
QED: Securing the Mobile Masses 
 

Kevin Eustice, Leonard Kleinrock, Shane Markstrum, 
Gerald Popek, V. Ramakrishna, Peter Reiher 

{kfe,lk,smarkstr,popek,vrama,reiher}@cs.ucla.edu 
 

UCLA Laboratory for Advanced Systems Research 
Los Angeles, CA 90095 

 
 

Abstract 
 
The growing trend of nomadic and mobile computing raises serious security concerns. Nomadicity has 

become common; users are in constant transit, migrating with their mobile devices through many diverse 
wireless environments. Some users are innocent—potentially vulnerable, but benign—while others are 
malicious or carry compromised devices. The mobile commons brings all of these users and devices together. 
Both clients and hosting environments must be protected. To that end, we are developing QED, a new security 
model for computer networks. QED enables environments to quarantine devices, examine them, and 
potentially update or “decontaminate” client nodes. We present the design of our QED prototype and evaluate 
its performance in our laboratory. 

1.  Introduction 
In the last decade, the nomadic computer-user has become commonplace. We take computers from our home 

network to our office network, to school, and to local cafés. The increasing pervasiveness of wireless networks 
in the past few years has made this type of network migration extremely easy. In fact, many wireless devices 
are by default configured to access any local network that will answer their request for service. This means it is 
now extremely simple to acquire connectivity—an obvious boon. Unfortunately, this flexibility and easy ac-
cess to local networks and the Internet can also be a security nightmare. For example, as users and their mobile 
devices migrate from their home to office, they take with them vulnerable applications and services and, pos-
sibly worse, malicious code.  

Existing security mechanisms are incompatible with this degree of device mobility and this scale of dyna-
mism. Typical security mechanisms are unaware of transient members; the traditional focus has been on pro-
tecting the “inside” network from the “outside” network, where there are well-defined boundaries. However, 
these boundaries become indistinct as users freely move devices back and forth with little thought to security. 

An immediate consequence of mobility is that the impact of vulnerabilities and malicious code is amplified 
many times over. Vulnerabilities are exposed to many potential attackers, and malicious worms and viruses 
have access to many more local networks in which they can spread. The sudden infection and spread of 
worms, such as Blaster during August 2003, illustrate this problem. Numerous site-wide infections were 
caused by users bringing their infected laptops into a supposedly secure zone, allowing the worm to freely 
propagate [Hilley2003]. 

Unfortunately, this situation will only continue to escalate as more and more mobile devices and services 
emerge. These new consumer devices and appliances will gain first-class status as networked computers—both 
wired and wireless. Simultaneously, network services will be offered virtually everywhere, allowing handheld 
and mobile devices to acquire connectivity wherever they may be taken. Public wireless commons will bring 
together numerous mutually unknown and potentially dangerous devices. 

This emerging trend requires new security solutions to address its unique demands. Hosting networks need to 
ensure their local integrity, and ensure that new clients adhere to local policy restrictions. The level of protec-
tion may differ with the type of environment and relationship between the environment and member devices. 



 2

Home and business environments may proactively keep occupant and employee devices up-to-date with the 
latest security patches and virus definitions. In public areas where intrusive mechanisms are not feasible, QED 
can mediate interactions and prevent casual infection within the environment.  

QED is a new security model designed to protect nomadic users and the networks that host them. In three 
stages, devices are quarantined, examined, and if necessary, decontaminated upon entering a new network. 
The quarantine stage isolates newly joined devices—potential clients—from the entire network, establishing a 
secure session between the visiting device and a security manager. This serves to protect the incoming device 
and devices within the network from each other. The device is then examined and evaluated by the security 
manager, which determines whether the device meets local policy in terms of application and operating system 
patch level, offered services, or any other specified metric. If the device does not meet local policy, it may be 
offered restricted service or possibly none at all. Alternatively, the hosting network may offer decontamination 
assistance, for instance, it might provide appropriate signed software updates or suggest services to disable in 
order to receive service. 

QED is a modular framework, designed to be extensible and support whatever form of examination or decon-
tamination that may be dictated by the network environment’s policy. The contribution of this research is an 
extensible framework which strives to enhance the security and integrity of mobile computers, local infrastruc-
ture, and the Internet in as unobtrusive a manner as possible. QED-enabled networks will provide a much 
needed layer of proactive protection, ensuring that devices are maintained in a timely fashion according to the 
policy demands of their environment.  

We have designed and implemented a sample QED prototype within our laboratory. In this paper we present 
the implementation details of our prototype, as well a performance evaluation. The time overhead required to 
join a QED-enabled network is fairly minimal, typically requiring on the order of 6 to 7 seconds upon discov-
ering a new network until becoming a full member of that network. This can be done automatically upon sens-
ing an appropriate network, and may not even be noticed by the user. 

While an industry consortium led by Cisco has announced that they intend to tackle some aspects of this 
problem in the near future [Cisco2003], their exact plans are not yet known, and they have no working systems 
available.  This paper describes work that precedes the announcement of the Cisco effort, and outlines an al-
ready-working system that goes beyond the announced industry plans in several significant ways. This will be 
further discussed in the related work section. 

2.  Motivation 
In the past decade, we have experienced a dramatic shift in the way computers are used. The rapidly shrink-

ing size of personal computers, coupled with ever-improving wireless technology and network auto-
configuration points at a future where most, if not all, consumer devices are network-aware. Our environments 
will host numerous services geared toward these mobile devices—different environments will need to be able 
to impose varying policy requirements on member devices. 

This vision is rapidly becoming reality.  The increasing trend toward nomadicity has already created critical 
security challenges that must be addressed immediately. Consider the case of Bob, a typical company em-
ployee. Bob owns a laptop and is reasonably technically savvy, but not a security expert. He takes his 802.11-
enabled laptop to and from work daily. He also frequently interacts with other public wireless networks to 
check his e-mail and browse the web. 



 3

Before work one morning, Bob stops by his local coffee shop to buy a latté and read the news on his laptop. 
Unfortunately for Bob, the coffee shop is not a particularly secure environment. A new quick-spreading worm 
is out in the wild, and another patron has brought into the coffee shop a laptop that is infected with such a 
worm (see Figure 1), e.g., W32.Blaster.Worm [Blaster]. 

