIL 

(an extension to XML and RDF) [DAML], OWL [OWL], FOAF [Dumbill2002] and 

SOUPA [Chen2004]. DAML-Space and DAML-Time are ontologies for specification of 
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spatial and temporal characteristics, respectively. Among these, our research drew most 

inspiration from SOUPA, which was proposed by the designers of Rei. 

 

10.2.3 Event-Triggered Condition-Action Policy Support 

Most policy researchers classify security policy types in two ways: i) authorization 

policies, and ii) obligation (or event-triggered condition-action policies) of the form “on 

event if condition do action” [Sloman2002]. Neither our policy classification nor that of 

others [Kaminsky2005] is limited to security policies, and consists of goal and invariant 

policies that dictate resource needs and system-wide constraints that may not have 

security implications. Among these, only obligation (or ECA: Event-Condition-Action) 

policies explicitly mandate actions on the part of a policy manager. Consequently, 

obligation policy rules are written in a distinct way and occupy a distinct subset of the 

overall policy language. Not all policy languages support ECA rules; for example, 

Protune [Bonatti2005]. Some languages, like Lucent’s Policy Definition Language 

[Lobo1999], only support ECA rules, and others (like ours) establish a special syntactic 

construct for such rules. The framework underlying enforcement of such rules largely 

follows a standard template. The policy manager continuously monitors for events; if one 

occurs, matching policies are looked up and the specified actions executed [Lupu1999]. 

Most ECA policy language work has focused on detecting and resolving conflicts among 

the intended actions [Shankar2005a; Shankar2005b; Cholvy1997], which is not 

something we focus on in our research although we would like to add this in the future. 

Application-wise, ECA policy languages have been developed for ubicomp 
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[Shankar2005a; Shankar2005b], the Semantic Web [Papamarkos2003; Papamarkos2004], 

and IT infrastructures [Agrawal2007]. Syntactically, Shankar et al. [Shankar2005a] use 

an imperative-programming syntax (explicit if-then rules) to encode policies and 

Papamarkos et al. use RDF/XML. We differ from both approaches by specifying ECA 

(or update rules) in Prolog, though operating system calls and Java method invocations 

may result. 

 

10.3. Middleware 

We have described the goal of our project as the achievement of spontaneous 

interoperation among ubicomp domains for the purpose of service and resource access. 

Our solution takes the form of a middleware that supports interoperation through 

negotiation and also manages and enforces per-domain policy. In this section, we cite 

relevant research in these areas, and show how their approaches differ from ours. 

 

10.3.1 Smart Spaces and Ubiquitous Interoperation 

We briefly survey the different approaches taken by ubiquitous computing “smart space” 

projects to handling interoperation in an automated manner, and how these and other 

open systems handle the core problems of service discovery, resource management and 

access control within and across domain boundaries. 

The most prominent smart space projects typically look at different components 

of an active space (computing entities, resources, physical interfaces) as parts of a whole, 

rather than independent entities in their own right. Therefore, the typical mode of 
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management is centralized, and works well, but does not scale. Metaglue [Coen1999] is 

an extension of Java that provides the computational glue for interoperation of software 

agents in an Intelligent Room [Adjie-Winoto1999; Brooks1997], which is a product of 

MIT’s Oxygen [MIT-Oxygen] project. Gaia [Román2002] and One.world [Grimm2004a; 

Grimm2004b] are the equivalent of operating systems for pervasive computing systems, 

which manage resources, devices and applications within a domain. What these systems 

do very well is to facilitate ad hoc interactions in a seamless manner, manage resource (or 

agent) discovery and allocation in a dynamic manner, and adapt to a limited range of 

context changes. The price that needs to be paid for such seamless operation is 

standardization of hardware and software components and application designs. 

Interoperation within a room is limited to familiar devices that know what to expect and 

have ways of obtaining those resources. They also do not consider the management of 

multiple active spaces. One.world, as an example, provides flexibility through an 

application-oriented approach that assumes the trustworthiness of devices, in contrast to 

our device-centric approach. 

In these systems, security and privacy have been afterthoughts, and even the 

augmented frameworks do not provide good solutions to handle unknown and un-trusted 

devices. Metaglue has been superceded by Hyperglue, designed to enable interactions 

among multiple active spaces and avoid centralized management [Kottahachchi2004; 

Peters2003]. Hyperglue has the nice property of letting domains manage themselves 

independently and interact with others as a single virtual entity. A context-aware role-

based access control scheme is used to grant permissions, but the assignment of roles is 
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limited to known entities or entities that can prove transitive relationships. With a limited 

trust model and the lack of a flexible negotiation scheme, the interoperation features 

provided fall short of ubicomp requirements. Gaia is one smart space project that has 

dealt more than most with security and privacy issues [Campbell2002]. Cerberus [Al-

Muhtadi2003], a Gaia security extension, uses policies and confidence levels in 

authentication schemes to enforce access control during interoperation in a context-aware 

and non-intrusive manner. Like Hyperglue, Cerberus uses security policies for 

unidirectional access validation and does not support dynamic service discovery and 

negotiation. Mobile Gaia [Chetan2004] extends the basic Gaia design to manage ad hoc 

clusters, like Panoply spheres, but the negotiation is limited to the production of a 

familiar public key that can be authenticated by a cluster. Gaia Super Spaces [Al-

Muhtadi2004] handles multiple active domains in a semi-centralized manner, 

interoperations occurring through bridges. Super Spaces provides service lookup and 

access functions across domains, though without considering the security aspects. 

Centaurus 2 [Undercoffer2003] and the Aware Home project [Kidd1999] are yet more 

examples of ubiquitous active spaces systems, though these place a high priority on 

security. The results are not very different from Hyperglue or Cerberus, however. 

Centaurus 2 enables secure interaction within a hierarchy of spaces through access 

capabilities, and an Aware Home uses the powerful GRBAC model for access control. 

Still, the security aspect is independent of the service lookup and management module, 

and security policies are enforced in a way so that only known entities with predeployed 

trust information may obtain access permissions for services. 



 337

10.3.2 Service Discovery and Access 

As we described in the introductory chapter, discovery of services and obtaining access to 

them is the goal of interoperation. In ubiquitous computing environments, these goals 

face several challenges, such as device integration with environments, compatibility, 

naming issues, heterogeneity, security and privacy [Zhu2005b]. Over the past few years, 

many approaches have been proposed to handle one or more of these challenges. Though 

none of these approaches completely address service discovery in unfamiliar 

environments while ensuring some form of security, we survey the prominent ones 

below. 

Jini [Waldo1999], a Java-based technology, enables autonomous service 

discovery and resource access over a network connection. Devices can register, discover 

services and access them through proxies, lookup tables and leasing mechanisms. 

Standard interfaces and mobile code enable spontaneous interoperation, since every 

device in a Jini-enabled space communicates using Java RMI. Jini is easier to use and 

maintain than similar frameworks, like CORBA or DCOM, where protocol changes must 

be synchronized among servers and clients offline. The primary goal of service discovery 

and access is handled well, but the use of open interfaces is unacceptable where there are 

even minimal security and privacy concerns. The model by itself, even with 

authentication and authorization mechanisms, works in a static domain that serves a set of 

known client devices and does not adapt to context change. Dynamic policy-guided 

negotiation expands the scope of the interoperation problem and solves complementary 

issues while retaining the useful features of Jini. Universal Plug and Play [UPnP] is 
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another communication architecture based on well-known technologies like TCP/IP, 

HTML, and XML. UPnP allows seamless, spontaneous networking among suitably 

configured devices irrespective of hardware or operating system characteristics. Devices 

can advertise their capabilities and learn about other devices’ capabilities through SSDP, 

GENA and SOAP protocols. On the downside, security is handled by using ACLs and 

certificates which the users are expected to maintain in a static manner; this is non-

scalable and intrusive, and therefore not suitable for ubicomp. Zhang et al. [Zhang2007] 

have proposed an impromptu service discovery and access protocol that is based on 

“Semantic Spaces” which provides Panoply sphere-like services and also acts as a service 

portal that interacts with mobile devices. Wide adoption is not a problem as it is based on 

OSGi [OSGI] standards (which include UPnP), but the complete lack of security and 

privacy is. Recently, other service discovery protocols have been proposed that are based 

on Semantic Web ontologies like OWL; these protocols attempt to match consumer and 

service provider preferences, focusing on context-sensitivity [Broens2004] or 

performance [Chakraborty2006]. But both these protocols assume the environment to be 

trustworthy with cooperative agents, and neither is concerned about security or privacy. 

Zhu et al. [Zhu2005a] do consider security in their service discovery protocol for 

pervasive computing. In the absence of a trusted third party, a service provider and a 

client expose partial sensitive information in a progressive approach till both parties reach 

an agreement about exposure of the nature of the service and authentication information. 

Upon a mismatch or an unsatisfied request, the protocol can be terminated without loss of 

privacy. The key drawback, from my point of view, is that the entities are assumed to 
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share security information, and the protocol is essentially a way of preventing malicious 

devices from causing privacy violations. These constraints cannot be assumed in the 

more general negotiation problem that I am addressing. 

 

10.3.3 Policy Management Frameworks 

Policy management modules have been used in a variety of operating systems, database 

management systems, and security frameworks. Recent pervasive computing research has 

inspired the development of policy management frameworks as distinct subsystems for 

reasons similar to ours: heterogeneity and context-changes. These systems typically 

enable self-management through the use of obligation (ECA) policies [Kumar2007]. 

UIUC’s Gaia middleware provides such a policy manager that maintains ECA policies. 

Their research has contributed towards both static and dynamic detection of action 

conflicts by annotating policies with post-conditions [Shankar2005a] and with pre-

conditions [Shankar2005b]. Jiang et al. have designed a CORBA-based security 

management middleware for ubiquitous computing [Jiang2005b] that supports 

authorization, delegation and obligation policies. These policy management frameworks 

make useful contributions but none of them provide support for negotiation or dynamic 

access control. 

 

10.4. Access Control and Trust in Distributed Systems 

Access control in Panoply (and, potentially, other ubicomp frameworks) is achieved 

through event filtering followed by negotiation. Because this procedure is driven by the 
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current state of the policy database, access decisions are context-aware. And because the 

policies can express constraints in terms of classes of entities, objects and properties, 

performing access control rule updates is a scalable procedure. Access control through 

negotiation is also peer-to-peer and completely distributed; the burden of proving or 

verifying an access right (or a set of access rights) does not fall on one party or the other. 

Negotiation also achieves distributed trust in some ways, by enabling mutually unknown 

domains to reach an agreement from scratch. Below, we survey both traditional and 

recent approaches to access control and trust-building in distributed systems, show how 

these approaches fall short of the ideal, and differentiate our approach from them. Also, 

individual domains will frame access control and trust rules based on their unique 

concerns; guiding the framing of more effective policies is complementary research. 

 

10.4.1 Access Control Models 

ACLs (access control lists) and capabilities are basic mechanisms for enforcing access 

control when familiar entities access known objects, and still retain their use in limited 

domains where one can set per-entity and per-object policy. Policy expressivity is very 

limited and rules are rigidly enforced. These mechanisms suffer from scalability issues 

when applied directly to ubicomp scenarios, and also don’t adjust to changing context. 

They can be used in individual domains in a ubiquitous computing environment, but each 

of these domains must have a security and trust management framework in addition. 

