
Implementing Security in a Personal Security Device

by

Priyansha Gupta

Implementing Security in a Personal Security Device

Presented to the Faculty of the Graduate School of

The University of California Los Angeles

in Partial Fulfillment

of the Requirements

for the Degree of

Masters of Science in Engineering

The University of California Los Angeles

December, 2013

 Dedication

To my beloved husband Gaurav and to my parents

 iii

Acknowledgements

It has been an enlightening experience to work under the guidance of Professor Peter

Reiher. I sincerely thank him for his keen insight and continuous encouragement

throughout the course of my study.

I would also like to acknowledge my colleague, Jong Hyun Lee, for his support and

encouragement.

 iv

 Table of Contents

INTRODUCTION ..1	

BACKGROUND KNOWLEDGE ...3	

1.	 Microcontroller board: Arduino..3	

2.	 Arduino Mega 2560 ..4	
A.	 Arduino Mega 2560 Specification ...5	
B.	 Power ...5	
C.	 Memory..6	
D.	 Communication..6	
E.	 Programming..7	

3.	 Hardware Architecture..8	
A.	 Bluetooth..8	
B.	 Global Positioning System (GPS)..8	
C.	 Inertial Measurement Unit (IMU)..9	
D.	 Wi-Fi ..9	
E.	 Liquid Crystal Display (LCD) ...10	

4.	 The Advanced Encryption Standard (AES)..11	
A.	 Salient Feature of AES...11	
B.	 Working And Structure of AES...12	

5.	 Types of memory in an Arduino device ...14	
A.	 Flash Memory ..14	
B.	 SRAM ..14	
C.	 EEPROM ...15	

 v

IMPLEMENTATION OF AES IN PSD...16	

1.	 Issues with implementing AES in Arduino ..16	

2.	 Solution of the problems...17	
A.	 Installing AES on Arduino ..17	
B.	 Running codes to check the functionalities of AES Library................17	
C.	 Checking the amount of memory used and remaining24	

3.	 Achievements of the project ...26	

CONCLUSION ...28	

REFERENCES..29	

APPENDIX...30	

 vi

 1

INTRODUCTION

Wireless medical devices provide a multitude of benefits for both patients and physicians.

These benefits include increasing patient mobility without the need to be in a hospital bed

and providing the ability of physicians to remotely access and monitor patient data

regardless of the location of the patient or physician. This technology greatly enhances

patient outcomes by allowing physicians access to real-time data on patients without the

physical restraints of being in the same location [2].

 <Fig1: Conceptual design of PSD>

The internet connected devices increase connectivity and provide greater functionality,

however, they also increase risks of both unintentional and malicious tampering of PHI

over a multitude of wireless signals and data from medical devices. The FDA encourages

wireless encryption to protect against unauthorized wireless access to device data [2].

The idea of implementing secure communication in the medical device itself has been

around but using a separate Personal Security Device (PSD) as an intermediary offers

 2

several advantages [9]. In essence, PSD works by providing an alternate secure

communication path between the medical device and access point (AP), in addition to the

regular communication between them. Some changes are required in the AP to handle

both secured and unsecured communication. The secured communication can serve as an

authentication for the unsecured communication thereby minimizing the risk of security

attacks.

 The PSD concept

• requires no changes to the medical device (hardware and software),

• provides unlimited access in emergency situation by just turning off the PSD,

• reduces the burden on medical device by shifting security responsibility to PSD

The aim of this project is to determine if cryptographic software can be implemented in

commercially available hardware like Arduino that have limited amount of memory.

More specifically, the different amounts of memory (eg Flash, EEPROM, SRAM) used

and remaining need to be determined. For the scope of this project, Advanced Encryption

Standard (AES) was considered for the Arduino Mega 2560 platform.

 Due to this social and technical demand, this project will aim to implement security in a

device that can collect information (from all available and existing medical devices) and

communicate with server. This device aims to attain the security feature in the firmware

of a device with memory constraints.