In short order, Bob’s laptop is attacked and infected. Oblivious to the infection, Bob takes his laptop with 
him to work, and connects to his corporate network, behind his company’s firewall. Other machines on Bob’s 
local LAN are vulnerable and infected as the worm spreads quickly. If any of the newly infected machines are 
also mobile, they can be taken out of the office and will continue to spread the infection.  

This simple scenario illustrates the threat inherent in relying on traditional security mechanisms to deal with 
nomadic users and devices. Unfortunately, this scenario is far from fiction. Occurrences very similar to this led 
to the infection and subsequent re-infection of the <anonymized> Computer Science Department network dur-
ing the late summer and fall of 2003. Similar experiences have been common elsewhere. 

Currently, tens or hundreds of thousands of residential and commercial wireless networks may be acting as 
breeding grounds for an unknown number of malicious agents. Clearly, a new security paradigm must be 
adopted to identify vulnerable and compromised devices, and quarantine them to prevent infection or exploita-
tion. Unless there is a direct need for local peer communication, local devices should be isolated from one an-
other, communicating through a secure gateway. Additionally, networks could provide resources to devices to 
allow repair and update of software packages, or instead, simply alert users to current problems. Malicious 
code spreads most commonly by exploiting known software vulnerabilities. Updating software in a timely 
manner would go a long way in slowing down this spread. As the number of mobile devices quickly grows, 
proactive maintenance will be absolutely essential. 

In a QED system, Bob’s experience would be much different, as illustrated in Figure 2. Bob’s office is QED-
enabled, and all devices go through the QED process when they join the network. When Bob comes to work in 
the morning, his laptop is quarantined and communication is only allowed with a local security manager. The 
security manager quickly examines Bob’s laptop and determines that he needs the newly released patch. Bob’s 
laptop examines the patch and cryptographically verifies its integrity. The patch is installed, and data is al-
lowed to be routed through the security manager. 

Later, when Bob goes to get a coffee and browse the web at his local coffee shop, an exploited laptop at-
tempts to attack Bob’s laptop. However, Bob is no longer vulnerable, and the attack fails. Bob’s laptop mean-
while, is also aware that the coffee shop is not QED-enabled, and the laptop is by default denying all traffic not 

 

 
 
 
 

Coffee 
Shop 

 

BobBob

 
 

 
 
 

Bob’s 
Office 

BobBob

  

 
 

 
 

 
 

 

 
Figure 1.  Bob visits his local coffee shop. While there, a compromised device exploits an unpatched 
vulnerability on Bob’s laptop. Bob later goes back to his office, taking his laptop with him into his 
office, past the company firewall. Bob’s laptop proceeds to infect other devices in the office. 

 



 4

originating from the coffee shop gateway. Additionally, if Bob chooses, his laptop can automatically create an 
IPsec-based VPN tunnel back to a QED-enabled network and deny all traffic that originates outside the tunnel. 
Bob could then remotely receive updates from his office, as available. 

Another possible outcome is that Bob is away from his office for several days. In the meantime, his laptop is 
compromised by a worm for which his office was unable to proactively patch him. In this case, Bob unknow-
ingly brings the exploit into his office as in Figure 1. However, the office is QED-enabled. When Bob enters, 
his laptop is quarantined by the office network and prevented from communicating with other machines. The 
local security manager has the necessary patches and already updated local machines. Examination of Bob’s 
laptop’s behavior in quarantine indicates the presence of the new exploit. If possible, suitable anti-worm soft-
ware is run on Bob’s laptop, and a system administrator is notified about the problem. Bob’s laptop is denied 
access to critical resources until it has been automatically decontaminated, or has potentially been deemed safe 
by an administrator. The exact requirements are network-dependent, and will be partially be dictated by the 
degree of trust the network places in client devices. 

The type of infrastructure described in this scenario is a strong proactive measure designed to encourage ac-
tive and timely patching of vulnerable systems, increasing overall network security. It will benefit users by 
protecting their systems from unknown and potentially corrupted devices, as well as keeping these systems up 
to date, and benefit local providers by protecting their infrastructure.. Deployment will also protect the Internet 
as a whole by slowing the spread of worms and viruses, and dramatically reducing the available population of 
denial-of-service daemons. 

This scenario explores just one possible use of the infrastructure we are currently building. In its more gen-
eral form, QED can be used to implement location- or network-specific policy regarding system patches, anti-
viral updates, allowed services or software, valid operating systems, cryptographic schemes, etc. 

3.  Relevant Technologies 
The security model that we are proposing in this paper moves away from the traditional approach taken to 

solve these kinds of problems. Our aim is to provide a comprehensive security solution that ensures safety of 
devices and environments by actively controlling access to networks as well as continual network monitoring. 
We would not only like to be able to fix security holes as they occur, but also to anticipate such problems and 
take preventive measures as appropriate. The QED security model contains many characteristics of virus scan-

 

BobBob

Bob’s
Office

Coffee
Shop

BobBob

Security
Updates
Security
Updates

BobBob

 
Figure 2.  A vulnerability alert and corresponding system patch are issued. At the office, when Bob 
brings his laptop in, it is automatically quarantined to protect it from local exploitation. The security 
update is applied to Bob’s laptop. Later, when Bob visits a local coffee shop, which is not QED-
enabled, Bob’s laptop successfully deflects an attack on the just-patched piece of software. 

 



 5

ners, firewalls, and intrusion detection systems. Each of these tools is specialized to solve one or more security 
problems, but a unified integrity analysis and maintenance infrastructure has yet to emerge.  

Current security frameworks are built in a variety of ways. Some use access-control lists—these tend to be 
static and not particularly scalable—unsuitable for most mobile computing applications. Others use role-based 
access control or delegations—both useful techniques that add flexibility, but they are not as useful when deal-
ing with many unfamiliar devices whose demands cannot all be easily classified. The QED framework at-
tempts to extend upon these with idea that some trust and privileges can be earned through compliant behavior 
and particular actions taken by client devices. With trusted hardware and an appropriate model of trusted client 
characteristics, this can be a very strong tool for determining device compliance with stated network policy. 
Without trusted hardware, QED still serves to proactively maintain devices, provide appropriate network-
specific configuration, and limit casual exploitation and infection. 

