

A Detailed Breakdown of
the Personal Security Device

CS199 Final Report

Karen Truong
UID: 304019042

March 2014

Introduction

 My research project this quarter was a portable, personal security device (PSD) for the

Laboratory for Advanced Systems Research. The personal security device was physically

assembled by Dr. Sarrafzadeh’s Embedded Systems Lab. It consists of an Arduino Mega 2560

with 16 analog input pins, 54 digital I/O pins, and a USB connection to power and upload

sketches [1]. In regards to memory, this Arduino has 256KB flash memory, 8KB SRAM, and

4KB EEPROM, which is an important design limitation we will consider as we develop the

device. A shield is attached on top of the microcontroller to add space for other modules that

were soldered on, including Bluetooth, GPS, Wi-Fi, and an inertial measurement unit (IMU).

Lastly, an LCD keypad shield is attached atop the first shield for use as a display later on.

In order to support all the additional modules mounted on the Arduino shield, several

new libraries had to be added. All of the supplemental libraries were found online on open-

source sites and then imported into the Arduino IDE 1.0.5, an open-source application which

compiles and uploads sketches to Arduino platforms. I will discuss the procedure, issues, and

results I obtained when testing each module of the personal security device.

Bluetooth

The PSD includes a JY-MCU Bluetooth serial port module onto the shield to add wireless

capability via serial port communication. This component of the PSD was arguably the most

important functionality to verify first, as the medical devices will be communicating to the PSD

and home station over Bluetooth.

I first tested command mode of the device to verify that I could change the settings on the

Bluetooth module (e.g. name, baud rate, etc.). These commands are described in detail in the

Advanced User Manual from Roving Networks [7]. Keeping the device in its default slave

operation state and switching it back to data mode, I used a Bluetooth dongle attached to my

laptop to discover the device and establish a Bluetooth connection, which is confirmed by a solid

red LED on the device. I experimented with the Bluetooth communication by using the serial

monitor to transmit data to the laptop and a terminal emulation application such as PuTTY and

HyperTerminal to secure a connection over the COM port corresponding to the outgoing channel

of the pairing, which provides the laptop a means of sending data to the Arduino. Simple print

statements on both ends verified that the data was reaching each end host correctly.	
 	

I ran into some problems with the transmissions to the Bluetooth module, particularly

because its RXD and TXD pins were connected to Serial1. Data sent from my terminal to the

shield was not processed correctly at Serial1, so I decided to wire the transmission and receive

pins of the Bluetooth board to digital pins 10 and 11, respectively. Digital pins can be used to

simulate serial ports using the SoftwareSerial library provided by the IDE. I made this decision

based on previous examples found in tutorials online and the support for a BluetoothSerial class

in the SoftwareSerial library. I also consulted the graduate student who put together the PSD to

confirm that the Bluetooth communication from laptop to Arduino was producing garbled data

over the Serial1 pins.

Wi-Fi

 A Roving Networks RN-XV W-Fi module provides additional wireless support. This

particular version “incorporates 802.11 b/g radio, 32 bit SPARC processor, TCP/TP stack, real-

time clock, crypto accelerator, power management unit and analog sensor interface” [8]. The

module has two modes: ad-hoc/command and data mode. Under ad-hoc mode, a user can use

SET commands to change WLAN, IP, and hardware settings. Similar GET and status

commands exist to access metadata about the module. Functionally, there are also commands

like ping and close to take action at the TCP and ICMP level, as well as file I/O interface.

Lastly, there are three LEDs: a red and green light to represent TCP and IP interface, and a

yellow one to indicate RX/TX data transfers.

Initially, when powered, both the red and green LEDs on the RN-XV 171 will blink

quickly. Once I entered command mode and set the SSID to a valid name, I saved the settings

and rebooted the device which outputted information regarding MAC, IP, and gateway addresses

of the network if it successfully connected. The red light disappeared while the green LED

flashed less frequently. I imported the WiFlyHQ Library which abstracts some of the ad hoc

commands I had manually done for the connection setup into a function. The library also

provides sample programs to test TCP connectivity, as well as code to set the microcontroller up

as a HTTP client or server. The figure below is the output of executing one of those example

programs as a server.

Global Positioning System (GPS)

 The GPS functionality is supported by an Adafruit Ultimate GPS Breakout – Version 3.

The module has an internal patch antenna as well as a connector for an external active antenna,

though we just use the former for this device. There exists an ENABLE pin on the module that,

when pulled to ground, can turn off the module, as well as a red LED and pulse-per-second

(PPS) output FIX that indicate if the GPS has made a fix on its location. When the module is

still searching for satellites, the LED blinks at roughly 1Hz. Once it has established a fix, the

LED blinks once every 15 seconds to conserver power [4].

Many of the SET commands one can use with this GPS module is encapsulated in

functions provided by the Adafruit GPS library. The library also provides a parsing method to

extract data, including the satellites used to find the fix on our location and the coordinates of

that location. The figure below is a screenshot of some of that metadata formatted in a table for

better comprehension.

One issue with this module was that the GPS that is currently mounted on the shield is

not responding to the power supply and hence does not turn on. I worked with Dr. Sarrafzadeh’s

lab to detach the module, but as of now, unsoldering the GPS module may damage the shield.

