
1

Accurately Measuring Denial of Service in
Simulation and Testbed Experiments

Jelena Mirkovic Member, IEEE, Alefiya Hussain, Sonia Fahmy Senior Member, IEEE,
Peter Reiher Member, IEEE, Roshan K. Thomas

Abstract—Researchers in the denial of service (DoS) field
lack accurate, quantitative and versatile metrics to measure
service denial in simulation and testbed experiments. Without
such metrics, it is impossible to measure severity of various
attacks, quantify success of proposed defenses and compare their
performance. Existing DoS metrics equate service denial with
slow communication, low throughput, high resource utilization
and high loss rate. These metrics are not versatile because
they fail to monitor all traffic parameters that signal service
degradation. They are not quantitative because they fail to specify
exact ranges of parameter values that correspond to good or poor
service quality. Finally, they are not accurate since they were not
proven to correspond to human perception of service denial.

We propose several DoS impact metrics that measure the
quality of service (QoS) experienced by end users during an
attack. Our metrics are quantitative: they map QoS requirements
for several applications into measurable traffic parameters with
acceptable, scientifically-determined thresholds. They are versa-
tile: they apply to a wide range of attack scenarios, which we
demonstrate via testbed experiments and simulations. We also
prove metrics’ accuracy through testing with human users.

I. INTRODUCTION

Denial of service (DoS) is a major threat. DoS severely
disrupts legitimate communication by exhausting some critical
limited resource via packet floods or by sending malformed
packets that cause network elements to crash. The large
number of devices, applications and resources involved in
communication offer a wide variety of mechanisms to deny
service. Effects of DoS attacks are experienced by end users
as a severe slowdown, service quality degradation or service
disruption.

DoS attacks have been studied through network simulation
or testbed experiments. Accurately measuring the impairment
of service quality perceived by human clients during an
attack is essential for evaluation and comparison of potential
DoS defenses, and for study of novel attacks. Researchers
and developers need accurate, quantitative and versatile DoS
impact metrics whose use does not require significant changes
in current simulators and experimental tools. Accurate metrics
produce measures of service denial that closely agree with
a human’s perception of service impairment in a similar
scenario. Quantitative metrics define ranges of parameter
values that signify service denial, using scientific guidelines.
Versatile metrics apply to many DoS scenarios regardless of
the underlying mechanism for service denial, attack dynamics,
legitimate traffic mix or network topology.

This material is based on research sponsored by the Department of
Homeland Security under agreement number FA8750-05-2-0197. The views
and conclusions contained herein are those of the authors only.

Existing approaches to DoS impact measurement fall short
of these goals. They collect one or several traffic measurements
and compare their first order statistics (e.g., mean, standard
deviation, minimum or maximum) or their distributions in the
baseline and the attack case. Frequently used traffic measure-
ments include the legitimate traffic’s request/response delay,
legitimate transactions’ durations, legitimate traffic’s goodput,
throughput or loss, and division of a critical resource between
the legitimate and the attack traffic. If a defense is being
evaluated, these metrics are also used for its collateral damage.

Lack of consensus on which measurements best reflect the
DoS impact cause researchers to choose ones they feel are
the most relevant. Such metrics are not versatile, since each
independent traffic measurement captures only one aspect of
service denial. For example, a prolonged request/response time
will properly signal denial of service for two-way applications,
such as Web, FTP and DNS, but not for media traffic that
is sensitive to one-way delay, packet loss and jitter. The
lack of common DoS impact metrics prevents comparison
among published work. We further argue that the current
measurement approaches are neither quantitative nor accurate.
Ad-hoc comparisons of measurement statistics or distributions
only show how network traffic behaves differently under attack,
but do not quantify which services have been denied and how
severely. To our knowledge, no studies show that existing
metrics agree with human perception of service denial. We
survey existing DoS impact metrics in Section II.

We propose a novel, user-centric approach to DoS impact
measurement. Our key insight is that DoS always causes
degradation of service quality, and a metric that holistically
captures a human user’s QoS perception will be applica-
ble to all test scenarios. For each popular application, we
specify its QoS requirements, consisting of relevant traffic
measurements and corresponding thresholds that define good
service ranges. We observe traffic as a collection of high-
level tasks, called “transactions” (defined in Section III). Each
legitimate transaction is evaluated against its application’s QoS
requirements; transactions that do not meet all the require-
ments are considered “failed.” We aggregate information about
transaction failure into several intuitive qualitative and quan-
titative composite metrics to expose the precise interaction
of the DoS attack with the legitimate traffic. We describe
our proposed metrics in Section III. We demonstrate that
our metrics meet the goals of being accurate, quantitative
and versatile (1) through testbed experiments with multiple
DoS scenarios and rich legitimate traffic mixes (Section IV),
(2) through NS-2 simulations (Section V) and (3) through



2

experiments involving human users (Section VI). We survey
related work in Section VII and conclude in Section VIII.

This paper’s contributions are three-fold: (1) We propose
a novel approach to DoS impact measurement relying on
application-specific QoS requirements. Although our proposed
metrics combine several existing approaches, their novelty lies
in (i) the careful specification of traffic measurements that
reflect service denial for the most popular applications, and
(ii) the definition of QoS thresholds for each measurement
and each application class, based on extensive study of the
QoS literature. (2) We aggregate multiple measurements into
intuitive and informative DoS metrics that can be directly
applied to existing testbed experiments and simulations, and
to a variety of DoS scenarios. (3) We demonstrate that our
metrics accurately capture human perception of service denial
by conducting experiments with human users.

Admittedly, calculating our metrics is more
complex than legacy ones. To ease this process,
we have made the program used for DoS metrics
calculation from network traces freely available at
http://www.isi.edu/∼mirkovic/dosmetric.

II. EXISTING METRICS

Prior DoS research has focused on measuring denial of ser-
vice through selected legitimate traffic parameters: (a) packet
loss, (b) traffic throughput or goodput, (c) request/response
delay, (d) transaction duration, and (e) allocation of resources.
Researchers have used both simple metrics (single traffic
parameter) and combinations of them to report the impact of
an attack on the network.

All existing metrics are not quantitative because they do not
specify ranges of loss, throughput, delay, duration or resource
shares that correspond to service denial. Indeed, such values
cannot be specified in general because they highly depend on
the type of application whose traffic co-exists with the attack:
10% loss of VoIP traffic is devastating, while 10% loss of DNS
traffic is merely a glitch. All existing metrics are further not
versatile and we point out below the cases where they fail to
measure service denial. They are inaccurate since they have
not been proven to correspond to a human user’s perception
of service denial.

Loss is defined as the number of packets or bytes lost due
to the interaction of the legitimate traffic with the attack [1]
or due to collateral damage from a defense’s operation. The
loss metric primarily measures the presence and extent of
congestion in the network due to flooding attacks. It cannot be
used for attacks that do not continually create congestion, or do
not congest network resources at all. Examples of such attacks
are pulsing attacks [2], [3], TCP SYN floods [4], attacks that
target application resources and vulnerability attacks that crash
applications and hosts. Further, the loss metric typically does
not distinguish between the types of packets lost, while some
packet losses have a more profound impact than others (for
example, a lost SYN vs data packet) on service quality.

Throughput is defined as the number of bytes transferred
per unit time from the source to the destination. Goodput
is similar, but does not count retransmitted bytes [2], [5].

Both are meaningful for TCP-based traffic, which responds
to congestion by lowering its sending rate. Indirectly, these
metrics capture the presence and extent of congestion in the
network and the prolonged duration of legitimate transactions
due to congestion. They cannot be applied to applications
that are sensitive to jitter or to loss of specific (e.g., control)
packets, because a high throughput level may still not satisfy
the quality of service required by the user. Further, these
metrics do not effectively capture DoS impact on traffic mixes
consisting of short connections, with a few packets to be sent
to the server. Such connections already have a low throughput
so service denial may be masked.

Request/response delay is defined as the interval between
when a request is issued and when a complete response is
received from the destination [6]. It measures service denial of
interactive applications (e.g,, telnet) well, but fails to measure
it for non-interactive applications (e.g., email) which have
much larger thresholds for acceptable request/response delay.
This metric is also inapplicable to one-way traffic (e.g., media
traffic) which does not generate responses but is sensitive to
one-way delay, loss and jitter.