A hardware-based intelligent gateway has been developed by Lockwood et al. [Lockwood2003]. Their main 
concern is to prevent or slow the spread of worms and viruses, such as Code Red, Nimda, Slammer and 
Blaster, through the Internet. A platform has been implemented that actively scans Internet traffic at multi-
Gigabit/second rates using the Field Programmable Port Extender. Programmable hardware (FPGA) based 
modules scan packet headers for a set of given signatures. Detected viruses can be handled both actively and 
passively. The FPGA-based logic can be dynamically reconfigured to scan for new signatures. 

Though this promises to be a very useful tool, it suffers from the drawback of being hardware-based, and is 
more difficult to deploy and maintain than a purely software-based system like QED. Though packet scans can 
be extremely fast, processing every packet could negatively impact normal operation. How effective this sys-
tem is in reducing virus and worm spread remains to be seen. 

The Cisco Self-Defending Network Initiative is a recently announced project that aims at improving the abil-
ity of networks to identify, prevent and adapt to security threats. Cisco leads an industry-wide collaboration in 
this project, which includes major anti-virus software companies such as Symantec. The first program an-
nounced under this initiative is the Cisco Network Admission Control (NAC) [Cisco2003], which leverages 
the network infrastructure to limit damage from viruses and worms. With this framework in place, networks 
will be able to maintain security policy and control device access; devices that are trusted or comply with the 
policy will be allowed access and the others will be regulated to quarantined environments with limited or no 
network access. A device will be considered to be compliant if it has the latest patches as recognized by a net-
work policy server, which then makes the appropriate admission control decision—permit, deny, quarantine, 
or restrict. Routers enforce access control (prevent non-compliant devices from communicating with the rest of 
the network) using access control lists. 

The Cisco approach resembles one aspect of QED’s functionality, with certain differences. The NAC will 
quarantine and examine devices, but no framework for automatic decontamination is specified. System exami-
nation is limited to checking for the latest anti-virus and operating system patches, unlike the open and modu-
lar approach we have taken with QED. Few technical details are available as of yet, and only high-level archi-
tectural information is available. It is likely that this security framework will be integrated with Cisco’s hard-
ware products, whereas QED will be completely software-based, open-source, and not require specialized 
hardware. Additionally, a working prototype of QED currently exists.  

Other related work is ongoing within Fortune 500 IT departments and academic institutions—automatic up-
date facilities are being put into place primarily as a response to the threat posed by recent worms. These can 
be implemented in the form of login scripts; however details tend to be proprietary. Systems such as these pro-
vide one piece of the functionality QED offers—however, QED is much more. QED is an open and extensible 
framework for implementing security policy in a network and location sensitive manner. A fundamental dif-
ference between QED and other security frameworks is QEDs ability to offer customized handling based on 
policy, device, and individual. 

4.  The QED Model 
The QED model is based on the observation that when a mobile device senses a network, the device and the 

network must participate in a process to determine if and how the device is going to join a network, and what 



 6

the device’s role will be in the new network. This must be done as securely and safely as possible, without in-
terference from external entities. This leads to the extrapolation of three distinct components of this process: 1) 
a quarantine component to protect the device from external interference and to protect existing network deni-
zens from potentially hostile devices, 2) an examination component that allows the device and environment to 
each determine if the other is acceptable, and 3) a decontamination component that assists with any 
recommended or required configuration changes. When actualized, the implementation of these components 
may not be quite so distinct and segmented, e.g., there may be blurring of boundaries between examination 
and decontamination. However, there is a necessary time ordering—quarantine must begin first, followed by 
examination, and then followed by decontamination to ensure safety. Each of these components is discussed in 
detail below. 

4.1  Quarantine 
Quarantine refers to connection establishment and restricting network communication to a necessary mini-

mum. From a device perspective, this means denying incoming messages from network devices other than an 
authorized security manager for the network the device is attempting to join. From the network perspective, 
this means isolating an incoming device from other devices on the local network and the Internet. 

Every environment must have a security manager, ideally located at the gateway of the network, where it can 
enforce two types of isolation. The first type of isolation involves protecting local machines from the outside 
world. All communication goes through this manager. This type of isolation is provided today to varying de-
grees by firewalls. The second type of isolation protects local peers within the network from the entering de-
vice. This capability is at least as important as isolation from the outside world, and rarely provided by existing 
security systems. 

Quarantine requires establishing a secure channel between the network security manager and the device. This 
typically will require establishment of trust either directly, via pre-deployed public keys on the mobile device 
for all networks that the device may visit, or more likely indirectly, via cached certificates of trusted signing 
authorities. Once the candidate network presents a signed certificate, the device can assess the certificate and 
determine if the network is one it wishes to visit. Similarly, the network examines the device’s credentials and 
determines if the device should be allowed to continue to join. Device credentials may be signed by a vouch-
ing institution, such as one’s company, or by a financial institution indicating that the user can and will pay for 
access. 

While this secure channel is being created, the potential client is denying all incoming traffic not associated 
with the creation of this channel, e.g., if using an IPsec-based VPN with X.509 certificates, we only allow IP-
sec packets related to the SA creation and the certificates to be exchanged. After the secure channel to the se-
curity manager has been created, the client denies all traffic not part of the channel. This prevents attacks from 
other devices in the network. This is a voluntary procedure; however it is wholly beneficial to cooperative cli-
ent devices. Uncooperative devices are addressed in section 7.1. 

A potential client will remain in quarantine during the entire QED process. It may in fact be desirable to 
maintain a partial quarantine indefinitely, depending on the degree of trust between client and network. There 
are many ways in which an entering device can be isolated from the rest of the network. It can be explicitly 
prohibited from communicating with other devices within the network; likewise, pre-existing devices could be 
prohibited from communicating with any device that is not formally a part of the local network. Isolation from 
peers could also be enforced by requiring all communication to be routed through the secure tunnel established 
with the security manager. In the same way that all wired traffic traverses a local gateway , and wireless traffic 
must traverse an access point, scalability would require numerous “security gateways” to offer this capability 
at an enterprise level. The security gateways can then determine which connections to allow, and which to dis-
allow based on policy and privilege granted to individual devices. In many organizations, only minimal peer 
interaction is actually needed, with most devices communicating directly over local link with a small and typi-
cally static subset of their peers. 