 3

BACKGROUND KNOWLEDGE

1. Microcontroller board: Arduino

Microprocessor board is a tool for making computers that can sense and control more of

the physical world than the desktop computer [1]. Arduino is an open-source physical

computing platform based on a simple microcontroller board, and an environment for

writing software for the board. This microprocessor board can be used to develop

interactive objects by taking inputs from a variety of switches or sensors and controlling a

variety of lights, motors, and other physical outputs. Arduino projects can be stand-alone

or they can communicate with software running on another computer. The boards can be

assembled by hand or purchased preassembled.

Arduino simplifies the process of working with microcontrollers andit offers some

advantage for teachers, students, and interested amateurs over other systems:

ⅰ) Inexpensive: Arduino boards are relatively inexpensive compared to other

microcontroller platforms.

ⅱ) Cross-platform: The Arduino software runs on Windows, Macintosh OSX, and Linux

operating systems.

ⅲ) Clear programming environment: The Arduino programming environment is easy-to-

use for beginners, yet flexible enough for advanced users to take advantage of as well.

For teachers, it's conveniently based on the Processing programming environment, so

students learning to program in that environment will be familiar with the look and feel

of Arduino

ⅳ) Open source and extensible software: The Arduino software is published as an open

source tool, available for extension by experienced programmers. The language can be

expanded through C++ libraries, and people wanting to understand the technical details

 4

can make the leap from Arduino to the AVR-C programming language on which it's

based.

ⅴ) Open source and extensible hardware: The Arduino is based on Atmel's ATMEGA8

and ATMEGA168 microcontrollers. The plans for the modules are published under a

Creative Commons license, so experienced circuit designers can make their own version

of the module, extending it and improving it. Even relatively inexperienced users can

build the breadboard version of the module in order to understand how it works.

2. Arduino Mega 2560 (The entire section was taken from official Arduino
website: See reference [1])

<Fig2: Arduino Mega 2560 Microcontroller board>

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 . It has 54

digital input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4

UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power

jack, an ICSP header, and a reset button. It contains everything needed to support the

microcontroller; simply connect it to a computer with a USB cable or power it with a AC-

 5

to-DC adapter or battery to get started. The Mega is compatible with most shields

designed for the Arduino Duemilanove or Diecimila [1].

A. ARDUINO MEGA 2560 SPECIFICATION

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

B. POWER

The Arduino Mega can be powered via the USB connection or with an external power

supply. The power source is selected automatically. External (non-USB) power can come

either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by

plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery

can be inserted in the Gnd and Vin pin headers of the POWER connector.

 6

The board can operate on an external supply of 6 to 20 volts. If supplied with less than

7V, however, the 5V pin may supply less than five volts and the board may be unstable.

If using more than 12V, the voltage regulator may overheat and damage the board. The

recommended range is 7 to 12 volts.

C. MEMORY

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used

for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and

written with the EEPROM library).

D. COMMUNICATION

The Arduino Mega2560 has a number of facilities for communicating with a computer,

another Arduino, or other microcontrollers. The ATmega2560 provides four hardware

UARTs for TTL (5V) serial communication. An ATmega16U2 (ATmega 8U2 on the

revision 1 and revision 2 boards) on the board channels one of these over USB and

provides a virtual com port to software on the computer (Windows machines will need a

.inf file, but OSX and Linux machines will recognize the board as a COM port

automatically. The Arduino software includes a serial monitor which allows simple

textual data to be sent to and from the board. The RX and TX LEDs on the board will

flash when data is being transmitted via the ATmega8U2/ATmega16U2 chip and USB

connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Mega2560's

digital pins.The ATmega2560 also supports TWI and SPI communication. The Arduino

 7

software includes a Wire library to simplify use of the TWI bus; see the documentation

for details. For SPI communication, use the SPI library.

E. PROGRAMMING

The Arduino Mega can be programmed with the Arduino software. The ATmega2560 on

the Arduino Mega comes preburned with a boot loader that allows you to upload new

code to it without the use of an external hardware programmer. It communicates using

the original STK500 protocol.