Frameworks like Kerberos enforce access control through secure protocols, though they 

also do not scale beyond a small self-contained domain. 
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Most open systems, and those that need to handle access control for a large 

number of entities, typically use RBAC (role-based access control) [Ferraiolo1995] 

models or its variations. Entities are assigned roles, which are associated with sets of 

access privileges, in the most basic model. Role-based access control frameworks have 

better scaling properties than ACLs. But as roles have to be defined in advance, it is 

difficult to provide optimal security in dynamic situations where policies need to be 

adjusted with context. 

Generalized RBAC [Covington2000] enhances RBAC by adding roles for 

accessible objects and environment states (context), and has been used in the Aware 

Home ubiquitous computing project [Kidd1999]. Because it increases the expressivity 

and intuitiveness of policy writing, it is an excellent choice for modeling policy 

languages, but offers no suggestions for enforcement (such as automated negotiation) per 

se. The distributed RBAC [Freudenthal2002] model is an augmented variation of RBAC, 

which uses delegation and distributed proof building of permission rights using 

knowledge of possessed credentials. Delegation of permissions is an extremely useful 

concept, and has impressive scaling properties, though it has trust issues and must be 

augmented with something like our negotiation model before it gains widespread 

adoption. Ubicomp middleware like Centaurus [Kagal2001a] and Vigil [Kagal2001b; 

Kagal2002] have used role-based access control with delegation and trust chains. We 

have leveraged concepts proposed by GRBAC (in our policy language design) and 

DRBAC (our voucher data structure/credential supports delegation) in our policy 

management framework. 
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Benefit and Risk Access Control [Zhang2006] shows how an individual domain 

could incorporate perceptions of benefits and risks of sharing information into a graph 

data structure. Access control decisions are made by examining the graph to determine 

whether total benefit outweighs total risk. The structure can be adjusted at runtime, albeit 

with manual intervention. This is complementary research, and our negotiation protocol 

could incorporate BARAC data structures to build better heuristics in the controller 

module. The model is still deficient in some ways: i) it does not easily lend itself to 

automation, and ii) benefit and risk values are subjective decisions made by users rather 

than being automatically extracted from user needs and security concerns. 

Two key drawbacks of pure RBAC when used in open systems are lack of i) 

context-awareness, and ii) support for decentralized interaction among autonomous peers. 

Recently, attempts to address these have been made. Law governed interaction 

[Minsky2000] has the view, which we share, that role semantics should be dictated by 

context and policy, the latter being independent of particular role definitions. This helps 

to rectify drawbacks inherent in RBAC, such as difficulty in specification of exception 

conditions, and the potential security holes that could result. The key drawback with LGI 

is that it assumes a common law or policy governing all interacting domains, which is 

impractical, as I have argued earlier when discussing the need for negotiation. The access 

control model proposed by Bohrer et. al. [Bohrer2003] is a superset of the LGI model, as 

it incorporates individualized privacy policies in addition to common enterprise-wide 

policies. Another access control model that specifically targets pervasive computing 

environments [Hengartner2003; Hengartner2005] uses information relationships and per-
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domain policy specifications to ensure that entities release minimum sensitive 

information. If multiple entities are involved in the transfer of such information, each 

entity gets information on a need-to-know basis. Kapadia et al. [Kapadia2007] use the 

metaphor of “virtual walls” to ensure a similar form of access control. They enforce three 

levels of access: transparency, translucency and opacity. We view event flow in Panoply 

the same way that Hengartner et al. view information flow, and enable access control 

through event filtering. However, our policy manager also explores alternatives upon 

failure, through negotiation. 

Making access control more context-aware [Kulkarni2008] and distributed 

[Cautis2007] has been a research focus ever since the advent of pervasive computing. 

Toninelli et al. [Toninelli2006] propose a form of access control whereby policies are 

suitably adapted to context. Like our system, they use a semantic logical language to 

encode policies. Sampemane et al. [Sampemane2002] also demonstrate the use of 

policies and a role-based access control model in Gaia. Our policy management 

framework augments these systems by adding a negotiation protocol. 

Minami and Kotz have designed and implemented a framework for secure context 

sensitive authorization [Minami2005; Minami2006] that models access control as a 

distributed proof tree spanning multiple entities. Their framework is similar to ours in 

many ways. Peers in their system formulate policies in a logical manner using Prolog, 

and frame meta-policies for integrity and confidentiality. In their scheme, when certain 

predicates in the body of a policy rule cannot be evaluated locally, such evaluation is 

delegated to a different entity that has policy rules or facts corresponding to that query. 
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Based on confidentiality policies, an entity could choose to either return an answer to a 

query or send a rejection message. The main difference with our framework is that their 

system provides no scope for negotiation, and also that they assume the integrity and 

confidentiality policies to be completely public, which facilitates selection of suitable 

hosts for building the distributed proof tree. We have gained valuable insights from 

Minami and Kotz’s research, both conceptually and from the point of view of 

performance evaluation of our framework [Minami2006]. In reference to distributed 

proof trees, the PeerTrust researchers model automated trust negotiation in the form of a 

distributed proof tree [Alves2006], but this takes the form of a delegation tree more than 

a tree consisting of false starts and alternatives like ours; also, PeerTrust handles mainly 

credential requests and delegations, as opposed to our more general negotiation 

framework. 

 

10.4.2 Trust Models 

Trust has been studied in recent years, both in the context of theoretical models and for 

practical use in open systems. It has always been used in limited ways in computer 

security, based either on identity or trusted authorities. It would be fair to say that the 

research community generally accepts the notion of trust as a basis for secure interactions 

in ubicomp [English2002]. We have discussed how trust can be gained through 

automated negotiation earlier in this chapter. Here we discuss approaches that have been 

proposed over the years to build trust among entities in a distributed system. 
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PolicyMaker [Blaze1998] and KeyNote [Blaze1999] were seminal trust 

management projects where credentials (typically public keys) were tied to the 

permissions they represented rather than identity. An access required the production of a 

key which would be input to a compliance checker along with a request and a policy, the 

output being a yes/no answer. It was a simple and powerful model, but it has been 

overtaken by more sophisticated schemes that handle a much wider range of situations. 

The Secure project [English2002; Cahill2003] argues for a dynamic notion of 

trust, with a history of past interactions being used as a basis for trust formation, and 

additional evidence leading to trust evolution. This trust information is then used for 

access control decisions using appropriately framed security policies. Secure also 

presents formal models that relate trust to events and results, and trust value changes 

based on evidence [English2004]. Trust building through reputation frameworks, or 

collection of evidence from known sources, has been well studied [Xiong2004]. 

Reputation models have been employed widely on the web, which provides a common 

forum for a large number of anonymous users to offer and obtain feedback about 

websites and products. Some of the most popular websites, including Amazon, Ebay and 

Bizrate act as reputation servers. An automated reputation-based augmentation has also 

been proposed for P3P [Kolari2005] using web crawling techniques. Though such 

reputation systems may offer economic benefits [Kennes2003], they have limited use in 

practical security, mainly because of the huge number of variables involved and the 

possibility of entities lying and colluding [Sen2002]. Formal reputation-based trust 

models generally use probabilistic reasoning, and do not clearly specify the decision-
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making processes. Quantitative models have also been proposed to generate and make 

use of trust relationships. Shankar et al. have proposed a unified model that uses both 

identity and contextual properties and which expresses trust as a continuum 

[Shankar2002]. A different model attempts to model trust using probabilities, and in 

addition proposes ways to interpret the information during the actual process of 

performing a security-sensitive action [Jøsang1999]. 

These trust models are complementary to our research in that they could be used 

to frame policies and be used as heuristics in our protocol; the negotiation then enables a 

gradual evolution of trust based on history (sequence of messages exchanged up to that 

point). In the future, we envision a fusion of trust models and negotiation protocols as 

being the core features of any ubiquitous computing security framework. 
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Chapter 11 
 

Future Work: Extensions and Enhancements 

 

There are a number of ways in which our negotiation protocol can be enhanced and 

improved as a tool for enabling interoperation between mutually unknown computers 

connected by a network. Our research could be extended in many directions with the goal 

of designing negotiation-guided policy management modules for secure ubiquitous 

computing. Interaction with human users is another under-explored area. We discuss 

some of these extensions and enhancements in this chapter. First, we will discuss 

enhancements to the negotiation protocol. Then we will consider policy management 

framework performance and analysis issues. We will also propose other useful and fun 

ubicomp applications that would benefit from negotiation. Lastly, we will discuss the 

human computer interaction issues that have risen out of our research and how we could 

go about addressing them. 

 

11.1. Negotiation Protocol 

The negotiation protocol was designed to be as general as possible (based on 

illocutionary speech acts) so that a wide range of applications could be supported. Our 

proof-of-concept consists of three parts: i) providing a basic building block for ubicomp 

middleware security modules, ii) demonstrating a wide range of dynamic application 

scenarios that require minimal effort to achieve, and iii) demonstrating the feasibility of 
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negotiation as a valid and practical procedure for policy resolution by comparing it 

against a centralized system. Enabling user access to ubiquitous services requires smarter 

devices and interoperation frameworks, and this protocol is the first step towards building 

a semi-expert system that will achieve those tasks. Though further advances in dynamic 

networking, context-aware computing and AI are awaited, we can explore and refine the 

properties of negotiations in certain ways that are described below. 

 

11.1.1 Heuristics and Strategies 

In our measurements of negotiation performance (see Chapter 9), we used a simple 

heuristic for selection of alternatives: the cardinality of the alternative set. We order all 

the alternative sets in ascending order of cardinality and store them in a priority queue. 

Though this heuristic works fairly well (though nowhere close to optimal) on average 

simply because the probability of satisfying a set of k requests decreases with an increase 

in k. But all requests are not equal; we are not using any information extracted from the 

content of the requests themselves to make better selections. There is ample scope for 

research in the area of devising better heuristics, which in turn would manifest itself in a 

modified strategy. Architecturally, these heuristics could be designed as plugin functions 

selected at runtime by the policy manager controller module. We suggest a few candidate 

heuristics and strategic choices below. 

 

Categorization of Request Types—Our informal classification of request types yields the 

set {possessions, actions, state requests, queries/information}. Based on the degree of 
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irrevocability and the risk involved in granting these requests, we propose an ordering of 

these classes as follows: 

queries/information < state requests < actions < possessions 

The ‘<’ symbol signifies a ‘less risky/less irrevocable’ relation. The ordering implies that 

a query for information is more likely to be satisfied than a request to change state, and so 

on. This is a total ordering, based on our understanding that giving up an 

object/possession is an irrevocable act, whereas some actions (such as making firewall 

settings) can be revoked based on future observations, and that most queries for 

information can be safely answered without risk of harm, though some privacy is lost. 

This is not a universal assertion; specific requests for information may turn out to be 

more risky than certain action requests. Using this ordering, an alternative set that 

contains more queries than action/possession requests will be selected first because the 

requests in this set are more likely to be satisfied by the opposite party in a realistic 

negotiation scenario. 

 

Expected time to finish—If a negotiator has soft real-time constraints that are more 

important to it than its privacy concerns, it could make a strategic choice to send multiple 

alternative sets at once, giving the other party the option of trying to satisfy one of them. 