Transaction duration is the time needed for an exchange
of a meaningful set of messages between a source and a
destination [7], [8], [9]. This metric depends heavily on the
volume of data being transferred and whether the application
is interactive and congestion-sensitive. It accurately measures
service denial for interactive applications, such as Web brows-
ing. For one-way traffic, such as media streaming that may
not respond to congestion and runs over UDP, transaction
duration will not be affected by the attack. Duration of many
non-interactive transactions can be extended without causing
service denial because humans expect that such transactions
may occur with some delay.

Allocation of resources is the fraction of a critical resource
(usually bandwidth) allocated to legitimate traffic vs. attack
traffic [8], [10]. This metric does not provide any insight into
the user-perceived service quality. It assumes the service is
denied due to lack of resources, and applies only to flooding
attacks. Further, it cannot capture collateral damage of a given
defense. For example, a defense that drops 90% of legitimate
and 100% of attack traffic, would appear perfect, since it
allocates all remaining resources to legitimate traffic.

We acknowledge that the existing metrics convey some
notion of denied service, especially when the denial is severe.
They, however, suffer from two major drawbacks: (1) They
measure a single traffic parameter assuming that its degra-
dation always corresponds to service denial, whereas traffic
parameters that signal service denial are actually application-
specific and some attacks can deny service without affecting
the monitored parameter. (2) They fail to define the param-
eter range required for acceptable service quality, which is
application- and task-specific. Finally, the existing metrics
predominantly capture the service denial at the network layer,
en route to the victim server. While many attacks target this
route, some affect the server host or the application directly, or
target supporting network services (such as DNS), or the route
from the server to legitimate users. Network-based metrics fail
to correctly capture the impact of these attacks.



3

III. PROPOSED DOS IMPACT METRICS

We now introduce several definitions needed for our DoS
impact metrics. The client is the host that initiates communi-
cation with another party, which we call the server.

Definition 1: A conversation between a client and a server
is the set of all packets exchanged between these two hosts
to provide a specific service to the client, at a given time.
A conversation is explicitly initiated by a client application
(e.g., by opening a TCP connection or sending a UDP packet
to a well-known service) and ends either explicitly (a TCP
connection is closed, UDP service is rendered to the client) or
after a long period of inactivity. If several channels are needed
to render service to a client, such as FTP control and data
channels, all related channels are part of a single conversation.

Definition 2: A transaction is the part of a conversation that
represents a higher-level task whose completion is perceptible
and meaningful to a user. A transaction usually involves a
single request-reply exchange between a client and a server,
or several such exchanges that occur close in time. A conver-
sation may contain one or several transactions.

Definition 3: A transaction is successful if it meets all
the QoS requirements of its corresponding application. If at
least one QoS requirement is not met, a transaction has failed.
Transaction success/failure is the core of our proposed metrics.

A. Application-Specific QoS Requirements

Our first step was to identify traffic measurements that are
important for service quality for the most popular applications
today. Several organizations that collect and publish traffic
traces [11], [12] analyze Internet applications and the ratio
of the packets and bytes that they contribute to these traces.
We surveyed their findings to assemble a list of popular
applications. Further, we leverage the findings of the 3GPP
consortium on defining application QoS requirements [13],
complemented with findings from contemporary QoS re-
search [14], [15], [16], [17].

Table I summarizes the application categories we propose,
and their corresponding QoS requirements. Should novel ap-
plications become popular in the future, the proposed applica-
tion categories will need to be extended, but our DoS impact
metrics will be immediately applicable to new applications.

Interactive applications such as Web, file transfer, telnet,
email (between a user and a server), DNS and ping involve
a human user requesting a service from a remote server,
and waiting for a response. Their primary QoS requirement
is that a response is served within a user-acceptable delay.
Research on human perception of Web traffic delay shows that
people can tolerate higher latencies for entire task completion
if some data is served incrementally [14]. We specify two
types of delay requirements for email, Web, telnet and file
transfer transactions where a user can utilize a partial response:
(a) partial delay measured between receipt of any two data
packets from the server. For the first data packet, partial delay
is measured from the end of a user request, and (b) whole
delay measured from the end of a user request until the entire
response has been received. Additionally, a telnet application
serves two types of responses to a user: it echoes characters

that a user types, and then generates a response to the user
request. The echo generation must be faster than the rest of
the response, so we define the echo delay requirement for
telnet transactions. We identify the echo delay as the delay
between a user’s request and the first response packet.

We use 250 ms as the telnet echo delay requirement [13].
We use 4 s as the partial-delay threshold for Web, telnet
and email applications [13], and 10 s for file transfer ap-
plications [13]. We use 60 s as the whole-delay requirement
for Web [14], and require that the delay for email and file
transfer not exceed three times the expected delay [18], given
the amount of data being transferred. The expected delay is
defined as the delay experienced by the same transaction in
the absence of an attack. For DNS and ping services, we adopt
a 4 s whole-delay requirement. This is the maximum human-
acceptable delay for interactive tasks [13]. We consider peer-
to-peer applications to be file transfers.

Media applications such as conversational and streaming
audio and video have strict requirements for low loss, low jitter
and low one-way delay. These applications further involve a
media channel (where the audio and video traffic are sent,
usually via UDP) and a control channel (for media control).
Both of these channels must provide satisfactory service to
the user. We adopt the one-way delay and loss requirements
for media traffic from [13]. Because many media applications
can sustain higher jitter than 1 ms [13] using variable-size
buffers, we adopt the jitter threshold value of 50 ms [19]. We
treat control traffic as interactive traffic requiring a 4 s partial-
delay.

Online games have strict requirements for low one-way
delay and loss [13]. We differentiate between first-person
shooter (FPS) and real time strategy (RTS) games, because
research has shown that their QoS requirements differ. We
use [16] (FPS) and [17] (RTS) as sources for specifying delay
and loss bounds (see Table I for specific values).

Chat applications can be used for text and media transfer
between two human users. While the request/response delays
depend on human conversation dynamics, the receipt of user
messages by the server must be acknowledged within a certain
time. We express this delay requirement as a 4 s threshold on
the round-trip time between the client and the server. Addition-
ally, we apply the QoS requirements for media applications to
the media channel of the chat application.

Non-interactive services such as email transfer between
servers and Usenet do not have a strict delay requirement.
Users will accept long delays as long as the transactions
complete within a given interval. 3GPP [13] specifies the
transaction duration threshold as several hours for email and
Usenet. We quantify this as 4 hours, since this value is
commonly used by mail servers to notify a user about a failure
to deliver mail to the destination server.

We impose an additional requirement on services that run
over TCP, which was not included in our previous work [20].
We require that data must be exchanged between the client and
the server during a transaction. This is important to detect fail-
ures where an application aborts its TCP connection without
transmitting any data due to adverse network conditions.



4

Category One-way delay Req/rep delay Loss Duration Jitter
email (srv/srv) whole, RTT <4 h

Usenet whole, RTT <4 h
chat, typing RTT <4 s
chat, typing some data must be sent to server
chat, audio <150 ms whole, RTT <4 s <3% <50 ms
chat, video <150 ms whole, RTT <4 s <3%

Web part, RTT <4 s <60 s
Web some data must be received from server

FTP Data part, RTT <10 s <300%
FTP Control part, RTT <4 s

FTP some data must be exchanged on data channel
FPS games <150 ms <3%
RTS games <500 ms

telnet part, RTT <250 ms
telnet some data must be received from server

email (usr/srv) part, RTT <4 s <300%
DNS whole <4 s
ping whole <4 s

media control media media
audio, conv. <150 ms whole, RTT <4 s <3% <50 ms

audio, messg. <2 s whole, RTT <4 s <3% <50 ms
audio, stream <10 s whole, RTT <4 s <1% <50 ms
videophone <150 ms whole, RTT <4 s <3%

video, stream <10 s whole, RTT <4 s <1%

TABLE I
APPLICATION CATEGORIES AND THEIR QOS REQUIREMENTS.