 8

3. Hardware Architecture

Besides Arduino Mega2560 board, our PSD has following modules preinstalled in it:

A. BLUETOOTH

“Bluetooth allows you to easily connect mobile phones, notebook or desktop PCs,

handheld devices, and printers over short distances (30 feet) without using a cable.

Enabled devices send and receive information using radio signals. The technology was

developed by the Bluetooth SIG(Special Interest Group) promoter and member

companies, so mobile products could communicate without wires. Bluetooth capable

products allow you to print images and documents from Laptop, Desktop or handheld

devices, synchronize information

between items and connect to other

Bluetooth devices such as keyboards,

mice, and headsets without cables” [3].

B. GLOBAL POSITIONING SYSTEM (GPS)

“The Global Positioning System (GPS) is a space-based satellite navigation system that

provides location and time information in all weather conditions, anywhere on or near the

Earth where there is an unobstructed line of sight to four or more GPS satellites. GPS

works in any weather conditions, anywhere in the world, 24 hours a day. GPS satellites

circle the earth twice a day in a very precise orbit and transmit signal information to

earth. GPS receivers take this information and use triangulation to calculate the user's

exact location. Essentially, the GPS receiver compares the time a signal was transmitted

by a satellite with the time it was received. The time difference tells the GPS receiver

 9

how far away the satellite is. Now, with distance

measurements from a few more satellites, the receiver can

determine the user's position and display it on the unit's

electronic map. Today's GPS receivers are extremely

accurate[4]”. This position can be tagged with the data from patient’s medical devices

and make it more useful. For example, if the pulse oximeter shows low oxygen levels and

patient is in an elevated location, the physician will likely ask the patient to go to lower

altitude rather than diagnose him anemic.

C. INERTIAL MEASUREMENT UNIT (IMU)

“An inertial measurement unit (IMU) is an electronic device that measures and reports on

a craft's velocity, orientation, and gravitational forces, using a combination of

accelerometers and gyroscopes, sometimes also magnetometers. IMUs are typically used

to maneuver aircraft. Recent developments allow for the production of IMU-enabled GPS

devices. An IMU allows a GPS to work when GPS-signals are unavailable, such as in

tunnels, inside buildings, or when electronic interference is present. A wireless IMU is

known as a WIMU. The data collected from the IMU's sensors allows a computer to track

a craft's position, using a method known as dead reckoning.” [5]

D. WI-FI

“Wi-Fi is a popular technology that allows an electronic device to exchange data or

connect to the internet wirelessly using radio waves. The name is a contraction of

"Wireless Fidelity", and was stated to be a play on the audiophile term Hi-Fi. Many

devices can use Wi-Fi, e.g. personal computers, video-game consoles, smartphones, some

 10

digital cameras, tablet computers and digital audio players.

These can connect to a network resource such as the Internet

via a wireless network access point. Wi-Fi can be less secure

than wired connections (such as Ethernet) because an intruder

does not need a physical connection. Web pages that use SSL are secure but unencrypted

internet access can easily be detected by intruders” [6]

E. LIQUID CRYSTAL DISPLAY (LCD)

“A liquid-crystal display(LCD) is a flat panel display, electronic visual display, or video

display that uses the light modulating properties of liquid crystals. Liquid crystals do not

emit light directly. LCDs are available to display arbitrary images(as in a general-purpose

computer display) or fixed images which can be displayed or hidden, such as preset

words, digits, and 7-segment displays as in a digital clock. They use the same basic

technology, except that arbitrary images are made up of a large number of small pixels,

while other displays have larger elements.

LCDs are used in a wide range of applications including computer monitors, televisions,

instrument panels, aircraft cockpit displays, and signage. They are common in consumer

devices such as video players, gaming devices, clocks, watches, calculators, and

telephones, and have replaced cathode ray tube (CRT) displays in most applications.

