
WiFi Nomads and their Unprotected Devices:
The Case for QED—Quarantine, Examination, and Decontamination

Kevin Eustice, Leonard Kleinrock, Shane Markstrum,

Gerald Popek, V. Ramakrishna, Peter Reiher
{kfe,lk,smarkstr,popek,vrama,reiher}@cs.ucla.edu

UCLA Laboratory for Advanced Systems Research

Los Angeles, CA 90095

Abstract

The rapid growth and increasing pervasiveness of wireless networks raises seri-
ous security concerns. Client devices will migrate between numerous diverse
wireless environments, bringing with them software vulnerabilities and possibly
malicious code. Techniques are needed to protect wireless client devices and the
next generation wireless infrastructure. We propose QED, a new security model
for wireless networks that enables wireless environments to quarantine devices
and then analyze and potentially update or “decontaminate” client nodes. The
QED paradigm is presented here, as well as the design of a practical prototype.

1. Introduction

The explosive growth in wireless computing has

been spurred on by new and cheaper hardware and
increasingly better protocols and operating systems
support, all accessing the ubiquitous Internet. The re-
cent addition of IEEE 802.16a [802.16a], support for
2-11Ghz Metropolitan Area Networks (MAN), is only
the latest in networking standards designed to facilitate
widespread adoption of wireless technologies in com-
munities. Additionally, commercial roll-out of wireless
access points has commenced with initial deployment
at popular locations such as university campuses, cof-
fee shops, bookstores, and fast-food restaurants.

As millions of wireless users migrate between home,
office, coffee shop and bookstore, they move from one
wireless access point to the next. They take with them
not only their computer, but also electronic hitchhikers
they may have picked up in the local shopping mall
and unpatched or poorly configured applications. Con-
tinual migration from one access point to another with
these vulnerabilities threatens the integrity of the other
environments, as well as that of other peers within the
environments. A user may unwittingly bring in active
threats such as viruses, Trojan Horses, denial-of-
service daemons, or even create a hole for a human
intruder; alternately they may bring in passive threats
such as vulnerable packages or poorly configured

software. We must mitigate the impact and spread of
these attack vectors.

Unfortunately, the existing paradigm for wireless se-
curity does not address this problem. Wireless net-
working has been notorious for poor security imple-
mentations [Borisov2001, Arbaugh2001]. Current re-
search and proposed standards [Hu2002, EAP] seek to
add better security—however, the approach is primar-
ily better authentication, and stronger encryption. Such
improvements are extremely desirable and laudable,
but they do not address the core integrity issue. Au-
thenticated but corrupted devices could still gain ac-
cess to network resources and infect other networked
devices. Improved authentication and encryption
would better ensure the identity of peers and the confi-
dentiality of the data being transmitted over the net-
work, but not be able to handle the hidden threats they
may bring into the network.

The integrity and vulnerability problem will only be
exacerbated as wireless coverage and participation
continues to grow. We believe that this is a fundamen-
tal security threat that must be addressed. Environ-
ments must be able to quarantine potential clients, ex-
amine and evaluate clients for potential threats or vul-
nerabilities, and if desired, provide facilities to assist
users with securing or cleaning their machine.

This paper proposes a new paradigm that we refer to
as QED—quarantine, examination, and decontamina-
tion—to deal with these integrity concerns. We are

 2

currently designing and building a sample QED proto-
type in our laboratory at UCLA. Further adoption of
these techniques will provide a much needed layer of
security to protect mobile computing in the local infra-
structure and Internet.

2. Motivation

Wireless networks have been rapidly growing in

popularity, both in consumer and commercial arenas.
Businesses have adopted wireless technologies as an
easy mechanism to keep employees connected wher-
ever they go; others have adopted wireless as a new
service to provide to the public, usually for a small fee.
These services are being deployed in many different
public arenas, and are quickly growing in popularity.
To the user, access is as simple as inserting a wireless
network card and connecting to the appropriate net-
work. Some networks may require a username and a
password or some other registration and payment of a
fee to access the service. Once a session is instantiated,
typical security measures include authentication and
encryption of data.