One other ongoing quarantine task is identifying when devices leave and rejoin the network. Depending on 
network policy, the rejoining device may go through the same process as others, or a more limited form of 



 7

QED based on length of absence, etc. Group membership management can be performed through beacons, 
keep-alive messages, or another similar technique. 

4.2  Examination 
Once the prospective client device and network have established a secure channel and quarantine, 

examination begins. During examination, the network assesses the incoming device and determines if the de-
vice is fit for entry. Similarly, the device can potentially examine the network and determine if it meets its 
needs in terms of offered services, capabilities, etc. In general, we focus this discussion on networks examin-
ing devices. 

In general, many different mechanisms could be used for examination, including virus scanners, package 
management tools, network scanners, and configuration analysis tools. Full examination of a device is poten-
tially an immense task. Depending on the size, it would be generally infeasible to examine all of the contents 
of a device. Instead, a small subset of the various installed packages could be selected for examination. File 
sizes, checksum values, and version information are some examples of what a package management exam 
module could check. Obviously, this type of examination will consume time and resources, making the exami-
nation phase a performance bottleneck for the QED model. Trust relationships between networks reduce ex-
amination time by a great deal. If a device moves from network A to network B, and network B trusts network 
A’s examination process, then network B may not require the same examination. This type of trust relationship 
works well in an environment where devices may move between numerous different physical networks, but 
still remain within one administrative domain. 

There are multiple modes of examination. Two different examination variables include whether the exam is 
external or internal, and immediate or windowed. An external exam refers to external probing or monitoring to 
analyze the device. This may include traffic monitoring, port scanning, service fingerprinting, etc. This is less 
invasive, and results are generated inside the security manager.  

Internal examinations refer to exams in which the device cooperates by executing appropriate software. 
These can include virus scanners, package examination, configuration examination, and so on. Participation in 
these scans by the device would typically be voluntary. These results would then be generated on the device, 
and may be suspect. Trust and device-based examination is discussed further in section 7.1.  

Since an internal exam requires the device to run code possibly provided by the security manager, safeguards 
must be used to ensure the integrity of the examination code and to protect the device from malicious examina-
tion attempts. Cryptographically signed examination modules, signed either by a trusted third party or by the 
network in question, can be verified for authenticity. Once authenticated, the device must consult its own pol-
icy to determine whether or not to execute the module. Additional techniques can be used to certify module 
functionality and safety, including proof-carrying code and the use of virtual machines.  

Immediate exams and windowed exams differ in their time requirement. Immediate exams must be based on 
results generated during the current QED session. A windowed exam refers to an exam that accepts results 
generated earlier. An example would be a network requiring a full virus scan daily. If a device already went 
through a full virus scan and had a signed certificate attesting to that, it can forgo further scans that day. 

Exams are not fool-proof and are limited in scope. External exams cannot be perfect, and without advanced 
hardware support, internal scans can be evaded by a clever piece of code. To that end, examination results 
cannot be guaranteed and incoming devices have to be dealt with accordingly. Hence, the QED model advo-
cates maintaining partial quarantine by restricting communication to that absolutely necessary, as well as con-
tinued monitoring of all peers with feedback to the examination component. If problems are detected later, the 
device can be placed back into full quarantine and further examination required. Additionally, as new security 
alerts become available, e.g., a CERT advisory, or a new system update, devices may be required to resubmit 
to the QED process. 

A characteristic of nomadic computing environments is the large degree of heterogeneity in operating system 
configurations and applications, both in the client devices and the environments themselves. A given environ-
ment may not possess sufficient knowledge of a potential client to perform certain types of examinations, such 
as package scans, etc. Certain basic types of examinations will always be applicable—port scans, service fin-



 8

gerprints, external traffic monitoring, etc. Typically though, invasive operating system scans are generally 
needed only in areas where they are already easy to perform. Internal scans such as virus scans and package 
examination would usually be performed in environments such as the home or the office where the device and 
the network have an existing trust relationship, and also knowledge of the applicable operating system re-
quirements. Within one’s home or one’s office, it is quite appropriate to require a much more stringent exami-
nation and decontamination. It would be perfectly reasonable for a business to require that their employee’s 
devices undergo a rigorous scan before being allowed onto the network; similarly, within one’s own home, the 
network and the device have a pre-established trust relationship. The network would know the recent state of 
the device, so detecting changes to the system is fairly straightforward. 

In public environments, such as the coffee shop Bob visits in our motivating examples, it is not reasonable to 
expect the user’s device to accept intrusive examination or decontamination. External scans, monitoring, and 
basic quarantine may be all that are acceptable to the discriminating user. However, this is sufficient to prevent 
the casual spread of many types of malicious code. 

4.3  Decontamination 
The decontamination component of QED begins after the initial examination is complete. Decontamination 

attempts to bring the target in-line with appropriate local policy. From a network perspective, this means up-
dating a device’s packages, disabling or disallowing local access to some services, requiring configuration 
changes, or removing malicious code. From the device perspective, it may include asking the network to run a 
needed service or alter the configuration of an existing service. Again, as our focus is primarily a network-
oriented approach, this will be examined more closely in the future. 

There are many different ways that a network might decontaminate a device. Virus scanners can automati-
cally destroy or quarantine viruses. Package management tools can apply new security patches and update 
software/firmware code. The security manager can instruct the client to stop certain services. Again, any soft-
ware locally executed on the client must be cryptographically signed by a trusted authority before the client 
device will allow it to run, and techniques used to verify the functionality of mobile code can be used here to 
offer further protection. 

When decontamination is complete, the client is given privileges to communicate and interact as appropri-
ate—the degree of interaction allowed still depends on the determined role of the device, identity of the de-
vice, and level of trust in the device’s integrity. 

Time is a serious constraint in decontamination. For this process to be feasible in real environments, it must 
be performed as quickly as possible. This requires that the security infrastructure actively and aggressively 
cache the latest anti-virus and software updates. Work done in web caching and content distribution can be 
leveraged for this purpose. Profiles of what devices use the network at a particular time and what applications 
and services are likely to run could be maintained, to assist with the update caching process. If a particular up-
date is not found in the cache, it must be fetched from the appropriate source through the Internet, adding addi-
tional overhead to the process. Lastly, decontamination does not have to strictly follow examination. These 
processes may overlap or interleave to a large extent since their functions are so closely related. 