This would definitely reduce the total protocol termination time, and the amount of 

optimization depends on the stage at which this option is exercised. A key challenge here 

is to estimate the expected termination time with sufficient accuracy, since the processing 

times associated with different requests could vary widely. We could also experiment 
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with lazy and eager strategies in the same way as Winsborough et al. have in the area of 

automated trust negotiation [Winsborough2000]. 

 

11.1.2 Re-Modeling Negotiation 

The negotiation protocol allows a negotiator to compute alternative offers, should it not 

be able to send an affirmative reply to the primary one. As the protocol is based on 

logical resolution, it currently does not try to compute alternative offers when local 

queries based on received requests succeed. Yet, the protocol could be re-modeled and 

re-engineered to include non-logical criteria, including policy compromises, at choice 

points. The choice is indicated by the flowchart segment in Figure 74. The choice of how 

to reply when a request is received is not a purely policy-based decision here. (Note: 

heuristics for alternative selection lie within the bounds of logic, since they are simply 

employed to select one of a set of equally valid logical paths). Sometimes, instead of 

sending an affirmative offer, a negotiator could try to compute an alternative offer. At 

certain points, a negotiator could choose to send a negative offer instead of a counter-

request. Likewise, instead of sending a counter-request because of the failure of a query 

formulated from a received request, a satisfiable alternative offer could be sent. We 

cannot envision a situation under which a negative offer would be sent even though an 

affirmative offer is consistent with local policy, but this is a topic that deserves further 

investigation. Below, we briefly suggest criteria upon which such choices can be made. 
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Figure 74. Negotiation Protocol Choice Point 

Balancing risks and benefits—In our discussion of related work (see Chapter 10), we 

mentioned certain research projects that had tried to use perceived benefit and risk 

metrics to make trust and access control [Zhang2006] decisions. The SECURE project in 

particular [English2004] uses an event model to monitor state changes, to dynamically 

update trust levels in foreign entities and compute the costs of allowing a security- or 

privacy-sensitive action. Our negotiation protocol could adopt such a model and frame a 

dynamically computed utility (= benefit – cost) metric; the choice with the highest utility 

would be selected. The question of how to assign suitable benefit and cost values to 

particular actions/concessions now arises. Let us just consider costs to be security risks or 

privacy loss. We can then come up with the following classification of risky actions: 

{running applications/services upon request, offering access to resources, offering 

information or credential objects}. The risks of performing these actions during 

negotiations are obvious. The benefits include satisfaction (or even quicker satisfaction) 

or one’s goals by virtue of making risky concessions. What quantitative benefit/risk 

values one could attach to these risky actions is an open problem that we leave for future 

researchers. Possibly a partial ordering (based on relative risk or benefit levels) of actions 
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could be mined from the policy database in a similar way as access control roles have 

been [Molloy2008]. The expected time to finish could be incorporated into the benefit 

metric. Once values are assigned, policy statements in the database could be suitably 

annotated. Perhaps game-theoretic techniques could be leveraged, but we suspect those 

would not be suitable for this kind of negotiation, where both participants play by 

different rules (policies in their respective databases). The re-modeled protocol must also 

be analyzed for completeness, correctness, and optimality properties. 

 

11.1.3 Collective Negotiation Among Multiple Parties 

Our framework enables multi-party negotiation as a set of bilateral negotiations. Yet this 

is not the full multi-party negotiation, the scenario of which was laid out in Chapter 3. 

Here, we propose a candidate protocol for true multi-party negotiation, where each party 

has goals that could be satisfied by a combination of other parties. 

The negotiation proceeds in lock-step. In each round, every negotiator broadcasts 

a set of messages, each message intended for some of the other negotiators (we assume 

that the communication infrastructure provides multiple unicast as a core operation). The 

protocol starts by all negotiators sending their initial requests to everyone else. In 

response to a request received, offers could be returned or counter-requests could be 

generated. Offers are unicast only to the original requester, but counter-requests may be 

communicated to multiple negotiators, and even be distributed among them. Multiple 

offers could be received for the same request; one will be selected by the requester based 



 353

on some criterion that is not part of this model. Eventually the protocol terminates in the 

same was as in the case of the 2-party negotiation. 

There are a number of challenges that we face before such a protocol can be fully 

designed and implemented. The procedures offered by the policy engine would have to 

be modified to compute counter-requests (unsatisfied constraints) for multiple entities 

rather than just one. Whether or not such a protocol can be correct or complete is also a 

matter for investigation. Implementation of reliability and fault tolerance mechanisms 

becomes a lot more complex in multi-party negotiation. Issues of collusion and Byzantine 

failure must also be addressed. 

 

11.1.4 Framing Binding Legal Contracts 

An interesting and fruitful target of future research could be the enforcement of legally 

binding agreements reached through negotiation. This would be particularly valuable in 

e-commerce applications, in which monetary transactions are conducted and goods are 

promised in return for money. Legality may have to be enforced by a trusted third party, 

akin to an e-notary, who is not involved in the negotiation procedure but is only involved 

in “attesting” and “recording” the agreement once negotiation terminates. Cryptographic 

protocols for transactions have been developed that maintain privacy while using trusted 

third parties [Micali2003], but enforcing the legality of a more arbitrary negotiation 

instance requires further work. 
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11.1.5 Security 

A Panoply policy manager monitors sphere events and reflects changes in the policy 

database. It also triggers renegotiations when the results of later negotiations cause 

change in state. For more comprehensive security, we should augment the manager with 

a reputation-based trust framework that monitors all possible violations of negotiated 

agreements and not only triggers renegotiations, but also propagates this information into 

a sphere trust network. These spheres’ policies that are dependent on actions similar to 

the ones that have been violated could be suitably modified to reflect the lower level of 

trust in the violator sphere. 

Given that neither negotiator knows anything about the other’s policies, one side 

could execute a denial-of-service attack on the other simply by sending an endless 

sequence of requests. But, as we mentioned at the end of Chapter 8, this is not a very 

serious problem as negotiation messages cannot be sent out of order or flooded. A 

possible approach that could prevent this kind of attack is to ensure that negotiation steps 

result in some progress towards termination. Goal utility could be dynamically updated, 

whereby the utility of a request decreases with time or number of steps. Using a utility-

based model as described in Section 11.1.2, we might be able to mitigate the effects of 

attempted denial-of-service attacks. 

 

11.2. Policy Management Framework 

There is also room for research in either improving or enhancing the policy management 

middleware. We discuss some of these focus areas briefly in this section. 
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11.2.1 Performance 

As mentioned earlier in this dissertation, the counter-request and alternative offer 

generation procedures (primarily the former, as it is employed more often) are 

negotiation performance bottlenecks, since neither negotiator can do any other useful 

work (like message communication) while these procedures are running. But as long as 

the policy rules don’t change very often, these procedures perform repetitive tasks and 

generate identical results even when executed at different times and for different 

negotiators. Therefore, we can optimize performance by caching the result of these 

procedures in a table indexed by the request name. When two different negotiators make 

the same request, a fast path can be used in the second instance, and the overhead of 

counter-request generation can be avoided. This performance optimization comes at the 

price of guaranteed correctness and policy integrity. If the state of the policy database 

changes between the times when the identical requests were sent, negotiation may deliver 

a result inconsistent with policy. But this is definitely an optimization worth 

investigating. We have used a cache for a different purpose in the policy manager; it is 

used in the context of event-filtered access control (see Chapter 6). The resulting 

performance gains were found to be significant (see Chapter 9) and we would have no 

reason to expect otherwise in the case of the optimization proposed here. 
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11.2.2 Running the Policy Manager on Resource-Constrained Devices 

We have successfully run the policy manager (as part of the Panoply middleware) on 

devices running full featured Linux distributions. Panoply was also ported (without the 

Prolog subsystem) to smaller devices with fewer resources like the Nokia 770 Internet 

Tablet, though performance was less than optimal because the code base was built on 

Java. In the future, we would like to port the policy manager to devices like the Nokia 

770 and even less capable devices like mobile phones and sensors. Porting the entire 

functionality to native C or embedded code (for non-JVM-enabled devices) will be a 

challenge, but doable. Prolog distributions are also available for smaller devices and 

mobile phones; e.g., m-Prolog [Koch2005]. In our experiments, we found that the policy 

manager running negotiation leaves a fairly small memory footprint as well. Successfully 

running computation-intensive helper functions will also be a challenge, though 

lightweight cryptographic schemes have been developed for small devices. 

The biggest challenge in running a negotiation protocol would be the large 

amount of network communication potentially draining valuable battery charge. 

Reducing the number of negotiation steps will increase the power efficiency of the 

protocol as well. A pragmatic option for very low-capability devices like sensors may 

simply be to outsource negotiation altogether to more powerful devices that run Panoply 

sphere managers. If we really wanted such devices to run the negotiation protocol, the 

estimated battery time left could be incorporated in the utility heuristic; also, multiple 

alternatives could be bunched together as mentioned in Section 11.1.1. 
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11.2.3 Porting to Other Ubicomp Platforms 

We designed the negotiation protocol and the policy manager to be independent of the 

middleware platform they are a part of. Based on that philosophy, our policy manager is 

completely modular and is very loosely coupled with the other core Panoply components, 

communicating only through events. Porting the policy manager to a different ubicomp 

middleware is very feasible. Here we discuss how this could be done, using the Gaia 

framework [Román2002] as a case study. 

Gaia acts as an operating system for active spaces, which consist of multiple 

computers and resources, similar to a Panoply sphere in some ways. The high-level Gaia 

architecture is illustrated in Figure 75. Our policy manager could be added to this 

architecture fairly easily, as illustrated in Figure 76. Gaia supports an event manager, like 

Panoply, and components and services could subscribe for events, including those that 

indicate context changes, presence of people, etc. The Gaia Space Repository supports a 

directory for active devices and services in a Gaia active space; this can be queried based 

on entity properties, returning a suitable XML description of the entity. The policy 

database must also contain this information in its policy database, so we would have to 

add a module that would query the Space Repository and convert XML descriptions into 

our Prolog-based policy language. This is not very straightforward, but can be done with 

some effort. The Gaia Security Service contains both access control rules for 

authorization purposes and pluggable authentication modules that can be dynamically 

invoked in different configurations. These modules could be registered with the policy 

manager as helper functions, and invoked when required as well. 
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Figure 75. GAIA Architecture (Borrowed from GAIA homepage: http://gaia.cs.uiuc.edu/) 

 

Figure 76. GAIA Architecture Modified to Incorporate the Policy Manager 

The policy manager listens for Gaia events and evaluates ECA rules as it does in 

Panoply. Negotiation would be typically invoked whenever a new device joined a Gaia 

active space and tried to register itself. Since Gaia-enabled devices do not incorporate the 

notion of negotiation, the registry procedure would have to be modified to fit in 

negotiation, similar to the way in which the Panoply Join protocol was modified. Also, as 

the Gaia policy manager mediates between the Application Framework and applications, 
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it could trap events destined for the applications and run them through a policy filter. 

Even though Gaia is a centralized model (Panoply is decentralized, with loosely coupled 

spheres), events destined for applications from active devices could be mediated through 

negotiation, resulting in a similar form of dynamic access control. 

The actual implementation is rather straightforward. Gaia services are 

implemented as CORBA services, and are specified using the CORBA IDL (Interface 

Definition Language). Therefore, the policy manager will also be implemented as a 

CORBA service. Even though it is written in Java and the other Gaia services are written 

in C++, the source code for the policy manager need not be converted to C++. Just 

writing a policy manager interface using the IDL would suffice. CORBA provides 

standard support for both C++ and Java components, so the porting of our policy 

manager to Gaia would be, at best, a challenging programming assignment. 