Residential wireless networks are generally easier to
access. Currently, there are thousands of residential
access points, most with minimal or no security. In-
formation regarding location, accessibility, network ID
and deployed security for a great number of these ac-
cess points is publicly available on the Internet. For
the most part, these networks lack any reasonable ac-
cess control and are thus extremely vulnerable to any-
one who wishes to use them.

There is a more serious issue than simple theft of
service. Trusting users place their laptops, PDAs and
other Internet-capable devices into these insecure net-
works expecting unrestricted and safe access to both
local network resources and the Internet. Unknown to
the users, their machines may also play host to mali-
cious agents acquired accidentally while visiting some
other public forum or attached to software of dubious
origin. If given full access to the network’s resources,
these infected users then represent a clear threat to the
network in the form of a lurking Trojan horse, a virus,
denial-of-service daemon, or a tunnel to an outside
attacker or freeloader. Other local devices also make
easy targets for further exploitation, and may in turn
carry malicious code into other possibly more secure
environments. In other words, people may place their
exploited machines on your wireless network and be-
hind your firewall, and expose your machines to
crackers or malicious code; you may then unwittingly

take one of those machines to your place of business
and spread the epidemic.

Widespread adoption of wireless in the form of

WiFi, Bluetooth and other technologies exacerbates
this problem by greatly increasing the wireless popula-
tion and the availability of wireless service. As cor-
rupted machines move from network to network, they
will be able to quickly spread offending code to net-
work resources and users; particularly resourceful
worms could use nomadic trends to attack and quickly
spread in dense urban centers, without resorting to the
Internet.

In a standard wired Internet environment, when a
new user plugs his portable computer into a local net-
work, a human system administrator can manually ex-
amine the machine and determine if it is sufficiently
secure. This manual approach cannot work in the
emerging wireless mobile world. Too many machines
will move too frequently between too many adminis-
trative domains for any realistic number of human sys-
tem administrators to keep up with them. Thus, an
automated approach is required.

Based on this observation, it seems imperative that
the local infrastructure be capable of isolating, identi-
fying, and repairing vulnerable and corrupt machines.
We believe that a transition must be made to a new
paradigm of wireless security that allows active, net-
work-based integrity analysis of client machines with
minimal user or administrative overhead. This type of
infrastructure would strongly encourage active and
timely patching of vulnerable and exploited systems,
increasing overall network security. It would benefit
users by protecting their systems, as well as keeping
them up to date, and benefit local providers by protect-
ing their infrastructure and reducing theft of service.
Deployment would also protect the Internet as a whole
by slowing the spread of worms, viruses, and dramati-
cally reducing the available population of denial-of-
service daemons.

3. Relevant Technologies

The security model that we are proposing contains

many of the characteristics of virus scanners, firewalls,
and intrusion detection systems. In addition to main-
taining secure environments, our model enables easy
software maintenance and patching. Tools for these
are available in one form or the other, but a unified
integrity analysis and maintenance model has yet to
emerge.

 3

3.1 Virus Scanners

Malicious code such as viruses, Trojan horses and
logic bombs pose a serious threat to all computer us-
ers. Virus scanners are used to counter this threat.
These scanners usually work by matching code with
known patterns, or signatures, which are stored in a
database. They run continuously in the background,
monitoring system activity—especially network traffic
and downloaded files such as potentially harmful
email attachments—and are updated frequently to
handle any new threats that may appear. The main
drawback to virus scanners is that typically they are
signature-based, which limits detection to well-known
viruses. However, both Norton and McAfee constantly
update their databases on host machines through the
Internet.

In the QED model, virus scanning can be leveraged
as part of the examination phase. Infrastructure-based
security managers can keep themselves updated from
online sources typically in a much timelier manner
than mobile nodes. Benefits can be gained both in se-
curity and performance in the face of mobility.

3.2 Firewalls

Firewalls are systems that enforce boundaries be-
tween two or more networks. These systems are used
primarily to filter out traffic from certain sources or
those targeted at certain ports; this filtering is done
usually on the basis of information stored in the packet
IP header. Typically located at the entry/exit point of a
network, such as a gateway, they can also act as prox-
ies for the machines within the network and perform
various services on behalf of the local machines, such
as filtering out spam email. One capability in the QED
model enables the local infrastructure to restrict out-
bound traffic to authorized hosts, preventing unauthor-
ized local peers from communicating with the outside
world. Thus, firewalls help provide the quarantine
phase of QED.