5.  The QED Prototype 
We have designed and built a sample QED framework to provide secure service for Linux-based laptops and 

PDAs equipped with 802.11b wireless network cards. The framework is designed to provide wireless service 
and security updates to several dozen wireless clients, while keeping unknown or vulnerable machines in a re-
stricted quarantine. 

The center of our QED framework is the security manager. This is a Linux-based desktop machine that acts 
as a wireless access point and router for the QED subnet. Additionally, the security manager offers authenti-
cated DHCP and IPsec VPN services.  



 9

5.1  Discovery and Quarantine 
The QED client software configures the client’s wireless interface to monitor all wireless traffic, listening for 

QED beacons. The security manager for each network sends out beacon messages every 300 ms that advertise 
the presence of the QED-enabled network. These messages include a description of the network, the network’s 
public key, and the IP address of the local security manager. When a client overhears a QED beacon, it must 
decide if it wishes to learn more about the network and possibly attempt to join. Currently, laptops operating in 
the environment have pre-deployed certificates for the appropriate Computer Science networks, making it 
simple to determine if the network in question is one that the device can use. This technique is inherently non-
scalable and is used only for prototype purposes. 

We are actively extending this to support a X.509 certificate-based scheme where networks locally publish 
their certificate, signed by well-known signatories; a prospective client in range of the network will be able to 
easily acquire the network’s X.509 certificate. Additionally, networks can determine whether clients are al-
lowed to request access by examining the client’s X.509 certificate. Requiring the appropriate signature or 
chain of signatures will assist networks in determining whether a given client can join. Signatories might in-
clude a user’s company, school, or even credit card companies. 

Once a client has decided which network it wishes to join, it uses the Dynamic Host Configuration Protocol 
(DHCP) to obtain all the network configuration information that is necessary in order to become a part of the 
network and to be able to communicate with the other members. The DHCP protocol [RFC2131] is primarily 
used to assign a dynamic IP address to a machine that is expected to be a temporary member of a network in 
an automated fashion. The protocol relies on communication between a DHCP server hosted by the network 
and the DHCP client on any device that wishes to connect to that network. 

For our QED prototype, we use DHCP as a means of assigning an IP address to a client, as well as dissemi-
nating other configuration information. We have implemented a modified version of DHCP that allows clients 
and servers to mutually authenticate themselves. In a DHCP packet, all configuration information is stored in 
options [RFC2132], one of which is an authentication option [RFC3118]. RFC 3118 gives general guidelines 
for transmission of authentication information. 

Our modified DHCP achieves three things: mutual authentication of client and server, establishment of 
DHCP session keys, and registration of the client’s RSA public key, used for IPsec. The protocol works as fol-
lows: 

• The client first broadcasts a DHCPDISCOVER message. Included in the message is an authentica-
tion option that includes a RSA public key created for this session. The message and authentication 
option are signed using the client’s private key. 

• The server verifies the message and the session key. It also caches the client’s public session key to 
later use to authenticate all other messages sent by the client during the current session.  

• The server replies with a DHCPOFFER message that offers the client a specified local IP address. 
The authentication option contains a public key that the server has previously generated, and one that 
it will use to sign all future messages during that session.  

• The client caches the session key. The client sends out a DHCPREQUEST message, signed with its 
session key. This message requests the IP address offered by the client. 

• The protocol finishes when the server answers with a DHCPACK message, again signed with the 
appropriate session keys. In our prototype, we used the SHA1 algorithm for signing and verification, 
with 1024-bit keys. 

 
Additionally, when the DHCP server registers the RSA public key of the client, it performs a secure DNS 

update to publish the acquired key into the local DNS database. The key is mapped to the newly allocated IP 
address given to the client. We are using the WAVEsec patches to the DHCP daemon that enable this func-
tionality [WAVEsec].  

After successfully acquiring an IP address via DHCP, the client initiates an IPsec tunnel to the security man-
ager, using the RSA public key for the security manager acquired from the network beacon. The IPsec imple-
mentation on the security manager uses the client key, accessed via local DNS, and the tunnel is established. 



 10

The client routes all traffic through the tunnel, denying all incoming traffic that does not originate from within 
the tunnel. The potential for attack between DHCP address setup and IPsec VPN establishment can be reduced 
by only accepting inbound IPsec SA establishment packets from the security manager, as identified by the 
network beacon. Absent vulnerabilities in the IPsec SA setup mechanism, this should prevent attacks issued 
during this window. 

Meanwhile, the security manager is aware of the new potential client. However, no outbound communication 
is allowed, nor is any other local device allowed to address packets to the quarantined client. The client must 
successfully complete examination and decontamination before any further interaction is allowed. 

5.2  Examination and Decontamination 
Our QED prototype supports a framework for examination and decontamination of client devices. Since the 

particular mechanisms for these processes are network and policy dependent, the implementation takes a 
modular approach. The framework controls the flow of examination and decontamination, whereas the actual 
work is carried out by a collection of modules that can be plugged in as deemed necessary. Both the frame-
work and the modules are written in Java; the various modules currently implemented rely on Linux system 
tools including rpm, nmap, and a few custom scripts. In our prototype, the examination and decontamination 
phases largely overlap due to the modular nature of the implementation. 

5.2.1  Framework 
The framework is divided into two parts: the code that runs on the security manager—the examiner—and the 

code that runs on a client—the target. The framework code on the examiner reads a configuration file that 
specifies which modules to run in what order for each supported Linux distribution. The configuration file can 
also specify arguments to pass to modules. When the IPsec VPN with the potential client is established, the se-
curity manager initiates examination. 

Once examination is initiated, the client device’s operating system version is determined by querying the ex-
amination daemon running on the device. Once the examiner determines which modules need to be executed, 
the information is sent to the target, which checks its local module cache. If a module already exists in the tar-
get’s cache, its MD5 checksum is compared to that of the same module on the examiner. If the MD5 checksum 
matches, the cached copy is loaded and executed; if it doesn’t match, the cached copy of the module is over-
written by an updated version transferred from the examiner. Examination modules can additionally be signed 
by the network, or by an accepted third party signatory. 