 

11.2.4 Large-Scale User Studies 

Thus far we have experimented with writing and using policies that might look somewhat 

arcane to a non-technical user, though more intuitively understandable than XML-based 

policies. In the future, we would like to deploy the policy management framework more 

widely and have a large number of users set and modify policies themselves (through the 

GUI displayed in Figure 15). Based on user feedback (related to the difficulty in writing 

policies), we could refine the language by expanding the vocabulary and making harder 

distinctions between policies that ought to be left to system administrators and those that 

users can handle. 
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11.2.5 Stress Testing 

Our policy manager was designed to be resistant to failure and to dynamic changes in 

state. We have run multiple negotiations, both running in concurrent threads and serially 

on a long-term basis. The Java framework is generally resilient and efficient within its 

limits. The Prolog subsystem though is not as resilient to stress-testing as we would like. 

For example, running the Smart Party application for a long term (while also playing 

music) eventually causes the Prolog subsystem to crash. The reasons include memory 

leaks in the Prolog source code (which we fixed) and some 32/64 bit incompatibilities in 

the JNI (Java Native Interface) code written by SWI-Prolog designers. The designers 

admit that the JPL package is unstable when run in multi-threaded mode. Therefore, even 

though SWI-Prolog provides features and APIs that are perfect for our system, we may 

look for a different, and more stable, platform for our policy manager in the future. 

 

11.2.6 Controlling Event Flow 

Kevin Eustice has already talked at length about event flow among Panoply spheres in his 

dissertation [Eustice2008b] and has defined a number of event-scoping criteria and 

mechanisms. Currently our policy management filters events only based on end points, 

i.e., when the events are known to be destined for a given destination sphere or an 

application. We can use policies to do more fine-grained and extensive event scoping. 

Other event-based information sharing [Singh2008] or access control [Hengartner2005] 

systems have also used policies for a similar purpose. We could address two main 

concerns: sending events to untrusted spheres, and flow control. The former case could 
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be handled through negotiation in the same way that application-destined events are. 

Failed negotiations would result in events not being broadcast along those paths. Such a 

negotiation would take place only for the first event in the flow, since the state changes 

would be reflected in the policy database. Alternatively, contents of events could be 

obfuscated or encrypted before being sent to an untrusted sphere. When the event 

eventually reaches a trusted sphere that possesses the capability to de-obfuscate its 

contents, normal event flow resumes. The rate at which events can be sent is also 

something that could be negotiated between neighboring spheres, thereby regulating 

event flow. We are confident that workable solutions to these goals can be obtained with 

more research. 

 

11.2.7 Integrating with Semantic Web Technologies 

To better conform to standards, Panoply (including the policy manager) should 

eventually be ported to, or augmented with, Semantic Web technologies. Our negotiation 

framework is equally applicable to agents negotiating for web services as it is to mobile 

hosts encountering ubiquitous networks. A more standard implementation (and one that 

could interoperate with existing web services) would use SOAP as a message exchange 

protocol and negotiation messages encoded in XML instead of serialized Java objects. 

The challenge here is to ensure that the policy engine and most of the controller can be 

retained as is while augmenting the front end with SOAP, HTTPS and XML-based 

negotiation messages. 
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11.3. Applications 

The negotiation protocol can be applied in a wide variety of scenarios; we have discussed 

only some of them in this dissertation (see Chapter 7). We describe a few candidate 

applications that demonstrate the use of negotiation and policy management in areas 

other than the ones we implemented. 

 

11.3.1 An Interactive Museum Tour 

A museum, divided as it is into multiple rooms and regions focused on particular pieces 

of art, offers an excellent use case scenario for policy management and negotiation. With 

Panoply support, each room could be configured as its own domain, as would every tour 

group visiting the museum. Every museum patron, from students in a school group to 

individual visitors, carries a personal mobile computer that would receive content 

relevant to the exhibit the user is close to, and one that is perceived as being his/her 

center of focus. These devices possess vouchers that indicate their owners’ right to access 

such content. Content is obtained through negotiation with the individual rooms (which 

would be configured as Panoply spheres in our deployment). Individual guests obtain 

vouchers upon payment at the museum entrance. School group members do not have to 

pay, as their school has an agreement with the city authorities who run the museum. Their 

devices present valid school vouchers when requested during negotiation. The content 

offered to each user is different, and based on their age levels (inferred from their 

credential types), and the list of prior exhibits visited. User interests are ascertained 

during negotiation (some might be interested in a historical perspective whereas others 
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may be interested in artistic techniques), and they may also be offered hints about what 

room to visit next. Upon a selection, the user could be offered directions. We saw how 

such features were enabled by the policy manager in the Interactive Narrative (see 

Section 7.1). A manual option can also be added; a docent or teacher accompanying the 

group could dynamically change entire group preferences, e.g., from a description of art 

techniques to a historical perspective, thereby changing the nature of delivered content. 

During peak hours, the museum policy managers could collaborate in crowd control. This 

could be done in subtle ways (users not being provided content if they are in an already 

crowded room, thereby giving them an incentive to move away) or by providing explicit 

suggestions that they might have a more enjoyable time in a different gallery. 

 

11.3.2 E-Commerce: A Shopping Mall 

E-commerce applications could benefit both from ubiquitous computing services and our 

negotiation framework. Consider a scenario where a customer walks into a shopping mall 

equipped with networking and localization facilities, and with each store configured as an 

autonomous domain. The customer’s resource needs are reflected in his device’s policy 

database, as are his policies governing payment, revealing credit card information, and 

priorities in terms of what is most urgently needed. This scenario offers room for multi-

party negotiation, where the customer’s device can simultaneously bargain with multiple 

stores for different items, and can obtain the best deals and discounts. More trust would 

have to be gained through negotiation before the customer’s device is ready to provide a 

credit card number. To perform such transactions, the customer’s device must also prove 
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that it is within the mall premises. During the customer’s visit, stores (or the mall as a 

whole) could negotiate with his device for the right to send targeted advertisements in 

return for vouchers and discounts. Stores may choose to keep their final (negotiated) 

offers open for a limited period of time within which the customer is expected to 

physically appear at the store and presumably inspect the goods and complete the 

purchase; otherwise, any obtained discounts would be cancelled. Alternatively, the 

customer may have limited time and may choose to provide his shipping address, thus 

avoiding visiting the store. Some of these steps may require manual intervention, or a 

negotiation protocol augmented with heuristics that incorporate time (see Section 11.1) 

may be employed. Either way, a realistic and useful deployment of such a scenario 

requires changes to the negotiation protocol as it currently exists. 

 

11.4. User Interaction 

Though negotiation was conceived as an under-the-covers protocol that abstracts away 

the complexities of resource usage and context from the human user, its workings are not 

completely transparent to the user in its current incarnation. In the absence of a learning 

(or any other AI) component, the decisions made by the policy manager are limited by 

the set of policy rules framed by the users. Within the boundaries of policy rules framed 

using logical semantics we have proved that the negotiation protocol is correct and 

complete. But in order to make ubiquitous services more usable, and interactions more 

intelligible to users, better user interfaces must be designed, and user feedback ought to 
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be incorporated (potentially departing from a purely logical approach). We discuss 

certain directions that can be followed below. 

 

11.4.1 Negotiation: User Control and Feedback 

There are many situations where the policy manager may not resolve a situation to the 

complete satisfaction of the user. A negotiation may fail because the policies of the 

negotiators, as framed, contain irreconcilable conflicts. Alternatively, a negotiation that 

may or may not succeed at the end could take up more time than a user can tolerate. In 

these cases, it may prove useful as a practical matter to allow users more control over the 

protocol. This control can take two forms: 

i) Changing policy during a negotiation so that results that were impossible earlier 

would become possible: Consider an example where P and Q are negotiating, and P 

receives a REQUEST from Q. P evaluates the request against its policy database and 

makes a decision to either send an affirmative offer, a negative offer, or counter-

requests. Conversion of a negative offer to an affirmative offer would result either in 

quicker progress or be the key to converting a failed negotiation into a successful one, 

or one leading to a better result from P’s point of view. Consider the peer-to-peer 

application (see Section 7.3: third case). P’s policies do not dictate compliance with 

anyone who requests the prohibition of networked applications. When P receives such 

a request, it would ordinarily decline it, but a variation would involve the user 

controlling P to override this default and instead send an affirmative offer. As a result, 

P would gain access to more disk space than it otherwise would have. 
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Would changing policy in the middle of a resolution procedure preserve the 

theoretical correctness properties proved in Chapter 8? Seemingly it would, since we 

posit that the negotiation procedure does not evaluate a policy (and hence, a request) 

more than once. Therefore, changing this policy would not affect the correctness of 

nodes in the policy resolution tree that have already been evaluated. Still, further 

investigation is needed to provide a comprehensive proof. 

ii) Making strategic decisions at intermediate choice points that override the default 

heuristics that the controller module currently uses: Following up on the above 

example, P may be able to generate a set of alternative counter-requests in response to 

a request from Q. Instead of using its built-in heuristic for alternative selection, the 

negotiation framework could prompt the user to make an alternative selection. This 

would be useful in cases where the user can detect subjective differences among 

alternatives while the negotiation controller (purely guided by the information in the 

policy database) cannot. 

Such user intervention comes at a cost. The user may be drawn into making 

decisions he/she may not be completely qualified to make—the negotiation protocol was 

created to handle this problem. Also, users will take additional time to make their 

decisions, thereby increasing the overall negotiating time. This may not provide a net 

benefit, and may even result in harm if the user makes a bad decision. The additional 

overhead may also break the fault tolerance measures currently in place (see Section 6.6), 

depending on the timeout values set by the negotiators. Still, we feel the option of user 

intervention is a feature worth adding to our negotiation framework. 
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11.4.2 Feedback and Analysis 

For a user to be able to effectively control a protocol instance, the policy manager must 

be able to provide feedback in a suitable form that the user can understand. Currently, the 

user gets limited feedback in case of failure. All the policy manager does is to simply 

state something like “You failed to satisfy <request>”. These requests and offers are 

communicated in the form of logical predicates. A system administrator may understand 

these but the average user will find these completely unintelligible. Options must be 

presented to a user in a form he/she will understand. A simple first step would just be to 

associate a natural language string with each predicate type. For example, the request 

possess(diskSpace,D) would be presented to the user in the form “Do you want to give 

entity Q access to D amount of disk space?”. This mitigates the problem of language, but 

the user still may not understand the implications of performing the requested action. For 

example, a user will not be concerned or even be aware of what it means for a service 

running on port XX to be closed and why he should agree to do so. Here, it would be 

helpful if the policy manager could provide certain cues to the user. As we have 

described, the negotiation protocol constructs a policy resolution tree, where a counter-

request sent is the child of a request received. Therefore, the question posed to the user 

would be of the form “Do you want to …. in return for <negotiator> doing …?”. It may 

also be useful to trace back to a root request (some levels higher in the resolution tree) 

that would eventually be satisfied by the user agreeing to change policy. There are 

significant research possibilities in this area. In fact, Nam Nguyen, one of the researchers 

working on Panoply, is designing an analysis framework for event-based ubiquitous 
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systems; his research results may prove relevant to the kind of user interface we have 

described here. In addition, Bonatti et al. [Bonatti2006] show how explanations for 

failure of a Protune negotiation can be provided to users; both fine-grained and global 

information can be provided. Their work could provide useful insights in designing a 

better explanation system for our policy manager. 