They are available in a wider range of screen sizes than CRT and plasma displays, and

since they do not use phosphors, they do not suffer image burn-in. LCDs are, however

susceptible to image persistence.” [7]

 11

4. The Advanced Encryption Standard (AES) (The entire section is a part of
a chapter taught at Purdue. See reference [8])

A. SALIENT FEATURE OF AES

AES is a block cipher with a block length of 128 bits. It allows for three different key

lengths: 128, 192, or 256 bits. AES Encryption consists of 10 rounds of processing for

128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. Except for the

last round in each case, all other rounds are identical. Each round of processing includes

one single-byte based substitution step, a row-wise permutation step, a column-wise

mixing step, and the addition of the round key. The order in which these four steps are

executed is different for encryption and decryption. To appreciate the processing steps

used in a single round, it is best to think of a 128-bit block as consisting of a 4×4 matrix

of bytes, arranged as follows:

byte0 byte4 byte8 byte12

byte1 byte5 byte9 byte13

byte2 byte6 byte10 byte14

byte3 byte7 byte11 byte15

Therefore, the first four bytes of a 128-bit input block occupy the first column in the 4 ×

4 matrix of bytes. The next four bytes occupy the second column, and so on. The 4 × 4

matrix of bytes is referred to as the state array. Each round of processing works on the

input state array and produces an output state array. The output state array produced by

the last round is rearranged into a 128-bit output block. Unlike DES, the decryption

algorithm differs substantially from the encryption algorithm. Although, overall, the same

steps are used in encryption and decryption, the order in which the steps are carried out is

 12

different. Whereas AES requires the block size to be 128 bits, the original Rijndael cipher

works with any block size (and any key size) that is a multiple of 32 as long as it exceeds

128. The state array for the different block sizes still has only four rows in the Rijndael

cipher. However, the number of columns depends on size of the block. For example,

when the block size is 192, the Rijndael cipher requires a state array to consist of 4 rows

and 6 columns.

AES uses a substitution-permutation network in a more general sense. Each round of

processing in AES involves byte-level substitutions followed by word-level permutations.

The nature of substitutions and permutations in AES allows for a fast software

implementation of the algorithm.

B. WORKING AND STRUCTURE OF AES

<Fig3: Encryption and Decryption Process>

 13

Before any round-based processing for encryption can begin, the input state array is

XORed with the first four words of the key schedule. The same thing happens during

decryption — except that now we XOR the ciphertext state array with the last four words

of the key schedule. For encryption, each round consists of the following four steps:

I. Substitute bytes

II. Shift rows

III. Mix columns

IV. Add round key.

The last step consists of XORing the output of the previous three steps with four words

from the key schedule. For decryption, each round consists of the following four steps:

I. Inverse shift rows

II. Inverse substitute bytes

III. Add round key

IV. Inverse mix columns.

The third step consists of XORing the output of the previous two steps with four words

from the key schedule. Note the differences between the order in which substitution and

shifting operations are carried out in a decryption round vis-a-vis the order in which

similar operations are carried out in an encryption round. The last round for encryption

does not involve the “Mix columns” step. The last round for decryption does not involve

the “Inverse mix columns” step [8].

 14

5. Types of memory in an Arduino device

There are three types of memory in an Arduino:

A. FLASH MEMORY

Flash memory is used to store program image and any initialized data. The flash is

usually used to hold the executables (and perhaps other static data) for the device. It is

possible to execute program code from flash, but one can't modify data in flash memory

from your executing code. To modify the data, it must first be copied into SRAM. Flash

memory has a finite lifetime of about 100,000 write cycles. So if 10 programs are

uploaded 10 a day, every day for the next 27 years, one might wear it out.

B. SRAM

SRAM or Static Random Access Memory, can be read and written from executing

program. This is where temporary variables are stored. SRAM memory is used for

several purposes by a running program:

• Static Data - This is a block of reserved space in

SRAM for all the global and static variables from

program. For variables with initial values, the runtime

system copies the initial value from Flash when the

program starts.

• Heap - The heap is for dynamically allocated data

items. The heap grows from the top of the static data

area up as data items are allocated.

 15

• Stack - The stack is for local variables and for maintaining a record of interrupts

and function calls. The stack grows from the top of memory down towards the

heap. Every interrupt, function call and/or local variable allocation causes the

stack to grow. Returning from an interrupt or function call will reclaim all stack

space used by that interrupt or function.