In our environment, the user is given complete discretion regarding what code is executed on his device. 
Therefore, the framework allows the target system to query locally cached modules for information describing 
their functionality. Using this information, the user can determine if it is acceptable for the modules to run. 
The user can also take into account the time for each module to run and the amount of privacy maintained by 
the module. Depending on the user’s decision, the framework then runs the module or skips to the next one. 
This process can also run in an expedited mode where approved modules execute automatically. 

5.2.2  Modules 
The modules, like the framework, can be separated into two categories: code that runs on the examiner and 

code that runs on the target. The two parts communicate with each other to accomplish the various examina-
tion and decontamination tasks. The modules can be written to be generic or specific to a operating system dis-
tribution. An individual module can also be written to handle both examination and decontamination. 

Before a module runs, it must provide information about its functionality to the user through the framework. 
After a module terminates execution, it returns its status to the framework. Using this status, the module can 
control the flow of the examination and decontamination session by specifying other modules to run. For ex-
ample, a module can be designed to check for a very specific virus. If the target is infected with that virus, the 
module can instruct the framework to load a separate module that will remove the virus. Once this decontami-
nation module removes the virus, the framework loads the next module as indicated in the configuration file. 

We have implemented the following modules: 



 11

RPM Check   
This module examines the target machine to see if any of the installed packages are out of date. It uses a lo-

cal archive of update packages that are automatically synchronized with the appropriate update directories by 
the security manager. Currently our prototype supports RedHat 7.3, 9.0, Fedora Core 1 and all packages are 
stored as RedHat Package Manager files (RPMs). Work is ongoing to add support for Debian Linux. 

The examiner sends a list of package names to the target. The target module collects the relevant information 
from its local RPM database and sends it back to the examiner. The examiner compares this information 
against the packages stored in the local archive. If any of the target’s packages are out of date, the examiner 
will indicate this to the target and then instruct the framework to run the RPM Update module.   

RPM Update 
This module is only run if the RPM Check module determines that there are packages on the target that re-

quire security updates. It expects a list of packages to update from the RPM Check module. The new RPMs 
are transferred to the target and the rpm tool is used to update the target. We rely on rpm’s dependency check-
ing to manage and avoid conflicts.  

In general, this is satisfactory; however systems that mix rpm-installed applications with hand-installed ap-
plications may run into problems with conflict management. Unfortunately, the use of a system-wide cross-
package database to record and manage installed applications and services, similar to the Microsoft Windows 
registry, is not yet widespread in Linux.  

One concern here is that updates may be required extremely frequently and impose undue overhead. In gen-
eral, updates required to fix security vulnerabilities are needed regularly, but not extremely frequently. For ex-
ample, security updates for RedHat Linux 9 were issued on the order of one update every four days and with 
an average size of 271 kilobytes.  

Port Scan and Service Blocking 
This module relies on the nmap tool [Nmap] to scan the target to identify which services are running. The 

examiner initiates the scan and compares the results to a pre-specified policy to determine whether the target is 
running any services that are disallowed by local policy. Using this information, the examiner instructs the tar-
get module to block all incoming traffic on unacceptable ports using iptables firewall rules [IPtables]. Addi-
tionally, the examiner can block routing for the given ports, not allowing any other computers to access the 
blocked ports. The examiner then rescans the target to check that the rules have been put into place. 

File Property Check 
This module is essentially an integrity check on the most commonly used executables to check for signs of 

tampering or the presence of Trojan horses. It uses the information RPMs carry about the files they install; ex-
amples are file location, file permissions, and MD5 checksums. The examiner requests information for specific 
files from the target. It then extracts the same information from the local archive of RPMs and compares it to 
this. If inconsistencies are found, they can be dealt with in different ways, depending on policy and file type. It 
is important to note, that this type of an examination is less useful to those who frequently rebuild their sys-
tems and apply custom patches. In general though, for most user systems, binary executables change infre-
quently, and inconsistencies may be a cause to alert a system administrator. Temporary fixes are possible, such 
as archiving the altered files and using the RPM Update module to overwrite the altered file(s). It is important 
to be careful and avoid inadvertently destroying user data. 

This module could also compare current system state to a recorded baseline state, and identify recent 
changes. This would be very useful for one’s home or office environment which can maintain logs of the con-
tents of one’s machine when it last visited the environment, and easily detect unauthorized changes to the sys-
tem contents. 

The examination and decontamination framework is open and extensible; it can easily support other modules 
such as network-specific reconfiguration, etc. It can also support modules relevant to other operating systems. 



 12

5.3  Network Management 
The QED network is managed via periodic heartbeats 

from the gateway and clients. The heartbeat must be prop-
erly signed with the gateway's private key in order to pre-
vent false messages, tampering, and replay.  The QED 
heartbeat serves two purposes: announcement and revoca-
tion of membership.  

If the QED security manager does not hear a heartbeat 
within a configurable time period, the IPsec SA is torn 
down, and no further traffic is accepted. The client must 
then reestablish the IPsec SA, and potentially be subjected 
to QED again, depending on local requirements. 

 
6.  Experiences with QED 

Our QED prototype has been deployed within our research group. We have constructed several experiments 
to measure the impact upon connectivity and the user experience. Results indicate that the added overhead is 
fairly small, and in general does not affect the user experience significantly. 

6.1  Experimental Results 
We measured the various stages involved in joining and becoming an active member in a QED-enabled net-
work. In the LASR network, QED is principally used to determine the current version of installed packages 
and identify externally offered services. If packages are found to be out of date, updates are provided to the 
device. Similarly, if an undesirable network-based service is running, the device is instructed to firewall off the 
appropriate port. In the most common case, when a machine is determined to be up to date, the total overhead 
involved in joining the wireless network is 6 to 7 seconds. 

Experiments were conducted to measure the incurred overhead when system updates were required. These 
experiments involved two nodes. The first node consisted of a 1.3 GHz AMD Athlon equipped with 1.5 GB of 
RAM. This node was the QED client, operating on top of RedHat Linux 9.0, with kernel version 2.4.20. QED 
executed under the Sun JDK 1.4.2. The second node was the security manager, and consisted of a 2.53 GHz 
Intel Pentium 4 equipped with 512 MB of RAM and running RedHat Linux 7.3 and kernel version 2.4.18. The 
implementation of IPsec used was Linux FreeS/WAN U2.04. The experiment was designed to mimic the be-
havior of a device joining the 802.11b wireless network. The DHCP implementation used in these measure-
ments was ISC DHCP v3.0.1rc11, and the RPM implementation was RPM v4.2. 