In addition to providing a user feedback on what could be gained from potentially 

breaking a policy rule, it would be useful to let the user know about the risks incurred by 

doing so. This is a much harder problem, since the risks cannot be inferred by an 

examination of the protocol history. The risks, if they can be inferred at all, would require 

a full examination of the policy database. A tool one could use here is simulated forward 

chaining. We could simulate the change in policy and record the changes that occur in the 

database through the forward chaining algorithm. But this algorithm runs in exponential 

time, and is extremely slow in practice. This is an area where significant AI research is 

required for performance optimization. Also, what results are presented to the user and in 

what form is also a matter of investigation. 

 

11.4.3 Usable Policies 

A number of policies listed in our discussion of negotiation-supported applications (see 

Chapter 7) are rather hard to read and understand for a non-technical user. Consequently, 

such a user would find it even harder to write such policies. Even users with a technical 

background may find it cumbersome to write policies without sufficient SWI-Prolog 

training. In the future, we would like to make the policy language more usable. The key 



 369

modification is abstraction, or keeping the more complex and technical portions of the 

language under covers. Ordinary users never get to see them, yet lose no control over 

their system configurations. 

We intend to leverage the work done by Herzog and Shahmehri in making the 

setup of security policies more usable [Herzog2007]. Their work does not completely 

apply to our framework, since they advocate the setting up of policies as much as 

possible at runtime rather than beforehand. On the other hand, negotiation needs pre-

configured policies. Still, we can use some of their recommendations, such as the 

enforcement of least-privilege as an implicit default policy; policies are likely to be less 

cumbersome to write if the user does not have to explicitly add least-privilege constraints 

(which can be added automatically by a policy parser). Also, their experiences suggest 

that even the best designed policy set will be found wanting at runtime, so continuous 

tests and user feedback must be obtained, and the policy language easy to modify. Our 

logic-based language is easily modifiable, though we need to do real user tests before we 

can refine it. We can also leverage work done in building more usable GUIs 

[Shneiderman2004] and in establishing better criteria for successful HCI security 

[Johnston2003]. 

We add a couple of guidelines that should make policies more readable and 

writable: (i) the language must have few, simple, and intuitively understandable 

semantics, and (ii) the abstracted view should be as written as much as possible in natural 

language. Users could write policies using predicates written in natural language (and 



 370

whose meanings would be intelligible to them) and semantic operators. For example, 

consider the following policy rule (from Section 7.3): 

update :- 

((parentSphere(S), networkApp(App,P), 

not(runApp(prohibit,App)), not(running(App))) -> 

((((is_list(P),length(P,L),L>0) -> 

(jpl_datums_to_array(P,Parr0), 

jpl_datums_to_array([Parr0],Parr), 

jpl_call('panoply.utils.ApplicationLoader','launchApplication',[A

pp,Parr],Res))) ; 

((is_list(P),length(P,L),L=0) -> 

jpl_call('panoply.utils.ApplicationLoader','launchApplication',[A

pp],Res))), 

assert(running(App)))). 

This policy implies the following: If I have a parent sphere and I have a network 

application ‘App’ that is currently not running, and is not prohibited from running, I 

must start it. The predicates parentSphere, networkApp, runApp(prohibit, App), 

and running are in a syntax that is close to a natural language, and can be understood by 

a user. The operator ‘->’ is the implication (if-then) operator, which can also be 

understood by the user. A simple natural language translator could be used do convert 

phrases like ‘have a parent sphere’ to the predicate ‘parentSphere(S)’ (the article ‘a’ is 

equivalent to the∀ operator and can be represented by a variable). The special 

(designated) predicates used by JPL for data processing (jpl_datums_to_array, 
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is_list, etc.), method invoking (jpl_call), and statement assertion (assert) could be 

hidden from the user through the following low-level policy rule: 

startApplication(App) :- 

((((is_list(P),length(P,L),L>0) -> 

(jpl_datums_to_array(P,Parr0), 

jpl_datums_to_array([Parr0],Parr), 

jpl_call('panoply.utils.ApplicationLoader','launchApplication',[App,

Parr],Res))) ; 

((is_list(P),length(P,L),L=0) -> 

jpl_call('panoply.utils.ApplicationLoader','launchApplication',[App]

,Res))), 

assert(running(App))). 

This policy statement does not need to be changed unless the core JPL API changes; 

hiding this from the user does not result in any loss of control over system behavior. The 

user can thus specify a policy in natural language (using if-then and conjunction 

operators) and the translator could then translate that to a logical statement that the policy 

manager can understand and reason with. 
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Chapter 12 
 

Conclusion 

 

Automating interactions between computer systems gets more complex the higher we go 

up the network stack. This is because lower layers communicate fewer units of 

information (e.g., bits and frames at the MAC layer; packets at the network layer), 

whereas the higher layers (the application layers) must deal with a wider variety of 

entities, services, resources, data units, and context (this being especially important in a 

ubiquitous system). Planned interoperation does not scale, and one cannot anticipate 

every possible eventuality and put in place a suitable, efficient mechanism to deal with it. 

It is more manageable and scalable to determine the appropriate parameters of 

interactions at runtime, and make adjustments for context. In this dissertation we have 

demonstrated how spontaneous interactions can be enabled through negotiations at the 

application layer. The interacting end points need to have their state, possessions, 

implemented mechanisms, offered services, and available data encoded in the form of 

declarative logical policies. This allows negotiators to pose queries, and obtain logically 

consistent answers as well as unstatisfied constraints. 

Our negotiation-based solution was predicated upon a particular environmental 

model that divides the world into autonomous domains. Each domain governs a certain 

group of entities within it and enforces a security perimeter around itself. Bounded 

domains will grow organically in the ubiquitous cyber-world, and map onto real-world 
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organizations of people. In the real world, people are individuals and are also affiliated 

with various groups, some temporary (such as being present in a museum with other 

patrons) and some permanent (such as being part of a family, a company, or a 

municipality). These domains have their own laws or constraints that their members are 

expected to abide by. Whenever two such domains interact in the real world, they come 

to an agreement through negotiations because their policies may conflict. When an entity 

or organization gets subsumed into a larger one, it is expected to abide by the policies of 

the latter, though it is free to do what it wants in all matters that are unrelated to the 

activities and priorities of the entire group. This model works well and preserves 

autonomy of domains in the real world, and we felt it was a natural model to apply in 

ubiquitous computing. 

We modeled inter-domain interoperation as a negotiation. Policy constraints and 

resource possessions are framed as first-order logical statements, and goals are framed in 

logical predicates, both in Prolog syntax. The negotiation is designed to result in an 

agreement whereby the goals may be satisfied as framed, or equivalent alternatives may 

be provided, or the goals may be denied. Ensuring compliance with the negotiators’ 

policies is the immutable criteria. The policy statements and goals have truth values in 

first-order logic, and we used theoretically verified logical properties to model such 

negotiation as a distributed policy resolution procedure. The goals are formulated as 

logical queries, and query processing involves building a search tree (as in the logical 

backward-chaining procedure) to find a solution that is logically consistent with the 

negotiators’ policies. These policies may contradict, resulting in a failed negotiation. The 
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query resolution procedure performs an exhaustive search of the AND-OR tree 

(generated through policy dependencies), and backtracks upon failure. Since correctness 

and security are foremost in our priority list, this is unavoidable in our model. Also, 

privacy considerations prevent us from using a centralized entity to perform such policy 

resolution. We have shown how entities can make autonomous decisions about policy 

exposure, while distributing the policy resolution between the negotiators, all without 

sacrificing correctness properties. 

We showed how we could translate this negotiation model into a working end-to-

end protocol. This protocol consists of requests, counter-requests and offers. Alternatives 

are tried upon intermediate failure (equivalent to backtracking in the policy resolution 

tree) and the negotiation terminated when no more requests remain unresolved. We 

showed how this protocol is applicable to a wide variety of application scenarios by using 

concepts from linguistics (speech acts and illocutionary logic). Though speech acts have 

been considered as a basis for negotiation by other researchers, no one has gone so far as 

we have in the modeling of negotiation in logically correct terms, implementing it as part 

of a ubiquitous policy management framework, and wide-scale testing. Our high-level 

protocol is deterministic; the framework supports multiple concurrent negotiations and is 

tolerant to network and end-point failures. A layered architecture provides core query 

processing and constraint-extraction procedures in its back end, which are used to 

determine appropriate logical responses to messages. A control layer supports plugin 

capabilities for external heuristics and application-dependent helper functions as well. 
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We have demonstrated both the necessity and versatility of our negotiation 

protocol in mobile and ubiquitous computing scenarios through real-life applications. 

Using our negotiation protocol, conference room environments and attendees can come to 

suitable service access agreements that vary depending on what their goals are, what 

information and credentials they possess, and what they are willing to offer one another. 

Nomadic devices and semi-open networks could safely interact without the former 

becoming vulnerable to malicious or infected computers and the latter not losing its 

privacy and autonomy. A Panoply Smart Party could regulate access to its environment, 

its resources (like a smart door), and dynamically control access to its playlists based on 

who is requesting access and in what context. We showed how quantitative negotiations 

for disk access could be enabled through our protocol whenever one entity needed it from 

another (to run a peer-to-peer file sharing application, for example). 

We proved and listed various theoretical properties of the negotiation protocol. It 

is free from deadlock, and suffers from livelocks only when there are cycles in the 

collective policy set of the negotiators; termination can be guaranteed with simple 

modifications and extra checks. Theoretically, the protocol is trivially correct; i.e., the 

result is consistent with policy and a negotiator never concedes more than what is 

requested of it. Our analysis does indicate that intermediate effects of non-logical helper 

functions may prevent results that would otherwise be possible. We showed that our 

protocol would be provably correct and complete in situations where such intermediate 

effects were reversible. 
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Our protocol is not guaranteed to be optimal. Therefore, we compared negotiation 

with a centralized policy resolution using an oracle, which always selects the correct 

alternative at every negotiation step. In our comparisons, we used a simple heuristic: the 

alternative sets were ordered in ascending order of cardinality, and the available set of 

least-size is selected. We designed and implemented a test case generation procedure, 

through which we could generate random pairs of policy databases that are characterized 

by the maximum branching factor and depths of policy resolution trees that can be 

generated from them. We tested negotiation performance for a range of branching factors 

and depth values. The number of actual negotiation steps was found to increase linearly 

with the number of actual negotiation steps, which indicates that the protocol and our 

simple heuristic do scale. Also, even though total processing times for negotiations 

dominate total oracular processing times, the corresponding average processing time per 

step is lower for negotiations. We also found that an increase in the maximum branching 

factor affected negotiation performance much more significantly than an increase in the 

maximum depth. Since database branching factors can be bounded more effectively in 

practice than depth, these results indicate that negotiation performance will not 

significantly degrade when database sizes increase. 

 

Summary of Thesis Contributions 

 Design and implementation of a generic negotiation protocol based on illocutional 

speech acts, and modeling this in the form of a distributed policy resolution. 

 Support for dynamic access control through negotiation. 
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 Design and implementation of a policy management framework for ubiquitous 

environments that supports multi-threaded fault tolerant negotiations as well as 

renegotiations. 