B. Measurement Approach

During simulation, collection of necessary traffic measure-
ments usually implies slight simulator modification. Such
collection is a challenge in testbed experimentation, and we
explored two possible approaches: (i) Instrumented-clients:
instrumenting each client application to compute required
measurements, or (ii) Trace-based: using real, uninstrumented
applications and traffic generators, identifying transactions in
collected packet traces and computing traffic measurements.
The instrumented client approach can precisely identify trans-
actions, but it limits the metrics’ usability to open-source
clients. We thus decided to use the trace-based approach,
since it is easily applicable to most test scenarios and im-
mediately usable by other researchers. In implementing trace-
based QoS evaluation, we encountered several challenges in
transaction and request/response identification. We summarize
our handling of these challenges here; more details are in [20].
Table II shows how we identify transactions in the trace data.
For interactive applications, an inactive time (user think time)
followed by a new user’s request denotes a new transaction.
A transaction is either a partial or entire flow, where flow
is defined as all traffic exchanged between two IP addresses
and port numbers. For traffic requiring multiple flows, such as
media or FTP traffic, a transaction spans both flows.

We identify requests and responses using the data exchange
between senders and receivers. Let A be a client that initiates
some conversation with server B. A request is defined as all
data packets sent from A to B, before any data packet is
received from B. A reply is defined as all data packets sent
from B to A, before any new request from A. Fig. 1 illustrates
request and reply identification, and measurement of partial
delay, echo delay and whole delay.

Application Transaction
email (srv/srv), Usenet TCP flow

chat, Web, telnet, email (usr/srv) TCP flow and inactive > 4 s
FTP TCP flow and inactive > 4 s

on both control and data channel
games UDP flow and inactive > 4 s

DNS, ping One request/response exchange
with unique request ID

audio and video TCP flow (control channel) and
matching UDP flow (media traffic)

TABLE II
TRANSACTION IDENTIFICATION.

10 ms

20 ms
40 ms

55 ms
70 ms

client

part=20 ms
part=15 ms whole=50 ms

100 ms

part=15 ms

re
qu

es
t

re
sp

on
se

server

echo=20 ms

Fig. 1. Illustration of request/response identification.

C. DoS Metrics

We aggregate the transaction success/failure measures into
several intuitive composite metrics.

Percentage of failed transactions (pft) per application type.
This metric directly captures the impact of a DoS attack on
network services by quantifying the QoS experienced by end
users. For each transaction that overlaps with the attack, we
evaluate transaction success or failure applying definition 3. A
straightforward approach to the pft calculation is dividing the
number of failed transactions by the number of all transactions
during the attack. This produces biased results for clients that
generate transactions serially. If a client does not generate each
request in a dedicated thread, timing of subsequent requests
depends on the completion of previous requests. In this case,
transaction density during an attack will be lower than without
an attack, since transactions overlapping the attack will last
longer. This skews the pft calculation because each success or
failure has a higher influence on the pft value during an attack
than in its absence. In our experiments, IRC and telnet clients
suffered from this deficiency. To remedy this problem, we
calculate the pft value as the difference between 1 (100%) and
the ratio of the number of successful transactions divided by
the number of all transactions that would have been initiated
by a given application during the same time if the attack were
not present.

The DoS-hist metric shows the histogram of pft measures
across applications, and is helpful to understand each applica-
tion’s resilience to the attack.

The DoS-level metric is the weighted average of pft mea-
sures for all applications of interest: DoS-level =

∑
k pft(k) ·

wk, where k spans all application categories, and wk is
a weight associated with a category k. We introduced this
metrics because in some experiments it may be useful to
produce a single number that describes the DoS impact. But



5

we caution that DoS-level is highly dependent on the chosen
application weights and thus can be biased.

QoS-ratio is the ratio of the difference between a trans-
action’s traffic measurement and its corresponding threshold,
divided by this threshold. The QoS metric for each successful
transaction shows the user-perceived service quality, in the
range (0, 1], where higher numbers indicate better quality. It
is useful to evaluate service quality degradation during attacks.
We compute it by averaging QoS-ratios for all traffic measure-
ments of a given transaction that have defined thresholds.

For failed transactions, we compute the related QoS-
degrade metric, to quantify severity of service denial. QoS-
degrade is the absolute value of QoS-ratio of that transaction’s
measurement that exceeded its QoS threshold by the largest
margin. This metric is in the range [0, +∞). Intuitively, a value
N of QoS-degrade means that the service of failed transactions
was N times worse than a user could tolerate. While arguably
any denial is significant and there is no need to quantify its
severity, perception of DoS is highly subjective. Low values
of QoS-degrade (e.g., < 1) may signify service quality that is
acceptable to some users.

The life diagram shows the birth and death of each trans-
action in the experiment with horizontal bars. The x-axis is
time and the bar position shows a transaction’s birth (start of
the bar) and death (its end). We show failed and successful
transactions on separate diagrams, for clarity. This metric
can help quickly show which transactions failed and indicate
clusters that may point to a common cause.

The failure ratio shows the percentage of live transactions
in the current (1-second) interval that will fail in the future.
The failure ratio is useful for evaluation of DoS defenses,
to capture the speed of a defense’s response, and for time-
varying attacks [2]. Transactions that are born during the attack
are considered live until they complete successfully or fail.
Transactions that are born before the attack are considered
live after the attack starts. A failed transaction contributes to
the failed transaction count in all intervals where it was live.

IV. EVALUATION IN TESTBED EXPERIMENTS

We first evaluate our metrics in experiments on the DETER
testbed [21]. The testbed is located at the USC Information
Sciences Institute and UC Berkeley, and allows security re-
searchers to evaluate attacks and defenses in a controlled
environment.

A. Topology

Fig. 2 shows our experimental topology. Four legitimate
networks and two attack networks are connected via four core
routers. Each legitimate network has four server nodes and two
client nodes, and is connected to the core via an access router.
Links between the access router and the core have 100 Mbps
bandwidth and 10–40 ms delay, while other links have 1 Gbps
bandwidth and no added delay. The location of bottlenecks is
chosen to mimic high-bandwidth local networks that connect
over a limited access link to an over-provisioned core. Attack
networks host two attackers each, and connect directly to core
routers.

Attack

A

B

G

F

Web
DNS FTP Telnet

C

Core

1

Attack

E

Web
DNS FTP Telnet

D H Web/DNS

Telnet/FTP

4 3

2

VoIPIRC

Web/DNS

Telnet/FTP VoIP IRC

Web, FTP, Telnet, DNS traffic 
IRC traffic
VoIP traffic
Attack traffic

Client
Server
Attacker

Router

Bottleneck link

Fig. 2. Experimental topology.

B. Background Traffic

Each client generates a mixture of Web, DNS, FTP, IRC,
VoIP, ping and telnet traffic. We used open-source servers
and clients when possible to generate realistic traffic at the
application, transport and network level. For example, we used
an Apache server and wget client for Web traffic, bind
server and dig client for DNS traffic, etc. Telnet, IRC and
VoIP clients and the VoIP server were custom-built in Perl.

Clients talk with servers in their own and adjacent networks.
Fig. 2 shows the traffic patterns. Traffic patterns for IRC and
VoIP differ because those application clients could not support
multiple simultaneous connections. All attacks target the Web
server in network 4 and cross its bottleneck link, so only this
network’s traffic should be impacted by the attacks.

Our previous work [20] used a similar experimental setup to
illustrate our metrics in realistic traffic scenarios for various
attacks. Here, we show a different set of experiments with
one novel attack scenario (Section IV-D). We modified the
topology from [20] to ensure that bottlenecks occur only
before the attack target, to create more realistic attack con-
ditions. We used a more artificial traffic mix than in [20],
with regular service request arrivals and identical file sizes for
each application, to clearly isolate and illustrate features of our
metrics. Traffic parameters are chosen to produce the same
transaction density in each application category (Table III):
roughly 100 transactions for each application during 1,300
seconds, which is the attack duration. All transactions succeed
in the absence of the attack.