Consequently, a GPS module of the same model and manufacturer sits on a breadboard right

now and is wired externally into the Serial3 pins on the Arduino.

Liquid Crystal Display (LCD) shield

The topmost shield of the PSD is a LCD screen with a keypad. This module has a blue

backlight LCD displaying white characters. It consists of 6 keys – select, reset, up, right, down,

and left – which are all connected to analog input pin A0. The pins on the upper edge of the

shield include: a register select (RS) pin that controls where in the LCD’s memory you write data

to; a read/write pin (RW); an enable pin (E); display contrast pin (Vo); and eight data (D0-D7)

pins that will be the bits written to the register. Additionally, there is a potentiometer that had to

be adjusted with a screw driver to increase the contrast enough to display the segments on the

screen clearly.

The Arduino IDE already comes preloaded with the LiquidCrystal library that supports

the LCD keypad shield once the interface pins are assigned [5]. Using a digital multimeter, I

identified which pins on the module corresponded to the parameters in the LiquidCrystal class

constructor. Different shields have a different ordering of the pins, but for future reference, the

configuration of our shield is to use LiquidCrystal lcd(8,9,4,5,6,7).

Memory Measurement

One of the main objectives of this quarter of the project was to be able to measure the

available memory that would remain after loading all the necessary programs that support the

modules analyzed in the previous sections. It is critical to know how much space is left on the

device as it will help decide what needs modifying on the existing defense mechanism before it

can be loaded onto the microcontroller [6]. The amount of flash memory used is easy to

determine, as the IDE outputs that information when you compile a sketch. Meanwhile,

EEPROM usage is based on the user’s code, so it remains the same throughout the execution of

the sketch.

There are more complex measurements made dynamically when analyzing SRAM usage.

Consequently, I imported the MemoryFree library found in the Arduino Playground that had

several methods of determining the amount of available SRAM [2]. The simplest version of the

function is shown below.

int freeRam () {
 extern int __heap_start, *__brkval;
 int v;
 return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
}

Encryption Software

In order to do an initial test of a security feature on the Arduino, I imported the Advanced

Encryption Standard (AES) library, a block cipher where the block size is 128 bits and key

lengths of 128, 196, and 256 are used for several rounds of processing and encryption that

include permutations, substitutions, and additions, among other operations. The experiments run

were mostly meant to verify the results found in the work of a previous graduate student who ran

similar memory metrics on AES and worked on the encryption side of the PSD [3]. The success

of those tests indicates that it will be reasonable to load cryptographic software on this device

and still have room to fit the other functionalities.

Future Work

As the project progresses, there are small modifications that will be made to some of the

components I analyzed this quarter. For instance, we may want to change the Bluetooth pairing

code from its default value. Eventually, it will also be necessary to replace the broken GPS

module for this PSD to be complete and compact. With the addition of this GPS Breakout onto

the Arduino, a potential addition to the security mechanism may take into consideration the

location of the patient when their medical device receives commands. If we can obtain a fix on

the location of the PSD and know the location of the home station, which is assumed to be

stationary, GPS would be another means of detecting whether the medical device is receiving

data from an authorized source, since it should only get such data when it is near the base station.

The GPS breakout also can log data for up to 16 hours, which may prove useful for a tracking

feature later on.

However, the largest changes in the project will most likely be in the code of the defense

mechanism. Currently the code developed by Pournaghshband is on a full-fledged Linux

machine with substantially more memory than an Arduino microcontroller, even if we were to

mount a shield with additional RAM or use the storage on some of the modules attached to the

shield. Next quarter, my plan is to go through the code, fully understand the algorithm, and see

which areas can be optimized or substituted with more memory-conservative methods, so that

the Arduino can accommodate both the defense mechanism and the existing modules on the

PSD, moving us closer to the end goal of a fully functioning, portable PSD prototype.

References

1. “Arduino Mega 2560.” Arduino – ArduinoBoardMega2560. 2014.

<http://arduino.cc/en/Main/arduinoBoardMega2560#.UyNCiPldV8E>.

2. “Available Memory.” Arduino Playground – AvailableMemory. 2014.

<http://playground.arduino.cc/Code/AvailableMemory>.

3. Gupta, Priyansha. “Implementing Security in a Personal Security Device.” 2013.

4. Ladyada. “Adafruit Ultimate GPS.” 2013. <http://learn.adafruit.com/downloads/pdf/adafruit-

ultimate-gps.pdf>.

5. “Liquid Crystal – ‘Hello World!’.” Arduino – LiquidCrystal. 2014.

<http://arduino.cc/en/Tutorial/LiquidCrystal>.

6. Pournaghshband, Vahab, Majid Sarrafzadeh, and Peter Reiher. “Securing Legacy Mobile

Medical Devices.” Wireless Mobile Communication and Healthcare, Lecture Notes of the

Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, 61:163-172. 2013.

7. “Roving Networks BluetoothTM Product User Manual.” 21 Nov 2011.

<http://ww1.microchip.com/downloads/en/DeviceDoc/Bluetooth-RN-UM.pdf>.

8. “Roving Networks RN-171-XV 802.11 b/g Wireless LAN Module.” 29 Oct 2012.

<http://ww1.microchip.com/downloads/en/DeviceDoc/rn-171-xv-ds-v1.04r.pdf>.