 Building a test case generator and performing large-scale statistical comparison of 

centralized and decentralized policy resolutions. 

 

Lessons 

Our research has made a significant contribution towards enabling spontaneous 

interoperation. We have shown that it is possible to design an automated negotiation 

framework based on declarative logical policies. We have demonstrated its worth in a 

real ubiquitous computing middleware and in many practical applications. Our system 

also allows dynamic access control and is sensitive to runtime policy changes. We have 

also implemented a test case generator that could be useful to other researchers in the 

future. Our performance results indicate that distributed policy resolution is feasible. 

Yet, over the course of the project we discovered that there are still many hard 

problems that remain to be solved. Though the performance results indicated feasibility 

of negotiation, a large number of test cases resulted in sub-optimal trees, implying that 

there is ample room for the development of better heuristics. Automated negotiations can 

be achieved within a tight theoretical model. If we veer off from the model, such as by 

introducing non-logical external function and policy compromises, we lose the theoretical 

properties of non-trivial correctness and completeness because the resulting modification 

of state may introduce many complications. Also, a large number of situations require 
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real AI, which our system was not designed to handle. As we have mentioned before, 

trust and risk factors play a large role in determining the appropriate course of action in 

security-sensitive systems. So a negotiator should try to break policy and make 

compromises as the situation requires, being aware of the risks. Mistakes may occur; the 

framework must learn from these and use that knowledge to make better decisions in the 

future. Also, a truly intelligent system would have to discern user intention and possibly 

frame a large portion of the policy itself. Our policy language is also not readily usable 

by a wider audience, as its use requires a high level of technical sophistication. These 

drawbacks facing our system require solving extremely challenging problems, and 

though some work has been done in these areas, a lot more needs to be done. 

 

At a high level, our framework could be placed in the category of semi-expert 

systems, as it runs logical queries and search algorithms to find answers so that users 

don’t have to, yet is not intelligent enough to learn, evaluate, and correct itself.  

The realization of true ubiquitous computing requires advances in systems, 

networks, and AI research. But even though significant advances have been made in the 

two former areas, as well as in the area of building better processors and smaller mobile 

computers, AI research has yet to catch up. Research in ambient intelligence is ongoing. 

As the field advances, we will determine ways to improve interoperation and negotiation 

frameworks so that the systems of the future can retain their autonomy while being more 

secure and usable. 
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Appendix A: Policy Language Reference 

Here we provide a reference to the common predicates and constants that comprise our 

policy language. We describe the global vocabulary that is understood by negotiating 

spheres and common low-level policy rules that enable mechanisms used by negotiators 

in our demonstrated applications. We also indicate which predicates users are expected to 

see and understand, and distinguish them from designated predicates that implement a 

particular operating system, networking, or string processing mechanism. We only list the 

SWI-Prolog predicates used; a comprehensive reference can be obtained from the SWI-

Prolog home page [SWIProlog]. 

(Note: The ‘%’ symbol denotes a comment in Prolog syntax)  

Commonly Used SWI-Prolog Constructs 

  

Logical Terms 
 
true. 
false. 
not(Statement). 
 

Data Processing Predicates 
atom_concat(Atom1,Atom2,Output). 
get_char(Char). 
get_char(Stream,Char). 
string_length(String,Length). 
string_concat(Str1,Str2,Output). 
string_to_atom(String,Atom). 
term_to_atom(Term,Atom). 
 

JPL Predicates 
jpl_new(Class,Params,Reference). 
jpl_call(Ref,Method,Params,Result). 
jpl_get(Class_or_Object,Field,Data).

 
Operating System Operations 

shell(Command). 
shell(Command,Status). 
open(Filename,Mode,Stream). 
close(Stream). 
delete file(Filename)

 
Modification Predicates 

 
dynamic(Statement). 
consult(Filename). 
assert(Statement). 
retract(Statement). 
abolish(Statement). 
erase(StatementReference). 

 
 
 
 

Examination Predicates 
 
clause(Head,Body). 
clause(Head,Body,Reference). 
nth_clause(Pred,Index,Reference). 
functor(Term,Functor,Arity). 
predicate_property(Head,Property). 
term_variables(Term,List). 
findall(Template,Goal,Bag). 
bagoff(Template,Goal,Bag). 
unify_with_occurs_check(Term1,Term2). 
arg(ArgNum,Term,Value). 
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Global Vocabulary 

% Declares which predicates can be requested in a negotiation. 
requestable(PredicateName). 

% We declare the following as being ‘requestable’ predicates. 
requestable(possess). 
requestable(action). 
requestable(memberIn). 
requestable(location). 
requestable(Pred) :- 
 stateToRequest(Pred,OtherPred), 
 requestable(OtherPred). 

 
 
% Declares which predicates are understandable globally. 
% In a negotiation, these predicates would be communicated as support 
% strings, or extra predicates. 

global(PredicateName). 
% We declare the following as being ‘global’ predicates. 

global(locationVoucher). 
global(socialVoucher). 
global(voucher). 
global(disp). 
global(location). 
global(printer). 
global(file). 
global(mediaFile). 
global(F) :- 
 file(F,P),not(publicKey(K,F,P)). 
global(S) :- 
 sphere(S). 
global(S) :- 
 number(S). 

 
% Declares mapping from a Request predicate to a State predicate. 

stateToRequest(RequestPredicate,StatePredicate). 
stateToRequest(memberIn,member). % Globally asserted mapping 

% Declares which predicates denote state information. 
statePred(StatePredicate). 
statePred(member). % Globally asserted state predicate 

 
% Indicates possession. 

possess(VAR). % I possess VAR 
possess(S,VAR). % Sphere S possesses VAR 
 

% Indicates that S has access to VAR. 
access(S,VAR). 
 

% Mechanism to perform action ‘ActionType’ on ‘Argument’ 
action(ActionType,Argument).  

% Denotes that sphere S is required to perform action ‘ActionType’ 
% on ‘Argument’ 

action(S,order,ActionType,Argument). 
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% Denotes that permission has been obtained from sphere S to perform 
% action ‘ActionType’ on ‘Argument’ 

action(S,permission,ActionType,Argument). 
 

% Indicates that I must obey S’s request to perform action ActionType. 
obey(S,ActionType). 

% Indicates that I must obey S’s request to perform action ActionType 
% on argument Argument. 

obey(S,ActionType,Argument). 
 

% Denotes that S has access to the information P. 
% P is a predicate of the form ‘pred(arg1,arg2,………)’. 

accessInfo(S,P). 
 

% Denotes that S is a member of my sphere. 
member(S). 

% Denotes that I am a member in sphere S. 
memberIn(S). 

 
% Denotes that ‘Request’ must be requested; ‘Type’ may be: 
% ‘q’ (query for data/info) or ‘r’ (any other kind of request). 

request(Request,Type). 
 

% Denots that ‘Answer’ must be offered in response to ‘Request’. 
offer(Request,Answer). 

 
% Sphere relationships. 

sphere(SphereID).   % SphereID denotes a valid sphere 
childSphere(SphereID).  % SphereID is my child sphere 
parentSphere(SphereID).  % SphereID is my parent sphere 
relation(SphereID).  % sphere SphereID is related to me 
relation(SID1,SID2).  % spheres SID1 and SID2 are related 
negotiator(SphereID).  % SphereID is my current negotiator 
localSphereID(SphereID). % SphereID is my ID 
candidateSphere(SphereID). % SphereID is a candidate for my 
     % sphere 
candidateInSphere(SphereID). % I am a candidate in sphere SphereID 

 
% Predicate used for event filtering: 
% So = event source sphere ID; T = event type; 
% ST = event subtype; UT = event user type. 

condition(So,T,ST,UT). 
 
% Denotes that predicate S2 is an acceptable offer (request) compared  
% to S1. 

acceptable(S1,S2). 
% Denotes that predicates S1 is a preferable offer (request) compared  
% to S2. 

preferable(S1,S2). 
 
% Indicates the resources or requests have been obtained from sphere  
% SID. The counter-request generation algorithm is run on this 
% clause at the beginning of every negotiation. 

needForResources(SID) :- <Body_Pred1>,<Body_Pred2>,…………. 
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Application-Specific Vocabulary 

% Indicates specific actions  
action(closePort,Po).  % Closing of port Po. 
action(runApp,App).  % Running Panoply application App. 
action(changeCharacter,C). % Changing Interactive Narrative  

% Character to C. 
 

% Indicates possession of a certain amount of disk space 
% Used in the peer-to-peer file sharing application.  

possess(S,diskSpace,D). % Sphere S possesses D amount of disk space. 
possess(diskSpace,D). % I possess D amount of disk space. 
 

% Cert denotes an X.509 certificate. 
certificate(Cert). 
certificateIssuer(Cert,SID). % Sphere SID issued Cert. 

 
% Denotes known voucher marked by the name ‘V’. 

voucher(V). 
locationVoucher(V). 
socialVoucher(V). 
 

% Denotes properties of location voucher ‘V’. 
locationVoucher(V,Ver).  % V has voucher ID ‘Ver’. 
locationVoucher(V,Ver,Vee). % V has voucher ID ‘Ver’ and vouchee  

% ‘Vee’. 
locationVoucher(V,Ver,T). % V has voucher ID ‘Ver’ and  

% expiration time T. 
locationVoucher(V,Ver,Vee,T). % V has voucher ID ‘Ver’, vouchee ID 

% ‘Vee’, and expiration time T. 
 

% Denotes properties of social voucher ‘V’. 
% Indicates affiliation with social group G. 

socialVoucher(V,G).  % V has voucher ID ‘Ver’. 
socialVoucher(V,G,Ver).  % V has voucher ID ‘Ver’. 
socialVoucher(V,G,Ver,Vee). % V has voucher ID ‘Ver’ and vouchee  

% ‘Vee’. 
socialVoucher(V,G,Ver,T). % V has voucher ID ‘Ver’ and  

% expiration time T. 
socialVoucher(V,G,Ver,Vee,T). % V has voucher ID ‘Ver’, vouchee ID 

% ‘Vee’, and expiration time T. 
 

% Policies indicating dependencies among predicates that describe 
% voucher properties. 

voucher(V) :- locationVoucher(V). 
voucher(V) :- socialVoucher(V). 
voucher(V,G) :- locationVoucher(V,G). 
voucher(V,G) :- socialVoucher(V,G). 
voucher(V,G,Ver) :- locationVoucher(V,G,Ver). 
voucher(V,G,Ver) :- socialVoucher(V,G,Ver). 
voucher(V,G,Ver,Vee) :- locationVoucher(V,G,Ver,Vee). 
voucher(V,G,Ver,Vee) :- socialVoucher(V,G,Ver,Vee). 
voucher(V,G,Ver,Vee,Dur) :- locationVoucher(V,G,Ver,Vee,Dur). 
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voucher(V,G,Ver,Vee,Dur) :- socialVoucher(V,G,Ver,Vee,Dur). 
 
locationVoucher(V) :- locationVoucher(V,C). 
locationVoucher(V,C) :- locationVoucher(V,C,C1),not(number(C)). 
locationVoucher(V,C,C1) :- locationVoucher(V,C,C2,C1),number(C1). 
locationVoucher(V,C,C1) :- 

locationVoucher(V,C,C1,C2),not(number(C1)),number(C2). 
locationVoucher(V,C,C1) :- 

locationVoucher(V,C1,C,C2),not(number(C1)),number(C2). 
locationVoucher(V,Vee) :- 

localSphereID(Ver),locationVoucher(V,Ver,Vee). 
 
socialVoucher(V) :- socialVoucher(V,G). 
socialVoucher(V,G) :- socialVoucher(V,G,C). 
socialVoucher(V,G,C) :- socialVoucher(V,G,C,C1),not(number(C)). 
socialVoucher(V,G,C,C1) :- socialVoucher(V,G,C,C2,C1),number(C1). 
socialVoucher(V,G,C,C1) :- 
socialVoucher(V,G,C,C1,C2),not(number(C1)),number(C2). 
socialVoucher(V,G,C,C1) :- 
socialVoucher(V,G,C1,C,C2),not(number(C1)),number(C2). 
socialVoucher(V,G,Vee) :- 
localSphereID(Ver),socialVoucher(V,G,Ver,Vee). 