Most memory problems occur when the stack and the heap collide. When this happens,

one or both of these memory areas will be corrupted with unpredictable results. In some

cases it will cause an immediate crash. In others, the effects of the corruption may not be

noticed until much later.

C. EEPROM

EEPROM is another form of non-volatile memory that can be read or written from

executing program. It can only be read byte-by-byte, so it can be a little awkward to use.

The EEPROM is used to store long-term information developed during the device's use.

It is also slower than SRAM and has a finite lifetime of about 100,000 write cycles (you

can read it as many times as you want). While it can't take the place of precious SRAM,

there are times when it can be very useful!

 16

IMPLEMENTATION OF AES IN PSD

1. Issues with implementing AES in Arduino

A major concern using Arduino as a PSD is the limited memory available. The difference

between the Arduino microcontrollers and a general purpose computer is the sheer

amount of memory available. The Arduino we are using has only 256K bytes of Flash

memory, 8K bytes of SRAM and 4K bytes of EEPROM. That is 100,000 times LESS

physical memory than a low-end PC! And that's not even counting the disk drive!

As described above, AES encryption requires 10 rounds of processing for 128-bit keys,

12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. Each round of processing

includes one single-byte based substitution step, a row-wise permutation step, a column-

wise mixing step, and the addition of the round key. The process of encryption will

require some memory space to store temporary results and the final encrypted results

which go in flash. Key will be in the EEPROM. The data to be encrypted, any

intermediate temporary results, and the encrypted block would probably go in SRAM

We need to determine if we can fit reasonable cryptographic software (probably AES) on

this device, while still leaving room for other functionality. Alternatively, if we use AES

crypto, how much of our space will be available for other operations.

 17

2. Solution of the problems

Working in this minimalist environment, resources should be used wisely.

A. INSTALLING AES ON ARDUINO

First step towards solving the problem was to download the latest Arduino integrated

development environment (IDE) software which is an open source and is available on

Arduino’s official website. Arduino IDE 1.0.5 is downloaded for this project. The next

step was to install AES on Arduino. With some research, I was able to find an AES

library that supports 128, 192 and 256 bit key sizes. This library can be found here:

http://utter.chaos.org.uk:/~markt/AES-library.zip

This library was downloaded under Arduino ->library folder and imported to the Arduino

IDE using sketch -> import library tabs.

B. RUNNING CODES TO CHECK THE FUNCTIONALITIES OF AES LIBRARY

Code for Encryption and Decryption: We ran the code to produce the following

output:

I. Plain text

II. Encrypted text (with varying block size)

III. Decrypted text (with varying block size)

IV. Encryption and decryption using 128, 192 and 256 bit key size

V. Time taken by each and every encryption and decryption process

The code for encryption and decryption is as follows:

 18

 19

<Fig3: Program for encrypting and decrypting data>

 20

The following output was obtained from the code in Fig3 :

<Fig4: Output showing encryption and decryption process and amount of time it took>

 21

Checking test vectors: The output for code is showing the following scenarios:

I. Varying size key (128, 192 and 256)

II. Varying plain text and its cipher text

III. Monte Carlo

<Fig5: Test Vector Code Part-1> <Fig6: Test Vector Code Part-2>

 22

<Fig7: Test Vector Code Part-3> <Fig8: Test Vector Code Part-4>

<Fig9: Test Vector Code Part-5>

 23

Part of output of the test vectors looks this this:

<Fig10: Test Vector code output>

 24

C. CHECKING THE AMOUNT OF MEMORY USED AND REMAINING

I. Flash

The amount of flash memory used can be found out at the bottom part of the sketch. One

can see the amount of bytes being used after uploading the program. Both encryption &

decryption and test vector code was taking approximately 8000 bytes out of total 258,048

bytes in Arduino.

