

Policy-Guided Interactions in Ubiquitous
Computing Systems

Ph.D. Dissertation Prospectus

V. Ramakrishna

vrama@cs.ucla.edu

Advisor: Dr. Peter Reiher

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90095, USA

 2

Abstract

The ubiquitous computing vision that promises access to information, personal data,
computing resources and network connectivity everywhere and at any time will soon be a reality.
In the practical manifestation of this vision, both the infrastructure and personal mobile devices
accompanying human users will play a part. Device, network and application characteristics will
become increasingly heterogeneous, and computing devices will be operating in a highly dynamic
environment. Not only must a device respond to its user’s needs in a context-aware manner, it
must also ensure that security and privacy considerations are met. Additionally, it is impractical
to expect mostly naïve users to constantly reconfigure their systems to obtain connections or to
frequently change security and privacy settings to enable interoperation with other devices and
domains.

This prospectus will show how devices and networks can interoperate on the basis of
local private policies that collectively describe user preferences and security and resource
constraints. We will describe a general purpose framework that allows these computers to
negotiate among themselves using these policies, which would be specified in a flexible and
expressive language with domain independent semantics. Negotiation will not require that the
devices know each other’s identity or have any prior trust relationship. Security and access
control requirements will be met by building this framework on top of a sound trust model.
Resource accesses can be negotiated on the basis of local measures of utility and risk-benefit
assessment using the trust model. The framework will adapt to changing context, and will allow
dynamic policy changes, making it more useful than an application written for the sole purpose of
maintaining a particular set of policy constraints. Not only will this solution scale and allow
decentralized control, it will also give administrators and users the freedom to configure the
devices and resources under their control without having to worry unduly about interoperation
and access control. This policy management and negotiation framework will be built as part of
the Panoply [Eustice2003a] ubiquitous computing infrastructure project and will be evaluated
using a varied set of application scenarios and policies.

 3

Contents

1. Introduction... 5

1.1. Toward a Ubiquitous Computing Future ... 5
1.2. Interoperability ... 6
1.3. Security and Privacy... 7
1.4. Usability and Interfaces.. 7

2. Cross-Domain Interactions in Ubiquitous Computing Systems 9
2.1. The Case for Policy-Based Management .. 10
2.2. Domain-specific Aspects Controlled by Policy... 11

2.2.1. Resource Management ... 12
2.2.2. Security and Access Control .. 12
2.2.3. Context-Awareness ... 13

3. Research: Ubiquitous Interaction through Policy-Controlled Negotiation....... 14
3.1. Policy-Based Negotiation.. 14

3.1.1. Negotiation Model ... 15
3.1.2. Example Scenarios .. 16

3.2. Benefits/Advancement of State-of-the-Art ... 18
4. System Research Issues .. 20

4.1. Discovery and Configuration of Device Communities 20
4.2. Flexible and Extensible Negotiation Infrastructure 21
4.3. Policy Expression and Reasoning .. 21

4.3.1. Policy Language .. 21
4.4. Security .. 23

4.4.1. Trust and Access Control ... 24
4.5. Negotiation Heuristics and Strategies ... 24
4.6. Theoretical Issues.. 25
4.7. Systems Issues.. 26

4.7.1. Negotiation Protocol and Message Types ... 26
4.7.2. Resource Management ... 27
4.7.3. Performance .. 27
4.7.4. Fault Tolerance and Reliability ... 28
4.7.5. Operation in Resource-Poor Conditions... 28
4.7.6. Integration with Panoply and Legacy Systems 29
4.7.7. Context Awareness.. 29

4.8. Beyond Two-Party Negotiation ... 29
4.9. Usability ... 30

5. System Design and Implementation Approach .. 31
5.1. Panoply and Spheres of Influence ... 31
5.2. Negotiation Framework Architecture... 32

5.2.1. Negotiation Interface/Front-end.. 33
5.2.2. Policy Engine/Back-End ... 34
5.2.3. Controller/Decision Manager .. 34

5.3. Policy Language Design and Implementation .. 35
5.4. Description of Resources and Properties .. 36
5.5. Security Model .. 36

 4

5.6. Initial Negotiation Approach ... 36
5.7. Interfaces ... 37
5.8. System Specifications.. 37

6. Dissertation Plan and Schedule ... 37
6.1. Implementation of a Basic Infrastructure .. 38
6.2. Evaluation of System Within Panoply .. 38
6.3. Policy Language and Engine Enhancements.. 39
6.4. Development of Security/Trust Model .. 39
6.5. Development of a Utility Model ... 39
6.6. Generalized Policy Manager .. 40
6.7. Evaluation of Policy Manager.. 40
6.8. System Optimizations ... 40
6.9. Miscellaneous Issues and Dissertation Writing.. 40
6.10. Timeline ... 41

7. Related and Complementary Research .. 41
7.1. Negotiation Protocols.. 41
7.2. Policy Languages... 42
7.3. Ubiquitous Interoperation and Service Discovery....................................... 44
7.4. Models for Trust and Access Control ... 46
7.5. Other Research.. 47

8. Conclusion ... 48
References .. 48

Figures and Tables

Figure 1: Overall System Architecture ... 32
Figure 2: Functional View of the Policy Manager ... 33

 5

1. Introduction

The current state-of-the-art technology in computing enables static desktop computing
and occasional mobile computing in familiar environments. The transition to ubiquitous
computing presents unique challenges to researchers. Advances in technology have given us
powerful computers, both static and mobile, system software and applications that increase in
intelligence and usability by leaps and bounds, and communication technologies, both wired and
wireless, which are increasingly pervasive and provide easier and more efficient ways of
connecting. Even with computers and networks pervading more of the physical space around us,
ordinary users do not often get optimal security and usability with existing solutions. Typical
environments where users need service are either completely open or are extremely picky about
the devices with which they interact, and have stringent security policies that infringe on the
privacy of the user devices (which must agree to the policies to obtain service). These devices and
networks should not be, and do not have to be, so rigid in their interaction mechanisms.
Negotiations between devices and networks could allow them to interact in ways that produce
agreeable results in terms of their resource needs, and their privacy and security; automated
protocols can produce such optimal results. This prospectus outlines the problems involved in
negotiation, and the system research that will be necessary in order to obtain solutions. The
remainder of this section will describe the ubiquitous computing vision, and elaborate on the
problems that we are dealing with.

1.1. Toward a Ubiquitous Computing Future

Dr. Mark Weiser’s 1991 vision of ubiquitous computing (ubicomp for short)

[Weiser1991] is a futuristic vision (which gets more realistic every day) in which computers
pervade the physical space around us without being obvious to the human eye. Such an
infrastructure will help users perform various tasks, offer useful services and allow information
access anywhere and at any time. More recently, Kindberg and Fox [Kindberg2002] identified
physical integration and spontaneous interoperation as the two key all-encompassing
characteristics of ubicomp systems.

Significant progress has been made in the physical integration area thanks to embedded
systems research. Not only can our mobile accessories, like cell phones, PDAs and watches, run
complex applications, offer services like GPS, and communicate wirelessly using embedded
processors, but such capabilities can be embedded even into our refrigerators, walls and clothing
in the near future using sensors, actuators and interfaces. Ubiquitous networking, another
prerequisite for ubicomp, is rapidly becoming a reality with the effort to produce standards for
wireless MANs, or WiMax [IEEE802.16] and vehicular networking in addition to the already
established standards for wired and wireless LANs, cellular, satellite and personal area networks.

Smart space projects like Oxygen [MIT-Oxygen], Gaia [Román2002], One.world
[Grimm2004a][Grimm2004b] and Centaurus [Kagal2001a][Kagal2001b][Undercoffer2003]
propose infrastructure designs to dynamically manage resources, enable seamless
communication, and adapt to changing context using a mixture of physically integrated
components and mobile devices. Such designs are meant to manage local hot spots and do not
scale to a global distributed system. Increasing physical integration will ensure ubiquity of such
spots, or spaces. Local interactions between users’ personal devices and local domains (or hot
spots), which are interconnected through a global internet, are sufficient for user requirements.
Therefore, to be able to compute and network ubiquitously, devices and smart spaces must have
the capability for interoperating spontaneously unless explicitly prohibited by their managers. A
primary obstacle is the heterogeneity of hardware, software, resources, networking technologies
and applications that each local domain will possess. The systems mentioned above rely on

 6

standardization of these features for global interoperation, which is practically not enforceable.
Even if certain mechanisms, hardware, system software and networking technologies become de
facto standards through popularity or market forces (like TCP/IP networking culminating in the
Internet and the World Wide Web), different people manage and use local domains, and have
different needs and expectations. They might use the design and resource management principles
proposed by Oxygen or Centaurus, but they will have unique resource requirements and expect
certain functionality from their systems, in addition to having unique security and privacy
requirements. The infrastructure deployed at physical spaces that will enable ubicomp is growing
in a decentralized fashion through the efforts of research groups and companies. Though it will
create the problems described above, bottom-up growth of the infrastructure is both inevitable
and desirable as it promotes innovation and lets designers and administrators make independent
choices. The problem is to enable a standard through which different devices and networks can
interoperate although they are managed and used by different people, do not share resource
capabilities, security and privacy constraints, or have pre-decided trust relationships.

1.2. Interoperability

Interoperation among devices refers to the ability to communicate information about

objects, offer services, discover external services, and access external resources through suitable
interfaces. Users will expect to obtain and make use of resources wherever they go and to run
their applications and obtain private data and information, either through their personal devices or
local clients. Our next key challenge in the ubiquitous computing arena is to ensure spontaneous
interoperation among any set of devices and administrative domains, typically between user
devices and wireless networks, though occasionally also between two devices that are not
necessarily mobile. Current approaches toward interoperation suffer from extremes. One
approach advocates rigid policies governing interactions, which typically limit such interactions
to devices or domains which have prearranged trust relationships, and/or predeployed
mechanisms to make use of external services when two devices/networks come into contact. At
the other extreme, systems use standard open interfaces which allow free interoperation at the
expense of security and privacy (more about this in Section 1.3). This is the design approach of
projects like Oxygen’s Metaglue [Coen1999] and Sun’s JINI [Waldo1999] which enable resource
discovery and access. These and other ubicomp infrastructures, until recently, have not
considered user and device mobility. Neither do they consider the dynamism of the environment,
where interaction mechanisms, goals and constraints must vary with context. They also assume
that mobile devices have similar capabilities, and that physical spaces contain uniform hardware,
applications and interfaces, which is impractical (as mentioned earlier).

A body of research exists for interoperation at lower layers, and fairly standard
spontaneous networking techniques are in use today. Interoperation in a mobile computing
environment is made easier using techniques like mobile IP [Bhagwat1996] and application
session handoff frameworks like IMASH [Bagrodia2003]. The grid [GRID] enables resource
sharing in a large-scale distributed environment, and has only recently considered mobility and
pervasive services [Bruneo2003][Anius2003], with emphasis on QoS, service discovery and task
scheduling rather than security. The interoperation we are talking about in this prospectus refers
to application or middleware level interoperation. Different computing entities need a common
semantic framework to describe all kinds of information, resources and protocols; this is an
ongoing research effort in the semantic web [SemWeb] project. These entities also need to be able
to reconcile their resource needs, capabilities and security policies in order to interoperate, and
the research proposed here will attempt to fill that gap.

 7

1.3. Security and Privacy

Security and privacy are extremely important in any multi-user system, and especially so
in an open ubiquitous computing environment. Permitting external entities to discover local
resources and to make use of them raises privacy and security concerns, and this must be
balanced against the necessity and usefulness of such access. Security and protection of private
resources must be integrated into the interaction mechanisms and interfaces. The traditional
approach of building mechanisms and interfaces and adding security support later does not work;
dynamic resource allocation and sharing could result in unforeseen side effects and security holes.
Using rigid security policies and access control rules to protect networks and the devices and
resources within prevents interactions with unknown devices and those with incompatible
configurations. Likewise, a user device must protect itself from potentially malicious networks
through the maintenance of its own security policies. Still, in ubicomp, one cannot completely
specify security policy, since it is impossible to anticipate every possible interaction with every
possible computing entity beforehand. Therefore, to preserve the fundamentally open nature of
ubicomp without giving up on security, autonomous systems must have the capability to make
intelligent tradeoffs in particular contexts when deciding the nature and scope of interactions,
based on a limited set of policies.

Systems can use a wide variety of security enforcement mechanisms like virus scanners,
firewalls, tools like nmap, intrusion detection utilities, and QED [Eustice2003b], but these must
be augmented with security policies that dictate how and when such mechanisms should be used.
Similarly, existing frameworks for protection of privacy and access control, like Kerberos, access
control lists, capabilities and role-based access control frameworks, work only through
enforcement of rigid rules, and in addition, suffer from lack of scalability. More powerful access
control models like GRBAC [Covington2000] and DRBAC [Freudenthal2002] also impose
limitations which make them directly usable only in certain situations, conditions and
environments. The notion of trust models is still evolving, and will form a key backbone for any
ubicomp system although the current certificate-driven approach requires common trust
authorities. As this prospectus will show, we can enable flexible interoperation through the use of
policies that specify how and when such mechanisms can be used.

1.4. Usability and Interfaces

A ubiquitous computing system must be usable, and provide intuitive ways to let non-
technical users interface with their personal devices and with the invisible infrastructure
components in the background. It would be impractical to expect such users to change
configuration settings in devices to establish network connectivity, change security and privacy
levels, or explicitly run commands to discover and obtain resources. Users and system
administrators should be able to set policy and expect their devices to figure out which lower-
level resources, like network connectivity, display and audio devices, file systems, and so on are
required and then obtain these from any environment they happen to be in. Devices should also
adjust service and information provided to users with context, based on user policy. They should
be more flexible in balancing security and resource needs, without requiring users to make
arbitrary decisions whenever the primary goal results in failure. Frameworks deployed on devices
and networks should be context-aware and not require users to constantly change settings when
such parameters change.

Currently, tools like DHCP and Zeroconf [Guttman2001] allow a measure of automated
connectivity at lower levels, but usually do a proper job only through prearranged configuration
scripts and when devices and networks know each other, unless neither has a security policy.
Without significant advances in AI, it will not be possible to let devices make 100% of the

 8

decisions by themselves. There will be situations when user feedback will be required. Interfaces
provided to users must be intuitive, and fairly high-level feedback will be expected from them;
i.e., users should make high-level policy decisions about objects and relationships they can
understand, rather than low-level decisions about network addresses or firewalling of certain
ports.

To summarize, spontaneous interoperation of devices and networks is difficult because of the
huge range of the following characteristics:

! Heterogeneity of devices and communication features
! Differences in the kinds of resources (and services) possessed and offered
! Differences in capabilities possessed for interacting with external entities
! Contexts and context-sensitive constraints that cannot be anticipated in advance
! Diversity of security and privacy policies, and trust relationships

Usability requires that computers interact with each other autonomously and present suitable user
interfaces, though the latter is not a focus of this research.

Interoperation broadly consists of two processes: discovery of services and access to
those services. Current systems and prior research have provided separate solutions in each of
these areas. In open systems and those offering ubiquitous services, we will see the functions of
discovery and access merge more and more, and existing solutions won’t work. This is because
the resources possessed could include private information that domains don’t necessarily want to
advertise to the wrong parties.

We can identify key hard problems for which existing research does not provide adequate
solutions. One problem occurs because of heterogeneity; how do devices match interacting device
requirements to local resources while maintaining security and resource management policies.
The second problem addresses the need for more flexibility in interactions. Current systems adopt
an all-or-nothing approach, with rigid policies that are targeted toward very specific requirements
or goals. Most often, this presents a device with situations where it needs to expose more private
information and allow access to more resources than it needs or wants. Fallback or alternative
agreements can be reached by lowering requirements or determining exactly how much security
can be risked or how much privacy can be given up. Most systems leave it to users to make these
decisions upon failure. This not only detracts from usability, but also circumvents a problem for
which an automated solution can be worked out. Moreover, rigid policies or tailor-made
applications for domain-specific needs cannot work in an environment where context changes
dynamically, and all situations cannot be anticipated beforehand. Unanticipated results and
security holes will invariably occur. The solution is to use flexible and domain-dependent policies
that can be easily specified in a high-level language, and can be easily modified online. A
middleware for policy management is therefore essential for ubicomp.

This prospectus will show how mutually unknown devices can interoperate by
negotiating with each other based on their policies, rather than in a manual fashion or by using
static agreements. I propose to design and build such a negotiation framework that will ensure
maximum possible resource access with minimum compromise of security and privacy
constraints by using strong trust models and relative utility measures of system requirements.
This work will assume that there is compatibility among the interoperating devices below the
application layer; i.e., secure networking and transport protocols exist that are common to the
entities. Given the universal adoption of MAC protocols like 802.11 and Bluetooth, network
protocols like TCP/IP, and even other protocols like HTTP and SSL, this is a safe assumption.
Entities also need to have some common understanding of objects at the application layer, and
this is being achieved through the Semantic Web effort. I will leverage the results of this research
to the fullest, with some liberties taken, inasmuch as this is ongoing work and not yet a standard;
in fact, my research could well contribute to this effort. This research will be undertaken as a part

 9

of the Panoply ubiquitous computing project [Eustice2003a] which is based on a spheres of
influence model.
 This prospectus is organized as follows. In Section 2, I describe typical kinds of
interactions that occur across device and domain boundaries, typical constraints, and why a
common policy framework provides the most flexibility and autonomy. In Section 3, I describe
the negotiation model, its use in practical scenarios, and an analysis of the benefits. Section 4
discusses the various research issues involved in designing and building such a negotiation
framework. Section 5 describes the design approach, and the dissertation plan and schedule are
outlined in Section 6. Section 7 describes related and complementary research, and Section 8
concludes the prospectus.