C. UDP Bandwidth Flood

Our first experiment is a UDP flood attack, frequently used
in the literature and frequently observed in the Internet. This
attack can deny service in two ways: (1) by generating a large
traffic volume that exhausts bandwidth on bottleneck links
(more frequent variant), (2) by generating a high packet rate
that exhausts the CPU at a router leading to the target. We
generate the first attack type: a UDP bandwidth flood. Packet



6

Type Parameter (unit) Distribution

telnet

Request interarrival time 10 s
Response size 4 KB

Session duration 60 s
Time between sessions (s) 15 s

FTP Request interarrival time 13 s
File size 10 KB

Web Request interarrival time 13 s
File size 1 KB

DNS Request interarrival time 13 s
ping Request interarrival time 13 s

IRC Request interarrival time 5 s
Message size 10 KB

VoIP
Packet interarrival time 0.03 s

Talk time 8 s
Think time 5 s

TABLE III
LEGITIMATE TRAFFIC PARAMETERS AND THEIR VALUES.

Fig. 3. UDP bandwidth flood: DoS-hist and DoS-level measures.

sizes had range [750 B, 1.25 KB] and total packet rate was
200 Kpps. This generates a volume that is roughly 16 times
the bottleneck bandwidth. The expected effect is that access
link of network 4 will become congested and traffic between
networks 1 and 4, and networks 3 and 4 will be denied service.

Fig. 3 shows the DoS-hist measures for all source and
destination networks, and the DoS-level measure assuming

Fig. 4. UDP bandwidth flood: QoS measures for successful transactions.

Fig. 5. UDP bandwidth flood: QoS-degrade measures for failed transactions.

Fig. 6. UDP bandwidth flood: Failure ratio for transactions from network
4 to network 1.

equal application weights. Labels at the top of the graph show
measures that belong to the same source network, x-axis labels
denote the destination network, and the y-axis shows the pft
per application. As expected, only traffic to and from network
4 is affected. Transactions between networks 1 and 4 have
somewhat higher pft than transactions between networks 3 and
4. A similar trend is also noticeable in other experiments, and
occurs because traffic between networks 1 and 4 shares one
more router with the attack (router B) than does traffic between
3 and 4 (crosses C and D but not B). DoS-level is around 98%
for traffic between 1 and 4, and around 91% for traffic between
3 and 4.

Fig. 4 shows the QoS measure, averaged over successful
transactions. Service quality degrades among transactions in-
volving servers or clients in network 4. Other transactions have
consistently high service quality. The QoS-degrade measure
is shown in Fig. 5, averaged over failed transactions. While
a single large value could bias this metric, values in our
experiments were fairly balanced over failed transactions in
the same application category. Transactions with network 4
experience large service denial, receiving a service with 10-
300 times worse quality than expected.

Fig. 6 shows the failure ratio for transactions originating



7

Fig. 7. UDP bandwidth flood: Life diagram of successful transactions from
network 4 to network 1.

Fig. 8. UDP bandwidth flood: Life diagram of failed transactions from
network 4 to network 1.

from network 4 to network 1. Throughout the attack, the
failure ratio value stays close to 1, illustrating that nearly all
service between these two networks is denied.

Fig. 7 and 8 show the life diagrams of successful and failed
transactions. The x-axis shows the start and end time of a
transaction, the bar length represents transaction duration, and
the y-axis shows the transaction ID. We assign consecutive IDs
to transactions of the same type. All failures occur during the
attack, and all transactions fail regardless of their application
type. One Web transaction succeeds during the attack because
it obtains enough bandwidth by chance in competition with
the attack. Note the difference in transaction density during
the attack between telnet and other applications (Fig. 8).
Telnet and IRC clients in our experiments generate transactions
serially and thus their transaction density reduces when an
attack prolongs transactions.

We now contrast our metrics with the legacy metrics:
transaction duration, request/response delay, throughput, loss
and resource allocation. Since the UDP bandwidth flood is
the simplest form of DoS attack that denies service through
excessive congestion, we expect that many existing metrics
will do well in predicting transaction failure. An effective
metric would have a clear separation of values for successful

Fig. 9. UDP bandwidth flood: Transaction cdf with respect to loss;
transactions originated by network 4 with network 1.

Fig. 10. UDP bandwidth flood: Transaction cdf with respect to average data
throughput; transactions originated by network 4 with network 1.

and for failed transactions.
The cumulative distribution function (cdf) of maximum

loss within a 5-sec interval for all transactions originated by
network 4 with network 1 is shown in Fig. 9. We also show
the cdf in the baseline case. Baseline transactions all have zero
loss, and are clustered at the origin on the graph. Successful
transactions also all have zero loss, and quite a few failed
transactions have high loss (between 0.5 and 1). However,
many failed transactions have zero loss, as shown in area A
in the figure, and fail because their other QoS requirements
are not met. This overlap between values for successful and
failed transactions makes the loss metric insufficient for DoS
measurement.

Fig. 10 shows the cdf of average data throughput (control
packets are not counted) for all transactions during the attack
and for the baseline case. The attack clearly lowers the trans-
action throughput — many failed transactions have throughput
close to zero (and zero, not shown on the log-scale graph) and
all successful transactions have a higher throughput. However,
there is one transaction that failed despite high throughput,
shown in the area B in the figure. This was a Web transaction
that managed to quickly deliver a request to the server;
the request was acknowledged but the data reply was lost.



8

Fig. 11. UDP bandwidth flood: Transaction cdf with respect to request/reply
delay; transactions originated by network 4 with network 1.

Fig. 12. UDP bandwidth flood: Transaction cdf with respect to duration;
transactions originated by network 4 with network 1.

Because transactions can fail and still have high throughput,
the throughput metric by itself cannot accurately measure DoS.

The cdf of request/reply delay for all transactions is shown
in Fig. 11, during the attack and for the baseline case. Many
failed transactions have high delay but there is a signifi-
cant overlap in delay values between failed and successful
transactions, in the area C in the figure. This overlap makes
request/reply delay insufficient for DoS measurement.

Fig. 12 shows the cdf of transaction duration for all trans-
actions during the attack, and for the baseline. The attack
prolongs durations, and successful transactions finish sooner
than failed ones. There is a narrow but clear separation of
values, in the area D in the figure. Thus the duration metric
could predict DoS in this particular experiment but we will
show it fails in experiments with other attack types.

Considering resource allocation, around 97% of bandwidth
on network 4’s access link was consumed by the attack. This is
close to some DoS-hist and DoS-level values for transactions
between networks 1 and 4, in Fig. 3, but higher than the
DoS impact on transactions between networks 3 and 4. Hence,
resource allocation metric indicates DoS impact in this case,
but is not completely accurate in predicting its severity.

The remaining experiments discuss a subset of the metrics.

Fig. 13. UDP bandwidth flood — low-rate: DoS-hist and DoS-level measures.

Fig. 14. UDP bandwidth flood — low-rate: Transaction cdf with respect to
average throughput; transactions originated by network 3 with network 4.

D. UDP Bandwidth Flood — Low Rate

We now illustrate the inadequacy of metrics that were
adequate for high-rate UDP bandwidth floods — duration,
resource allocation, and throughput (if we ignore the one failed
transaction with high throughput). We reduce the rate of the
UDP flood attack to 80% of the bottleneck link bandwidth.

Fig. 13 shows the DoS-hist and DoS-level measures. Traf-
fic to and from network 4 suffers service denial, but the
percentage of impaired traffic varies greatly depending on
application. Web transactions suffer the least service denial (8-
20%), followed by telnet, DNS and ping. FTP is less impacted
when the server is in network 4 than when the clients are there,
because our FTP transactions are downloads, so most data
flows from server to client. This is also why FTP suffers more
than Web, telnet, DNS and ping when network 4 is the source
network. About 50% of IRC transactions fail and 100% of
VoIP transactions fail. For the QoS-degrade metric (not shown
in graph due to space), telnet, DNS, FTP and ping traffic have
10-100 times worse QoS than required. When the server is
in network 4, Web traffic has 2-10 times degraded service
and VoIP has only 0.15 times degradation. Clearly, resource
allocation metrics cannot predict such variability in service
denial: 20% of resources are allocated to legitimate traffic.



9

Fig. 15. UDP bandwidth flood — low-rate: Transaction cdf with respect to
duration; transactions originated by network 3 with network 4.