3.3 Intrusion Detection Systems

Intrusion detection systems (IDS) are used to detect
attacks on a computer system or network based on
traffic patterns, system logs, and periodic system in-
tegrity checks. Example systems include the Graph-
based Intrusion Detection System [Staniford1996],
Emerald [Neumann1999], Distributed Intrusion Detec-

tion System [Snapp1991] and AAFID [Balasu1998].
IDS techniques can also be used to defend against at-
tacks generated by insiders [Nguyen2003]. The range
of IDS responses to attacks varies from actively shut-
ting down the attack to sending an alarm to the appro-
priate authority. The QED paradigm requires some
IDS techniques to be used in the examination phase, to
dynamically examine and perform integrity analysis of
potential clients.

3.4 Update and Patch Management Systems

Many commercial operating systems provide update

management software that allows users or administra-
tors to automatically download and apply system up-
dates. For Microsoft Windows, this is done via both
service packs and an automatic update tool that alerts
users to new updates. Similar services are provided by
the Ximian Red Carpet utility for Linux, and other
UNIX and UNIX-like systems.

In general, these mechanisms are valuable and use-
ful; however we believe they are insufficient for the
quickly approaching wireless world. The current
model provides little incentive to users to patch or up-
date their system; additionally, downloading packages
can be extremely time-consuming over slow links. The
QED model requires users to maintain their software
to receive connectivity, as well as offering infrastruc-
ture-based assistance with updates, such as locally
cached packages.

4. QED: Quarantine, Examination, and Decon-
tamination

 Devices operating within a public environment must

meet high integrity standards; this implies that mecha-
nisms are needed with which to evaluate and ensure
the integrity of all devices entering that environment.
While a complete general solution to this problem may
not yet be feasible, mitigating engineering approaches
can be helpful. Our proposed model increases the se-
curity and integrity of the network by providing a
framework that allows proactive device examination
and evaluation of device security characteristics.
Tradeoffs may have to be made between obvious pri-
vacy implications and required integrity. In some envi-
ronments, safety must take precedence over privacy. If
users are unwilling to compromise their privacy for
this safety, they might choose not to interact with the
environment in question, or reveal limited information
in exchange for limited access.

 4

The model we are developing protects machines by
logically isolating them, examining them for known
vulnerabilities or malicious software, and cleaning or
patching the applications and libraries when appropri-
ate or desired. We refer to these processes as quaran-
tine, examination, and decontamination. These proc-
esses are not necessarily mutually exclusive, and may
overlap.

4.1 Quarantine

The goal of the quarantine stage is to isolate potential
clients until it can be determined that they meet the
local integrity standards. Ideally, we enforce two types
of isolation. First, isolation from the outside world
prevents possibly malicious code from spreading; ad-
ditionally, it also protects possibly vulnerable ma-
chines from outside attackers. In general, this type of
isolation is fairly easy to enforce at the router level by
employing routing rules that only forward packets for
authorized machines. The second form of desired iso-
lation is local isolation. Separating local peers requires
the infrastructure to assign extremely restrictive net-
work settings to clients. Such restrictive settings
require that all communications go directly through the
router. Additionally, well-behaved client software can
be instructed to drop all packets not sent through the
router. This ensures that cooperative clients can only
talk to the router, and are not susceptible to attacks,
scans, or probes from local peers. Compromised hosts
or malicious users can attempt to configure their own
network settings to talk to other devices—however,
this communication would be limited to similar rogue
machines; well-behaved and non-compromised clients
would not participate.

While quarantine is not a guaranteed protection, we
believe that the model of providing an isolated net-
work in which wireless client machines are examined
is valid and valuable. As trusted computing architec-
tures such as TCPA [TCPA] become more common-
place, it will be increasingly possible to make strong
guarantees regarding machine cooperation in this, and
other stages of QED.

4.2 Examination

The examination stage is where clients are analyzed

and potential vulnerabilities and contaminants are
identified. There are a large number of possible
mechanisms that can be used to examine potential cli-
ents: traditional virus scanners, package management

tools, network scanners, and configuration analysis
tools such as SATAN [SATAN].