2. Cross-Domain Interactions in Ubiquitous Computing
Systems

It is fairly obvious, given the nature of ubiquitous computing and the scale at which it is

envisioned, that centralized control is impossible and undesirable. Control and management of
computing resources must and will be decentralized and domain-centric. In this document, any
computing element or group that can act autonomously is referred to as a domain. A single device
that exhibits autonomous behavior is a domain, as is a group of devices and resources (such as
printers, speakers and displays) connected by a local network; a domain containing multiple
devices interacts with external domains as a single virtual device. A domain has a single authority
that imposes a common policy on every element within. Examples include enterprise networks in
offices, department and lab networks within a university, and device clusters. A domain need not
be defined by locality, or circumscribed by a physical boundary. Logical groups of devices that
share certain attributes, are part of a social network or organization, and are governed by common
authorities, are also domains, though the individual components may not always be on the same
network. Organizations like ACM, or a network of friends, are examples of such domains, where
the individual components share knowledge, permissions and policy. Building security and trust
relationships among all domains and making them obey similar guidelines and policies is
impractical for the same reason that centralized management is. Still, ad hoc associations must be
supported and users carrying their personal devices need to access computing resources and be
able to network wherever the presence of such infrastructure makes it possible.

Interactions take place commonly between mobile user devices and the network(s) they
try to join, and sometimes also directly between devices for sharing data and sending messages
(explicitly triggered by users). Examples of these are described in Section 3.1.2. Different
administrative domains may also require making agreements with each other so that member
devices can communicate across domain boundaries. For example, ACM might make an
agreement with UCLA to allow UCLA terminals to be used to read ACM conference papers; any
change in the agreement will trigger a change in the relationship and constrain the ways in which
UCLA students can access ACM resources. This could potentially be done using static policy and
standard mechanisms (which then cannot be ported to other scenarios), but situations that warrant
dynamic formation or changes of agreements will arise. The Panoply project, (described later) of
which this research is a part, deals with such issues.

Modeling our world as consisting of domains with hard boundaries, being containers for
resources and contextual (or state) information, and having sets of policy rules helps us
understand and provide solutions for spontaneous interoperation in ubicomp [Kindberg2002]. An
identical solution can then be used for interaction between two devices (the simplest case) and
between domains containing device clusters and other resources. The common theme underlying

 10

all these seemingly different types of interactions is that they all involve service discovery and
service (or resource) access. The domain-dependent variable is policy, which every domain is
free to set as it chooses, and which guides the decision making of the infrastructure during
interactions and also local resource management. As an extreme case, a completely open system
without any security or privacy issues would allow interactions based on a null policy. This is a
more tractable and scalable solution compared to an application-oriented approach, where an
application running in a domain tries to manage policy in isolation from other applications, or by
creating new mechanisms for every new type of interaction we need to support, simply because of
the huge number of combinations of possible policies and contexts.

2.1. The Case for Policy-Based Management

Most domains, or environments, including single devices, will have certain common
features such as networking, display, and audio capabilities. In fact, given a basic networking and
processing capability, all resources could, in theory, be obtained and accessed across domain
boundaries. Most devices that mobile users carry around will perform a small number of
specialized functions through off-the-shelf components. There are mechanisms available to do
almost anything that is computationally tractable; the number of ways to make use of resources
and system capabilities is huge and is increasing. Ubicomp interaction will be based on the
principle of being able to find and use such mechanisms wherever available, because user devices
will have neither the hardware capabilities to perform every conceivable task nor the storage
capacity necessary for all the services and data that their owners will find useful. Therefore, given
that any required mechanism can be discovered and used, the problem reduces to the question of
how those mechanisms can be used and offered, looking primarily from a trust and system
integrity perspective. An infrastructure that must deal with domain-specific requirements while
targeting interaction from a global perspective must necessarily decide the policy vs. mechanism
argument in favor of the former. Such an infrastructure must also be structurally a middleware
that lies between the operating system layer and the application layer, being independent of both.

Policy is essentially an abstraction, or a set of rules that constrain how a system can
behave and how it ought to behave. This leads to the core of my thesis, which can be outlined in
two parts:

i) All devices and domains have established local policies that constrains the way they can
use and export their services.

ii) Interoperation among devices and domains in the absence of a preestablished trust
relationship or a common set of service (or application) level protocols can be achieved
through a generic negotiation protocol as long as the participants have a common
understanding of resource semantics.

Policy is a set of factual and behavioral specifications that are binding on every
computing element and resource within a domain. Policy must specify entities (as represented by
computing devices) and their attributes, security and privacy constraints, trust relationships,
security credentials, network types, resources and protocols, cryptography-based objects and
protocols, data and content types, and contextual parameters like time and space. This list, which
is fairly comprehensive, must be supported in a general-purpose ubicomp middleware. What
looks like a huge burden for a research project to support can be handled using formal models or
schemas for description and inference. Research in formal logics, databases, and semantic web
tools like RDF/XML provide a head start in this area. On the other hand, users would expect
different things from different policy categories – access control for resources and customization
of output on displays based on user preferences and context being two disparate examples. For
implementation and evaluation purposes, we will select certain categories, and will also illustrate
how this can be extended to other environments for which new policies can be written without

 11

having to reimplement the infrastructure. Some of the more general requirements for policy are
the ability to deal with groups and classes of objects, specification of general behavior and
exception conditions as well as meta-requirements such as setting up precedence among different
policy rules.

Any system that we use to describe and reason about policy must have an ontology that
defines what policy can specify and semantics that indicate how it can specify them. For example,
a domain could have policy rules that describe its knowledge about objects that it is aware of
(such as computer identities as IP addresses, location and time parameters, resources like storage
capacity, printers and displays) and the relationships (such as access rights) among such objects.
To enable interoperation, different domains must have a common global ontology for policy as
well as a common syntax for a high-level description of resources of shared interest. There will,
of course, be domain-specific data and objects that do not need to be described using the same
policy language, but the language should support such description, i.e., it must be expressive. The
policy framework or manager must also be able to reason with a set of policy rules and provide
some guarantee of correct results when action decisions are made on the basis of local policy. The
presence of such a framework precludes the need to invent specialized protocols and mechanisms
for diverse security and resource access requirements.

Two important arguments are necessary here.
i) Different domains need to agree on some issues in order to interoperate, unless their

administrators and users wish otherwise. The bare minimum that must necessarily be
common, while leaving individual users the maximum independence, is a shared policy
description framework, a way of describing common resources, and a communication
protocol for transaction based on those policies. My research will remain useful even if
some resource types, protocols or policies may become standardized because of wide
usage, at a later date.

ii) A domain administrator with sufficient programming skill could write up an application
that implements the collective system policy. There are several significant advantages to
using a policy language approach. This approach is obviously more flexible. Both online
(i.e., while the system is running) and offline changes, and the addition and removal of
policies are possible; in contrast, an application will have to be examined, modified,
recompiled and redeployed. A number of policies will be specified by naïve users; neither
will such users be able to modify system applications nor can designers anticipate all
possible preferences that users might have, especially since such preferences may have a
cross-application impact on the system. A policy manager also allows a modular approach,
so that resources can be added or removed easily, and the manager takes care of resolving
newly added policies with existing ones. Policies must therefore be easy to write at a high
level, and can be ambiguous in certain ways, notably related to context. It is the policy
management middleware’s task to clear ambiguities and make specific decisions in various
contexts.

There is nothing novel about using policy to control system behavior. Most systems use
policy for flexibility and extensibility and also to impose constraints on the usage of system
resources. While traditional uses of policy have been domain-specific and meant for local
interpretation, I propose to use policy as a tool for ubiquitous bidirectional interoperation.

2.2. Domain-specific Aspects Controlled by Policy

The basic operations through which a middleware can enable interoperation to establish
dynamic relationships using local policy will be described in Section 3. Here, we take a look at
three key high-level functionalities that form a fairly complete combination of issues that are
impacted by inter-domain interactions, and which therefore must be specified in system policy:

 12

resource management, security and access control, and context-awareness. Policy will also
specify deontic concepts like obligations and permissions [Kagal2003a], and meta-constraints for
priorities and for resolving modality conflicts.

2.2.1. Resource Management

Every domain possesses resources ranging from high-level ones like printers, displays,
audio devices, sensors, actuators, and network connections to more basic resources like amount of
bandwidth, disk space, files, data, and even memory blocks. It must export interfaces for such
resources to users and applications. A single device manages resources through an operating
system, and a network or cluster can manage its resources in many ways, ranging from a
distributed operating system with tightly coupled devices to a loose federation of devices that
share a single server or gateway to the outside world. Policy can be used to describe and constrain
the way each of these resources can be used, and to perform resource allocation when multiple
clients or applications have similar requests. It can describe how the usage of one resource is
dependent on (or constrained by) another. High-level resources usually are dependent on lower-
level resources, and any actions that are requested by clients could impact the behavior of
multiple resources at different levels. Also, requests for resources at a high level, common when
neither the requester nor the owner have knowledge about each other’s possessions, could be
translated into requests for access to lower-level resources at the owner’s end. For example, Bob
carries a PDA with him to a coffee shop expecting to get internet connectivity and be able to use
a particular network protocol through the shop network’s gateway. The shop network’s policy for
connectivity and protocols impacts low-level resources like network bandwidth and the amount of
buffer space it is has available. Therefore, what is a simple requirement from the PDA’s point of
view involves a more complex interplay of policy rules governing resources at the network’s end.
In a highly dynamic environment, with the number and nature of clients in constant flux, a policy-
based framework would be necessary to enable interoperation and to make sure that desired
system behavior is exhibited. Such a system could be used to monitor conflicts and either solve
them using meta-policies, or report them through appropriate interfaces. Systems like Keynote
[Blaze1999] do such conflict checking, though in a static manner and using a restricted policy
language. In my research, I am interested mainly in variable high-level policies (that users can set
up) and their interplay with more static low-level policies in different contexts.

2.2.2. Security and Access Control

Most systems have some kind of policy for security and access control, based on a local
measure of trust and an idea of what it could take to compromise a system and misuse its
resources. Security policies include filtering remote service access based on identity and port (this
is done using firewalls), and memory and file access restrictions to prevent buffer overflow
attacks and mitigate the threat of viruses. Access control and privacy policy rules are used to
answer questions like “who is allowed to access a particular resource?” and “what kind of
authentication is necessary?” In ubiquitous computing, trust will play a huge part when mutually
unknown computing entities interact with one another. Access control policies will be specified
using a local idea of trust, since it is impossible to establish trust relationships between every
possible pair of devices in the world. As with resource management, it should be possible to
describe security and access control rules at a high level, with the policy manager deciding what
mechanisms to use in an ad hoc manner. This approach is highly flexible compared to many
existing security frameworks that would require re-engineering when faced with new
requirements. Different resources may have different access policies, and it is impossible to
anticipate all permutations and side effects of these beforehand. Also, higher-level security

 13

policies (like setting security levels in the Internet Explorer browser) could impact behavior at a
lower level (for example, which ports must be opened). A user or a system administrator should
be able to declare policy and leave it to the system to resolve conflicts and ensure no violations
during interactions with external devices (how this can be done will be shown later). Meta-
policies, such as those pertaining to security/privacy conflicts, could help a policy manager with
decision making. For a system in which new modules could be added dynamically, policy can be
used to monitor the security impacts and prevent violations. Often, it might be important to have
local policy rules kept private, since the exposure of these may inadvertently release private and
sensitive information. This could enable malicious entities to discover security holes or make use
of the nature of the policy itself in order to mount attacks.

2.2.3. Context-Awareness

Context-aware computing makes computers more intelligent from the point of view of a
user, since they provide customized service to users based on the context a user finds himself in.
In a ubiquitous computing world, the same application or resource provider would behave
differently based on its perceived context. A context-specific application of a general policy
would resolve to a set of lower-level policies. Learning a user’s behavior and anticipating his
needs is an artificial intelligence problem, but there are systems issues in determining exactly
what the context is and what is of relevance to the current context. Here, context can be used, not
as a policy category by itself, but as an added dimension to resource management and security
policies. Location and time are the most common and widely used contextual parameters. For
example, if I am in my car and need to find a gas station, I would like the application on my PDA
to find the closest gas stations, rather than give me a complete list or prompt me to specify my
location. Here the policy simply states that a gas station be located when gas runs out; the device
has some way of sensing gas level, or could get such information explicitly from the user through
some interface. I might like my home TV to change maximum volume levels gradually based on
time, or prevent R-rated content from being screened during certain hours. Other types of
contextual parameters could be considered, like applications behaving differently on my PDA
based on whether I am in a public bus or in my car. Of course, for a truly intelligent environment,
any system would require sensors that provide context information; various sensors are in use
today, and innovative ways of using them is the focus of a lot of ongoing research. Lastly, any
policy framework that supports context awareness must allow generalizations over objects and
context to be specified as well as exceptions, which can be used by systems to make quick and
appropriate decisions. In practice, it is usually not necessary to completely specify context-
adaptive behavior, which may be an impossible problem; partial specification and probabilistic
reasoning could be used for decision making. The policy management system should be able to
extrapolate policies to a context where direct rule lookup is not possible or cannot be inferred.

No policy framework has rules for resources, security and context awareness written in complete
isolation from each other. The interplay of these different functions can get very complex in a
dynamic and heterogeneous environment.

In this section we have seen why local policies for devices and domains hold the key toward
achieving a global scale decentralized framework for interoperation. In the following section I
will describe how policy can be used to achieve this vision, what kinds of operations are involved
in this process, and outline some practical scenarios.

 14

3. Research: Ubiquitous Interaction through Policy-
Controlled Negotiation

Consider the following example of an inter-domain interaction. When Bob enters a

Starbucks store, his PDA (or laptop) must resolve its policy with the Starbucks (a domain
represented by a WLAN) policy in order to obtain resources, in return for which it might need to
hand over some private data. Bob’s device will have to abide by Starbucks’ policy as long as it is
a part of the local network. The resources required by Bob’s device and the private information
that the network demands are not rigidly enforced by a standard. Bob still desires his device to
join the network and obtain some service, and Starbucks desires to have Bob as a customer. This
requires some adjustment of demands on the part of Bob’s PDA as well as on the network
manager, without one party completely capitulating to the other’s rigid policy. A second example
of interaction is the addition of a new DVR to a home entertainment network, connecting it
automatically to a TV, speaker and a home computer and having it behave in accordance with
pre-set network policy and owner preferences. Or, consider how the computer in Bob’s car can
receive sports and weather updates constantly from different access points offering ubiquitous
networking services for a price.

To support the interactions in the above examples, which mainly involve service
discovery and resource (plus data) access, the participating entities (or domains) must come to a
working agreement. The policy management middleware on interacting domains must negotiate
to reach such an agreement, while maintaining local policy in dynamic conditions.

3.1. Policy-Based Negotiation

Negotiation is a policy-guided operation through which devices can make requests of
each other and decide whether or not to give access to local data and resources. In the most
general case, each participant’s local policies are private and unknown to the other, and a number
of these might conflict. Each entity starts off with certain requirements, or targets, or goals, in
mind; negotiation guides them to a point of agreement or compromise through the use of suitable
meta-policies and heuristics. It is, in effect, a process of policy resolution and conflict
management, except that each entity has partial knowledge of the other’s policy, state and goals.
Keeping policy private is not a random assumption; exposing policies, especially access control
rules, could have serious security implications. A malicious agent may potentially take advantage
of such knowledge to compromise systems; this has been demonstrated in widely used network
security protocols. Policy resolution through negotiation with full knowledge is also a non-trivial
operation, though it might lead a more satisfactory agreement for both participants.

The negotiation that I am focusing my research on is different from various other
protocols that are used for interoperation. This is a bi-directional protocol, without any side being
constrained to be a client or a server. It also does not follow a script (in other words, a shared
policy) whereby only state matters, and not local policy. Ubicomp negotiation is dynamic, with
local state changing during negotiation; this in turn necessitates a reevaluation of the low-level
policies that constrain service exposure and access permissions, and the goal one expects to reach
at the end of the protocol. Developing good evaluation functions for such goal evaluation is an
important part of negotiation, and this could also involve meta-issues like the time taken and the
level of trust gained in the opposite party.

A negotiation protocol resulting from this research will not be targeted toward a specific
domain. Two domains can negotiate as long as they share a common semantic framework for the
description of their resources and policies. An infrastructure like the Semantic Web and an
expressive policy language are sufficient for such a negotiation scheme to be applicable

 15

ubiquitously. For example, negotiation is going to be difficult, if not impossible between entities
that have a totally different idea of what the resource “display” signifies. (Note: this does not
preclude security domains from using diverse strategies and heuristics, which need not be
understandable or familiar to other domains.)

Ubicomp interactions typically involve wireless communication between mobile devices
and network access points, though these aren’t the only types of interactions. Software agents that
are not device-based could also interact with each other through web links. Client-server
transactions could be performed on behalf of users. Policy-guided negotiation protocols are as
applicable to such transactions as they are to ad hoc wireless associations, since these cases also
involve private data and policies. Good research has been done in these areas already, such as the
P3P standard [P3P] and automated trust negotiation [Winslett2003].

3.1.1. Negotiation Model

In this section I describe a very general model for policy-based device negotiation. This
model considers two-party negotiation, though it can be extended by induction to an n-party case.

Given that there are two computing entities C1 and C2, which could be devices or
networks that can operate autonomously:

! C1 has a set of resources R1, a policy P1, and a set of services S1. R1 is general enough to
incorporate high-level services like printing or display, and also low-level items like
individual data items, memory space, and even the policy P1, being local content. The
policy P1 is general enough to describe both the state of a device or a network, values of
relevant context parameters like time and location, operating rules that describe access
control of resources and data objects, resource allocation, use of security mechanisms,
context-sensitive behavior, and deontic concepts such as obligations. If C1 is a network,
P1 would include information about resources allocated to or accessible to individual
computers within the network. S1 broadly describes a set of applications or services that
serve a local need at C1. All resource requirements in a given context can be derived from
S1; if not available locally, they can be obtained from the external environment.

! Likewise, C2 has a set of resources R2, a policy P2 and a set of services S2.
! It cannot be assumed that C2 has knowledge of R1, P1 or S1; likewise C1 might not know

R2, P2 or S2

The result of C1 negotiating with C2 is a relationship that allows C1 access to a set of

resources Q1 ⊆ R2, and C2 access to a set of resources Q2 ⊆ R1. Here, Q1 and Q2 are the
maximal sets of resources obtainable within the constraints imposed by P1 at C1 and P2 at C2, and
the partial knowledge possessed by either entity. Q1 and Q2 are subsets of the requirements
derived from the need to make S1 and S2 function. An ideal negotiation result would occur if Q1
and Q2 equal the set of requirements before the first message, but that may or may not be possible
in the absence of an oracle that has knowledge of both sets of R, P and S.