Fig. 14 shows the cdf of average throughput for all transac-
tions during the attack initiated by network 3 with network 4,
and for the corresponding baseline case. There is a significant
overlap of throughput values for successful and failed trans-
actions in the area E, which shows that throughput by itself
cannot accurately measure DoS.

Fig. 15 shows the cdf of duration for all transactions
initiated by network 3 with network 4 during the attack, and
for the corresponding baseline case. Durations of failed and
successful transactions overlap in area F in the graph, showing
that duration by itself cannot accurately measure DoS.

Loss and request/reply delay do not adequately capture DoS
impact due to a large overlap in values for failed and successful
transactions. We omit these graphs due to space.

E. TCP SYN Flood with Syn-cookie Defense

Another popular attack with both attackers and researchers
is the TCP SYN flood [4]. It denies service by sending a TCP
SYN flood that consumes OS memory at the target. This attack
can be largely countered if the target deploys the TCP syn-
cookie defense [22], which allocates memory only after the 3-
way handshake is completed. Since attackers do not complete
the handshake, the attack is thwarted. We generated a TCP
SYN flood to port 80 on the Web server in network 4, sending
500 pps. We turned syn-cookies on 650 seconds after the start
of attack, at time 715 seconds.

The DoS-hist and DoS-level measures are shown in Fig. 16.
As expected, all traffic to network 4’s Web server suffers
service denial. The severity is around 50%, in line with the
expectation that almost all transactions were denied service
before the syn-cookie defense was turned on, and none af-
terward. There is a slight DoS for the VoIP traffic from
network 1 to network 4, when 1 out of 100 transactions fails
because of excessive loss. The loss is due to aggressive TCP
retransmissions and is minor (3.3%) but higher than the 3%
QoS threshold for VoIP.

Fig. 17 shows the Web transaction failure ratio from network
1 to network 4. During the attack, the value goes to 1, but
reverts to zero when syn-cookies are deployed.

Fig. 16. TCP SYN flood with syn-cookies: DoS-hist and DoS-level measures.

Fig. 17. TCP SYN flood with syn-cookies: Failure ratio for Web traffic from
network 1 to network 4.

The life diagrams of successful and failed transactions are
shown in Fig. 18. Only Web transactions fail during the attack,
and only during a period when syn-cookies are off.

We summarize legacy metrics, for space reasons. Dura-
tion and loss metrics capture DoS impact well in this case,
but throughput and request/reply delay produce overlapping
regions for failed and successful Web transactions and thus
cannot measure DoS accurately. Only 18% of bandwidth is
consumed by the SYN flood, yet 100% of web transactions are
denied service when syncookies are off. The better approach
to resource allocation measurement would be to measure
occupancy of the TCP connection table at the Web server. We
lacked tools to obtain this information easily from the OS, but
we infer from the Web transaction success/failure metrics that
the table would mostly be occupied by attack connections.

V. EVALUATION IN NS-2 SIMULATIONS

To extend the application of our proposed metrics to simu-
lated DDoS defense evaluation, we have ported the metrics to
the popular NS-2 simulator [23]. We illustrate the DoS impact
metrics in small-scale experiments using NS-2 (version 2.29),
and compare the results with identical experiments on the
DETER testbed. During simulations, we generate flows that



10

Fig. 18. TCP SYN flood with syn-cookies: Life diagram of successful and
failed transactions from network 1 to network 4.

(a) NS-2

(b) DETER

Fig. 19. DoS-hist and DoS-level measures in NS-2 and DETER experiments.

each represent a transaction and we compute required traffic
measurements from NS-2 logs.

We use a simple network topology with a single legitimate
client, an attacker, and a server. All nodes are connected
to the same router. The link between the server and router
is 10 Mbps with 10 ms delay. The other two links are
100 Mbps bandwidth with 10 ms delay. We use a queue
size of 100 packets, with a drop-tail queuing strategy. We
generate the following legitimate traffic between the client and
the server: (1) Web and FTP traffic with file size 1000 bytes
and 20 s request interarrival period. (2) Telnet traffic with
10 pps and a 100-byte packet size. During the simulation,
we start a new telnet connection every 60 s with duration of
120 s. (3) DNS and ping traffic with 10 s request interarrival
period. We use the following modules in NS-2 to generate
the traffic: Application/FTP for FTP, PagePool/WebTraf for
Web, Application/Telnet for telnet, Agent/Ping for ICMP, and
a modified version of Agent/Ping with a maximum of 3
retransmissions with 5-s timeouts for DNS. We generate a
UDP flood that overwhelms the bottleneck link with 10 Mbps
(moderate attack) or 80 Mbps (large attack) rate.

Fig. 19 shows the DoS-hist measure for the client’s traffic
to the server during the two attacks for the NS-2 and DETER
experiments, and in no-attack case. The x-axis shows the attack
strength, and the column height denotes the result of 10 test
runs, with error bars shown. Since the legitimate traffic pattern
is fixed for the NS-2 simulation, we achieve variability by
randomly choosing a small delay (10-100 ms) to apply to the
attack start time. The traffic pattern in testbed experiments de-
pends on a random seed. We also show the DoS-level measure
using equal application weights. The telnet application is the
most affected by the attack due to its small echo-delay bound
(250 ms). Denial of service is similar for DNS and ping, even
though DNS can retransmit requests up to three times, because
these retransmissions occur after the DNS request/response
delay threshold is exceeded (4 s). Web transactions survive
the attack best because of the generous (4 s) delay threshold
and because the lost packets are retransmitted by TCP. At high
attack rate (80 Mbps), the pft of all applications goes to almost
100%.

Comparing simulation results with testbed results (Fig. 19(a)
vs 19(b)), we find that trends in both graphs are similar
but more transactions fail in simulations. This is because the
software routers used on the testbed can handle the attack
traffic much better than the simple output queuing model used
in NS-2. The results are consistent with [24], which shows
much higher throughput and TCP congestion window sizes
in testbed experiments compared to the same experiments in
NS-2.

VI. EVALUATION IN HUMAN-USER EXPERIMENTS

To evaluate our metrics’ ability to capture a human user’s
perception of service denial, we have conducted an experiment
where users interact with a server that is occasionally subjected
to denial-of-service attacks. After each interaction, a user rates
her satisfaction with service quality and we compare this rating
with two of our denial-of-service metrics: the transaction
success/failure metric and the QoS metric.



11

NAT R1 R2
making R1-Content

link a bottleneck with
10 Mbps bandwidth

Content

A1

A2
Control

User

EmulabInternet

Control

Frame
source
points 

to 
NAT

Frame
source
points 

to 

Request 1

Reply 1

Request 2

Reply 2

Tcpdump

Fig. 20. Topology for Human-user DoS experiments.

A. Service and Content

We limited legitimate traffic to a single application, Web
browsing, to simplify user interaction with the server and
facilitate wide participation in our experiment. Users interact
with the server by browsing through a set of Web pages. They
rate their satisfaction with the loading speed of each page by
filling in a Web form shown to the left of the page, in a separate
frame.

We wanted to provide interesting and copyright-free content
to attract participants and achieve reasonably long interac-
tions with the server. We downloaded 21 select pages from
Wikipedia [25], which is a highly popular online encyclopedia
that allows content copying and modification under the terms
of the GNU Free Documentation License. These 21 pages
were grouped into four content categories: Sports (geocaching,
abseiling, aerobatics, fell running, Chilean rodeo, paintball),
Music (blues, hip hop, rock and roll, heavy metal, the relation-
ship between music and mathematics), Film (Star Wars, God-
father, Lord of the Rings, Casablanca, An Inconvenient Truth)
and Famous People (Walt Disney, Shakespeare, Christopher
Columbus, Benjamin Franklin, Mozart). We modified each
page to fit into 1-2 screens of text.

B. Experiment Setup

Because the Web server had to be subjected to occasional
DoS attacks, we needed a controlled, isolated environment
such as the DETER testbed [21]. However, our desire to attract
many survey participants dictated the need for experimental
machines to be reachable by users from outside the testbed.
DETER currently prohibits any communication between exter-
nal machines and experimental ones, and thus could not host
our experiment. Instead, we used the Emulab testbed [26],
which is similar to the DETER testbed but it allows external
Web requests to experimental nodes.