 
% Public Key ‘Key’ is stored in file ‘File in folder ‘Dir’. 

publicKey(Key,File,Dir). 
% Voucher ‘Voucher’ is signed using Public Key ‘Key’. 

voucherKey(Voucher,Key) 
 
% Sphere ‘SphereID’ is mapped to IP Address ‘IPAddress’ 

ipAddress(SphereID,IPAddress). 
 

% Indicates location ‘L’ of a sphere. 
% Used in Interactive Narrative Application. 

location(L).  % I am in location L. 
location(SphereID,L). % Sphere ‘SphereID’ is in location ‘L’. 

 
% Denotes that ‘P’ is a printer. 

printer(P). 
 

% Denotes that ‘D’ is a display. 
disp(D). 
 

% Denotes that ‘D’ is a door. 
door(D). 
 

% Governs sound playing from time T1 to T2. 
% Used in Conference Room application. 

sound(S,prohibit,T1,T2). % Sphere S is prohibited from playing 
     % sound from time T1 to T2. 
sound(S,play,T1,T2).  % Sphere S may play sound from time 
     % T1 to T2. 
sound(prohibit,T1,T2).  % I am prohibited from playing sound 
     % from time T1 to T2. 
sound(play,T1,T2).  % I may play sound from time T1 to T2. 
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% These predicates govern the state of a door. 
% Used in Smart Party application. 

doorOpen(D). % Door D is currently open 
openD(D).  % Door-Open Event has been scheduled 
closeD(D).  % Door-Close Event has been scheduled 
 

% These predicates govern the running of a Panoply application App. 
runApp(S,prohibit,App). % S is prohibited from running App. 
running(App).  % App is currently running within my sphere. 
netWorkApp(App,Params). % App is a networked application launched 
    % with parameters Params. 

 

Low-Level Policy Rules (Global) 

% Policy manager initialization requires running an ‘initialize’ query. 
% This results in the querying of all predicates in the body of every  
% rules similar to the following. 

initialize :- <BodyPredicates>. 
% For example: the following results in the ‘request’ predicate being 
% set as a ‘dynamic’, or modifiable predicate. 
% A static predicate, on the other hand, cannot be modified. 
 initialize :- 
  not(predicate_property(request(V1),number_of_clauses(N)))-> 
  (not(predicate_property(request(V1),dynamic)) -> 
   dynamic(request/1)). 
 
% Negative predicate (denotes opposite effect) 

negative(Pred,N) :- functor(Pred,F,A),string_concat('not_',F,N). 
 
% Number of children spheres 

numChildren(N) :- 
 jpl_call('panoply.policy.PolicyEngine','countFacts', 

['childSphere(C)'],N). 
 
% Number of parent spheres 

numParents(N) :- 
 jpl_call('panoply.policy.PolicyEngine','countFacts', 

['parentSphere(C)'],N). 
 
% Number of relative spheres 

numRelatives(D,N) :- 
 numChildren(C), numParents(P), N is (C+P). 

 
% Extract sphere name from sphere ID 

sphereName(SID,N) :- 
 jpl_call('panoply.policy.Helper','sphereName',[SID],N). 
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% Check whether a sphere is a relation 
relation(R) :- 
 childSphere(R) ; parentSphere(R). 

 
% Get event type from object reference 

eventType(E,T) :- 
 jpl_call(E,'getTypeVal',[],V), 
 jpl_call('panoply.event.EventType','getName',[V],T). 

 
% Get event subtype from object reference 

eventSubType(E,ST) :- 
 jpl_call(E,'getSubType',[],EST), 
 jpl_call(EST,'toString',[],ST). 

 
% Get event user type from object reference 

eventUserType(E,UT) :- 
 jpl_call(E,'getUserType',[],UT). 

 
% Get event source from object reference 

eventSource(E,So) :- 
 jpl_call(E,getSourceSphere,[],SID), 
 jpl_call(SID,toString,[],So). 

 
% Event filter: Check whether event with ID = EID can be passed 

action(pass,event,EID) :- 
 jpl_call('panoply.policy.EventPolicyMediator','currentEvent',[
EID],E), 
 eventType(E,T), 
 eventSubType(E,ST), 
 eventUserType(E,UT), 
 eventSource(E,So), 
 condition(So,T,ST,UT). 

 
% Instantiate and send an event with given attributes immediately.  

send_event(EventType,EventSubType,UserType) :- 
 string_concat(EventType,':',S1), 
 string_concat(S1,EventSubType,S2), 
 string_concat(S2,':',S3), 
 string_concat(S3,UserType,S), 
 string_to_atom(S,E), 
 jpl_call('panoply.policy.Helper','execAction',['Event',E,'-
1'],@true). 

 
% Instantiate and send an event with given attributes after ‘Time’  
% seconds. 

send_event(EventType,EventSubType,UserType,Time) :- 
 string_concat(EventType,':',S1), 
 string_concat(S1,EventSubType,S2), 
 string_concat(S2,':',S3), 
 string_concat(S3,UserType,S), 
 string_to_atom(S,E), 
 jpl_call('panoply.policy.Helper','execAction',['Event',E,Ti
me],true). 
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% Read next character from a file stream 
readFile(S,'') :- 
      at_end_of_stream(S). 
readFile(S,R) :- 
      not(at_end_of_stream(S)), 
      get_char(S,C), 
      readFile(S,T), 
      atom_concat(C,T,R). 

 
% Run an operating system command ‘Prog’ with optional result ‘Result’ 

action(run,Prog) :- 
 shell(Prog,0). 
action(run,Prog) :- 
 file(Prog,Dir), 
 atom_concat(Dir,'/',COM1), 
 atom_concat(COM1,Prog,COM), 
 shell(COM,0). 

% Run an operating system command ‘Prog’ with result ‘Result’ 
action(run,Prog,Result) :- 
 jpl_call('panoply.policy.Helper','generateTemporaryFileName',[
],TF), 
 atom_concat(Prog,' 1> ',C1), 
 atom_concat(C1,TF,C), 
 shell(C), 
 open(TF,read,Stream), 
 (readFile(Stream,Result1) -> 
  (close(Stream), 
  delete_file(TF))), 
 string_length(Result1,L), 
 ((L>0 ->  
  (L1 is L-1, 
  sub_string(Result1,0,L1,1,Result))) ; 
  (L==0 ->  
  (Result=''))). 
action(run,Prog,Result) :- 
 file(Prog,Dir), 
 atom_concat(Dir,'/',Prog1), 
 atom_concat(Prog1,Prog,Prog2), 
 jpl_call('panoply.policy.Helper','generateTemporaryFileName',[
],TF), 
 atom_concat(Prog2,' 1> ',C1), 
 atom_concat(C1,TF,C), 
 shell(C), 
 open(TF,read,Stream), 
 (readFile(Stream,Result1) -> 
  (close(Stream), 
  delete_file(TF))), 
 string_length(Result1,L), 
 ((L>0 ->  
  (L1 is L-1, 
  sub_string(Result1,0,L1,1,Result))) ; 
  (L==0 ->  
  (Result=''))). 
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% Obtain the k’th token ‘Tok’ of string ‘Str’ with <TAB> delimiter 
kthToken(Str,Tok,K) :- 
 jpl_new('java.util.StringTokenizer',[Str,' \t'],ST), 
 kthTokenStrTok(ST,Tok,K), 
 term_to_atom(Tok,Token). 
kthTokenStrTok(ST,Tok,0) :- 
 jpl_call(ST,'hasMoreTokens',[],@true), 
 jpl_call(ST,'nextToken',[],Tok). 
kthTokenStrTok(ST,Tok,K) :- 
 K > 0, 
 jpl_call(ST,'hasMoreTokens',[],@true), 
 jpl_call(ST,'nextToken',[],NextTok), 
 K1 is K-1, 
 kthTokenStrTok(ST,Tok,K1). 
  

% Get mapping from atom A to number N 
atom_to_num(A,N) :- 
 atom_chars(A,C), number_chars(N,C). 

 
% Find the sum of numbers in a list. 

sumList(L,0) :- length(L,0). 
sumList(L,S) :- length(L,1),L=[S|L1]. 
sumList(L,S) :- length(L,K),K>1, L=[F|L1], sumList(L1,S2),S is F+S2. 
 

 
Low-Level Policies (Local) and Implemented Mechanisms 

% Mechanism to play file ‘File’ using ‘mplayer’ (Linux) 
action(play,File) :- 
 atom_concat('mplayer ',File,C), 
 shell(C,0). 
 

% Mechanism to allow sound to be played (Linux) 
action(play,sound) :- 
 shell('amixer set Master 100% unmute',0). 
 

% Mechanism to mute sound (Linux) 
action(prohibit,sound) :- 
 shell('amixer set Master mute',0). 
 

% Mechanism to allow sound to be played (Linux) 
action(permit,sound) :- 
 shell('amixer set Master 100% unmute',0). 
 

% Mechanism to set firewall rule using IPTables to shut off incoming 
% connections to port Po (Linux). 

action(closePort,Po) :- 
 atom_concat('iptables -A INPUT -j DROP -p tcp --dport 
',Po,C1), 

atom_concat(C1,' -i lo',C), shell(C,0). 
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action(print,F) :- 
 file(F), printer(P), printerCommand(P,C), atom_concat(C,' < 
',C1), 
 atom_concat(C1,F,COM), shell(COM,0). 
 

% Check whether port Po is blocked using IPTables (Linux). 
% If not closed, it must be asked to close Po. 

closedPort(S,Po) :- 
 (negotiator(Thr,G);childSphere(G)), 
 ipAddress(G,IP), 
 atom_concat('nmap -sS ',IP,C0), 
 atom_concat(C0,' -p ',CP), 
 atom_concat(CP,Po,C1), 
 atom_concat(C1,' | grep ',C2), 
 atom_concat(C2,Po,C3), 
 atom_concat(C3,'/tcp',C), 
 action(run,C,Result), 
 string_to_atom(Result,Res), 
 kthToken(Res,'open',1), 
 action(S,order,closePort,Po). 
closedPort(S,Po) :- 
 (negotiator(Thr,G);childSphere(G)), 
 ipAddress(G,IP), 
 atom_concat('nmap -sS ',IP,C0), 
 atom_concat(C0,' -p ',CP), 
 atom_concat(CP,Po,C1), 
 atom_concat(C1,' | grep ',C2), 
 atom_concat(C2,Po,C3), 
 atom_concat(C3,'/tcp',C), 
 action(run,C,Result), 
 string_to_atom(Result,Res), 
 (kthToken(Res,'filtered',1) ; kthToken(Res,'closed',1)). 
 