At a conceptual level, negotiation is a tradeoff, a process of give-and-take. Two types of
resource compromise are possible. If a resource can be measured quantitatively, the participants
will negotiate to a point where the quantity of resource obtained is less than or equal to the
original desired level; if the resource can either be given or not given (in terms of access
permission), the final result might allow access to an alternative resource that might serve the
purpose but is less valuable or less desirable according to the consumer’s policy. Obtaining
access to a resource might involve some sacrifice on the part of this consumer, or some
behavioral obligations could be imposed upon it.

The negotiation protocol is heuristic-driven, and will in all probability be a best effort
solution. Heuristic functions could be computed from meta-policies that resolve conflicts, models

 16

that evaluate trust in the opposite party at every messaging step, utility functions that help to re-
evaluate the goals, or even extraneous factors like efficiency (expected time to reach an
agreement). A negotiation protocol, irrespective of the scenario it is used in, has a security and
trust model at its core, since the result of negotiation is the assignment of access permissions.
Such a trust model guides the gradual exposure of resources and policies that are initially hidden.

The actual negotiation protocol revolves around a very simple and generic state machine,
with a very limited set of message types, such as requests, offers, policies and queries, and these
will be described in detail in Section 5. It terminates when either party decides that further
negotiation is fruitless or undesirable.

3.1.2. Example Scenarios

Scenario 1

Bob walks over to the local Starbucks coffee shop with his laptop and PDA, each of
which runs a policy manager capable of negotiation. Starbucks runs a wireless network managed
by a policy manager that runs on the same machine that controls the access point(s). The wireless
network’s policy is used to let the network decide how and when to let client devices join, and
also governs network interaction among devices in the network, and services used by these
devices through a wireless connection. The primary resource exported by the network is Internet
connectivity at various levels of bandwidth. The PDA by itself has no useful service to provide to
the network, and is therefore very much in the position of a client (or a supplicant). Still,
Starbucks would like Bob to be a customer, and therefore it would be in the network’s interest to
reach an agreement with Bob’s device and provide service.

The PDA is running certain applications that require network connectivity, and therefore
it initiates negotiation by asking the network policy manager for permission to join the network
and obtain network connectivity at a certain bandwidth. The network’s policy is to grant a
minimum network bandwidth to all members, while extra bandwidth would require some
compromises on the part of the clients. In this case, the Starbucks policy manager offers the
minimum bandwidth to Bob’s PDA in response to its request. But the PDA is running an
application that allows Bob to listen to streaming music from his home computer. The PDA can
proactively cache up to 5 minutes of music, but needs to reconnect soon, and also requires a
higher bandwidth than what has been offered. So the PDA requests a higher bandwidth
connection. The network, in return, and in accordance with its policy, asks for Bob’s email
address along with a policy statement which indicates that it will send Bob occasional emails
about promotional offers, and also offers to make Bob a preferred member, which will allow Bob
to obtain discounts at various outlets. The PDA evaluates the request for Bob’s email address
based on the offers. It then poses a counter request for a credential which indicates that Starbucks
does not have a spam policy and also imposes an obligation that Starbucks will not send more
than one email a week. The network finds that these requirements do not conflict with its policies;
it sends a certification from the Anti-Spammers Bureau, counter-signed by Verisign. The PDA
considers this information in conjunction with the real-time networking requirement imposed by
the streaming application, and decides to give its email address. Along with network join
permission, network usage obligations are sent to the PDA, one of which indicates that an email
client can be run only if it is uptodate. The PDA is running an older version, and since it knows
that Bob typically checks his email around that time of the day, it requests a patch from the
network policy manager. The locally cached patch, which has no access control policy, is sent to
the PDA. If the patch isn’t locally available, the PDA will not be able to run the email client; if it
violates that policy (as can be detected by a network port scanner), its membership within the
network might be revoked using a firewall (unless the PDA obtains the patch directly from the
Internet).

 17

When Bob starts his laptop, its preferred policy is to connect to the PDA if that is already
on and can function as an Internet gateway. In this case, it can do that, and therefore the laptop
does not need to negotiate with the Starbucks network and can connect to the PDA (this
negotiation is very minimal, since the laptop and PDA have, presumably, a prior established trust
relationship). Lastly, as a bonus for becoming a preferred member, when Bob goes to the counter
to buy coffee, he gets a discount.

On a PDA with a rigidly defined access control policy of “default deny for all private
identity information,” when the question of giving email address information comes up during
negotiation, a pop-up might be flashed to let Bob make the decision.

This scenario basically illustrates how users can obtain their services continuously using

mobile devices and the availability of ubiquitous networks, without the need to establish a prior
trust relationship with each of these. Today, a Starbucks network is completely open for any
device to join, with devices being able to do basic Internet browsing. The network makes no
security guarantees nor does it provide any other services. This is because Starbucks uses free
access as a way of attracting people to its stores. In the future, stores like these and others could
discover the potential of providing more and varied services, not all free, and in return users could
become more and more wary of possible privacy violations. When scenarios get even a little more
complicated than those where there is either no policy or a very rigid policy, negotiation is the
only proper way for systems to interoperate. Then, each side needs to release only the minimum
private information necessary to establish a network connection and permission to access
resources. Resource access can be granted and gained at varying levels, and identity-based
relationships do not have to be preestablished. Here, the only place where an identity association
is made is when the network produces an Anti-Spammers Bureau certificate.

This scenario is not far-fetched, and indeed may play out at most wireless hot spots in the
fairly near future. Google has been trying to acquire Wi-Fi networks in order to provide free
wireless Internet access everywhere for users carrying mobile devices [Google2005]. Access
points will typically be set up at local shops like Starbucks, malls and other places where people
concentrate. The model is very simple right now; users get free Internet access and in return
Google obtains information about user browsing patterns through its control of the gateways, and
as most people use its search engine. The satisfaction with this state of affairs may not last,
especially if Google gets more inventive and is able to obtain private user information and
possibly send targeted advertisements to device browsers. Google may also collaborate with web
service providers and provide different kinds and grades of service to users. Users will begin to
be more concerned about their device privacy and security. With all kinds of possibilities opening
up, there is a huge potential for automated negotiation of the kind described above in the
Starbucks example.

Scenario 2

There are various scenarios that exhibit similar dynamics to the one described above. One
such scenario, which sounds quite futuristic as it involves more advances in AI and security
infrastructures than we currently possess, comprises a mall where multiple shops have individual
wireless networks, each of which advertises its offers and prices. Bob’s E-Watch, as part of his
personal device network, knows what items he needs or wants, the value he puts on those items
and his priorities. Based on offers received from various shops in the mall, the device could
negotiate prices and discounts and potentially carry out transactions (which would require giving
up credit card information) that serves Bob’s best interests in terms of utility and profit (of
course, every shop computer will be trying to do the same). The policy management and
negotiation framework that is proposed in this document will enable these kinds of transactions.

 18

Scenario 3
This scenario primarily illustrates a seamless system configuration without manual

intervention, but also indicates bi-directional negotiation and relationship formation.
Bob buys a network-enabled DVR and plugs it into the home network. The DVR has a

default policy (at manufacture time) that requires it to search for display devices for output and
cable services as input. Currently this is done using wires, but we can expect DVRs and
televisions to communicate wirelessly in the future. When the DVR is added to the network, it
makes known its requests, and the ensuing negotiation will require that the network policy
manager be able to examine the DVR to ensure that it has an updated version of the software and
inform the DVR of Bob’s policy of not allowing output of R-rated content during the daytime.
Since the DVR is brand new, it must accept all policies from the network and agree to abide by
them. Failure to do so will be construed as an indication that there is something wrong with the
DVR (i.e., it may have been compromised). Bob is also very concerned about media piracy, and
will only allow his closest friends and family access to content stored on the DVR. Therefore,
when some of his co-workers come to his house, and each of their personal devices negotiates to
join the network, all the devices will be allowed connectivity and the freedom to surf the net and
check email. However, a device carried by his close friend Frank will be given access to the DVR
and will be able to access the stored episodes of “Friends.” This device, through its policy
settings and knowledge of the current context, can infer that Frank wants that particular content
and this content should be searched for in this location.

Scenario 4

Bob goes to a ubicomp conference where he meets Frank, and both discover that they
share a common research interest and could potentially collaborate and share information about
papers, conferences, job openings and so on. Bob is already a member of a group of researchers
who collaborate on such topics and can share information. Since the information that they want to
share is stored on their devices or accessible through their personal devices, Bob and Frank
augment policy on their respective handhelds so that each is allowed to access ubicomp-related
and other private information. The devices negotiate with each other (explicitly triggered by their
respective owners) and exchange ubicomp research related information, email addresses and
instant messenger IDs. Here local security policies are very valuable because they prevent a
device from handing off any information that could be misused by the other; a trivial example is
that of not providing access to papers that are copyrighted and therefore cannot be shared. Bob is
also a member of a worldwide research group of collaborators who can share information of the
type that Bob and Frank want to share. Group interaction obeys certain policies, such as no spam.
Bob’s device introduces Frank into the group by granting a permission that Bob’s device is
delegated to provide, and is allowed to do so by group policy.

A number of complex interactions take place during this negotiation, and a part of the
solution rests in the Panoply sphere model, which will be described shortly. Apart from that and
some data organization and searching techniques, the negotiation model that was described earlier
is sufficient to realize this scenario.

3.2. Benefits/Advancement of State-of-the-Art

This research is one step ahead of prior work in the field of ubiquitous computing,
notably the intelligent spaces augmented by sensors and actuators. We take a top-down approach
by looking at ubiquitous interoperation in its entirety and at the state of current technology, and
then making justifiable assumptions about expected advances in the near future. As far as we
know, no framework currently exists that allows ubiquitous ad hoc negotiation and resource
sharing among devices with no prior trust relationship. Such a framework will be sorely needed

 19

in the near future, and can be used in any large scale environment with multiple administrative
domains. One criticism of this approach could be that it adds something more that devices need to
agree on, or have deployed, before they can interact. But as explained earlier, the set of functions
identified as being part of a policy negotiation framework is probably the bare minimum needed
for any kind of ubiquitous interaction.

Looking from one point of view, a general purpose negotiation framework is a part of the
semantic web effort, and complementary in some ways. Domains don’t need to share common
and static policy, context, resource sets and applications in order to negotiate. This enables
semantic bridging at the application layer, which is essential for interoperation. The actual
negotiation process goes further than anything attempted before, being unscripted, dynamic and
context-sensitive. Other protocols that have proved very useful, such as DHCP, perform specific
tasks in specific contexts and have rigid semantics, making it very difficult for an average user to
tweak behavior. Still other protocols have emerged with newer technologies, and which are more
flexible in one way or another:

! Network protocols that attempt to guarantee QoS.
! Grid computing [Czajkowski2002] service negotiation protocols, which are flexible if the

services are known in advance, even though these are not portable to a mobile computing
scenario.

! Automated trust negotiation [Winslett2003], which enables flexibility in exposure of
private information on the web, though using a static policy as the basis.
My research target is to build a solution that will work with dynamic context (and

consequently, policy) changes, and where the final result can be negotiated, and is a set of
resources, rather than a single resource, so that the intermediate and final goals can be
reevaluated. For example, let us say device D is negotiating with network N, when suddenly
device F enters the network (with which it has a prior established relationship) and exercises its
access control rights. The resource availability and access possibilities change enough for N to
have to modify its negotiation strategy with D.

This research will also benefit the field of computer security by providing context-
sensitive access control. Most access control systems are conceived in static contexts and are not
usually scalable. Still, models for open systems like RBAC, delegation, and webs of trust have
established concepts that are very valuable in preserving security and privacy. Since negotiation
proceeds from the assumption that all resources and preferences are private and the exposure of
such resources or granting access permissions can be done only if policy allows, security is
automatically provided at the core. Using a trust model as a guide to negotiation, with trust levels
than can be enhanced or lowered based on negotiation message content, is one of the tasks I plan
to perform. “Prevention is better than cure” should be the motto for any system administrator
who is concerned about security. If mechanisms like QED [Eustice2003b], developed in our lab,
are used in conjunction with a security-conscious negotiation protocol, users and administrators
can proactively set security constraints under which interaction is allowed, rather than using tools
simply to detect and patch breaches after they have occurred. The security basis of interoperation
is not based purely on identity, but on characteristics and policies of the entities. Thus the level of
interaction that each negotiating party desires could be fine-tuned using security policy as the
basis.

A useful side benefit of this project could be static verification of security and privacy
levels of a system. One could model systems with a set of standard resources and access control
policies and run experiments (possibly by simulation) to make security assessments. Certain
actions or policy rules that compromise security could potentially be discovered. The probability
of an activity leading to a situation where a malicious entity could mount a security exploit could
be inferred. System users could then decide whether or not the utility provided by the task
outweighs the risk, given that there is no suitable alternative.

 20

The field of ubiquitous computing is a mix of system and AI research, since it promotes a
non-intrusive paradigm where computers can proactively and intelligently perform tasks that
users want done. Policy management and negotiation enables users and domain administrators to
set policy and then let devices and agents interoperate on their behalf with a high confidence of
correct results, thereby remaining faithful to this paradigm. My research will also investigate how
principles of game theory and utility theory can be applied to device interaction. There are
distinct parallels between negotiation strategies and the game theory models of adversarial and
cooperative paradigms, and the concept of relative benefits (primarily security risks and trust) in
utility theory research could be applied to policy resolution. My research will therefore benefit
the community in general by applying such AI and theoretical concepts to real-world systems and
observing the results. It also advances the area of autonomic computing and makes computing
devices more usable by ordinary users, who don’t have to worry about the internals and low-level
behavior of their computers.

This research will be conducted within the framework of the Panoply ubiquitous
computing system [Eustice2003a]. Panoply provides a scalable, secure framework by building on
the spheres of influence [Eustice2003a] paradigm, which divides the world of computing entities
into spheres, which could be physical domains, social groups, personal clusters and even
individual devices, each sphere having a security boundary and being able to scope policy and
context. Negotiation is a tool to enable both inter- and intra-sphere interaction. Negotiation
concepts added to Panoply and spheres result in a powerful model for the structuring of device
groups and establishment of device relationships.

4. System Research Issues

The core of my research deals with traditional distributed systems issues, namely the
negotiation protocol, security, fault tolerance, and scalability (with respect to the sizes of the
policy and resource sets). Programming language issues like expressiveness and semantics are
involved in designing languages to express policy and describe resources. Managing knowledge
bases that contain state information and policy rules are issues that have been long handled in
artificial intelligence; functions like indexing, retrieval and reasoning fall within this area. The
intelligence involved in autonomous negotiation, which includes the heuristics, cost/risk/benefit
tradeoffs and negotiation goal reevaluation, when applied to service discovery and access control,
involves a subtle mix of systems and AI research. Likewise, theoretical evaluation falls under the
AI domain, whereas performance and functionality evaluation falls under the systems domain. An
assumption in my research is that policies are specified by users and system administrators.
Learning policy based on user behavior is outside the scope, though it is an important ubicomp
topic that is being pursued by others. The interplay of policy with specific contexts provides a
rich enough space for research without needing to add AI learning techniques. With this caveat in
mind, we look at individual research issues in more detail.

(In every subsection, the key research contribution is either highlighted in bold and
italics, or is summarized at the end. Topics without highlighted text are relevant to the ubicomp
interoperation problem but outside the scope of my research.)

4.1. Discovery and Configuration of Device Communities

The theory and design of device communities that can manage resources (in a centralized
manner), impose policy, and ensure secure communication, both within and with the outside
world, is an important research topic in its own right. Such communities map to the domains that

 21

are the units of interoperation in a global scale ubiquitous computing system. Modeling device
groups and handling associated research issues like device and group discovery, event
management, secure networking and firewalling, which are orthogonal to the negotiation
problem, are being dealt with by Kevin Eustice in a project called spheres of influence. The
spheres concept combined with negotiation is expected to result in a middleware for ubicomp
called Panoply [Eustice2003a]. My research does not absolutely depend on spheres, since groups
can be virtualized by a single computer, and existing security and MAC protocols could be used
for wireless communication. Still, negotiation added to Panoply will demonstrate a powerful
ubiquitous computing model.

4.2. Flexible and Extensible Negotiation Infrastructure

The negotiation model discussed in Section 3 is very general in nature and can be applied
to a wide variety of domains, scenarios and resource classes. The negotiation protocol needs to be
flexible (i.e., the message types need to be generic enough), and one such approach is described
in the implementation section (Section 5). The policy languages also must be expressive enough
and provide enough ways of reasoning so as to handle a number of interoperation situations we
will observe in a real world. In practice, we will be experimenting with a few selected examples,
and future research will reveal exactly what classes of scenarios are representative of the
complete range. And of course, the target of any systems project is to be extensible. Ideally, we
must strike a balance so that the framework is flexible enough but not so loose that it would
leave implementers and users with significant work to make their devices and networks
interoperate with other domains. In the context of this research, this entails identifying a set of
objects and operations that are common to and can be used in most situations. Of course, some
exceptional situations will exist, but if these form a very small percentage of all cases, it would be
better to handle them separately, rather than stretch the model and make it weaker. We have
already made the commitment that the only thing a user or a network administrator needs to do is
to describe their preferences and constraints in the form of policy rules, without worrying about
system internals, and the middleware will take care of the rest. The tighter we can make the
model, the better, but the extent of tightness can only be determined after building prototypes,
creating and experimenting with application scenarios iteratively. Experimentation with real-
world scenarios allows us to model their requirements and discover further commonalities among
different resource types, or policy characteristics, which could then be incorporated into the
infrastructure.

4.3. Policy Expression and Reasoning

Expressing and reasoning with policy is one of the most important aspects of this
research, and the efficacy of which determines how successful the final result will be. Therefore
one of the targets of this research, and the key building block in a policy manager that can
negotiate, is an expressive policy language suitable for ubicomp that provides primitives for
reasoning, namely to pose queries, change policy and resolve conflicts.