A naive experimental topology would use one Web server in
the Emulab testbed, and the user traffic would reach the server
directly. Such a topology was inadequate for our purposes, for
the following reasons:
(1) Users must reach two types of pages (a) Wikipedia content
on a server that may be a DoS target, (b) welcome and thank-
you pages, and pages with QoS rating forms that must always
be loaded promptly regardless of an attack. We used two
Web servers — one to host control information for the survey

(welcome, thank-you pages and rating forms) and one to host
the content and be the DoS target.
(2) For DoS attacks that target bandwidth, user traffic must
share the bottleneck link with the attack. Thus, user Web
requests must be tunneled to the content Web server instead
of reaching it directly. Fig. 20 shows the topology used in the
experiment. User traffic first reaches the Web server Control,
which hosts control information. When the survey starts, the
right frame of the pages displayed to the user points to the host
NAT, which acts as a network address translator and tunnels
the user’s Web requests to the Web server Content over the
bottleneck link, which is shared with attack traffic from hosts
A1 and A2. Machine R1 is an aggregation router and machine
R2 emulates a 10 Mbps link using Click [27]. All physical
links are 100 Mbps. We run tcpdump for each user on the
link leading from NAT to R1, anonymizing the output. We
use this output to calculate our DoS measures.

The first page displayed to a user is the registration page,
with only one button labeled “Register.” A click on this button
assigns a sequential ID to the user and starts tcpdump; user
ratings will be saved under this ID and tcpdump output will
bear the name derived from the ID. We next generate a random
number in the range 1–4. Number 1 triggers a UDP flood
attack on the bottleneck link, number 2 triggers this same
attack but at a smaller rate, which aims to degrade but not
to deny service. Number 3 triggers a SYN flood attack on the
Content Web server and number 4 does not trigger any attack,
i.e., users in this category form the control group.

The next page is the welcome page, loaded from Control
server, that explains experiment goals and setup, and gives
instructions to the user. Users are asked to click on at least 5
pages of their choice, not to repeat clicks and not to follow
external links from the Wikipedia pages. Repeated clicks can
lead to erroneous perception of service quality because they
display the content from the browser’s cache, and external-
page clicks bypass the testbed.

The welcome page also displays 21 buttons for the content
pages, and a button to quit the survey. Clicking on a content
button generates a web page with content on the right and
the rating form on the left. If the Content server were under
attack, the page in the right frame may not load, or it may
take a long time to load. Users rate their satisfaction with
service quality on 1–4 scale, where 4 means “Excellent”, 3
means “Mostly OK”, 2 means “Poor, but acceptable” and 1
means “Unacceptable.” The rating form is multiple-choice and
allows only a single item to be selected. The users can browse
naturally: they are allowed to rate their satisfaction at any time;
i.e., they did not have to wait for the page to load completely
and they did not have to read any content. When the user
clicks the “Submit” button on the rating page, the content file
name and the rating are saved in a log file. After the rating is
submitted, the welcome page is displayed again. The survey
ends when the user clicks the “Quit” button on the welcome
page. The thank-you page is then displayed and user ratings
are shown side by side with our DoS metrics. We describe the
process of mapping our measures to the same rating scale as
used by human users in Section VI-C.

We experimented with the following attack dynamics before



12

settling on one of them: (1) The attack starts immediately
upon registration and lasts for a long time. This generates
predictable results because either all user transactions are
affected by the attack or none are. This scenario was too
simplistic to validate our metrics; we preferred to have each
user experience some good and some poor service. (2) The
attack starts when a user requests a content page displaying
Wikipedia content. This scenario would be ideal but it had
timing problems. A Web request is contained in very few
packets sent to server — two to open a TCP connection and
one to request a Web page — and only this path is affected
by the attack. Request packets are sent rapidly when the
user clicks on the content button. If the attack is triggered
simultaneously, there was a race condition between creating
sufficient congestion and user packets reaching the server. If,
on the other hand, we delayed page load until the attack
has started, this would affect the user’s perception of service
quality and skew the rating toward lower values. (3) The attack
is triggered upon the registration click. It runs periodically,
thus a given user may experience some high quality and
some low quality transactions. We opted for this scenario
since it was rich enough to generate interesting test cases for
our measures and did not suffer from the timing problems
present in scenario 2. Each attack starts 60 seconds after the
registration click, lasts for 30 seconds and repeats every 60
seconds for total of 10 times. We carefully selected the attack
period and duration to maximize the chance that attack traffic
overlaps with user requests. The attack is aborted when the
user quits the survey.

C. Mapping our DoS Metrics to User-Compatible Ratings

User ratings of service quality are on the scale 1–4, where
2, 3, 4 ratings denote successful transactions with increasing
degrees of user satisfaction and 1 denotes failed transactions.
Two of our DoS metrics are comparable with user ratings:
the transaction success/failure metric and the QoS metric. The
QoS metric is on the scale (0, 1] and is calculated only for
successful transactions; we set it to zero for failed transactions.
Higher QoS values denote higher service quality.

We mapped transaction success/failure and the QoS measure
into the 1–4 scale as follows (summarized in Table IV). If a
transaction failed, our rating of its service quality was set to 1
and its QoS measure was set to 0. If it succeeded, we run an
optimization algorithm to find the best values for thresholds
on the QoS measure that denote the limits between ratings 2
and 3, and ratings 3 and 4. For our experimental results, these
thresholds were 0.87 and 0.88, respectively.

QoS Rating
0 1

≥ 0 but < 0.87 2
≥ 0.87 but < 0.88 3

≥ 0.88 4

TABLE IV
MAPPING OF QoS METRIC TO USER RATING SCALE.

We also had to map transactions into clicks. Our measures
are calculated per transaction, which in case of Web service

may denote the event of initiating the communication with
the server, partially or completely loading a page, or loading
each embedded object in a page. Thus one user click usually
maps into several transactions. We map clicks into transactions
by first identifying TCP connections in the tcpdump output
associated with one Web page load, then relating our transac-
tions to these connections (and thus to page loads), and finally
pairing the page loads with the user clicks recorded in our
rating log file, as explained next.

Identification of TCP connections associated with one page
load proceeds as follows: (1) Identify TCP connections in the
collected tcpdump file by looking for a 3-way handshake and
all subsequent traffic between the same IP addresses and port
numbers until either a FIN or a RESET. (2) If a connection
contains a packet with an HTTP GET directive in the content
field, parse the file name following this directive. For files
ending in .html this connection denotes a new page load.
For other files, look for the Referer field in the packet
containing HTTP GET, and parse the name of the referring file,
which in our case always ends in .html. This connection is
added to the page load of the referring file. (3) If a connection
does not contain a packet with an HTTP GET directive, it is
associated with a “NO URL” page load. These connections
usually contain a partial or full 3-way handshake, but the
service denial was so large that the connection never advanced
to data exchange.

Relating our transactions to TCP connections involved
selecting the TCP connection that had the same port numbers
as the given transaction and encompassed its start and end
times. After all transactions were paired with TCP connections
and thus with page loads, we calculate the success/failure and
the QoS measure for each page load. A load’s success/failure
measure is a “success” only if all transactions that are mapped
to this load were successful, otherwise it is a “failure.” A load’s
QoS measure is 0 if its success/failure measure is “failure.”
Otherwise, the QoS measure is the average of QoS measures
of transactions associated with this page load.

Pairing Web page loads with user clicks from the rating log
file was performed by pairing the file names from the loads
with URLs in the log file. If we cannot find the name from
the log file among our page loads, we next attempt to pair this
click with our “NO URL” load based on timing. If this fails,
the click is marked invalid. Repeated clicks are also considered
invalid because they may be served from a client’s cache; an
action invisible in network traces.

D. Results

We recruited experiment participants from the following
populations: (1) graduate students and faculty at the University
of Delaware, (2) graduate students at UCLA, (3) graduate
students at Purdue University, (4) attendees of SIGMETRICS
2007, and (5) subscribers of the TCCC mailing list. We kept
the survey open for four months (July-October 2007) and had
101 participants and 840 clicks. 32 (3.8%) clicks were invalid,
leaving 808 valid clicks for 100 users.