Once a device enters an environment and is quaran-
tined, the software and firmware that it carries can be
subjected to analysis by the infrastructure. Analyzing
the entire body of code on each individual entity may
be infeasible for most devices; however the analysis
can be performed on a small subset that is representa-
tive of various installed software packages. For in-
stance, a simple type of examination might determine
the versions of installed software and appropriate secu-
rity patches, verifying checksums and signatures
where applicable. Additional types of examinations
might include either active or passive virus scans. An
active scan might require the device to scan for viruses
before being allowed entry, while a passive scan may
just ask the device for some proof that it has com-
pleted a virus scan within a given timeframe.

The examination procedure would not have to stop
after the wireless device entered the local environ-
ment. Using standard IDS techniques, the local infra-
structure could continuously examine network traffic
to determine if any entity is trying to launch an attack
or take over other machines.

4.3 Decontamination

The third stage of the QED process is decontamina-

tion. Once a client machine has been analyzed, and
potential vulnerabilities or contaminants have been
found, the infrastructure can assist the user in updating
vulnerable packages or cleaning up viruses or other
potentially malicious code. Virus scanners can auto-
matically remove or quarantine detected viruses. Pack-
age management tools could automatically apply new
security patches, update software/firmware versions,
or request that certain services be stopped.
Decontamination could be performed both automati-
cally and with help from the user; in the latter, if vul-
nerabilities are found, the user is informed and given
explicit instructions to clean up the device.

The entities undergoing decontamination should be
quarantined until the infrastructure is able to verify
that they are as clean as is necessary to allow commu-
nication to proceed. The degree of interaction allowed
varies not only with the success of the decontamina-
tion, but also with the amount of unknown software on
the devices.

Time is a serious constraint for decontamination.
This process must be performed quickly to be feasible
in real environments. Caching of software updates and

 5

system patches would likely be valuable; related work
in web caching and content distribution networks can
be leveraged. A profile of the local network could be
maintained that indicates what type of devices and
what software or applications are most likely to come
into play within the local environment at any point of
time. Based on this profile, active prefetching of ser-
vice packs and other necessary software can be done.
When the local cache does not have a necessary up-
date, the required software will be retrieved from the
Internet, imposing a slight performance penalty.

5. Design of a QED Prototype

We are designing and building a sample QED
framework to provide secure service for Linux-based
laptops and PDAs equipped with 802.11b wireless
network cards. The framework is designed to provide
wireless service and security updates to several dozen
wireless clients, while keeping unknown, vulnerable,
or malicious machines quarantined. The major compo-
nents of our prototype are described below.

5.1 Quarantine

The goal of the quarantine stage is to isolate devices
from the outside world, as well as from one another. In
practice, the former is fairly easy to accomplish, but
the latter is difficult. For our prototype implementa-
tion, we use a combination of techniques to achieve
this effect.

A local Linux-based 802.11 gateway serves as the
local security manager, as well as running a DNS and
DHCP server. When a wireless device accesses the
network, it issues a DHCP request for an address. The
local DHCP server hands an address to the wireless
device, and asks the device for its public key. This
process can be secured through the use of pre-
deployed certificates for valid local DHCP servers.

The device responds with its public key, and sets up
the local network settings as provided by the custom
DHCP server. This includes a local IPtables [IPtables]
DENY rule that drops all incoming traffic not originat-
ing at the local gateway; this ensures that local devices
are unable to initially communicate with each other
without routing through the local gateway. Obviously,
a malicious client will not drop this traffic, but well-
behaved nodes will, providing some protection for
themselves.

Meanwhile, the DHCP server has taken the client’s
public key and done a secure dynamic DNS update to

insert the public key in the local DNS database entry
associated with the assigned IP address. The client
then can initialize an IPsec security association with
the wireless gateway using a predeployed public key
for the gateway stored on the device. The gateway per-
forms a reverse DNS lookup on the client’s IP address
and retrieves the client’s public key from the local
DNS database and uses it to create the security asso-
ciation on its end. A client application on the device
then opens a connection to the security manager on the
gateway and begins to negotiate for service.