4.3.1. Policy Language

There has been a lot of research in policy languages over the years, and they are, for the

most part, special-purpose, tailored to solve domain-specific problems. Recently though, there
have been efforts made toward building policy languages for large-scale projects like the
semantic web and pervasive computing. They do consider ubicomp interoperation problems

 22

described earlier in this document, and inspire us to ask the following questions before we
proceed to choose or design a language:

• What are the things we will be talking about in ubicomp that will be represented using the
policy language?

• How do we represent those things in our language (syntax)?
• What do the things represented in the language mean, and what do the statements

(composition of different things) constructed in the language mean (semantics)?
Policy languages are not, and don’t need to be, general-purpose programming languages. Their
requirements closely match knowledge-based systems, which is a well-researched subject in AI
and databases. The key uses of such a language are to represent knowledge about a system and its
behavior. Ontology for the web and for pervasive computing is a subject of ongoing research – a
few of the results being RDF, DAML+OIL, OWL and SOUPA [Chen2004]. SOUPA specifically
targets the semantic web and ubicomp. These frameworks allow expression of contextual
parameters like time and space, persons and devices, events and actions, and behavioral
constraints. My research will leverage this work, and will also investigate whether extra features
are needed for ubicomp in general and negotiation in particular.

Syntax is not really a research topic, but is important to the extent that it provides a
common language that can be understood on a cross-system and a cross-application basis. The
semantic web is a common framework for sharing data across systems and applications. The RDF
language and the XML markup language are frameworks that are widely used and are rapidly
developing into standards that everyone uses to communicate information and data. The work
involved in designing languages is in determining the low-level and high-level constructs; the
latter will be used by policy writers to write policies. Seamons and others [Seamons2002] outline
various other high-level properties that are necessary for a policy language that supports trust
negotiation, which is a special case of our more general model, though some of their suggestions
remain valid. They suggest that the language should support dealing with credentials, transitive
dependencies, chains, private variables and policies, have well-developed semantics and be
monotonic. The last requirement is not essential for general resource negotiation, since it puts
restrictions on the functions that the protocol can perform.

The most important part of the policy language is the semantics and the reasoning
framework that allows some meaning to be extracted from a set of policies. Such reasoning also
allows us to query a knowledge base containing policies to obtain state and behavior information;
it allows us to check for conflicts, add rules and so on. Such reasoning must have some formal
logic backing it so that we can get some guarantees that a policy manager or negotiator gets an
answer that is correct and is consistent with the knowledge base. Properties such as soundness
and completeness could be proved formally. Research is going on in the selection of a formal
logic for ubicomp services, with some researchers claiming deontic logic to be the most suitable
[Kagal2003a]. This research could uncover further clues in this respect. Let us consider first order
logic, which allows one to describe objects and relationships as well as collections, and has a
sound (and complete with some caveats) reasoning framework. The interesting question is
whether it is too general; for example, if we were reasoning with time, we could use temporal
logic, a subset of first-order logic. Deontic and modal logic constructs like obligations and
permissions are also special first-order logics. Whether or not higher order reasoning techniques,
like meta-reasoning with relationships, are required is a research question. As a starting point,
first-order logic seems adequate for the purposes of this research. In fact, logic programming
languages, which have strictly less expressive power than full first-order logic, may also suffice
for my research. Further progress in this work will prove or disprove the suitability of first-order
logic and logic programming languages for ubicomp policy.

Managing knowledge bases containing policy also poses interesting research challenges
in systems and logic. Indexing and retrieval must be efficient. The policy framework must allow
different techniques of reasoning, like forward and backward chaining, for adding rules and

 23

posing queries respectively. Truth maintenance is another technique whereby the consistency of
the statements in the knowledge base is maintained across state changes. These are well-
researched techniques in AI literature, and my target is to investigate whether they can be applied
directly to ubicomp policy management, or whether they need to be adapted in certain ways.

A potential area of research to comment on in my dissertation would be to investigate
how entities that use different reasoning frameworks and languages could negotiate with each
other, where they only require a common understanding of negotiation primitives and the objects
and relationships they are dealing with.

4.4. Security

There are two aspects of security that we need to consider during the course of this
research: i) the security benefits that a policy-guided negotiation framework provides to a
system offering ubiquitous services and forming ad hoc relationships with un-trusted devices,
and ii) securing the negotiation procedure itself.

We must consider the first aspect in the context of ubicomp, and ideally produce a
balance between open interaction and system protection. Most situations in ubicomp that require
interaction among mutually unknown devices will, in all likelihood, turn out to be safe, even
though one cannot convince the other completely of its trustworthiness (by producing credentials,
exposing system information to the other). I claim that having a single module managing policy
for a domain and performing negotiation will not only enhance security, but also promote a new
way of thinking about security. Previous ubicomp projects have started off by concentrating on
the openness of their systems, to the long-term detriment of security. A policy manager has a
safety first motto. It ensures that a particular interaction is disallowed if it is guaranteed to lead to
a security breach. From there on, depending on the likelihood of system compromise, the level of
interaction (or resource accesses) can be negotiated through a protocol. Note that my research
concerns the proper use of available security mechanisms (based on cryptography or otherwise)
in a ubiquitous computing environment, particularly in negotiation scenarios, and in the process,
promote a security paradigm. Standard mechanisms such as virus scanners, intrusion detection
techniques and systems like QED [Eustice2003b] could be used to assess security risk.

One reason why fairly complex systems invariably possess security loopholes is that they
possess various different modules that perform particular tasks or handle certain types of
applications, each of whose security requirements interact in unpredictable ways (and some of
which may have misconfigured security). A policy management middleware will be able to
handle multiple modules, each having security policies specified independently. High-level
policies could also impact lower-level policies (dealing with low-level resource constraints) in
unpredictable and unsafe ways. For example, administrators could specify rules for how a high-
level service (like a network file server) might be accessed, but there might also be rules
specifying which memory blocks can be accessed, or how much buffer space it could use.
Obviously, a human system designer or user cannot think of the huge combinations of
possibilities that arise due to the interplay of these different policies. As all these policies are
specified in the same language and have the same semantics, the policy manager can use formal
reasoning semantics to determine if a particular decision, if made, would have side effects
resulting in policy violations, either for other modules or at lower levels. Conflicts can be then
managed using meta-policies or measures of risk-benefit tradeoffs. Research will tell whether
such security benefits are evident in real-world scenarios. A lower priority research task will be to
investigate whether the policy manager can contribute toward static security property verification,
given a set of policies and a particular context.

The security of the protocol itself can be ensured to some extent through the use of
cryptography and secure network protocols like TLS. On the other hand, malicious devices could

 24

use certain aspects of the negotiation protocol structure to infer the private policy or the presence
of guarded resources at the negotiator. For example, what is the guarantee that one party will
return a suitable offer it has implicitly agreed to return through a counter-request? Whether such
threats are real, and how policy managers can use suitable strategies to foil such attacks, is also an
interesting research problem.

4.4.1. Trust and Access Control

Policy-guided negotiation is a flexible way of performing access control. Traditional
access control models are neither flexible nor scalable enough for ubicomp. ACLs and
capabilities can be used within local domains but are unsuited for ad hoc interoperation.
Certificates and delegation are very useful, but can be used in limited ways and require some
form of identity-based trust relationships. Role-based access control has proved to be very
flexible and easy to use, but does not scale in its most basic form, since one cannot anticipate all
possible roles to be assigned to all possible entities. Researchers have argued [Minsky2000] that
the semantics of usage of basic AC mechanisms, such as credentials, delegated permissions and
roles must be left to individual domains, and specified as policy. Also, recent research has
addressed the need for ubicomp access control to be based on a very general notion of trust,
which could be specified almost as a continuum and is not purely dependent on identity, but on
actions and observations. My research objective is to be able to fine-tune the level of interaction
that a negotiation achieves using a risk-benefit analysis, and a trust model that is necessary for
the assessment of risk and design of negotiation heuristics. It is also likely that an existing trust
model will be leveraged for negotiation, though it might need to be enhanced so that it satisfies
the properties described below.

The trust model needs to have certain properties, such as being independent of domains
or resource classes. Different domains need not share any common notion of trust, which is based
purely on the measure of importance assigned to the safety of its resources and any evidence that
is given to it by a negotiating entity. It must be fairly fine-grained, so that relative trustworthiness
of entities in particular contexts can be compared. This evaluation is used by the negotiation
protocol to make strategic decisions. Trust could be gained through production of credentials,
agreement to abide by the policy of the network being joined, willingness to share resources and
willingness to expose system characteristics for examination [Eustice2003b]. In practice, this
could contribute to the building of webs of trust, which can only make interactions easier and
safer. Logic for trust could be developed by integrating the trust model and the policy language.

This research could also make contributions toward context-sensitive access control, a
relatively recent topic that customizes access control to relevant context, which is something the
negotiation protocol also strives to achieve.

4.5. Negotiation Heuristics and Strategies

One of the most interesting research directions that will be investigated in the course of
this project is the set of algorithms or heuristics that provide the basis for parties to negotiate.
Negotiation is a series of messaging rounds where the type and content of every message is
determined by the history of the current negotiation session (context) and the immediate message
received from the negotiator. Both negotiating parties work with partial information; they have
complete knowledge of their local policy and resource requirements, but probably minimal
knowledge of the opposite entity’s. Therefore, after every round of messaging, both entities gain
more knowledge about the other’s policies and capabilities; this helps them to make better
decisions. Therefore, any algorithm or heuristic that a negotiation entity employs must be used
along with instantaneous (and incrementally gained) knowledge to engineer the protocol toward

 25

the most successful result possible. The heuristics determine what success for a computing entity
is. Such heuristics would likely be functions of the utility of the desired resources possessed by
the other, and security/access control risks determined through the trust model. For either party,
the gain of resource access must be balanced with the risks of local resource and policy exposure.
Minimizing the number of negotiation steps, which might involve making bigger compromises,
could be another heuristic. Decision making is the application of heuristics to current context and
local policy.

The notion of a strategy combines the iterative application of heuristics into a coherent
protocol. Such strategies could dictate both the pace and the result of an instance of negotiation.
The notion of strategies has been investigated to some extent in automated trust negotiation,
where a web client requires access to a resource controlled by a web server, and iterative release
of access-control credentials results in a positive or a negative result. This work is more of a
template-based negotiation, with the objective being to allow resource access or not, based on
local policy. This technique cannot be used to negotiate with resources, reevaluate goals, or
manage conflicts and context changes. Resource negotiation in my research is not limited to
yes/no answers, but provides a range of compromise solutions. Still, the analysis of strategies,
especially interoperable ones, is interesting and will be leveraged during the course of this
research [Yu2001]. Such strategies could range from eager to lazy (as defined in trust negotiation
[Winsborough2000]). The former would result in a negotiator completely exposing all its
requirements, supporting credentials, resources possessed and policies governing how (and to
what extent) access to those resources can be granted right at the beginning so that the protocol
can terminate as quickly as possible. The latter would take the opposite course, being paranoid
about any exposure or access. Interesting research questions could arise from this. For example,
informing the opposite party about a local access control policy could expedite the protocol but
might result in an inadvertent leak of information that could be abused by the other.

Strategies have been studied in subjects like game theory and utility theory from the
fields of mathematics and economics [Owen1995][Fishburn1988], though in a static context.
Adversarial game theory deals with situations where one entity tries to outwit the other within a
set rule framework and with partial information. Utility theory deals with agents that have ideas
about relative utilities of objects and situations, and engineers its strategy toward achievement of
maximal utility. As we can see, policy-based negotiation could potentially be modeled along
these lines. From a practical systems perspective, probabilistic or Bayesian reasoning could also
be applied, though that is not a priority for this research.

In summary, I intend to apply trust and utility heuristics to the development of negotiation
strategies and study the relative benefits of different types of strategies in identical scenarios.

4.6. Theoretical Issues

The negotiation model articulated in Section 3.3.1 provides a basis from which we can
consider the problem in purely theoretical terms, though in addition we would need some stronger
assumptions about the characteristics of resources, contextual parameters and policy rules.
Though the success of a system research project is often measured by simulation and
experimentation with practical situations, formal guarantees of results and proofs are extremely
valuable and serve as guidelines for further system development. Two such research issues are
correctness and completeness.

Correctness: When is the result of a negotiation correct, and how do we provide formal
guarantees that a negotiation protocol yields a correct result (if more than one exists)? The notion
of correctness is fairly simple to state; i.e., any modification of system state (granting of resource

 26

access permissions, disclosure of data and adjustment of system behavior or security settings)
must not come into conflict with collective local policy and heuristics. If policies are written in a
formal language backed by a reasoning framework, such as first-order logic, it would be possible
to give formal guarantees about negotiation results. For example, BAN logic [Burrows1990] is
used to formally verify safety properties of security protocols. Similarly, the negotiation strategy,
which includes tradeoff decisions and relative importance of policies, should be backed by a
mathematical model, though this might be harder to conceive and analyze. It would be interesting
to investigate whether negotiation heuristics can be viewed in purely logical terms, since our
scenarios allow potential for policy conflicts. As a side issue, if efficiency considerations
necessitate probabilistic reasoning, we can obtain a correct result only with a certain probability.

Completeness: Given an oracle or a centralized authority, an open system promising ubiquitous
services would have knowledge about the resources, policies and requirements of both
negotiating parties. Then, it could potentially run an algorithm that reasons with the collective
policy and comes up with an agreement that would yield the best result for both entities. Such a
best solution does exist; if equally “good” alternate solutions exist, a non-deterministic selection
could be made, probably through human intervention. A negotiation protocol can be defined to be
complete if it is guaranteed to find the best solution in a scenario with decentralized authority and
private policy. Therefore, it is worth investigating whether or not such completeness can be
guaranteed by a negotiation protocol and associated algorithms. It would hopefully lead to
efficient schemes for reasoning and decision making with incomplete knowledge. If completeness
could be proved, associated questions may also yield answers, one example being: “what is the
least number of negotiation steps that would lead to a satisfactory solution?” Prior work in
distributed algorithms and game-theory will certainly be leveraged, but realizing a truly complete
negotiation protocol will probably be computationally infeasible, maybe even more so than AI
search problems. Therefore, we may have to settle for a best-effort, heuristic solution.

In summary, I intend to analyze and give (maybe informal) correctness proofs for all
negotiation algorithms and policy reasoning mechanisms used, since the lack of these could
have adverse consequences in a real-world system. Completeness could be proved by an
algorithm that takes a strategy and an ideal result as input, but the generation of an ideal
strategy will be investigated only if time permits, since it will require non-trivial effort.

4.7. Systems Issues

This subsection deals with the core issues involved in the design of the policy
management architecture and the basic mechanisms that enable interactions.

4.7.1. Negotiation Protocol and Message Types

The negotiation protocol must allow the realization of the model that was proposed
earlier in Section 3. Continuing the flexibility argument from Section 4.2, we need to discover a
small group of message types and a state machine that can be used in a domain-independent
negotiation protocol. The claim is that a small core group of messages, including requests, offers
and policies, is sufficient for any application scenario. Interpretation of the message content is
domain-dependent, because policy is local. Whether or not this negotiation protocol is too generic
or too restrictive (which doesn’t seem likely) is a question that will be answered when we start
experimenting with real-world applications.

 27

4.7.2. Resource Management

Solutions for embedding resources in physical spaces (or domains) and providing

interfaces to discover and access them via a network link currently exist
[Román2002][Waldo1999]. Management of such resources within a domain can be done in a
centralized manner using any of the available solutions, and is not a concern in my research. The
functions provided by the resource manager can be called by the policy engine, and the resource
descriptions and allocation mechanisms encoded as policies within our database. Still, assignment
of permissions for actual resource access ties the negotiation and the resource management
schemes somewhat tightly. The relevant questions are: i) what forms can such access permissions
take, and ii) how does the policy manager arbitrate resource accesses when they occur? Policy
enforcement is probably out of the scope of this research, but we still need to ensure that access
permissions resulting from negotiation are suitable to such enforcement. Between the tried and
tested access control mechanisms like ACLs and capabilities, the latter seem to offer a more
scalable solution in a dynamic environment, where the list of potential negotiators is unbounded,
though revocation is difficult. Experiments will tell whether capabilities are suitable and
adequate. Whatever kinds of access permissions we use, we need to embed cryptographic
safeguards in them. It would also be an interesting exercise to investigate how policy and context
information could be embedded in a tamper-proof manner into a capability (or equivalent token),
which could be verified by the policy manager whenever an actual access is requested.

4.7.3. Performance

The overhead of performing negotiation must be hidden as far as possible from the users.
Applications on a mobile device that must run seamlessly across domain boundaries also depend
on the negotiation protocol performing within soft real-time constraints. The first step for a
device is, of course, to discover and connect to a network, following which negotiation takes
place.

There are two potential performance bottlenecks:
i) The size of the policy database, and the resultant slowing down (potentially

exponential) of policy inference and resolution. The inference procedure must scale
with the size of the policy set.

ii) The negotiation strategy, which, without real-time heuristics, could take a number of
messaging rounds to terminate.

In the first case, current Prolog compilers do use efficient indexing, pruning and retrieval
techniques that make such systems fast in practice, but the search space that the policy engine
reasons over still needs to be reduced. Pruning the search space in order to obtain relevant
policies and state information during a decision-making process would be valuable. Any logical
mechanisms that we use, such as forward chaining, backward chaining, conflict checking and
truth maintenance, may also require some re-engineering to make them scale. One other
optimization could be a policy fast path. This would be a front-end module for the policy
manager or the system component that normally makes negotiation decisions and would be
populated and cleared in the manner of a cache. Lookup in such a table would take constant (or
O(1)) time, and it could answer any questions or return negotiation decisions that a full policy
manager would. Such modules are frequently used in security systems like firewalls and intrusion
detection systems. Context could determine what information would be stored in the fast path.
Interesting questions that will be investigated are the following: what is the structure of such a
table, can it handle all policy-related decisions, and if not, what is the class of decisions it can
handle. The result of this research will be a fast path that can provide quick answers to queries
and is also guaranteed to be correct. This implies that an answer received from the fast path

 28

would exactly match the answer to a similar question posed to the full policy manager. On the
other hand, incomplete knowledge may prevent the fast path from answering many of the
questions.