When the client device saw a beacon announcing the QED-enabled wireless network, it automatically joined 
the network, getting a DHCP address and initiating an IPsec security association (SA) to the security manager. 
It is important to note that the DHCP caches are cleaned out after each experimental trial, so the existing leases 
are destroyed. This has the effect of forcing the DHCP client to go through the full four-way handshake. The 
security manager then initiates the examination process across the SA. Decontamination, if necessary, is per-
formed after examination, and then the client is given full network access. Tests were run multiple times, and 
all results are reported with 99% confidence intervals.  

0

1

2

3

4

5

6

7

8

DHCP Ipsec Exam Total

QED Components

Ti
m

e 
(s

)

 
Figure 3. Time spent completing QED for an 
up-to-date machine. 



 13

To observe the range of possible delays introduced by the QED package examiner and decontamination 
modules, we tested five different cases. We tested the null case (where no updates were necessary) and indi-
vidual updates of four different representative RPM files, each with very different characteristics. The null 
case is the typical user experience when his or her machine is up to date. QED in this case can be broken down 
into three parts—the time to acquire an IP address via DHCP, the time to establish an IPsec SA, and the time 

to transfer the current installed package list to the se-
curity manager and examine it. Figure 3 presents the 
results from this experiment. Absent QED, devices 
would typically experience only the DHCP overhead 
when joining a typical DHCP-enabled network. Estab-
lishing the SA and the package examination incurs ~3 
seconds of additional delay before the device receives 
network access. 

If an available update is found, our QED prototype 
initiates a transfer of the appropriate RPM to the client 
device. To simulate this, we forced downgrades of 
four different packages and then measured the time to 
perform QED, allowing the security manager to up-
date the packages in question. Figure 4 shows the 
packages selected, and presents a breakdown of the time to install each package and individual package infor-
mation. The packages chosen are fairly representative of typical RPMs that might be updated. Both ends of the 
size spectrum were represented. Another factor we considered is package density—this refers to the number of 
included files within a package divided by the file size. We believe that package density should affect installa-
tion time and thus QED overhead, with those packages with greater files per kilobyte requiring more time to 
unpackage and install. Figure 5 graphically depicts the relative installation times for the different packages. As 
expected, the size of the file and file density both greatly impacted the time to install and update the given 
package. Overall, the overhead seems quite reasonable. At the extreme end, updating perl required approxi-
mately 1.5 minutes, but this is an extreme case.  

Additional examination benchmarks include nmap scans of incoming client devices. Measurements demon-
strate that the security manager can perform a brief port scan of 200+ commonly used ports in 1.15±0.3 sec-
onds. This can be performed in parallel with other active examination modules. 

0
10
20
30
40
50
60
70
80
90

100

exam only pam_smb gdm foomatic perl

El
ap

se
d 

Ti
m

e 
(s

)

 
Figure 5. Time spent examining the client pack-
age database and installing individual packages. 

 
Exam 
Only 

Exam and install 
pam_smb-1.1.6 

Exam and install  
gdm-2.4.1.3 

Exam and install  
foomatic-2.0.2 

Exam and install  
perl-5.8.0-88.3 

Elapsed time to  
examine and install 
(in seconds) 1.24 1.88 13.14 23.90 91.14 
Confidence (99%) 0.01 0.01 0.73 0.41 3.66 
RPM size:  
(in Kbytes)  32 1,466 1,379 14,143 
# of files:  8 122 1875 2560 
Package Density 
(files/Kbyte)  0.25 .08 1.36 0.18 
Uncompressed file 
size (in Kbytes)  68 3,962 19,373 34,123 

Compression  ratio  2.1:1 2.7:1 14:1 2.4:1 

Figure 4. Results from examining one machine, and a detailed breakdown of the four packages up-
dated, and overhead incurred from applying the update. 



 14

6.2  Discussion of Results 
These experiments have shown that QED is effective at implementing local policy and maintaining our user 

machines, while typically adding very little overhead. Typical security updates of 1 to 2 Mb could be 
downloaded and installed in 10 to 20 seconds. Very dense packages, such as foomatic-2.0.2 require more time 
at the client side to install, compared to files of comparable size and lower file density; as a point of compari-
son, the average file density of all packages in the RedHat 9 updates is 0.18; foomatic is unusual with its den-
sity of 1.36. We feel that overall, these times are quite reasonable. The typical case for most users will be that 
their machine is up to date, and they experience only ~3 seconds of added delay. This is acceptable for most 
user demands, and may even go unnoticed. Longer delays are possible; however they should be infrequent. 

7.  Future Directions 
QED currently works in a wireless context, and was designed with wireless, ubiquitous computing environ-

ments in mind.  However, the fundamental concept of QED is equally applicable to a wired environment.  One 
obvious direction for future work is to create a wired version of QED. 

The QED security framework is envisioned as part of a much larger framework for nomadic and pervasive 
computing, which we call Panoply. The aim of the Panoply project is to enable devices to interoperate seam-
lessly and access services, all within a secure framework. In this envisioned framework, devices need to nego-
tiate policy with the environment and obtain access to desired resources. Many important issues not yet ad-
dressed within the QED framework (such as security policy issues and the security of composing particular 
services in a ubiquitous environment) will be addressed later in the Panoply project.  Further, some aspects of 
QED may well need enhancement to support a ubiquitous environment.  For example, different QED envi-
ronments that are physically adjacent or logically related might need to have some degree of cooperation in 
their handling of devices on the move between them.  However, just within the QED model, there are many 
remaining challenges that must be addressed.  

7.1  Trust and Device Participation 
There are substantial trust issues that must be dealt with in QED. The most obvious issue involves requiring 

potential clients to execute examination and decontamination modules provided by a network’s security man-
ager. Modules may potentially be malicious. Alternately, devices or malicious software may lie or subvert the 
results of exams. The problem of ensuring the integrity of an operation is an old one. It has been investigated 
in the context of virus scanners, anti-piracy mechanisms, and digital rights management (DRM). 