The end result is that each client has established a
private and secure link to the local gateway. IPsec-
based encryption prevents eavesdropping, and firewall
rules in the gateway and well-behaved clients ensure
that the outside world is separated from the local quar-
antined devices; thus, well-behaved local devices are
isolated from malicious local devices.

5.2 Examination

The examination phase uses mostly publicly avail-

able software for the Linux platform. There are essen-
tially three subphases of examination: network profil-
ing, package inspection, and virus scanning.

Network profiling will be accomplished through the
use of nmap [Nmap]. Nmap allows users to examine
open ports and available services on a remote host in a
fairly nonintrusive manner. This analysis can identify
anomalies and system vulnerabilities. For example, if
nmap were run and determined that a normally unused
port, e.g., UDP port 31337, was open on a scanned
host, a flag would be set indicating that the machine
had been potentially exploited. This violation can then
be noted for clean-up during the decontamination
phase. Nmap also provides some basic information
about the overall system and software versions which
could potentially be used by the package inspector or
during the decontamination stage. Nmap can also be
used to detect the presence of services that are unnec-
essary or undesirable in the given environment. For
instance, the local access point can ask nodes not to
run a SMTP daemon, and instead use the local mail
gateway.

Package inspection is the most difficult phase of ex-
amination. The security manager would be required to
query the device for package information, but in the
absence of trusted architecture, there would be no
guarantee that the returned package list was complete
and had not been tampered with. However, we can
make the assumption that well-behaved devices and

 6

users will not intentionally deceive the infrastructure,
while malicious nodes very well may attempt to de-
ceive the infrastructure. We are currently investigating
techniques to identify lying nodes by examining ongo-
ing behavior to detect discrepancies. We will defi-
nitely use periodic nmap exams to help us detect pos-
sible discrepancies.

When a virus scan is requested, the device will be
required to present proof, such as a certificate pro-
duced by running a virus scanner, that it has run a vi-
rus scan of the system within the last 24 hours, or
since the last major virus alert, whichever is shorter.
Requiring an immediate virus scan is the more secure
option, but will add substantial overhead if required at
every transition between networks. We are considering
the use of local trust relationships between access
points to help optimize the efficiency of high overhead
examinations—this is discussed in more detail below
in section 6.

5.3 Decontamination

If vulnerabilities in the client are noted during ex-
amination, the local infrastructure will initiate decon-
tamination. The results of the prior nmap examination
are used to identify the vulnerable service[s]. If a
known compromised or vulnerable application is
found to be running, the infrastructure will attempt to
update the application.

If the update is unavailable or the user is unwilling to
accept the update, the application will need to be cut
off. Either the user must suspend the application, or
other users must be prevented from accessing that ser-
vice via the local firewall rules. An example of this
would be sendmail, for which security alerts are issued
frequently. If there is a local SMTP server, the client
does not need to run sendmail, and therefore might be
required to shut down the local daemon in certain en-
vironments. Similarly, other configuration holes (e.g.,
world-readable and –writable file shares) might re-
quire similar intervention.

If device examination reveals that virus checks are
not up to date, the best possible method of decontami-
nation would be to run a virus scanner on the entire
contents of the device and remove viruses or Trojans,
if any are found. This may not be feasible due to real-
time constraints; it could take minutes to hours to scan
a multi-gigabyte disk. Since a user would typically
want to use only a few applications, the security man-
ager will send a message to the user indicating that he
should have those applications scanned. If the user

acquiesces, the manager performs the necessary scan.
This will be done by communicating a signed piece of
anti-virus software to the client, which will be authen-
ticated and executed.

In our prototype, all applications information is de-
rived from the local Redhat Package Manager (RPM)
database. If there are security alerts for any of the in-
stalled packages, the appropriate update must be ap-
plied to the vulnerable device. If the necessary updates
are cached, they are immediately applied, again by
communicating with the user of the client device.
Users should be fully involved in these updates, as
they best understand the contents of their devices and
the interdependencies; automated updates without user
input could very well break things, for example, patch-
ing a system library could break dependent applica-
tions. For our prototype, we assume users do under-
stand their applications and the system dependencies
fairly well; in most typical real world deployment sce-
narios this will usually not be true. The downloaded
and cached updates are accompanied by MD5 check-
sums; this is a standard technique for authenticating
downloaded code. This technique will not work for
applications that have been built from their source,
unless source RPMs were utilized. We could perform
similar operations to update device firmware, but real-
time constraints might prevent us from doing this on a
wide scale.