In the second case, constraints (both hard and soft) on time or number of messages would
be added to the heuristic that guides the negotiation strategy. In the absence of such constraints,
negotiations could terminate quickly if eager strategies are adopted. These approaches will be
experimented with in the course of this research.

4.7.4. Fault Tolerance and Reliability

The negotiation framework must maintain the integrity of the local policy engine, the
consistency of the policy database, and must ensure the robustness of the negotiation protocol.
The protocol itself must be tolerant to communication failures (like loss of network
connectivity) and to the failure of the policy manager during a negotiation. Distributed systems
normally use two ways to deal with failures: one is redundancy and the other is detection and
recovery (or rollback) from failure. Making redundant copies of a policy manager could help, but
would pose an additional burden on low-capability devices. Network failure is always a
possibility with a wireless connection, and must be dealt with. The policy database could change
dynamically with policy, and because of parallel negotiation sessions accessing it simultaneously.
Such changes need to be as secure as database transactions. Therefore, the negotiation protocol
must be robust in the same way as database commit protocols, so that both entities commit to any
agreements, and possible mechanisms allowing rollback upon failure. Other problems that
traditionally occur in distributed system, like clock synchronization, may not be relevant in
negotiation, since both negotiators make independent decisions; however, some secure
communication protocols may require timing guarantees. The initial approach for a protocol is
outlined in Section 5; different failure scenarios will be looked into during the course of the
research and appropriate solutions investigated.

4.7.5. Operation in Resource-Poor Conditions

Certain characteristics will be typical of pervasive computing environments and mobile
devices. Most devices, especially mobile ones, are not really resource-rich. For example, it is
obvious that a framework that is meant to run on a heavy-duty web server cannot run on an E-
Watch. Small devices that need to run negotiation middleware, maintain policy databases and use
security mechanisms locally and for connections are typically limited in CPU power (which may
prevent devices from handling heavy cryptography), memory, interfaces and energy (batteries
typically don’t last long with wireless connections). Most networking in the environments of the
future is likely going to be wireless, which is a shared, lossy medium. Therefore, the negotiation
framework must be robust enough and adaptable enough to be usable by devices with low
capability and inadequate interfaces, and work in conditions of intermittent connectivity.
Fortunately there is a large body of research that has been done or is being done in such areas.
Research in transcoding deals with adaptation of applications and content across platforms, taking
into account both the rendering of content on local interfaces, and the system and network load
such devices can practically handle. My research will address how system capabilities and
constraints are specified in policy and incorporated in negotiation heuristics, and how the
above-mentioned mechanisms can be used for dynamic adaptation. Intermittent connectivity is,
of course, a fault tolerance issue, dealt with in Section 4.7.4. The Panoply framework allows us to
use various optimizations such as maintenance of long-term agreements with known domains,
causing negotiation to be relatively lightweight.

 29

4.7.6. Integration with Panoply and Legacy Systems

A framework for managing system policy and performing negotiation will be designed
and built in the context of the Panoply framework, described in more detail in Section 5. Research
will show how a policy-controlled sphere can provide a scalable infrastructure with a rich set of
functions that are necessary for ubicomp.

Since the policy manager is implemented as a Panoply sphere component, any device or
domain that does not run the sphere software could be considered a legacy system. Still, policy
managers provide useful functions that are independent of the spheres concept. Any two devices
that have policy managers deployed can negotiate with each other. Making legacy applications
and other device software work with a policy manager is probably an engineering question. A
possible answer could be a module that intercepts network connections and system calls, and
redirects them to the policy manager; this approach is used by the Conductor [Yarvis1999] and
Panda [Ferreria2002] middlewares. The primary goal is to build a policy manager as part of the
Panoply middleware; legacy issues will be examined and handled as required in the context of
any application we choose for demonstration purposes.

4.7.7. Context Awareness

The policy manager uses context information in conjunction with local policy to make

decisions. It should, therefore, possess a means for tracking context information, which changes
especially quickly in mobile and ubiquitous computing scenarios. Principal contextual parameters
are location, time, and the state of the local environment (entities within, available resources).
Context sensors keep track of each individual piece of context information and can provide
information to, or be queried by, the policy manager. Much work has been done in the past few
years in location tracking – GPS being one example. The local environment should keep track of
state, which in our case, the Panoply infrastructure for each sphere does. Sensor networks could
be used to sense any kind of contextual parameter change and communicate it to subscribers.
Therefore, obtaining and tracking context information can be done by using techniques already
developed or in the process of development, and is not a research issue per se. Use of context
information for decision making is part of the role of the policy language and reasoning engine.

4.8. Beyond Two-Party Negotiation

The negotiation model described in Section 3.1.1 extends by induction to the n-
participant case. Two different scenarios in multiple entity negotiation are 1-n (multi-session) and
n-n (multi-party) cases. A good two-party negotiation solution could be extended to solve the
more general problem, though the latter raises additional issues.

Multi-session negotiations are required in scenarios identical to client-server systems
where a server handles parallel sessions with multiple clients. The server usually handles multiple
clients by creating a separate instance of the protocol state machine for every connection, and in
most cases, communication threads are independent of one another. Multi-session negotiation in
ubicomp will involve a network policy manager dealing simultaneously with multiple prospective
client devices owned by different mobile users. Negotiation with every client is based on the
same shared knowledge base and policy. Therefore, all negotiations are interdependent. Any
change in system state, goal reevaluation, or a different constraint arising as the result of one
session, affects other sessions. Scalability is affected by such interdependence of sessions as well
as load limitations on the device handling multiple negotiations. The goal of maintaining system
integrity under dynamic conditions is identical to the two-party case; indeed, we could leverage
indexing and search space pruning techniques used here to handle session interdependence.

 30

Multi-party negotiation is the most general negotiation scenario in which a set of
entities are negotiating among themselves, each entity aware of one or more of the other n-1
participants. Apart from the issues raised above, this kind of negotiation will have to deal with
additional distributed system problems like synchronization and Byzantine failure.

In summary, the primary research problem is to ensure scalability by identifying the common
elements in multiple negotiation sessions and considering load as an additional heuristic.
Implementation of multi-session negotiation is one of my goals. Multi-party negotiation, on the
other hand, opens up a whole spectrum of research issues, which will, in all likelihood, not be
dealt with in my implementation, though I hope to give some insight to possible solutions in my
dissertation.

4.9. Usability

Designing good user interfaces is not a goal of this research. On the other hand, ensuring
the usability of a ubiquitous computing system and devices that use negotiation middleware
certainly is, though it may be orthogonal to the problem of designing a negotiation protocol, and
may involve AI. Users will be involved in setting policy, making their preferences known to their
computing devices, changing such preferences when they wish and getting suitable feedback, or
choices, from their devices when policy issues cannot be resolved automatically. Such feedback
should be provided by a policy manager to the system user in the case of an irresolvable conflict
or if it is faced with choices that cannot be compared without additional input. The extent to
which user intervention is needed in negotiation depends upon policy settings, and is also a matter
that requires investigation, since we don’t have good answers.

A system will be usable if the middleware ensures that the users can do such tasks easily,
or are given suitable hints by their devices in an understandable manner. For example, a user will
not be concerned or even be aware of what it means for a service running on port XX to be
vulnerable to a buffer overflow attack. He will understand warnings if they are given in more
user-friendly terms and at a higher level, such as a chance of his files being deleted, or the fact
that handing out a piece of private information could potentially allow anyone to access his email.

Identifying the objects and mechanisms that a user would be familiar with, the level of
generality (or lack of specificity) that a typical user would be comfortable with, is an interesting
problem in the context of policy writing and high-level language design. So is the problem of
adapting feedback to the current context rather than displaying a vague general statement that
confuses the user. How such information is rendered, either as text, audio or video, and the
actuators that generate interfaces, is outside the scope of my research.

To summarize, the research issues I intend to work on and make contributions to are as follows:

" Design a negotiation protocol, concentrating on the following aspects:
• Flexibility and extensibility
• Robustness and fault tolerance
• Performance and scalability issues (both two-party and multi-session) associated

with policy management during negotiation
" Develop models for making risk-benefit decisions on the basis of trust and utility
" Develop strategies for negotiation that can be implemented using the protocol

• Make decisions using the trust and utility models applied to local policy and
current context

• Analyze correctness and completeness of strategies associated with those models
" Design a policy language and ubicomp ontology that will be based on logical reasoning

mechanisms and which will support:

 31

• Specification of resource, security and environment constraints
• Users’ ability to write and manipulate high-level policies

Other issues which I have mentioned but which are outside the scope of my research are as
follows (these are orthogonal issues being worked on by other researchers):

Building of discovery of device communities (Kevin Eustice’s research)
Resource management frameworks, interfaces and access mechanisms (for which various

mechanisms exist), gathering of context information (again, mechanisms exist)
Design of user interfaces with information rendered in a suitable manner (my research

will be limited to identifying the suitable information)

5. System Design and Implementation Approach

In this section I outline the way I propose to design and implement a prototype
negotiation framework. The negotiation framework can be logically broken into three parts:

i) negotiation protocol architecture
ii) policy language and reasoning framework
iii) negotiation algorithms and heuristics

These three parts are functionally independent of each other, proving the necessary flexibility; for
example, one could replace the negotiation heuristics and algorithms, keeping the protocol and
the policy language intact. These functions are performed by what we have already referred to as
a policy manager, which is structurally a middleware, residing above the operating system layer
and below the application layer. It provides an interface for interaction with local applications,
and for direct communication with the middleware on an external device. In a Panoply sphere
implementation, the policy manager is a module within a sphere manager that controls all the
activities (internal and external) of the sphere that hosts it (see Figure 1).

The core functions and mechanisms of each identifiable module are part of the initial
prototype, which I describe in this section, so that the system can be evaluated in its entirety.
Appropriate hooks to allow debugging, adding plug-ins and replacing modules in the future will
be put in place. With further progress in research, thought and intermediate performance results,
the framework will be augmented with more powerful mechanisms, more “intelligence,” and
support for a wider variety of applications. Some of the implementation targets have already been
met and the current status is outlined in Section 6.1.

First, I describe in brief the design of a Panoply sphere infrastructure, which will serve to
provide perspective to the design choices I make for a policy manager that facilitates negotiation.

5.1. Panoply and Spheres of Influence

The Panoply architecture facilitates the building of device communities or groups
(spheres in our parlance) which can act as one when interfacing with the outside world; a single
device is a unit sphere. The sphere manager manages all activity and relationships within a
sphere, and as such is the equivalent of an operating system for a sphere. Architecturally, within
every device, the sphere manager lies above the operating system and below the application layer
(see Figure 1). All inter-sphere and intra-sphere communications follow an event model. An
external event interface serves as the security boundary for a sphere and for interactions with
external spheres, while an internal event interface is used to communicate with child spheres and
to interact with applications. The sphere manager contains both a relationship manager and a
policy manager. The latter manages local policy, answers queries and negotiates with external
spheres; it interfaces with other spheres and applications through special policy events. The
functions of the sphere manager, apart from those handled by the policy manager, is research that

 32

is being carried out by Kevin Eustice of the LASR laboratory. Figure 1 describes the overall
Panoply architecture as represented in Kevin’s Ph.D. prospectus. Kevin’s research and
implementation is currently at a stage where it can support the kind of policy management that I
am building; details of the status are given in Section 6.1.

Figure 1: Overall System Architecture

5.2. Negotiation Framework Architecture

The policy manager architecture (Figure 2) consists of three layers (from bottom to top):
i) policy engine, or back end, that maintains the policy database and provides mechanisms

and functions to manipulate and query the database
ii) controller (middle layer) that controls the way the negotiation protocol proceeds by

utilizing the mechanisms provided by the policy engine
iii) front-end responsible for interfacing with applications, operating system libraries and

external devices
The policy language and reasoning framework are almost completely part of the policy engine,
whereas the algorithms and heuristics, as well as the security model are mostly part of the control
layer. There could be some overlap of these logical functions across layers, and the extent of this
will be determined as the research progresses.

PANOPLY

MIDDLEWARE

 SPHERE MANAGER

APPLICATIONS

OPERATING SYSTEM

NETWORK

POLICY

MANAGER

My Research Associated
Research

External
Components

 33

Figure 2: Functional View of the Policy Manager

5.2.1. Negotiation Interface/Front-end

This layer is the outer shell of the policy manager that acts as its interface to other
modules. If the local environment, or any application running on it, wishes to query the policy
manager regarding a system state or policy issue, it interacts with this component. Negotiation
messages are sent to and received from this component, which functions as the interface and
message multiplexer/demultiplexer. It can subscribe to and listen for events, of which context
change events are particularly important.

A negotiation protocol must maintain state information for every negotiation session that
is currently under way. The current design supports every entity running a state machine to
negotiate with exactly one remote entity. The state machine that processes the messages at a high
level runs on this topmost layer. The semantics of handling message content is left to the middle,

Messaging Interface (to other system
components, remote computers)

Policy Database

FRONT END

CONTROLLER

POLICY ENGINE

Knowledge Engineering Mechanisms
(Forward Chaining, Backward Chaining,

Conflict Resolution, etc.)

Heuristics/Metrics Security/Trust Model
Semantic

Interpretation of
Messages

Protocol State
Machine

Message
Multiplexer/Demultiplexer

Event Listener

 34

or control layer. Multiple entities can be negotiated with simultaneously using a multi-threaded
approach; any conflicts or side effects are taken care of in the lower layers, since we have a
shared database. The need for an integrated state machine that can process multiple clients is not
obvious at this stage. If tasks such as maintaining the knowledge base free of policy conflicts and
performance optimizations require an integrated approach, we will investigate it at a later stage.

The negotiation protocol has a few high-level message types:
• requests: contain desire for access rights, permission to do some tasks that involve using

the other entity’s resources, or information owned by the other entity.
• offers: contain replies with reference to any request(s) made by the opposite entity; may

contain prior requested access permissions or data items; our current negotiation strategy
limits offers to things asked for earlier, but the enhanced model will add more flexibility.

• policy: contains policy constraints that prevent opposite entity from getting its request
granted, or must be satisfied by the opposite entity; also includes any obligations that are
part of any request granting policy.

• termination: signals that the entity is going to terminate negotiation.
These messages could contain other supporting information apart from what is indicated

by the type; supporting data, certificates, or any information for interpretation of a request, offer
or policy could be appended. A protocol state machine runs at both ends of the negotiation, with
state transitions being triggered by the arrival of a message and dependent on its type.
Communication is peer-to-peer, and either party can initiate negotiation. The state machine is
blind to the source of the messages coming from a remote entity, and can implicitly handle
multiple clients (though the current implementation uses a multithreaded approach). It is expected
that the nature of this machine will change with further progress in my research. For this reason
and for the sake of brevity, I omit the details of the protocol in this prospectus (the full
specification will be present in my final dissertation).

5.2.2. Policy Engine/Back-End

The bottom layer of the policy manager provides knowledge engineering mechanisms.
Given a database containing facts and rules, the policy engine can provide views and answers in
response to queries issues by a higher layer. The reasoning framework is built into this engine,
which runs algorithms that obey the semantics of the policy language and the underlying logic. It
runs mechanisms that support adding and removing policy rules, or modifying them. It provides
ways of maintaining the consistency of the database, and to detect potential conflicts. Some
examples of such mechanisms are forward and backward chaining. There are other standard AI
techniques that would likely need to be employed, like truth maintenance and reasoning with
default logic.

In order to process queries efficiently, the policy engine must also run efficient indexing
and retrieval algorithms. The infrastructure I am currently using to develop the policy engine and
language is SWI-Prolog, which does support some mechanisms for these, and these will be used
at the beginning of the implementation. Later on, indexing and retrieval techniques may have to
be augmented based on how negotiation heuristics and algorithms need to control them.

5.2.3. Controller/Decision Manager

The middle layer is the bridge between the outer shell and the policy engine. The main
function of this layer is to control the negotiation protocol. Messages sent below to this layer are
interpreted and processed using the mechanisms provided by the policy engine. The algorithms
and heuristics that are necessary to interpret the semantics of the messages and to choose
appropriate knowledge engineering mechanisms are employed at this layer. It will usually be the

 35

case that various disparate knowledge bases will have to be combined and a relevant portion
selected which is then processed by the policy engine. For example, current context information
and relationships with neighboring entities in the local environment must be captured through
other means (in Panoply, this will be done through sphere events). This could then be resolved
with the policy of the local device to get the state information and the behavior rules that are
relevant to the current query being processed.

Examples of ways the controller could invoke policy engine mechanisms are: when a
request is made by a remote negotiating entity, it would require backward chaining through the
policy database to generate an answer or detect a policy conflict; when some information must be
added to the policy database, or something needs to be modified, forward chaining mechanisms
could be employed.

5.3. Policy Language Design and Implementation

A good policy language framework must allow easy addition, removal and modification
of policy statements. Therefore, anyone who writes policy must be able to specify what the
desired behavior and system facts should be and not how the system should interpret the facts or
exhibit such behavior. Declarative programming languages provide exactly this paradigm. Added
to that is the requirement that the policy language semantics must be based on a sound logical
framework. In addition to this, theoretical functionality must be balanced with performance
constraints in a practical system.

First-order logic seems to fit the requirements for expression of policy in ubicomp. Full
first-order logic support requires the use of theorem provers, which are not very efficient. A
balance can be struck by using logic programming languages. Such languages impose certain
restrictions; they handle only horn clauses, the only means of inference is backward chaining,
negation is proved by failure, (i.e., if a query fails, it is considered unsatisfiable or false), and
cyclic policies could generate infinite loops. On the other hand, logic programming languages
offer much better performance than more comprehensive logic engineering tools. They have
standard built-in compilation and indexing techniques that make them fast, with modern
languages processing up to several million LIPS (logical inferences per second) [Roy1990]. And
compared to other programming paradigms like imperative and functional languages, the logical
basis and the declarative style of programming are distinct advantages.