Assignment of users to attack categories was balanced: 23
experienced a UDP flood attack, 28 experienced a low-rate



13

UDP flood, 29 experienced a SYN flood attack, and 20 were
in a control group with no attack being launched. UDP flood
is the most severe attack, because it affects all request traffic.
SYN flood has lower severity — it only prevents connection
setup, but once a user’s TCP SYN packet is accepted by the
server, communication proceeds normally. We expected that
the low-rate UDP flood would have modest to no impact
on service quality, and that the best service quality will be
assigned to clicks in the control group.

Users who experience poor service usually lose interest in
interacting with the server. The average number of clicks per
user in different groups was 6.17 for UDP flood, 8.03 for low-
rate UDP flood, 7.86 for SYN flood and 10.2 for the control
group. These results agree with our expectations and indicate
that users in the control group had the best service, followed
by users in the low-rate UDP flood group, users in the SYN
flood group, and finally users in the UDP flood group.

Users’ ratings Our ratings
Attack 1 2 3 4 µ σ 1 2 3 4 µ σ
UDP 85 34 12 20 1.78 1.06 107 17 4 23 1.62 1.1

low-UDP 0 11 89 125 3.51 0.59 1 0 33 191 3.84 0.40
SYN 78 27 49 74 2.52 1.26 74 16 16 122 2.81 1.37
No 4 14 95 91 3.34 0.69 1 2 19 182 3.87 0.4

TABLE V
SUMMARY OF RATINGS, MEANS (µ) AND STANDARD DEVIATIONS (σ)

Table V shows the distribution of users’ and our ratings.
Users’ ratings agree with our expectations — satisfaction
with service quality was lowest for the UDP flood group,
followed by the SYN flood group, and the control and low-
rate UDP flood groups experienced the best service quality.
Attack groups had some percentage of high ratings (3 and
4) — this is because overlap of an attack with user traffic
was random, thus some transactions completed without service
denial. Surprisingly, clicks in the low-rate UDP flood group
had a slightly higher user rating than clicks in the control
group. This was mostly due to more 4 than 3 ratings in the low-
rate UDP group, versus the control group. The best explanation
we have for this is the subjectivity of human perception of
QoS, which was observed in [14] but is not quantified.

Comparing our success/failure metric with user ratings, we
had 728 matches, which constitutes 90% of total valid clicks.
Out of the 80 mismatches, 40 were cases where we considered
a click to be failed while a user gave it a successful rating.
These were all cases where an embedded picture in the page
did not load quickly enough or at all. Some users did not
consider this significant enough for a failure, while we did.
Given the high subjectivity of human QoS perception [14],
we view a 90% match as proof of high accuracy of our
success/failure metric.

Comparing our QoS metric with user ratings, both mapped
to 1–4 scale, we had 441 matches (54.5% accuracy) and
367 mismatches. If we leave out the 80 mismatches where
our success/failure metric disagreed with a user’s, of the
287 remaining mismatches, in 240 (29.7% of all clicks) a
user assigned a rating 4 (Excellent) and we assigned a 3
(Mostly OK), or vice versa. This is expected, since categories

“Excellent” and “Mostly OK” are very similar and humans
find it more difficult to distinguish between an excellent and a
slightly impaired service, than between an excellent and a poor
service. Together, matches and four/three mismatches make
84.2% of all clicks. If we merge the “Excellent” and “Mostly
OK” ratings, then, we have 84.2% accuracy of our QoS metric,
which is fairly high given human subjectivity in rating QoS.
Overall, our metrics accurately predicted human perception of
service denial (success/failure metric) and service quality (QoS
metric).

VII. RELATED WORK

A number of computer science fields have developed sys-
tematic, standardized approaches to performance measure-
ment. Two examples of this are the TPC benchmarks for
application servers and web services [28], and the SPEC
benchmarks for a variety of application categories [29]. These
efforts adopt a representative workload mix for an application
of interest, and a set of performance measures with thresholds
that signify success or failure. Measures are calculated at the
application level. Our measures are similar to those in TPC
and SPEC, but are less diversified, since our inference of
application-specific tasks at the network level is difficult and
imperfect.

In the quality of service field, there is an initiative, led by
the 3GPP partnership, to define a universally accepted set of
QoS requirements for network applications [30]. While we
reuse many of the specified requirements in our work, we
extend, modify and formalize these requirements as explained
in Section III-A.

The networking research community has separated applica-
tions into categories based on their sensitivity to delay, loss
and jitter [31]. That work focuses on providing applications
guaranteed service, rather than measuring service denial. The
Internet Research Task Force Transport Modeling Research
Group (TMRG) discussed using user-based QoS metrics for
measuring congestion, but did not specify such metrics in any
detail [32].

In [33], the authors measure DoS impact on real-world
traffic via the distributions of several parameters: the through-
put of FTP applications, round-trip times of FTP and Web
flows, and latency of Web flows and the DNS lookup service
in real world traces before, during, and after an attack. Our
paper strives to define a more formal threshold-based model
for these and other parameters that can be extended to a
broader variety of services and attacks. In [7], the authors
measure the percentage of “completed” transactions, which
may appear similar to our pft metric and our “successful”
transactions. However, their transactions count as success if
they complete at all during the simulation, however late, while
our transactions are successful only if they complete while
meeting all their QoS requirements. Our metric thus more
accurately captures user perception of service quality.

In [34], a user satisfaction index is computed from Skype
traces and validated via analysis of other call characteris-
tics, such as conversation interactivity. Our work provides a
framework where this index can be easily incorporated into a



14

DoS metric for Skype and other VoIP traffic. In slow-motion
benchmarking [35], the authors use network traces collected at
the client to measure performance of thin clients. Their only
performance measure is the sum of transaction durations in
the benchmark.

VIII. CONCLUSIONS AND FUTURE WORK

One cannot understand a complex phenomenon like denial
of service without being able to measure it in an objective,
accurate way. The work described here represents the first
attempt to define accurate, quantitative and versatile metrics
for measuring effectiveness of denial of service attacks and
defenses. By focusing on the issue of measuring human user
perception of application-level service quality, the metrics cut
to the heart of the problem and avoid issues of the specific
form of the attack and legitimate traffic mix. Our approach
is objective, reproducible, and applicable to a wide variety
of attack and defense methodologies. Its value has been
demonstrated in both testbeds and simulation environments.
Further, we have addressed the main concern of metrics that
focus on an application-level phenomenon – the accuracy of
the metric compared to human perceptions – via tests with
human subjects that validated our results.

Our metrics are usable by other researchers in their own
work. They offer the first real opportunity to compare and
contrast different denial of service attacks and defenses on
an objective head-to-head basis. We expect that this work
will advance denial-of-service research by providing a clear
measure of success for any proposed defense, and helping
researchers gain insight into strengths and weaknesses of their
solutions.

While our DoS metrics are a necessary condition for per-
formance comparison of DoS defenses, they are not sufficient.
A related problem is devising standardized benchmarks for
DoS defense testing, so all products are tested under the same
conditions. We have done some pioneering work in this area
[36] but ours is just a first, small step and an engagement of
a wider research community is needed to completely address
this problem.

REFERENCES

[1] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow
Filter to Mitigate DDoS Flooding Attacks. In Proceedings of the IEEE
Security and Privacy Symposium, 2004.

[2] A. Kuzmanovic and E. W. Knightly. Low-Rate TCP-Targeted Denial
of Service Attacks (The Shrew vs. the Mice and Elephants). In Proc.
of ACM SIGCOMM, August 2003.

[3] M. Guirguis, A. Bestavros, and I. Matta. Exploiting the Transients of
Adaptation for RoQ Attacks on Internet Resources. In Proceedings of
ICNP, Oct 2004.

[4] CERT CC. CERT Advisory CA-1996-21 TCP SYN Flooding and IP
Spoofing Attacks. http://www.cert.org/advisories/CA-1996-21.html,
1996.

[5] Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur Berger.
Botz-4-Sale: Surviving Organized DDoS Attacks that Mimic Flash
Crowds. In NSDI, 2005.

[6] Hani Jamjoom and Kang Shin. Persistent Dropping: A Efficient
Control of Traffic Aggregates. In ACM SIGCOMM Conference, 2003.