6. Challenges

There are several challenges that must be overcome
as we explore this paradigm. We have identified three
major challenge areas: trust, privacy, and performance.

6.1 Trust

There are substantial trust issues in each of the stages

of QED that need to be addressed. In each stage, our
prototype relies on client participation to successfully
accomplish all of its goals. Without client participa-
tion, the system is less effective. The security manager
requires the client to willingly partition itself off from
other local nodes, execute a local application to pro-
vide data to be used in the examination phase, and ac-
cept updates or configuration changes in the decon-
tamination phase. Malicious or compromised nodes
may lie or mislead in these phases, nearly undetect-
ably. On the other hand, if a malicious device mas-
querades as the security manager, it would mean disas-

 7

ter for client nodes. This faux manager would be able
to hijack any device it chooses and run arbitrary code
at any site.

Despite this limitation, our prototype increases secu-
rity by requiring that client devices placed on the net-
work be kept up to date, and provides a mechanism for
assisting with that process. In the lab, QED is a proac-
tive security measure that helps ensure that our wire-
less devices are free from vulnerabilities. In general, a
similarly deployed infrastructure would help slow the
spread of viruses and worms, and reduce the viable
population of denial-of-service daemons by helping
keep well-behaved machines patched and secure.

QED does have the potential to do much more. With
a trusted computing architecture such as TCPA in
place, it would be possible to strengthen all the three
phases. In the quarantine stage, the security manager
could force clients to only listen to packets that come
from the security manager. This would prevent an au-
thorized client from proxying for another device; this
is obviously desirable to prevent theft of services in
the context of public access points. In the examination
phase, it would be ideal to ask clients to run trusted
applications and have some assurance that the results
are legitimately reported. Trusted architecture can en-
sure reported material by allowing trusted applications
to be run. Similarly, in the decontamination phase, to
trust that clients actually apply updates, repair applica-
tions, or fix configuration errors would be invaluable.

6.2 Privacy

Privacy is a second challenge area for QED. There is

a fundamental tradeoff here between the ability to ex-
amine machines and the privacy desired by the users.
An inverse relationship exists between the degree of
invasiveness of examination and the overall accuracy
of the analysis.

Currently, if a device does not wish to be examined,
it does not receive network connectivity; that will al-
ways be a choice. But it may be possible to offer a lim-
ited subset of services, or otherwise degraded service
to a device that wishes to expose only limited personal
information. We are actively investigating this issue in
the context of our own prototype.

6.3 Performance

Performance is a key issue that must be considered in
the context of mobile systems. The model will not be
adopted if machines with no vulnerabilities spend sub-

stantial time offline upon entering a new environment.
We believe that examination time is the principal
bottleneck in QED for most devices. A pertinent
question is, therefore, how much time can be spent
examining the device for out-of-date packages,
viruses, or possible malicious code? For devices with
no vulnerabilities, we wish to be able to quickly
authorize them and get them onto the network. One
possible optimization for wide-area deployment is the
use of local trust between collaborating wireless access
points. For instance, all of the access points in the
local bookstore might establish reciprocal relationships
allowing another access point in the store to vouch for
the status of a given client. This would allow clients to
easily move around within an administrative domain,
without going through repeated quarantine and
examination processes. On the other hand, an increase
in size of the network of trust also increases difficulty
in revocation, if necessary.

The decontamination process will also be a bottle-
neck for some devices. However we believe that with
fairly widespread coverage of QED, most machines
will already have been updated when they visit a new
area and thus will not need to go through decontamina-
tion. As discussed earlier, caching and client profiling
could significantly reduce decontamination time.