Prolog is the oldest of the logic programming languages, and the one to have undergone
the most serious transformations and improvements to the point where it is practical enough to
use it in current large-scale expert systems. Its use has been demonstrated in many practical
scenarios, including the detection of conflicts in a role-based access control framework
[Schaad01]. SWI-Prolog [SWIProlog] is a comprehensive open-source Prolog framework that not
only allows direct programming in Prolog, but also provides various APIs with other languages,
like C and Java and RDF. There are a number of meta-predicates and constructs that it provides
that enable higher level manipulation of the predicates defined in a Prolog program; incidentally,
these can be used to reason with the knowledge base using techniques other than just backward
chaining. Of course, these won’t be the most efficient ways of doing those, but are satisfactory for
a prototype. A big advantage of using SWI-Prolog is that the code is open source. Therefore, we
can modify the language if further research indicates that Prolog needs to be modified to fit
certain classes of applications or policies, or if we need to make further ontological commitments
for location, time, etc. In the current implementation, the Prolog engine is accessible through a
Java API.

Prolog by itself provides a syntax that is intuitive for writing policies, though it is flexible
enough that one can use it for almost any purpose (we get policy rule parsing and semantics for
free). The ideal realization of a policy language will be a set of high-level predicates and

 36

constants (that are human-understandable), which policy-writers can use. But as long as we can
describe everything of interest in our policy language, presenting a higher level interface may just
require a straightforward syntactic transformation. Ubicomp ontologies like SOUPA [Chen2004]
provide a good ideal launching pad.

5.4. Description of Resources and Properties

The language used to describe resources, properties and contextual information must be
understandable in a wide variety of computing environments and applications. The semantic web
leads the way toward a standard in this respect, being promoted by the W3C and backed by some
of the top researchers in the field. Though a standard is still some distance away, some of the
contributions and recommendations are already followed by a large number of administrative
domains and application designers, such as the RDF model for naming and property structures, as
well as a commonly understood XML (Extensible Markup Language) syntax. In the long term,
this research project will deal with resource description using the RDF and XML frameworks,
and policy descriptions will incorporate RDF standards as far as possible. Negotiation messages
will also, in the long run, be encoded in XML. Therefore, even a proof-of-concept research
project can be used and enhanced directly in other environments instead of requiring heavy
redesign.

5.5. Security Model

The policy manager will be able to support various security, access control and proof of
identity mechanisms that are commonly used and which have proved most effective, such as virus
scanners, certificates and so on. The policy language should be able to support the description of
the constraints associated with these mechanisms, verification of the security properties and
assessment of the risks associated with non-possession of credentials or possible presence of
viruses. These functions will be used as primitives for the policy engine to make runtime
decisions. The mechanisms used in the project will be selected on the basis of the different
applications that are used for demonstration; these will be decided at a later date.

As described earlier, security is the primary constraint on the basis of which devices
negotiate. The security mechanisms help to assess the level of security present and the risks
associated with any action. This must be tied closely to a trust model that allows assignment of
trust levels to entities, which is a measure of risk associated with any permissions or access
granted to it or to expose private information. Negotiation helps to build up such proof so as to
constantly update this trust level. A good place to start with an access control model seems to be
the GRBAC [Covington2000], to specify roles for entities, objects (resources) and environments
(context). Delegation will be supported, as in the DRBAC model [Freudenthal2002] as it assists
in building proofs and assessing risks while building a web of trust. The exact logic for the trust
model, and the rules for trust inference are not clear right now, and this will be a key research
focus in the near future.

5.6. Initial Negotiation Approach

The policy manager is being designed as an independent component of the Panoply
framework. Initially, therefore, the negotiation protocol serves some of the fundamental sphere
functions, such as one sphere joining another, or adding a member relation. This basic version of
negotiation requires the specification of negotiation targets to be decided beforehand; these could
include obtaining permission to access resources, establishment of relationships, queries, and
subscription for events. The policy rules are designated public and private in order to let the

 37

manager make suitable decisions. The messaging consists of requests, counter requests (for
resources in exchange, or proofs of identity, etc.), offers and policy disclosures. Since the basic
version of Panoply does not have resources, policies generally consist of system state descriptions
and access control rules. Initially, the policies are written in Prolog, and many could describe
low-level mechanisms. In the long run, the aim is to create a higher-level view that lets ordinary
users write policy.

The main tasks are currently done in the front- and back-ends. Research in the near future
will concentrate on heuristics that can be built into the control (middle) layer. These include trust
models that can figure out (through some evaluation function) risks of interaction using certain
mechanisms and allowing access to certain entities. I will also look into a resource utility model,
which, combined with the trust model, enables the system to make risk/benefit analyses. This will
allow compromises in terms of offering alternative resources, or different levels of quantitatively
measurable resources. Experimenting with these in different application scenarios will be
enlightening.

5.7. Interfaces

The policy manager will interface with other components of a sphere through event
interfaces that allow clients to register for events, get and post events. Negotiation messages are
encapsulated as events that are currently implemented as Java serializable objects and will, in the
long run, be encoded in XML, which is portable and enjoys wide acceptance. Queries about
sphere state or policy are also made through the event interface.

User interfaces will provide ways for system users and administrators to make changes in
system policy, and to make high-level decisions in situations where it is impossible for the policy
manager to choose from a list of equivalent options.

5.8. System Specifications

The Panoply infrastructure is currently being implemented under Linux, with the
middleware comprised of the sphere and policy managers written mostly in Java (version 1.4),
which is easy to use, portable and provides a good networking API with support for secure
communication protocols like TLS. The policy engine is based on the Prolog logic programming
language, for which we are using SWI-Prolog version 5.4.7, which also provides the Java/Prolog
functional API.

6. Dissertation Plan and Schedule

The design, implementation and evaluation (both for testing functionality through
applications, and performance) of a policy manager will proceed in iterative cycles. At the end of
each cycle, we will obtain clues from the results of the previous cycle and from additional,
complementary research. These clues will indicate the direction that further research should take
and the features that should be added when designing the next version of the policy manager,
which would make its behavior more intelligent and more widely usable. The integration with
Panoply will proceed in parallel, and evaluation will be done in that context. The ultimate target
is a negotiation framework that can be applied to scenarios described in Section 3, especially the
Starbucks example. The result will be two entities that can negotiate on the basis of their policies,
trust and utility models, and can demonstrably reach a working agreement that minimizes risk and

 38

maximizes resource requirements. Such agreements should also demonstrably change with
context; these context changes can be arranged through Panoply applications.

6.1. Implementation of a Basic Infrastructure

A prototype policy manager that supports negotiation based on the architecture described
in Section 5 has already been implemented and integrated with the Panoply infrastructure. It has a
handle to the local sphere manager (see Figure 1) and communicates with applications and
external policy managers (located in other spheres) through events. Currently a number of desired
features are in place in the front-end and the policy engine. The former runs the protocol state
machine, handles multiple negotiations in a multi-threaded manner, and multiplexes and
demultiplexes messages. Various policy engineering mechanisms for inference and resolution are
built into the policy engine, which manages sphere facts and rules in a Prolog database using
predicates and clauses. Prolog queries are made through a Java API provided by the JPL package,
which is part of the SWI-Prolog project. Through this API, the local policy database can be
queried, and various meta-predicates provided by SWI-Prolog enable the control layer to select
policy rules and determine the choices to be made. The control layer does not have a trust model
or a utility model built in, and as such employs a simple, yet cautious, negotiation strategy, using
only the stated policies in the database, through backward chaining mechanisms provided by
Prolog. In response to received requests, it makes decisions about sending offers, or computing
counter requests in case current policy cannot allow an offer. Alternatives are computed and
proposed if certain requests are denied. Requests, offers and policies are formulated as Prolog
queries, though this may change later to an XML/RDF representation. Designated predicates and
clauses are used for standard interpretation both at a higher level (by the controller) and across
domains. Policies can be added, modified and deleted during runtime by the applications. Sphere
state changes can be discerned through sphere events, though many more useful context hooks
need to be added. Remote spheres can also query one another using the negotiation mechanism,
and answers are provided based on access control policies specified at either end.

The main task that the policy manager currently performs is to negotiate with a
prospective member of a sphere and decide whether or not a membership request may be granted.
The policy database contains information about the sphere state and its access control policies.

Let us revisit the Starbucks example. The infrastructure implemented so far can handle
the basic messaging that goes on between Starbucks and Bob; requests for bandwidth, email
addresses and anti-sign credentials can be framed, as well as offers of credentials signed by
Verisign. The current negotiation strategy only supports alternative requests and not alternative
offers, which would limit the Starbucks network to approving or disapproving the original
bandwidth request. Also, though policy statements and obligations can be communicated, they
cannot currently be interpreted in the proper context and used for making decisions. The current
design is also not backed by trust or utility models, and so individual access and release rules
have to be specified explicitly for all the objects that are being negotiated by Bob’s PDA and
Starbucks network. To summarize, Bob’s PDA will gain membership to the Starbucks sphere,
with its original bandwidth request approved or rejected based on Starbucks’ access control rules.

6.2. Evaluation of System Within Panoply

The basic policy manager described above will be evaluated as a part of Panoply. System
behavior will be observed in the context of various applications: a simple scenario when a laptop
enters Boelter 3564 and wishes to become a member of the LASR sphere (wireless network); an
interactive fiction gaming application; a LACMA deployment spheres representing galleries and
individual paintings, where a user carrying a personal device gets customized experience based

 39

on which sphere(s) it is connected to. Simple access control policies governing sphere (or
network) membership based on credentials (pure identity, certificates, delegated credentials or
vouchers) will be written. System performance (i.e., response time or overhead of going through
negotiation before devices can freely interact) will be evaluated, and the results of negotiation
compared against original requests. The above scenarios will show that restricted negotiation
using a limited policy language works, though not in a very flexible way. We can also
demonstrate how spheres can generate requests, counter-requests, offers and alternatives based
purely on specified policies. Other goals that still need to be met are specified below.

6.3. Policy Language and Engine Enhancements

The evaluation in Section 6.2 will also give us an idea as to the adequacy of using basic
Prolog as a policy language. A survey will be done to decide on an ontology and a list of high-
level objects that the policy language needs to support, which can be understood across domains.
Apart from adding language constructs, we will also examine what the currently used Prolog
engine lacks as far as reasoning mechanisms are concerned. Features such as “negation by
failure,” asserting negative facts and rules and lack of a default policy or truth and consistency
maintenance system will be addressed. The result of this phase will be a more complete and
widely applicable policy language and reasoning module.

6.4. Development of Security/Trust Model

The security and trust models will be developed during this phase. This model will
leverage existing research, both theoretical and practical, and be incorporated into the negotiation
framework (specifically the control layer). Logic for dealing with trust will be developed. As
outlined in earlier sections, this trust model will enable an entity to evaluate the trust level of the
negotiator, most likely in relative terms, based on local policy, context and negotiation history. It
will guide the policy manager in the selection of the specific policy to be applied, reevaluation of
goals and strategy. A comprehensive survey of currently used security and access control
mechanisms (like packet and software scanners, certificates, delegations) will be made and will
be mapped to the trust model dynamics.

6.5. Development of a Utility Model

The negotiation framework will be augmented with a resource utility model that provides
a basis, like the trust model, for negotiation of resources in a set of give-and-take operations. The
policy language should be made to allow specification of resource quantities (e.g. x amount of
network bandwidth). Decision making from utility and game theory will be leveraged to develop
strategies for negotiation. Different actions performed by a system will be studied in order to
model risk and benefits of performing such action, and these observations will be leveraged in the
combined trust and utility model. System state, persistent knowledge and user preferences (part of
policy) will be used in the model and employed in risk-benefit computation.

The augmented policy manager will be evaluated on the basis of the security and access

control functions it can perform. We will experiment with scenarios that have critical security
requirements (or spheres with a stringent security policy), and observe whether the security model
protects the local systems from policy violations.

 40

6.6. Generalized Policy Manager

The working environment (spheres) will be augmented with resources. Policies will deal
with the presence and state of various resources owned by a system, or services exported by it.
They will deal with the constraints that are imposed on usage of such resources. The policy
language will be augmented to add support for expression of resource identities and properties in
a universally understandable language –RDF/XML being the most likely. The controller layer of
the policy manager will need to manage multiple separate policy databases describing local
policies, policies for applications running on the system and the contextual information, and grab
a view (or a subset) that can be used to make immediate policy decisions (because the complete
database will be too large). Indexing and retrieval mechanisms used by the SWI-Prolog policy
engine will be reviewed and augmented if necessary. The controller will be augmented with the
trust and utility models so that it can do more flexible negotiation. Currently, spheres possess
ways to sense their locations and map them to regions that have attached semantic meaning. For
example, association with a wireless LAN whose SSID is “CSD” could indicate presence in
Boelter Hall with a high probability. If other contextual parameters need to be discerned, based
on whether or not they create richer application scenarios, suitable support will be added.

6.7. Evaluation of Policy Manager

The generalized policy manager will be analyzed both theoretically and performance-
wise. The theoretical analysis will involve completeness and correctness studies as outlined in
Section 4.6. Strategies will be experimented with and interoperability will be studied. For
practical evaluation, applications will be developed that make use of resources and private pieces
of data, and in which contextual changes are dynamic and prominent. Critical and semi-critical
access control and security policies will be added. Performance measurements will be carried out
in the same way as in Section 6.2, and negotiation results will be evaluated against original goals
in order to measure both the success percentage of the participating entities and the undergone
risk. The exact performance metrics are not clear right now, and will be developed along the way.
Such metrics may also provide general guidelines to other researchers working in this field.

6.8. System Optimizations

Performance results will, of course, guide the way the negotiation framework is designed
and implemented. Even from a theoretical point of view though, a comprehensive inference
procedure is a heavy operation, both in terms of time taken to perform and also in terms of system
load for devices that possess fewer resources. Therefore, this phase will involve engineering a fast
path (based on a design outlined earlier in Section 4) that acts almost like a cache for storing
relevant policies which can be looked up potentially in constant time. This component may be
added even earlier in the schedule depending on intermediate performance results. Performance
comparisons will be made between the middleware with and without this fast path.

6.9. Miscellaneous Issues and Dissertation Writing

There are other research issues that have been mentioned in this document, such as multi-
party negotiation, which I will work on, time permitting. That, and other issues such as
probabilistic reasoning with policies will certainly be a part of an extended work section in my
dissertation that will outline the benefits provided by this research to the field specifically and to
the world at large. The dissertation will also produce a holistic picture of the entire body of work

 41

I have proposed in this document. The related work section will be suitably updated and will be
differentiated from my work.

6.10. Timeline

Milestone Completion Date

Basic Policy Manager July 2005

Evaluation of Basic Policy Manager November 2005

Policy Language Enhancements December 2005

Security, Trust and Utility Models March 2006

Generalized Policy Manager May 2006

Evaluation of Generalized Policy Manager August 2006

Optimizations October 2006

Writing Dissertation March 2007

7. Related and Complementary Research

There is a significant body of research in the design of negotiation protocols, policy
languages and access control frameworks for open systems. Approaches toward providing
solutions to the core interoperation problems of service discovery and dynamic resource
management have also been proposed in various frameworks, especially in the ubicomp smart
spaces projects. In this section, we take a look at the contributions of these projects, how we can
leverage concepts, and how these research efforts fall short in our problem domain.

7.1. Negotiation Protocols

The work that bears the closest resemblance to my research is automated trust
negotiation [Winslett2003], through which web entities (typically client-server, but the model
applies to peer communication as well) can establish trust in an automated fashion, the objective
being access to a guarded resource. The ultimate result is typically a yes/no answer from the
resource owner to the requestor. The negotiation protocol involves request and exposure of
sensitive credentials evaluated using per-credential access control policy rules. The TrustBuilder
project [Winslett2002] implements trust negotiation as an extension of the TLS protocol. Trust
negotiation is a more flexible way of doing access control, where entities can control what private
information is released at fine granularities, though it is only a special case of general resource
negotiation. The policy language is not very expressive, being limited to Boolean expressions of
credentials, which are sufficient only for scenarios that involve access to a particular resource that
a client can identify. Policy engine reasoning simply involves checks for presence of credentials
or determining which credentials need to be requested in order to satisfy the relevant access
control policy. The lack of a semantic and reasoning framework in the policy language, as well as
support for a wider variety of description, prevents it from being used in the wider ubicomp
context. ATN does not solve the more general problem dealing with simultaneous discovery and
negotiation of multiple resources; the goal is always fixed here. Also, in ubicomp, trust is not
restricted to the presence or absence of credentials but can have a much broader definition where

 42

risks can be analyzed using any subjective measure. Overall, adherence to rigid policies and lack
of context-awareness, and from a practical point of view, being closely tied to TLS (which is too
restrictive for the application scenarios we target), are drawbacks that prevent ATN from being
used as a basis for negotiation. On the other hand, TrustBuilder provides valuable clues that I can
use in my research, such as a credential-based trust model, policy language requirements and
policy and negotiation strategies based on policy and trust information.

PeerTrust [Gavriloaie2004][Nejdl2004] advances TrustBuilder concepts and applies a
more powerful model for trust negotiation in the semantic web rather than in the existing Internet.
A distributed logic programming language based on Prolog provides more expressiveness as a
policy language. Rules can be signed (equivalent to certificates) and their evaluation delegated to
another peer, thereby enabling distributed and cooperative security. The use of logic programs for
policy description validates my approach outlined in this prospectus. Apart from this, PeerTrust
suffers from the same drawbacks as TrustBuilder, namely a fixed goal, lack of context-awareness,
rigid policies and trust building restricted to exposure of cryptographic credentials. Both these
systems fail to consider inter-dependence of multiple resource and security constraints, because
they target explicit and addressable connections on the Internet rather than ad hoc ubiquitous
connections. PeerTrust is still the closest working system to our own that we can find, and the
first prototype (iteration) of our policy manager is quite similar to it, though it needs to be
augmented with trust and utility models and lower dependence on trusted authorities.