% Check how much disk space is free and available to allocate. 
allocatableFreeDiskSpace(FS) :- 
 freeDiskSpace(FDS), allocatedDiskSpace(ADS), FS is FDS-ADS. 
 

% Check how much disk space has been allocated. 
allocatedDiskSpace(FS) :- 
 findall(D,(sphere(S),possess(S,diskSpace,D,Path)),LS), 
 sumList(LS,FS). 
 

% Check how much disk space is free (Linux). 
freeDiskSpace(FS) :- 
 action(run,'df /dev/hda5 | grep hda5',Result), 
 string_to_atom(Result,Res), 
 kthToken(Res,T,3), 
 atom_to_num(T,FS). 
 

% I possess ‘D’ KiloBytes allocatable, mounted on ‘Path’. 
possess(diskSpace,D,Path) :- 
 freeDiskSpace(F), allocatedDiskSpace(A), 
 ((var(D) -> D is F-A); ((integer(D);float(D)) -> D =< F-A)). 
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Appendix B: Sample Database Generated for 

Performance Testing 

In Chapter 9, we described the procedure for generating test cases for comparing the 

performance of the negotiation protocol to a centralized oracle. Each test case consists of 

a pair of policy databases and a pair of request sets; one request and one policy set 

belongs to each negotiator. Given below is an example test case that was generated by 

our procedure based on the parameter values <bmax, dmax, numRules> = <6, 8, 28>. 

 
Database 1: 

Facts 

       
 
 
 
 
 
 
 
 
 
 
 

groupSize(d). 
displayName(q). 
childName(xe). 
possess(o). 
type(uf,color). 
brand(yv,hp7100). 
printerName(f). 
printer(x). 
type(ec,color). 
type(ht,bw). 
printer(w). 
action(run,xz1). 
voucher(xz1). 
door(ol2). 
memberIn(asphere). 
door(uf). 
directory(c,kg). 

printerName(jy). 
directory(py,v). 
childName(mwd). 
displayName(t3). 
brand(yv,hp4150). 
groupSize(g2). 
door(zp). 
possess(ht). 
action(open,w). 
tim(mu). 
printer(o). 
brand(e1,hp4150). 
possess(x). 
brand(ht,hp4150). 
voucher(ec). 
directory(l,a2p). 

storage(px6). 
voucher(ht). 
type(zp,bw). 
voucher(vk). 
printerName(pjf). 
disp(l). 
group(py,acm). 
tim(gh). 
brand(o,hp7100). 
parentName(htm). 
possess(diskSpace,0). 
displayName(ck). 
directory(ec,v). 
file(fi1). 
type(xz1,color). 
voucher(c). 
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Rules 

 
 

 
 
 
 
 
 
 
 
 
 
 

obey(X,open) :- printer(VAR),displayName(X, VAR001723). 
accessInfo(X,(tim(VAR01213))) :- possess(X, 
VAR0683),voucher(VAR0683),type(VAR0683, VAR1684). 
access(X,diskSpace,VAR) :- childName(X, VAR023638). 
obey(X,run) :- voucher(VAR),type(VAR,VAR1),possess(X, diskSpace, VAR1610). 
obey(X,open) :- printer(VAR),memberIn(X). 
obey(X,open) :- printer(VAR),childName(X, VAR023592). 
accessInfo(X,(tim(VAR01213))) :- possess(X, diskSpace, VAR1573). 
accessInfo(X,(tim(VAR01011))) :- action(X, order, open, 
VAR0554),printer(VAR0554). 
accessInfo(X,(childName(VAR023))) :- memberIn(X). 
obey(X,open) :- printer(VAR),possess(X, diskSpace, VAR1481). 
accessInfo(X,(childName(VAR023))) :- displayName(X, VAR001382). 
access(X,VAR) :- voucher(VAR),type(VAR,VAR1),childName(X, VAR023354). 
obey(X,run) :- voucher(VAR),type(VAR,VAR1),action(X, order, open, 
VAR0144),printer(VAR0144). 
accessInfo(X,(tim(VAR01011))) :- displayName(X, VAR00120). 
access(X,diskSpace,VAR) :- memberIn(X),printerName(X, VAR089771). 
access(X,diskSpace,VAR) :- memberIn(X),childName(VAR023637). 
access(X,VAR) :- voucher(VAR),type(VAR,VAR1),action(X, order, prohibit, 
VAR074),printer(VAR074),brand(VAR074, VAR175),childName(VAR023353). 
access(X,diskSpace,VAR) :- true. 
obey(X,run) :- voucher(VAR),type(VAR,VAR1),action(open, 
VAR0143),printer(VAR0143),action(X, order, closePort, 
VAR0287),door(VAR0287),type(VAR0287, VAR1288),possess(diskSpace, VAR1609). 
obey(X,open) :- printer(VAR),displayName(VAR001130),possess(diskSpace, 
VAR1480),member(X),printerName(X, VAR089732). 
obey(X,run) :- voucher(VAR),type(VAR,VAR1),action(X, order, closePort, 
VAR040),door(VAR040),type(VAR040, VAR141). 
obey(X,open) :- printer(VAR),possess(diskSpace, 
VAR131),memberIn(X),childName(VAR023591),displayName(VAR001722). 
accessInfo(X,(tim(VAR01213))) :- action(X, order, prohibit, 
VAR0105),printer(VAR0105),brand(VAR0105, VAR1106),action(open, 
VAR0250),printer(VAR0250),possess(X, diskSpace, VAR1432),possess(diskSpace, 
VAR1572),possess(VAR0681),voucher(VAR0681),type(VAR0681, VAR1682). 
accessInfo(X,(tim(VAR01011))) :- displayName(VAR00119),action(X, order, 
prohibit, VAR0233),disp(VAR0233),directory(VAR0233, 
VAR1234),possess(diskSpace, VAR1413),action(open, VAR0553),printer(VAR0553).
accessInfo(X,(childName(VAR023))) :- 
memberIn(X),displayName(VAR001381),member(X). 
accessInfo(X,(displayName(VAR001))) :- memberIn(X). 
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Database 2: 

Facts 

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

voucher(ht). 
type(zp,bw). 
childName(ey5). 
voucher(vk). 
disp(l). 
group(py,acm). 
action(prohibit,l). 
brand(o,hp7100). 
action(play,ol2). 
memberIn(bsphere). 
directory(ec,v). 
type(xz1,color). 
voucher(c). 
displayName(rlc). 
directory(ol2,yj). 

action(prohibit,o). 
door(py). 
group(l,ieee). 
groupSize(kh8). 
door(zp). 
printer(o). 
action(closePort,zp).
door(yv). 
brand(ht,hp4150). 
voucher(ec). 
directory(l,a2p). 
location(d11). 
groupSize(v4). 
possess(diskSpace,37).
parentName(jn). 

groupSize(zu). 
door(uz). 
type(l,color). 
type(uf,color). 
brand(yv,hp7100). 
printerName(r). 
bandwidth(x). 
possess(uz). 
groupName(v). 
type(ec,color). 
location(d9p). 
door(ol2). 
printer(e1). 
memberIn(csphere). 
door(uf). 
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Rules 

 
 
 
 
 
 
 
 
 
 
 
 
 

obey(X,prohibit) :- printer(VAR),brand(VAR,VAR1),possess(X, diskSpace, 
VAR1742). 
obey(X,closePort) :- door(VAR),type(VAR,VAR1),memberIn(X). 
accessInfo(X,(bandwidth(VAR067))) :- printerName(X, VAR089654). 
member(X) :- printerName(X, VAR089651). 
access(X,diskSpace,VAR) :- printerName(X, VAR089643). 
accessInfo(X,(tim(VAR045))) :- memberIn(X). 
obey(X,prohibit) :- disp(VAR),directory(VAR,VAR1),possess(X, diskSpace, 
VAR1491). 
obey(X,closePort) :- door(VAR),type(VAR,VAR1),possess(X, diskSpace, VAR1451)
accessInfo(X,(bandwidth(VAR067))) :- tim(X, VAR045386). 
access(X,VAR) :- door(VAR),printerName(X, VAR089329). 
access(X,diskSpace,VAR) :- memberIn(X). 
obey(X,prohibit) :- printer(VAR),brand(VAR,VAR1),memberIn(X). 
obey(X,prohibit) :- disp(VAR),directory(VAR,VAR1),memberIn(X). 
accessInfo(X,(bandwidth(VAR067))) :- memberIn(X). 
accessInfo(X,(tim(VAR045))) :- action(X, order, prohibit, 
VAR0192),printer(VAR0192),brand(VAR0192, VAR1193). 
member(X) :- true. 
member(X) :- printerName(VAR089187). 
access(X,diskSpace,VAR) :- childName(X, VAR023177),printerName(VAR089642). 
access(X,VAR) :- door(VAR),possess(X, diskSpace, 
VAR161),printerName(VAR089328),action(X, order, open, 
VAR0753),printer(VAR0753). 
access(X,diskSpace,VAR) :- member(X),childName(X, VAR023633). 
obey(X,prohibit) :- printer(VAR),brand(VAR,VAR1),displayName(X, 
VAR00150),possess(X, diskSpace, VAR1167),member(X),possess(diskSpace, 
VAR1741). 
obey(X,prohibit) :- disp(VAR),directory(VAR,VAR1),action(X, order, open, 
VAR0160),printer(VAR0160),member(X),possess(diskSpace, VAR1490). 
obey(X,closePort) :- door(VAR),type(VAR,VAR1),tim(X, VAR0101125),action(X, 
order, open, VAR0117),printer(VAR0117),possess(diskSpace, 
VAR1267),possess(diskSpace, VAR1450),member(X). 
accessInfo(X,(printerName(VAR089))) :- true. 
accessInfo(X,(bandwidth(VAR067))) :- action(X, order, run, 
VAR088),voucher(VAR088),type(VAR088, VAR189),member(X),tim(VAR045385),tim(X,
VAR01011526),printerName(VAR089653). 
accessInfo(X,(tim(VAR045))) :- action(prohibit, 
VAR0190),printer(VAR0190),brand(VAR0190, VAR1191),member(X). 
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Requests from Negotiator1 to Negotiator2 

 
 

 
 

Requests from Negotiator2 to Negotiator1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

possess(VAR),printer(VAR),brand(VAR,VAR1) 
possess(VAR),voucher(VAR),brand(VAR,VAR1) 
action(order,open,VAR),printer(VAR) 
possess(VAR),printer(VAR) 
action(order,run,VAR),voucher(VAR),type(VAR,VAR1) 
member 
tim(VAR) 
displayName(VAR) 
printerName(VAR) 
groupSize(VAR) 
storage(VAR) 
parentName(VAR) 
childName(VAR) 

possess(VAR),door(VAR) 
action(order,play,VAR),door(VAR),directory(VAR,VAR1) 
action(order,closePort,VAR),door(VAR),type(VAR,VAR1) 
action(order,prohibit,VAR),printer(VAR),brand(VAR,VAR1) 
action(order,prohibit,VAR),disp(VAR),type(VAR,VAR1) 
member 
location(VAR) 
displayName(VAR) 
printerName(VAR) 
groupName(VAR) 
groupSize(VAR) 
bandwidth(VAR) 
parentName(VAR) 
childName(VAR) 
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