<Fig11:Flash memory used by encryption> <Fig12: Flash memory used by Test Vector>

II. EEPROM

EEPROM usage is in fully controlled by user, i.e. we have to read and write each byte to

a specific address. So if we want to save 128 bit key in the EEPROM, it will take only 16

bytes in EEPROM. Similarly, a 192 and 256 key will take 24 and 32 bytes respectively.

III. SRAM

SRAM usage is more dynamic and therefore more difficult to measure. The free_ram()

function below is one way to do this. You can add this function definition to your code,

then call it from various places in your code to report the amount of free SRAM.

 25

<Fig13:Calling free_ram() function in encryption/decryption code>

<Fig14: free_ram() function in encryption/decryption code>

The function free_ram() actually reports the space between the heap and the stack but it

does not report any de-allocated memory that is buried in the heap. Buried heap space is

not usable by the stack, and may be fragmented enough that it is not usable for many

heap allocations either. The space between the heap and the stack is what we really need

to monitor if we are trying to avoid stack crashes.

<Fig15:Output showing free SRAM memory>

Summary of space available and space used:

 26

Type of Memories Total space

available

Space used Space Remaining

Flash 256 KB 8.79 KB 247.2 KB

EEPROM 4 KB 0.015 KB 3.98 KB

SRAM 8 KB 1.4 KB 6.8 KB

<Table1:Amount of flash, EEPROM and SRAM available/used/remaining>

3. Achievements of the project

AES was successfully installed in Arduino and was tested against many of the test-

vectors (key varying, plaintext varying, Monte Carlo). It was able to perform encryption

and decryption with varying key sizes!

This project was successful in attaining main goal i.e. to determine

• whether AES can be installed in the Arduino platform: A simple AES encryption

decryption process was installed.

• the amount of memory available for other device functionalities: Using separate

techniques for observing the amount of memory used, we were able to find out

the exact amount of memory that will be used/saved.

In addition to performing encryption and decryption, this project made sure that the time

taken for the encryption/decryption is considerably low!! Time that encryption took was

calculated at each and every step to make sure that we don’t face timing issues in future!!

Some speed/timing information is:

128 bit, key setup 0.37ms

128 bit, ECB, encryption 0.58ms / block (27.5kB/s)

 27

128 bit, ECB, decryption 0.77ms / block (20.5kB/s)

192 bit, key setup 0.41ms

192 bit, ECB, encryption 0.71ms / block (22.5kB/s)

192 bit, ECB, decryption 0.92ms / block (17.5kB/s)

256 bit, key setup 0.52ms

256 bit, ECB, encryption 0.82ms / block (19.5kB/s)

256 bit, ECB, decryption 1.09ms / block (14.5kB/s)

 28

CONCLUSION

This project determined that AES can be implemented in Arduino and there will be

sufficient space for other functionalities too. A quick observation of the table above

shows that AES implementation took very less space and most of the space available in

Arduino is unused and can be used for other functionalities.

While dealing with time issues was not a part of this project, this project made sure that

the time is kept in close watch. It was observed that the amount of time taken by

encryption/decryption process is less and so ensures that implementing security wouldn’t

affect the efficiency of the device time wise.

 29

REFERENCES

1. Arduino Official Website, http://arduino.cc/

2. Symantec Official Blog, http://www.symantec.com/connect/blogs/webinar-

anatomy-breach-medical-devices-under-cyber-attack

3. http://h10025.www1.hp.com/ewfrf/wc/bluetoothDocument?lc=en&dlc=en&cc=us

&docname=c00222918&printable=yes&encodeUrl=true&

4. http://en.wikipedia.org/wiki/Global_Positioning_System

5. http://en.wikipedia.org/wiki/Inertial_measurement_unit

6. http://en.wikipedia.org/wiki/Wi-Fi

7. http://en.wikipedia.org/wiki/Liquid-crystal_display

8. https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture8.pdf

9. Vahab Pournaghshband, Majid Sarrafzadeh, Peter Reiher, “Securing Legacy

Mobile Medical Devices”, Wireless Mobile Communication and Healthcare,

Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, volume 61, pp 163-172, 2013.

 30

APPENDIX

Pictures of Arduino with all modules:

 31