Negotiation protocols are also used on the grid [GRID] to make use of services hosted on
a remote machine that is not part of the same administrative domain. Grid negotiation typically
involves matching resource owner and consumer preferences. The negotiation steps consist of
proposals and counter-proposals, which are evaluated against resource utility functions (specified
in terms of maximum and minimum values) [Lawley2003]. Agreements are reached when no
higher-utility counter proposal can be generated and basic constraints are met, otherwise the
result is failure. Negotiation strategies could include heuristics such as the number of messaging
rounds and could be guided by game-theoretic algorithms like Faratin’s [Lawley2003], or by the
use of genetic and evolutionary algorithms [Chao2002]. SNAP [Czajkowski2002] is a service-
level agreement protocol for the grid that is similar to a resource allocation protocol, and is
agnostic of the resource or application type. Policies are private, and clients make requests and
counter-requests for level of a service till the server is able to satisfy or reject the request. Grid
protocols offer valuable guides as far as negotiation heuristics and resource utilities are
concerned, but they do not consider security constraints and service discovery. The grid also does
not require expressive policy languages or reasoning mechanisms, since only a single resource is
being transacted. Lastly, these protocols are employed in static situations, and cannot be used in
scenarios that involve mobility and context changes. Modeling of utility and risk is also an
important problem in its own right, and these systems do not provide any clues in this area.

Options to negotiate are incorporated in a large number of automated agent-based
protocols, typically involving client-server transactions, a number of them having been proposed
as RFCs and some standardized. DHCP, block size option negotiation in the TFTP protocol, and
the RSVP protocol for QoS negotiation in IP networks are representative examples. In each of
these, an ideal target is defined and known to both parties, with the final result typically being a
yes/no from server to client. The key decisions are made by servers, and policies are known to
both parties. These frameworks contain a common negotiation protocol shell but do not offer
much in the way of the dynamic, flexible and widely applicable negotiation that we aim to do.

7.2. Policy Languages

The policy language that comes closest to the needs of this research is Rei
[Kagal2003a][Kagal2003b], which is targeted specially toward pervasive computing. The

 43

designers of Rei correctly make the claim that a policy language for ubicomp must have well-
defined logical semantics because the scope of facts and constraints that it must support is huge
and that it needs to be domain-independent. Older languages, unlike Rei, treat rules as
independent policies rather than as part of a system Only with languages like Rei can we be
confident of detecting and resolving system-wide conflicts. Rei is based on what we can discern
as first-order semantics augmented by deontic concepts of obligations, permissions, prohibitions
and dispensations. It supports specification of actions, action classes, speech acts like requests,
offers, delegations and revocations, as well as meta-policies like modality (e.g., rule A overrules
rule B) or priority for conflict resolution. In addition, we can describe common resources, entities
and constraints, as can be done with most other languages. Some features that we would like are
absent however. Inter-resource constraints, support for contextual description which would let us
determine specific policy instances, and support for high- to low-level policy translation is absent.
In its current state however, it is probably the best language for us on which to leverage our
policy negotiation framework.

Ponder [Damianou2001], a declarative policy language for specification of a distributed
system security policy, deserves mention as an early piece of research in ubicomp policy, though
it falls short of Rei in some respects. One can specify delegation policies, entity roles, application
groups, constraints and obligations. It supports conflict resolution using meta-policies and policy
enforcement through the triggering of foreign functions. It suffers from the same drawbacks as
Rei, and in addition is an object-oriented language rather than a semantic language. Datalog also
deserves mention as a logic programming language that has been used to manage database
constraints, though it is more restrictive than Prolog. Keynote [Blaze1999] was one of the earliest
policy languages used for trust management and access control in an open system. The language
allows specification of credential types and instances, associated actions and state constraints,
which could be used by a compliance checker when validating an object access request. It does
not support context-awareness, meta-policies or deontic concepts and actions. It is too closely tied
to entity names and credentials, and has been superseded by languages that are more suitable for
ubicomp, though the concepts proposed in Keynote still remain relevant.

Portfolio and Service Protection Language (PSPL) [Bonatti2000] is a language that was
designed to support trust negotiation (see Section 7.1). Services offered by servers are
distinguished from information possessed by clients, like cryptographic credentials and plain-text
data declarations, collectively called a portfolio. The language offers support for description of
service classes, subset and domination relationships (which can be used to specify high- and low-
level rules and their relation), state information (both persistent and per-negotiation). PSPL also
provides valuable clues for evaluating requests and release criteria for private resources as well as
policy filtering. The syntax, and the evaluation of rules is Prolog-like, and so some constructs that
aren’t directly supported, such as more complex trust relationships, delegated credentials and trust
chains, could be added without significant difficulty. Like other non-semantic languages, rules
are associated with resources and so inter-resource relationships and complex security
relationships cannot be handled. Specification of general policies that can be adjusted with
context, deontic concepts and meta-policies are not supported. Languages for trust negotiation
like PSPL and DTPL [Herzberg2000] are monotonic (do not handle negative rules), which works
fine in that domain but are drawbacks when negotiation needs to consider alternatives and
tradeoffs.

Other policy languages, based on XML, have been designed for access control on the
web, such as IBM’s Trust Policy language [Herzberg2000], X-Sec [Bertino2001] and XACML
[Lorch2003]. The former two support description of credentials and credential types, role types
(in TPL), entities and attributes. Policies are used by servers to infer trust information through a
more complex procedure than Keynote, though support for deontic concepts and different types
of actions are missing. XACML supports more expressiveness in terms of groups of resources,
protocols, actions and authentication mechanisms, and allows specification of conflict resolution

 44

rules, but is not suitable for our aims like the other two languages as it lacks a logical reasoning
back-end.

Most of these languages, apart from Rei, are applicable only in a few select domains,
where specification is closely tied to enforcement. They typically consider policy rules as isolated
statements to be evaluated independently or in specified groups, rather than as part of a
knowledge base. In my research, I take the approach of building bottom-up from a language with
loose semantics and a reasoning mechanism (like Prolog) rather than making syntactic choices
(like XML) and adding new constructs and logical reasoning mechanisms.

Web (or semantic web) ontologies will be leveraged in this research as a way of making
the policy language and negotiation methodology applicable across domains. The semantic web
research effort has produced languages like DAML+OIL (an extension to XML and RDF)
[DAML] as a means of communication among disparate entities. It adds meaning to RDF triples,
which talk about objects and relationships. DAML-Space and DAML-Time are ontologies for
specification of spatial and temporal characteristics, respectively. DAML+OIL, OWL
[OWL2004], FOAF [Dumbill2002] and SOUPA [Chen2004] are all proposed ontologies that are
relevant to ubicomp research. SOUPA was proposed by the designers of Rei, and has support for
certain core features like entities, agents, events, actions, policies (including deontic concepts)
and contextual parameters like space and time. Extensions can be defined in an application or
domain-specific manner. SOUPA is promising research, and will be watched closely and
leveraged in my policy language.

7.3. Ubiquitous Interoperation and Service Discovery

Here we examine how the ubiquitous computing projects targeting smart spaces handle

interoperation in an automated manner, and how these and other open systems handle the core
problems of service discovery, resource management and access control.

The most prominent smart space projects typically look at different components of an
active space (computing entities, resources, physical interfaces) as parts of a whole, rather than
independent entities in their own right. Therefore, each of these projects manages all the entities
within in a centralized manner. Metaglue [Coen1999] is an extension of Java that provides the
computational glue for interoperation of software agents in an Intelligent Room [Adjie-
Winoto1999][Brooks1997], which is a product of MIT’s Oxygen [MIT-Oxygen] project. Gaia
[Román2002] and One.world [Grimm2004a][Grimm2004b] are the equivalent of operating
systems for pervasive computing systems, which manage resources, devices and applications
within a domain. The centralized management works well within a limited domain, but does not
scale. These systems also did not take the security aspect seriously, at least at the beginning, and
do not handle unknown and un-trusted devices very well. What these systems do very well is to
facilitate ad hoc interactions in a seamless manner, manage resource (or agent) discovery and
allocation in a dynamic manner, and adapt to a limited range of context changes. The price that
needs to be paid for such seamless operation is standardization of hardware and software
components and application designs. Interoperation within a room is limited to familiar devices
that know what to expect and have ways of obtaining those resources. They also do not consider
the management of multiple active spaces. One.world, as an example, provides flexibility through
an application-oriented approach that assumes the trustworthiness of devices, in contrast to my
device-centric approach.

Lately, these systems have been augmented with security features. Hyperglue was
designed to enable interactions among multiple active spaces and remove the centralized
management [Kottahachchi2004][Peters2003]. Still, interactions are managed by a DNS-style
lookup with questionable scaling properties. Hyperglue has the nice property of letting domains
manage themselves independently and interacting with others as a single virtual entity. It also

 45

performs access control using an RBAC scheme. Even though permission granting is context-
variant, the assignment of roles is limited to known entities or entities that can prove transitive
relationships. With a limited trust model and the lack of a flexible negotiation scheme, the
interoperation features provided fall short of ubicomp requirements. Cerberus [Al-Muhtadi2003],
a Gaia security extension, uses policies and confidence levels in authentication schemes to
enforce access control in a context-aware and non-intrusive manner. It also suffers from the same
drawback as Hyperglue, as it uses security policies simply to validate access, and not for dynamic
service discovery and negotiation, as I plan to do in my research. Mobile Gaia [Chetan2004]
extends the basic Gaia design to manage ad hoc clusters, like Panoply spheres, but the negotiation
is limited to the production of a familiar public key that can be authenticated by a cluster. Gaia
Super Spaces [Al-Muhtadi2004] handles multiple active domains in a semi-centralized manner,
interoperations occurring through bridges. Super Spaces provides service lookup and access
functions across domains, though without considering the security aspects. Centaurus 2
[Undercoffer2003] and the Aware Home project [Kidd1999] are yet more examples of ubiquitous
active spaces systems, though these place a high priority on security. The results are not very
different from Hyperglue or Cerberus, however. Centaurus 2 enables secure interaction within a
hierarchy of spaces through access capabilities, and an Aware Home uses the powerful GRBAC
model for access control. Still, the security aspect is independent of the service lookup and
management module, and security policies are enforced in a way so that only known entities with
predeployed trust information may obtain access permissions for services.

Jini [Waldo1999], a Java-based technology, enables autonomous service discovery and
resource access over a network connection. Devices can register, discover services and access
them through proxies, lookup tables and leasing mechanisms. Standard interfaces and mobile
code enable spontaneous interoperation, since every device in a Jini-enabled space speaks Java
and can communicate through RMI, which is a fairly ubiquitous property. Jini is easier to use and
maintain than similar frameworks like CORBA or DCOM, where protocol changes must be
synchronized among servers and clients offline. Jini does its primary job of service discovery and
hookup very well, though the concept of open interfaces is completely unacceptable where there
are even minimal security and privacy concerns. The model by itself, even with authentication
and authorization mechanisms, works in a static domain that serves a set of known client devices
and does not adapt to context change. Dynamic policy-guided negotiation expands the scope of
the interoperation problem and solves complementary issues while retaining the useful features of
Jini. Universal Plug and Play [UPnP] is another communication architecture based on well-
known technologies like TCP/IP, HTML and XML that allows seamless, spontaneous networking
among suitably configured devices irrespective of hardware or operating system characteristics.
Devices can advertise their capabilities and learn about other devices’ capabilities through SSDP,
GENA and SOAP protocols. In the context of my research aims, the contributions stop here.
Security is handled by using ACLs and certificates which the users are expected to maintain in a
static manner; this is non-scalable and intrusive, and therefore not suitable enough for ubicomp.

Zhu and others [Zhu2005] outline a service discovery protocol for pervasive computing
in one of the few systems where the security aspects of discovery are considered. In the absence
of a trusted third party, service provider and client expose partial sensitive information in a
progressive approach till both parties reach an agreement about exposure of the nature of the
service and authentication information respectively. Upon a mismatch or an unsatisfied request,
the protocol can be terminated without loss of privacy. The key drawback from my point of view
is that the entities are assumed to share security information, and the protocol is essentially a way
of preventing malicious devices from causing privacy violations. These constraints cannot be
assumed in the more general negotiation problem that I am addressing.

 46

7.4. Models for Trust and Access Control

In this prospectus I have discussed why access control (especially when mixed with trust

issues) merges with service discovery for security and privacy reasons in open systems providing
ubiquitous services. Negotiation, therefore, is a different way of handling access control, though
it uses some of the existing concepts and designs. Here we look at currently used models for
access control and trust building and observe their drawbacks when applied to ubicomp
interoperation. Individual domains will use trust and access control models to frame policies and
negotiation heuristics; from this point of view, we can consider these models to be
complementary research.

ACLs (access control lists) and capabilities are basic mechanisms for enforcing access
control when familiar entities access known objects, and still retain their use in limited domains
where one can set per-entity and per-object policy. Policy expressivity is very limited and rules
are rigidly enforced. These mechanisms suffer from scalability issues when applied directly to
ubicomp scenarios, and also don’t adjust to changing context. They can be used in individual
domains in a ubiquitous computing environment, but each of these domains must have a security
and trust management framework in addition. Frameworks like Kerberos enforce access control
through secure protocols, though they also do not scale beyond a small self-contained domain.

Most open systems, and those that need to handle access control for a large number of
entities, typically use RBAC (role-based access control) [Ferraiolo1995] models or its variations.
Entities are assigned roles, which are associated with sets of access privileges, in the most basic
model. Though it scales better than ACLs, it does not reach the flexibility level desired in
ubicomp. Since roles have to be defined in advance, it is difficult to provide optimal security in
dynamic situations where policies need to be adjusted with context. Generalized RBAC
[Covington2000] enhances RBAC by adding roles for accessible objects and environment states
(context), and has been used in the Aware Home ubiquitous computing project [Kidd1999]. It
increases the expressivity and intuitiveness of policy writing, and as such can be used in
negotiation trust models. Delegation of permissions is an extremely useful concept, and has
impressive scaling properties, though it has trust issues and requires something like our
negotiation model before it gains widespread adoption. The distributed RBAC [Freudenthal2002]
model is another variation of RBAC, which uses delegation and proof building of permission
rights using knowledge of possessed credentials. I will leverage concepts proposed by GRBAC
and DRBAC in my negotiation model.

Drawbacks of pure RBAC when used in open systems have been addressed in other
recent systems. Law governed interaction [Minsky2000] has the view, which we share, that role
semantics should be dictated by context and policy, the latter being independent of particular role
definitions. This helps to rectify drawbacks inherent in RBAC, such as difficulty in specification
of exception conditions, and the potential security holes that could result. The key drawback with
LGI is that it assumes a common law or policy governing all interacting domains, which is
impractical, as I have argued earlier when discussing the need for negotiation. Another access
control model that specifically targets pervasive computing environments
[Hengartner2003][Hengartner2005] uses information relationships and per-domain policy
specifications to ensure that entities release minimum sensitive information. If multiple entities
are involved in the transfer of such information, each entity gets information on a need-to-know
basis. We tackle an orthogonal, though overlapping problem of unfamiliar entities having to
negotiate, not only for access to services, but to discover those services in the first place.

Trust has been studied in recent years, both in the context of theoretical models and for
practical use in open systems. It has always been used in limited ways in computer security, based
either on identity or trusted authorities. It would be fair to say that the research community
generally accepts the notion of trust as a basis for secure interactions in ubicomp [English2002].

 47

PolicyMaker [Blaze1998] and KeyNote [Blaze1999] were seminal trust management
projects where credentials (typically public keys) were tied to the permissions they represented
rather than identity. An access required the production of a key which would be input to a
compliance checker along with a request and a policy, the output being a yes/no answer. It was a
simple and powerful model, but it has been overtaken by more sophisticated schemes that handle
a much wider range of situations than Policy Maker was envisioned for.

The Secure project [English2002][Cahill2003] argues for a dynamic notion of trust, with
a history of past interactions being used as a basis for trust formation, and additional evidence
leading to trust evolution. This trust information is then used for access control decisions using
appropriately framed security policies. Secure also presents formal models that relate trust to
events and results, and trust value changes based on evidence. Trust building through reputation
frameworks, or collection of evidence from known sources, has been well studied [Xiong2004].
Such systems have limited use in practical security, mainly because of the huge number of
variables involved and the possibility of entities lying and colluding [Sen2002]. Formal
reputation-based trust models generally use probabilistic reasoning, and do not clearly specify the
decision-making processes. In this context, models such as a calculus for access control
[Abadi1993] and formal trust dynamics using temporal logic [Marx2001] bear looking into.

7.5. Other Research

The Semantic Web is work in progress toward a common framework that allows data to

be shared and reused across application, enterprise, and community boundaries [SemWeb]. Still,
certain standards have been established, notably the Resource Discovery Format [RDF], which is
the semantic data description model that uses XML syntax and URI naming procedures in order
to allow applications to interoperate. The complete scope of the semantic web is not very clear,
though it certainly includes cross-platform description of data and resources, the prime
achievement of the project thus far. Some researchers also consider the definition of pervasive
computing ontology and security policies to be within its ambit [Kagal2003b], which would place
my research in policy-guided negotiation within its overall scope. Whatever the scope, cross-
platform and cross-application description of data and resources is complementary to the process
of negotiation, as different domains and devices need to understand what they are talking about
before they can negotiate. To sum up, if the semantic web described the language of ubicomp
interoperation, my research describes the mechanics.

P3P (Platform for Privacy Preferences) [P3P] is an intended standard for management of
user privacy on the web. This allows websites to describe their privacy policies in a standardized
format (currently in XML). This information can be used by web clients on user devices, which
have user policies specified (also in XML), to make judgments on whether or not private user
information can be released to the remote sites. Feedback on policy conflicts is given to the user,
who can then make an information release decision. P3P suffers from many limitations, such as
the lack of a model for website trust and verification of policies, and an expressive policy
language, leading to low adoption [Kolari2005][Kagal2003b]. Its use is limited to information
that websites want to obtain, and as such cannot be used for general information privacy, much
less for full-fledged ubicomp interaction. The reasoning framework is limited to simple matching
with no conflict resolution, and web servers have a rigid policy that precludes negotiation. Certain
enhancements have been proposed, such as using the more expressive Rei language, trust
management using reputation frameworks, and allowing users to set per-website and data item
preferences. Still, P3P will leave too much to users and depend on rigid adherence to policies,
requiring significant additional research to make it suitable for ubicomp negotiation.