We believe that the situation is not as dire as it sounds. Given currently available systems and technology, 
QED can be a valuable tool. For example, had QED been available at the times of their release, the existing 
model would have protected against Code Red, Code Red II, Slammer, Blaster and the vast majority of known 
viruses that depend on exploiting well-known vulnerabilities. In its ongoing examination mode, QED would 
detect and be able to stop the denial-of-service activities of many popular DDOS tools in their most common 
modes of operation. Given the natural limitations of examination and decontamination, it is still possible to 
greatly improve system security through proactive device management and through the use of aggressive quar-
antine. To that end, one view of QED is as an intrusion tolerance tool that increases the overall preparation and 
resilience of user devices, reducing the likelihood of infection or compromise. 

QED has the potential to be much more powerful, as trusted computing hardware becomes more widespread.  
The use of a trusted computing platform, such as TCPA [TCPA], beneath QED would allow numerous en-
hancements. The security manager could be certain of the fact that the client is not making unauthorized com-
munication. Trusted modules and operating systems could not lie or otherwise subvert examination results or 
the decontamination process. Simply deploying widely deploying TCPA is not the sufficient, unfortunately. A 
great deal of work is still required to build secure examination components, and the underlying operating sys-
tem components upon which we would rely. 



 15

7.2  Privacy 
There is a fundamental tradeoff between the ability to examine machines and the privacy desired by users. 

The more invasive the examination procedure is, the better the guarantee of security. The tradeoff itself could 
provide a solution to the problem. Networks could define various levels of access. Devices could choose lim-
ited sets of examinations they are willing to undergo in exchange for limited access. The network will always 
have the right to deny access to a device if necessary, and the user will always have the right to decline to 
submit to a particular investigation, at the cost of not receiving access. 

With TCPA-based hardware, we foresee a solution to the privacy problem. A device could provide a crypto-
graphic guarantee of the absence of vulnerabilities or malicious code that the security manager could trust, 
thereby not compromising security and also preserving the privacy of the device’s contents. 

7.3   Scale 
With increasing number of devices entering the market and supporting heterogeneous platforms, the number 

of modes of attack is going to increase dramatically. Security infrastructures must be prepared to allow all 
kinds of devices to join their networks. Much as we would like to have individual security managers store all 
the information about all possible platforms, it is infeasible for a practical system due to scale; the storage 
space at the local site is limited. Instead, security managers could maintain profiles of the more widely used 
platforms, especially those that are encountered frequently in the local network, and store relevant application 
patches and anti-virus software. If an unknown device comes along, the security manager must procure the 
necessary information through the Internet. We will be investigating the scaling issue in the context of our pro-
totype. 

7.4  Other Examination Approaches 
Our existing examination services demonstrate that useful forms of examination are feasible and perform 

well in the QED framework.  As our experience with QED develops, we anticipate building other examination 
modules.  For example, as other researchers discover innovative ways to detect worm spreading behavior, we 
are likely to incorporate some of those in a QED examination module. 

The inherent modularity of QED’s examination component will make such additions easier.  However, we 
will need to exercise some care in adding new modules to the examination suite.  While our experiments show 
that reasonable examinations can be done in acceptably short times, if the set of examination modules keeps 
increasing, so will the time required to perform examination.  Either we must be careful about which modules 
to add or we must put in more sophisticated mechanisms to prioritize different examination modules and limit 
the total amount of time spent on examination to a reasonable level.  

8.  Conclusion 
 
Mobility has become commonplace. Nomadic users take their devices from network to network, thinking lit-

tle of the dangers to which they are being exposed. Unfortunately, those networks are ill-equipped to defend 
mobile devices, or even alert them to potential threats. In the home and office, networks need to be able to im-
pose policy upon these devices and limit participation based on trust metrics. As existing tools are unable to 
provide this facility, new techniques are needed to insulate devices from one another, dynamically apply locale 
and network-specific policy, and provide update and configuration services to this new breed of highly mobile 
and dynamic users. 

This paper presents a working approach to solving this problem.  QED strikes directly at the core of the prob-
lem by allowing potential client devices to establish a relationship with a new network in a safe and secure 
manner, inside a highly restricted quarantine. The new network may examine visiting devices and impose con-
straints upon the device’s behavior and configuration to offer extended protections, allowing for secure device 
update and configuration and simplifying many normally tedious administrative tasks. Additionally, QED 
gives power to the nomadic user by allowing them to control the degree to which they are willing to conform 
to a network’s demands. QED is highly extensible and the current prototype can be used to provide security 



 16

updates, deploy configuration files, implement policy, as well as isolate devices from potential attackers. In the 
future, QED will be used to build powerful security mechanisms for ubiquitous computing environments.  

References 
[Blaster] Security Response for W32.Blaster.Worm; http://securityresponse.symantec.com/avcenter/venc/data/            

w32.blaster.worm.html 
 [Cisco2003] White Paper - Cisco NAC: The Development of the Self-Defending Network. 

http://www.cisco.com/en/US/netsol/ns340/ns394/ns171/ns413/ network-
ing_solutions_white_paper09186a00801e0032.shtml 

[Hilley2003] Sarah Hilley. “MSBlaster could have been MUCH worse,” CompSec Online, Aug 13, 2003. 
http://www.compseconline.com/analysis/ 030813msblaster.html 

[IPtables] http://www.netfilter.org/ 
[Lockwood2003] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks. "Internet worm and vi-

rus protection in dynamically reconfigurable hardware," Military and Aerospace Programmable Logic De-
vice (MAPLD), p. E10, Sept. 2003. 

[Nmap] Nmap Network Mapper. http://www.insecure.org/nmap/ 
[RFC2131] RFC 2131 - Dynamic Host Configuration Protocol. http://www.faqs.org/rfcs/rfc2131.html 
[RFC2132] RFC 2132 - DHCP Options and BOOTP Vendor Extensions. 

http://www.faqs.org/rfcs/rfc2132.html 
[RFC3118] RFC 3118 - Authentication for DHCP Messages. http://www.faqs.org/rfcs/rfc3118.html 
[TCPA] The Trusted Computing Platform Alliance http://www.trustedpc.org 
[WAVEsec] WAVElan SECurity using IPsec http://www.wavesec.org 