[7] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting Network
Architecture. In ACM SIGCOMM Conference, 2005.

[8] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern
Paxson, and Scott Shenker. Controlling high bandwidth aggregates in
the network. In ACM Computer Communication Review, July 2001.

[9] Angelos Stavrou, Angelos D. Keromytis, Jason Nieh, Vishal Misra,
and Dan Rubenstein. MOVE: An End-to-End Solution to Network
Denial of Service. In NDSS, 2005.

[10] G. Oikonomou, J. Mirkovic, P. Reiher, and M. Robinson. A
Framework for Collaborative DDoS Defense. In Proceedings of
ACSAC, December 2006.

[11] Cooperative Association for Internet Data Analysis. CAIDA Web
page. http://www.caida.org.

[12] WIDE Project. MAWI Working Group Traffic Archive.
http://tracer.csl.sony.co.jp/mawi/.

[13] Nortel Networks. QoS Performance requirements for UMTS. The 3rd
Generation Partnership Project (3GPP). http://www.3gpp.org/ftp/tsg
sa/WG1 Serv/TSGS1 03-HCourt/Docs/Docs/s1-99362.pdf.

[14] Nina Bhatti, Anna Bouch, and Allan Kuchinsky. Quality is in the Eye
of the Beholder: Meeting Users’ Requirements for Internet Quality of
Service. Technical Report HPL-2000-4, Hewlett Packard, 2000.

[15] L. Yamamoto and J. G. Beerends. Impact of network performance
parameters on the end-to-end perceived speech quality. In In
Proceedings of EXPERT ATM Traffic Symposium, September 1997.

[16] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and
M. Claypool. The Effects of Loss and Latency on User Performance in
Unreal Tournament 2003. In In Proceedings of ACM NetGames 2004.

[17] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and
Emmanuel Agu. The Effect of Latency on User Performance in
Warcraft III. In In Proceedings of ACM NetGames 2003.

[18] B. N. Chun and D. E. Culler. User-centric Performance Analysis of
Market-based Cluster Batch Schedulers. In In Proceedings of the 2nd
IEEE International Symposium on Cluster Computing and the Grid,
May 2002.

[19] J. Ash, M. Dolly, C. Dvorak, A. Morton, P. Taraporte, and Y. E.
Mghazli. Y.1541-QOSM – Y.1541 QoS Model for Networks Using
Y.1541 QoS Classes. NSIS Working Group, Internet Draft, Work in
progress, May 2006.

[20] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P. Reiher, R. Thomas,
W. Yao, and S. Schwab. Towards User-Centric Metrics for
Denial-Of-Service Measurement. In In Proceedings of the Workshop
on Experimental Computer Science, June 2007.

[21] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower,
R. Ostrenga, and S. Schwab. Experiences With DETER: A Testbed for
Security Research. In 2nd IEEE TridentCom Conference, March 2006.

[22] D. J. Bernstein. TCP syncookies. http://cr.yp.to/syncookies.html.
[23] The Network Simulator ns 2. NS-2 Web page.

http://www.isi.edu/nsnam/ns/.
[24] R. Chertov, S. Fahmy, and N. Shroff. Emulation versus Simulation: A

Case Study of TCP-Targeted Denial of Service Attacks. In
Proceedings of the 2nd International IEEE CreateNet TridentCom
Conference, February 2006.

[25] Wikipedia, the Free Encyclopedia. http://www.wikipedia.com.
[26] University of Utah. Emulab testbed. http://www.emulab.net.
[27] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The

Click Modular Router. ACM Transactions on Computer Systems,
18(3):263–297, August 2000.

[28] Transaction Processing Performance Council. TPC Benchmarks.
http://www.tpc.org/information/benchmarks.asp.

[29] Standard Performance Evaluation Corporation. SPEC Benchmarks and
Published Results. http://www.spec.org/benchmarks.html.

[30] 3GPP. The 3rd Generation Partnership Project (3GPP).
[31] M. W. Garrett. Service architecture for ATM: from applications to

scheduling. IEEE Network, 10(3):6–14, May/June 1996.
[32] IRTF TMRG group. The Transport Modeling Research Group’s Web

Page. http://www.icir.org/tmrg/.
[33] Kun chan Lan, Alefiya Hussain, and Debojyoti Dutta. The Effect of

Malicious Traffic on the Network. In Passive and Active Measurement
Workshop (PAM), April 2003.

[34] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei.
Quantifying Skype User Satisfaction. In Proceedings of the ACM
SIGCOMM, September 2006.

[35] Jason Nieh, S. Jae Yang, and Naomi Novik. Measuring Thin-Client
Performance Using Slow-Motion Benchmarking. ACM Transactions
on Computer Systems, 21(1), February 2003.

[36] J. Mirkovic, S. Wei, A. Hussain, B. Wilson, R. Thomas, S. Schwab,
S. Fahmy, R. Chertov, and P. Reiher. DDoS Benchmarks and
Experimenter’s Workbench for the DETER Testbed. In Proceedings of
Tridentcom, 2007.



15

Dr. Jelena Mirkovic is a Computer Scientist at
the USC Information Sciences Institute, which
she joined in 2007. Prior to this she was an Assis-
tant Professor at the Computer and Information
Sciences Department, University of Delaware,
2003-2007. She received her M.S. and Ph.D.
from UCLA, and her B.S. in Computer Science
and Engineering from the School of Electrical
Engineering, University of Belgrade, Serbia. Her
current research is focused on accountability,
safe sharing of network data, denial-of-service

attacks, and IP spoofing. Her research is funded by the National Science
Foundation and the Department of Homeland Security.

Dr. Alefiya Hussain is a Senior Principal Scientist
at Sparta Inc. Her research interests include
statistical signal processing, protocol design, se-
curity, and network measurements. She received
a Bachelor of Engineering degree from Pune In-
stitute of Computer Technology, and a M.S. and
Ph.D. in Computer Science from the University
of Southern California. She is a member of ACM
and Upsilon Pi Epsilon.

Dr. Sonia Fahmy is an Associate Professor at the
Computer Science department at Purdue Univer-
sity. She received her PhD degree from the Ohio
State University in 1999. Her current research
interests lie in the areas of Internet tomography,
network security, and wireless sensor networks.
She received the National Science Foundation
CAREER award in 2003, and the Schlumberger
technical merit award in 2000. She is a member
of the ACM. For more information, please see:
http://www.cs.purdue.edu/∼fahmy/

Dr. Peter Reiher received his B.S. in Electrical
Engineering and Computer Science from the
University of Notre Dame in 1979. He received his
M.S. and Ph.D. in Computer Science from UCLA
in 1984 and 1987, respectively. He has done
research in the fields of distributed operating sys-
tems, security for networks and distributed com-
puting, file systems, optimistic parallel discrete
event simulation, ubiquitous computing, naming
issues in distributed systems, active networks,
and systems software for mobile computing. Dr.

Reiher is an Adjunct Associate Professor in the Computer Science
Department at UCLA.

Dr. Roshan Thomas is a Senior Principal Scien-
tist at Sparta, Inc. He has over thirteen years
of experience as a researcher at the Principal
Investigator level in various aspects of com-
puter security including access control models,
network security, policy languages, secure dis-
tributed database management and multilevel-
secure object-oriented distributed computing. As
part of the research into cross domain solutions
for the Collaborative Technology Alliance (CTA),
he is developing policy languages for cross do-

main information release. He is also currently a PI on an IARPA-
funded project called TDOC that is looking at advanced dissemination
controls models to prevent insider leaks in the computer systems for the
intelligence community. In the past, he has been a Principal Investigator
and researcher on a variety of DARPA and NSF-funded research projects
that investigated active and collaborative access control models, network
security, and security in mobile ad-hoc networks. Dr. Thomas served as
the co-founder of the First IEEE International Workshop on Pervasive
Computing and Communication Security (PerSec 2004) and served as the
PC co-chair for the second workshop (PerSec 2005). Dr. Thomas holds
bachelor’s and master’s degrees in Computer Science and earned a Ph.D
in Information Technology with a specialization in computer security
from George Mason University, Fairfax, VA, U.S.A in May 1994.