 48

8. Conclusion

A decentralized negotiation procedure between devices and domains is the best way to

interoperate spontaneously in a ubiquitous computing environment. This research assumes the
presence of basic infrastructure for data communication, and leverages semantic web research for
common application layer understanding of objects and policies. It does not assume the presence
of any kind of established identity relationships or any trust infrastructure. Local policies are
assumed to be private. Negotiation itself is based on trust and utility models, and different entities
will adopt different strategies based on risk-benefit analysis computed using these models, along
with policy and contextual information. Policies will be easy to specify at a high level by ordinary
users and will be interpreted by the negotiation framework based on context. The key
contribution of this research is a much more flexible procedure of interactions between computers
and agents, where an ideal agreement can be reached somewhere in the spectrum between a
completely open system and a system that enforces rigid, invariant policy. It also contributes
toward making computing devices more autonomous and less dependent on user feedback.
Negotiation capability added to spheres of influence makes the Panoply middleware a powerful
model for ubiquitous computing.

References

[Abadi1993] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon D. Plotkin, “A Calculus for
Access Control in Distributed Systems,” ACM Transactions on Programming Languages and Systems,
15(4):706--734, September 1993.
[Adjie-Winoto1999] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan and J. Lilley, “The Design and
Implementation of an Intentional Naming System.” ACM SIGOPS Operating Systems Review, v.33 n.5,
p.186-201, Dec. 1999.
[Al-Muhtadi2003] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M. Mickunas, “Cerberus: A Context-
Aware Security Scheme for Smart Spaces,” First IEEE International Conference on Pervasive Computing
and Communications (PerCom'03), March 23-26, 2003.
[Al-Muhtadi2004] Jalal Al-Muhtadi, Shiva Chetan, Anand Ranganathan and Roy Campbell,
"SuperSpaces: A Middleware for Large-Scale Pervasive Computing Environments", Perware '04: IEEE
International Workshop on Pervasive Computing and Communications, Orlando, Florida, March 2004.
[Anius2003] Diana Anius, “Enhancing Innovation within a Regional Wireless Grid,” International
Conference on Computer, Communication and Control Technologies (CCCT '03), Orlando, Florida, July
31-August 2, 2003.
[Bagrodia2003] R. Bagrodia, S. Bhattacharyya, F. Cheng, S. Gerding, G. Glazer, R. Guy, Z. Ji, J. Lin, T.
Phan, E. Skow, M. Varshney and G. Zorpas, "iMASH: Interactive Mobile Application Session Handoff," In
Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys
'03), May 2003.
[Bertino2001] E. Bertino, S. Castano and E. Ferrari, “On Specifying Security Policies for Web Documents
with an XML-Based Language,” In Proceedings of the Sixth ACM Symposium on Access Control Models
and Technologies, pages 57--65, Chantilly, VA, May 2001. ACM Press.
[Bhagwat1996] P. Bhagwat, C. Perkins and S. Tripathi, “Network Layer Mobility: An Architecture and
Survey,” Personal Communications, IEEE, 3:54--64, June 1996.
[Blaze1998] M. Blaze, J. Feigenbaum and M. Strauss, “Compliance Checking in the PolicyMaker
TrustManagement System,” In Proceedings of the Financial Cryptography Conference, Lecture Notes in
Computer Science, vol. 1465, pages 254--274. Springer, 1998.
[Blaze1999] M. Blaze, J. Feigenbaum, J. Ioannidis and A. D. Keromytis, “The KeyNote Trust Management
System Version 2,” RFC 2704 (September 1999).
[Bonatti2000] P. Bonatti and P. Samarati, “Regulating Service Access and Information Release on the
Web,” In Conference on Computer and Communications Security, Athens, Nov. 2000.

 49

[Brooks1997] R. Brooks, “The Intelligent Room Project,” Proceedings of the 2nd International Cognitive
Technology Conference. 1997. Aizu, Japan.
[Bruneo2003] Dario Bruneo, Marco Scarpa, Angelo Zaia and Antonio Puliafito, "Communication
Paradigms for Mobile Grid Users," 3rd International Symposium on Cluster Computing and the
Grid, 2003, ccgrid, p. 669.
[Burrows1990] M. Burrows, M. Abadi and R. Needham, “A Logic of Authentication,” ACM Trans.
Computer Systems 8(1), 1990, 18-36.
[Cahill2003] Vinny Cahill, Elizabeth Gray, Jean-Marc Seigneur, Christian D. Jensen, Yong Chen, Brian
Shand, Nathan Dimmock, Andy Twigg, Jean Bacon, Colin English, Waleed Wagealla, Sotirios Terzis,
Paddy Nixon, Giovanna di Marzo Serugendo, Ciaran Bryce, Marco Carbone, Karl Krukow and Mogens
Nielsen, "Using Trust for Secure Collaboration in Uncertain Environments," IEEE Pervasive Computing,
vol. 02, no. 3, pp. 52-61, July-September, 2003.
[Chao2002] K-M Chao, R. Anane, J-H. Chen and R. Gatward, "Negotiating Agents in a Market-Oriented
Grid," 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID'02), 2002,
ccgrid, p. 436.
[Chen2004] Harry Chen, Filip Perich, Timothy W. Finin and Anupam Joshi, “SOUPA: Standard Ontology
for Ubiquitous and Pervasive Applications,” MobiQuitous 2004: 258-267.
[Chetan2004] Shiva Chetan, Jalal Al-Muhtadi, Roy Campbell and M.Dennis Mickunas, "A Middleware
for Enabling Personal Ubiquitous Spaces", UbiSys '04: System Support for Ubiquitous Computing
Workshop at Sixth Annual Conference on Ubiquitous Computing (UbiComp 2004), Nottingham, England,
Sept. 2004.
[Coen1999] Michael Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman, Stephen Peters and
Peter Finin, “Meeting the Computational Needs of Intelligent Environments: The Metaglue System,” In 1st
International Workshop on Managing Interactions in Smart Environments (MANSE'99), pp.201--212.
Dublin, Ireland, December 1999.
[Covington2000] Michael J. Covington, Matthew J. Moyer and Mustaque Ahamad, "Generalized Role-
Based Access Control for Securing Future Applications," Technical Report GIT-CC-00-02, Georgia
Institute of Technology, College of Computing, February 1, 2000.
[Czajkowski2002] Karl Czajkowski, Iand Foster, Carl Kesselman, Von Sander and Steven Tuecke,
“SNAP: A Protocol for Negotiating Service Level Agreements and Coordinating Resource Management in
Distributed Systems,” In 8th Workshop on Job Scheduling Strategies for Parallel Processing, July 2002.
[Damianou2001] N. Damianou, N. Dulay, E. Lupu and M. Sloman, “The Ponder Policy Specification
Language,” Policy Workshop 2001, Jan. 2001, Bristol, U.K.
[DAML] “The Darpa Agent Markup Language Homepage,” http://www.daml.org
[Dumbill2002] Ed Dumbill, "XML Watch: Finding friends with XML and RDF," IBM Developer Works,
http://www-106.ibm.com/developerworks/xml/library/x-foaf.html, June 2002.
[English2002] C. English, P. Nixon, S. Terzis, A. McGettrick and H. Lowe, “Dynamic Trust Models for
Ubiquitous Computing Environments,” In Proceedings of Workshop on Security in Ubiquitous Computing,
Ubicomp 2002, 2002.
[Eustice2003a] Kevin Eustice, Leonard Kleinrock, Shane Markstrum, Gerald Popek, V. Ramakrishna and
Peter Reiher, “Enabling Secure Ubiquitous Interactions,” In the proceedings of the 1st International
Workshop on Middleware for Pervasive and Ad-Hoc Computing (in conjunction with Middleware 2003),
17 June 2003 in Rio de Janeiro, Brazil.
[Eustice2003b] K. Eustice, L. Kleinrock, S. Markstrum, G. Popek, V. Ramakrishna and P. Reiher,
"Securing WiFi Nomads: The Case for Quarantine, Examination, and Decontamination," Proceedings of
the New Security Paradigms Workshop (NSPW) 2003.
[Ferraiolo1995] D. Ferraiolo, J. Cugini, and D. R. Kuhn, "Role Based Access Control (RBAC): Features
and Motivations," Proc. 1995 Computer Security Applications Conference, December 1995, p241-248.
[Ferreria2002] Vincent Ferreria, Alexey Rudenko, Kevin Eustice, Richard Guy, V. Ramakrishna and
Peter Reiher, "Panda: Middleware to Provide the Benefits of Active Networks to Legacy Applications,"
DANCE 02, May 2002.
[Fishburn1988] P. C. Fishburn, “Nonlinear Preferences and Utility Theory,” John Hopkins University
Press, Baltimore, 1988.
[Freudenthal2002] E. Freudenthal, T. Pesin, L. Port, E. Keenan and V. Karamcheti, “dRBAC: Distributed
Role-Based Access Control for Dynamic Coalition Environments,” In Proceedings of the 22nd

 50

International Conference on Distributed Computing Systems (ICDCS'02,. IEEE Computer Society, July
2002.
[Gavriloaie2004] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons and M. Winslett, “No Registration
Needed: How to Use Declarative Policies and Negotiation to Access Sensitive Resources on the Semantic
Web,” In Proceedings of the 1st First European Semantic Web Symposium, Heraklion, Greece, May 2004.
[Google2005] “Google proposes free Wi-Fi for San Francisco”,
http://news.yahoo.com/s/nm/20051001/wr_nm/google_wifi_dc.
[GRID] “Grid Computing Info Centre (GRID Infoware),” http://www.gridcomputing.com/.
[Grimm2004a] Robert Grimm, “One.world: Experiences with a Pervasive Computing Architecture”. IEEE
Pervasive Computing, 3(3):22-30, July-September 2004.
[Grimm2004b] Robert Grimm, Janet Davis, Eric Lemar, Adam MacBeth, Steven Swanson, Thomas
Anderson, Brian Bershad, Gaetano Borriello, Steven Gribble and David Wetherall, “System Support for
Pervasive Applications” (PDF, 1,777 KB). ACM Transactions on Computer Systems, 22(4):421-486,
November 2004.
[Guttman2001] Erik Guttman, “Autoconfiguration for IP Networking: Enabling Local Communication,”
IEEE Internet Computing, v.5 n.3, p.81-86, May 2001.
[Hengartner2003] U. Hengartner and P. Steenkiste, “Access Control to Information in Pervasive
Computing Environments,” Proc. of 9th Workshop on Hot Topics in Operating Systems (HotOS IX), Lihue,
HI, May 2003, pp. 157-162.
[Hengartner2005] U. Hengartner and P. Steenkiste, “Exploiting Information Relationships for Access
Control,” Proc. of Third IEEE International Conference on Pervasive Computing and Communications
(PerCom 2005), Kauai Island, HI, March 2005, pp. 269-278.
[Herzberg2000] A. Herzberg, Y. Mass, L. Mihaeli, D. Naor and Y. Ravid, “Access Control Meets Public
Key Infrastructure, Or: Assigning Roles to Strangers,” In Proc. Symposium on Security and Privacy, pages
2--14, 2000.
[IEEE802.16] “IEEE 802.16 Backgrounder”, http://grouper.ieee.org/groups/802/16/pub/backgrounder.html
[Kagal2001a] L. Kagal, V. Korolev, H. Chen, A. Joshi and T. Finin, "Centaurus: A Framework for
Intelligent Services in a Mobile Environment", 21st International Conference on Distributed Computing
Systems Workshops (ICDCSW '01), April 16 - 19, 2001, Mesa, Arizona.
[Kagal2001b] L. Kagal, T. Finin and A. Joshi, "Moving from Security to Distributed Trust in Ubiquitous
Computing Environments", IEEE Computer, December 2001.
[Kagal2003a] L. Kagal, T. Finin and A. Joshi, “A Policy Language for a Pervasive Computing
Environment,” In IEEE 4th International Workshop on Policies for Distributed Systems and Networks,
2003.
[Kagal2003b] Lalana Kagal, Tim Finin and Anupam Joshi, "A Policy Based Approach to Security for the
Semantic Web," InProceedings, 2nd International Semantic Web Conference (ISWC2003), September
2003.
[Kidd1999] C. D. Kidd, R. J. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa, B. MacIntyre, E. Mynatt, T. E.
Starner and W. Newstetter, "The Aware Home: A Living Laboratory for Ubiquitous Computing Research,"
In the Proceedings of the Second International Workshop on Cooperative Buildings - CoBuild'99, October
1999.
[Kindberg2002] T. Kindberg and A. Fox, "System Software for Ubiquitous Computing," IEEE Pervasive
Computing, vol. 1, no. 1, Jan.-Mar. 2002, pp. 70-81.
[Kolari2005] Pranam Kolari, Li Ding, Shashidhara Ganjugunte, Anupam Joshi, Timothy W. Finin and
Lalana Kagal, “Enhancing Web Privacy Protection through Declarative Policies,” POLICY 2005: 57-66.
[Kottahachchi2004] Buddhika Kottahachchi and Robert Laddaga, “Building Access Controls for
Intelligent Environments,” In Proceedings of ISDA '04: 4th Annual International Conference on Intelligent
Systems Design and Applications. Budapest, Hungary, August 2004.
[Lawley2003] Richard Lawley, Keith Decker, Michael Luck, Terry R. Payne and Luc Moreau,
“Automated Negotiation for Grid Notification Services,” Euro-Par 2003, 384-393.
[Lorch2003] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura and Sumit Shah, “First
Experiences Using XACML for Access Control in Distributed Systems,” Proceedings of the 2003 ACM
workshop on XML security, October 31-31, 2003, Fairfax, Virginia.
[Marx2001] M. Marx and J. Treur, “Trust Dynamics Formalised in Temporal Logic,” In: L. Chen, Y.
Zhuo(eds.), Proceedings of the Third International Conference on Cognitive Science, ICCS 2001. USTC
Press, Beijing, pp. 359-363.

 51

[Minsky2000] Naftaly H. Minsky and Victoria Ungureanu, “Law-governed Interaction: A Coordination
and Control Mechanism for Heterogeneous Distributed Systems,” ACM Transactions on Software
Engineering and Methodology (TOSEM), v.9 n.3, p.273-305, July 2000.
[MIT-Oxygen] “MIT Project Oxygen: Overview”, http://www.oxygen.lcs.mit.edu/Overview.html
[Nejdl2004] Wolfgang Nejdl, Daniel Olmedilla and Marianne Winslett, “PeerTrust: Automated Trust
Negotiation for Peers on the Semantic Web,” Secure Data Management 2004, 118-132.
[Owen1995] Guillermo Owen, “Game Theory,” Academic Press, 1995.
[OWL2004] “OWL Web Ontology Language Overview,” http://www.w3.org/TR/owl-features/
[P3P] “P3P Public Overview”: http://www.w3.org/P3P/.
[Peters2003] S. Peters, G. Look, K. Quigley, H. Shrobe and K. Gajos, “Hyperglue: Designing High-Level
Agent Communication for Distributed Applications,” Originally submitted to AAMAS'03.
[RDF] “Resource Description Framework (RDF) / Semantic Web Activity”: http://www.w3.org/RDF/.
[Román2002] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell and K. Nahrstedt, “Gaia: A
Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive Computing, pp. 74-83, Oct-Dec 2002.
[Roy1990] Peter Van Roy, “Can Logic Programming Execute as Fast as Imperative Programming?,” PhD
thesis, University of California at Berkeley, November 1990.
[Schaad01] A. Schaad. "Detecting Conflicts in a Role-Based Delegation Model," Proceedings of the 17th
Annual Computer Security Applications Conference, vol. 00, no. , p. 0117, 17th 2001.
[Seamons2002] K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills and L. Yu,
“Requirements for Policy Languages for Trust Negotiation,” 3rd International Workshop on Policies for
Distributed Systems and Networks (POLICY 2002), Monterey, CA, June 2002.
[SemWeb] “W3C Semantic Web home page”: http://www.w3.org/2001/sw/.
[Sen2002] Sandip Sen and Neelima Sajja, “Robustness of Reputation-Based Ttrust: Boolean Case,”
Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part
1, July 15-19, 2002, Bologna, Italy.
[SWIProlog] “SWI-Prolog’s Home,” http://www.swi-prolog.org
[Undercoffer2003] J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal and A. Joshi, "A Secure Infrastructure
for Service Discovery and Access in Pervasive Computing,” Article, ACM Monet: Special Issue on
Security in Mobile Computing Environments, October 2003.
[UPnP] “UPnP Forum,” http://www.upnp.org
[Waldo1999] J. Waldo, "The Jini Architecture for Network-Centric Computing," Communications of the
ACM, Vol. 42, No. 7, p.76-82, 1999.
[Weiser1991] M. Weiser, “The Computer for the 21st Century,” Scientific American 265(30), pp. 94-104,
1991.
[Winsborough2000] W. H. Winsborough, K. E. Seamons and V. E. Jones, “Automated Trust
Negotiation,” DARPA Information Survivability Conference and Exposition, Hilton Head, SC, January
2000.
[Winslett2002] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith and L. Yu,
"Negotiating Trust on the Web," IEEE Internet Computing, November/December 2002.
[Winslett2003] M. Winslett, “An Introduction to Trust Negotiation,” 1st International Conference on Trust
Management, Crete, Greece, May 2003.
[Xiong2004] L. Xiong and L. Liu, “PeerTrust: Supporting Reputation-Based Trust in Peer-to-Peer
Electronic Communities,” IEEE Transactions on Knowledge and Data Engineering (TKDE), Special Issue
on Peer-to-Peer Based Data Management, 2004.
[Yarvis1999] M. Yarvis, A. A. Wang, A. Rudenko, P. Reiher and G. J. Popek, “Conductor: Distributed
Adaptation for Complex Networks,” Technical Report CSD-TR-990042, University of California, Los
Angeles, Los Angeles, California, August 1999.
[Yu2001] T. Yu, M. Winslett and K. E. Seamons, “Interoperable Strategies in Automated Trust
Negotiation,” 8th ACM Conference on Computer and Communications Security, Philadelphia,
Pennsylvania, November 2001.
[Zhu2005] Feng Zhu, Wei Zhu, Matt W. Mutka and Lionel M. Ni, “Expose or Not? A Progressive
Exposure Approach for Service Discovery in Pervasive Computing Environments,” PerCom 2005: 225-
234.