7. Conclusion

Wireless networking has the power and potential to

allow computing and communications in places where
we work and visit. We can easily foresee a future in
which wireless connectivity exists almost everywhere,
provided by businesses who gain profit or other bene-
fit by offering such connectivity. But providers will
not offer such services if the networks are perpetually
corrupted by infected clients, and users will not use
these services if their devices can be easily compro-
mised. This promising service cannot succeed in the
long term unless it is safe to provide and safe to use.

QED offers the necessary new paradigm to allow
safe use of widespread wireless service. The service
provider can use the concept to ensure that infrastruc-
ture is safe from incautious or malicious users. The
average user can rest assured that networks employing
the paradigm are unlikely to corrupt machines, steal
data, or abuse or deny services due to contamination.

We are implementing a sample QED framework that
displays the feasibility and promise of our approach.
Adding further security services and leveraging the
kinds of secure architectures beginning to emerge in

 8

the market will allow for more powerful and reliable
QED systems in the future. This, in turn, will enable
safe use of ubiquitous wireless networking for every-
one.

References

[802.16a] IEEE Draft P802.16a - Draft Amendment to IEEE

Standard for Local and Metropolitan Area Networks - Part 16: Air
Interface for Fixed Broadband Wireless Access Systems - Medium
Access Control Modifications and Additional Physical Layer
Specifications for 2-11 GHz (amendment to IEEE Std 802.16) - 1
Apr 2003, ISBN # 0-7381-3566-6.

[Arbaugh2001] Arbaugh, W., Shankar, N., and Wan, Y.C. “Your

802.11 wireless network has no clothes.” Technical Report, Dept.
of Computer Science, University of Maryland, March 2001.

[Balasu1998] Balasubramaniyan, J., Garcia-Fernandez, J., Spaf-

ford, E., Zamboni, D., "An Architecture for Intrusion Detection
using Autonomous Agents", COAST Technical Report 98/05,
1998.

[Borisov2001] Borisov, N., Goldberg, I., and Wagner, D. "Inter-

cepting mobile communications: The insecurity of 802.11." in
MOBICOM, MOBICOM 2001.

[EAP] Extensible Authentication Protocol – RFC 2284 -

http://www.ietf.org/internet-drafts/draft-ietf-eap-rfc2284bis-01.txt

[Hu2002] Y. Hu, A. Perrig, and D. Johnson, "Ariadne: A secure

on-demand routing protocol for ad hoc networks," in The 8th ACM
International Conference on Mobile Computing and Networking,
MobiCom 2002.

[IPtables] http://www.netfilter.org/

[Neumann1999] Peter G. Neumann, Phillip A. Porras, "Experi-

ence with EMERALD To Date" First USENIX Workshop on Intru-
sion Detection and Network Monitoring, April 1999.

[Nguyen2003] Nam Nguyen, Peter Reiher, Geoff Kuenning, De-

tecting Insider Threats by Monitoring System Call Activity, Sub-
mitted to 4th Annual IEEE Information Assurance, West Point,
New York, Mar 2003.

[Nmap] Nmap Network Mapper. http://www.insecure.org/nmap/

[Shankar2002] Shankar N., Arbaugh W. “On Trust for Ubiqui-

tous Computing.” Workshop on Security in Ubiquitous Comput-
ing, UBICOMP 2002, Göteborg Sweden.

[Snapp1991] Steven R. Snapp et al, "DIDS (Distributed Intrusion

Detection System) - Motivation, Architecture, and An Early Proto-
type", Proc. 14th National Computer Security Conference. Wash-
ington, DC, Oct. 1991, pp. 167176.

[Staniford1996] Staniford-Chen, S.; Cheung, S.; Crawford, R.;

Dilger, M.; Frank, J.; Hoagland, J.; Levitt, K.; Wee, C.; Yip, R.;
Zerkle, D.: GrIDS - A Graph Based Intrusion Detection System for
Large Networks, in Proc. of the 19th National Information Systems
Security Conference, Baltimore, MD, Oct. 1996, 361 - 370.

[TCPA] The Trusted Computing Platform Alliance

http://www.trustedpc.org

[Venema1993] Venema, W. and Farmer, D. “Improving the Se-

curity of Your Site by Breaking Into It.” 1993 Internet White pa-
per. http://gd.tuwien.ac.at/infosys/security/wietse-archive/admin-
guide-to-cracking.101.Z

