
Scalable Reactive Vehicle-to-Vehicle Congestion
Avoidance Mechanism

Mevlut Turker Garip, Mehmet Emre Gursoy, Peter Reiher, Mario Gerla
Department of Computer Science, University of California Los Angeles, California, USA

{mtgarip, memregursoy, reiher, gerla}@cs.ucla.edu

Abstract—The increasing popularity and acceptance of
VANETs will make the deployment of autonomous vehicles easier
and faster since the VANET will reduce dependence on expensive
sensors. Many useful applications will be possible with the usage
of VANETs, which will improve the safety and quality of trips
for the owners of these vehicles. One of these applications is
the avoidance of traffic congestion by smart dynamic rerouting.
For scalability, current cloud-based solutions, like Google Maps
traffic, update congestion levels after a time interval rather than
providing real-time measurements. In this paper, we introduce a
vehicle-to-vehicle congestion avoidance mechanism, which detects
real-time congestion levels and reroutes vehicles accordingly to
minimize their trip times. Our system is highly distributed
and is, therefore, not subjected to the limitations of centralized
congestion mechanisms. We show via simulation that our system
can significantly decrease the trip times of vehicles as well as
the average car density on the map. Our proposed system, with
its checkpoint and offline path generation approaches, is more
responsive to local congestion level changes and computationally
less complex for least-congested-route calculations than state-of-
the-art congestion avoidance mechanisms.

I. INTRODUCTION

The dream of autonomous, connected vehicles will soon
become a reality. Vehicular ad hoc networks (VANETs) enable
cars to communicate with each other over a wireless channel
by sending packets directly to their neighbors within radio
range. Vehicles can collect and share basic information such
as speed and location. Peer-to-peer communication without
centralized coordination can occur at high frequencies. In
addition to inter-vehicular communication, VANETs can also
integrate central units through the deployment of specialized
infrastructure, commonly referred to as road-side units.

Advantages of VANETs are manifold. Since traffic safety
is a pressing concern, much work has gone into utilizing
VANETs to prevent traffic accidents. Reports claim that au-
tonomous vehicles could save numerous lives and prevent more
than 2 million injuries related to car accidents every year [1].
Other potential benefits of VANETs include toll payment and
content delivery. Major car manufacturers have already started
their preparations to gain a competitive edge in the autonomous
car market [1]. Such cars can be expected to have VANETs
integrated into them.

We will focus on one particular benefit of VANETs:
congestion avoidance. Congestion is a serious problem for
big cities with high populations [15]. Internet-based solutions
such as Google Maps traffic are not necessarily adequate for
immediate response to highly dynamic, fine-grained traffic and
congestion control. Instead, VANET protocols and vehicle-to-
vehicle dissemination of information can be used to achieve

timely information exchange. Cars that are already in con-
gested areas can recommend or advise against the use of
certain roads, and this VANET-assisted communication may
help nearby vehicles re-route themselves around sudden traffic
jams. It is not feasible to achieve such instant impact via
Internet-based solutions that, at best, act on the order of tens
of minutes; rather than milliseconds.

In this paper, we propose an efficient and scalable dis-
tributed vehicle-to-vehicle (V2V) congestion avoidance mech-
anism. Unlike the other systems proposed in the field, our
mechanism does not require a global knowledge of the con-
gestion levels on the map, but rather only the congestion
levels of the roads that the vehicle might take. The systems
that use proactive approaches usually require vehicles to have
almost full knowledge of all the roads on the map, which may
often times be redundant. Furthermore, they come with an
accumulated cost of storage, and re-computations and future
dissemination of information (according to changes in conges-
tion levels) may become painful. Our reactive approach can
work under reasonable amount of memory, and in cases where
limited and/or partial information is available. We address
its network usage by implementing a request/reply technique
rather than relying on periodic broadcasts. Our experimental
evaluation shows that the system is very reliable: In any
case it performs better than a completely offline shortest-path
calculation (e.g., Dijkstra), and its benefits increase as the level
of congestion increases.

The rest of this paper is organized as follows: In Section
2, we discuss related work on traffic congestion avoidance
using VANETs. In Section 3, we give an overview of possible
design considerations and elaborate on our choices. Section 4
describes the technical aspects and implementation details of
our system. In Section 5, we examine its performance under
different loads of traffic and validate its effectiveness using
two metrics. In Section 6, we conclude by re-iterating the
characteristics of our congestion avoidance mechanism and
suggesting further improvements for future work.

II. RELATED WORK

Traffic congestion is a serious problem for urban envi-
ronments, and there is significant amount of research in-
corporating VANETs to address this problem. As shown in
[8], dynamic route planning, according to real-time traffic
information, is an effective way of reducing trip time. [8]
demonstrates the viability of predicting future traffic by con-
sidering vehicle density alongside travel time. [19] reports
on a simulation environment that implements VANET-enabled
Intelligent Transportation Systems (ITS). Their results show

decrease in travel time and vehicle density in congested areas,
when related congestion information is disseminated.

Quantifying congestion without complicated sensors is
another effort-worthy task. Existing literature and standards
assume access to basic sensors in a car: speedometer, GPS,
on-board radar, etc. Information from these devices are part
of BSM/CAM messages that are regularly exchanged as part
of existing VANET protocols [10]. In [6], contents of beacons
are used to measure levels of congestion. In particular, vehicle
density and speed are used as indicators of congestion. An
alternative approach is presented in [13], where vehicles mon-
itor their speeds to detect congestion. Their measurements are
aggregated into a ”congestion parameter”, which the authors
propose to adaptively broadcast within WSMs in 802.11p and
thus reduce network load comparing to periodic broadcasting.

Congestion avoidance mechanisms can be reviewed under
two main categories: centralized and distributed. Existing
deployed solutions (e.g., Google maps with traffic data, smart-
phone applications such as Waze) rely on central servers that
collect and share information. These require 4G/LTE/Wi-Fi
connections and do not make use of inter-vehicular communi-
cations. Similarly, a cloud-based route optimization technique
is designed in [11]. Vehicles report traffic conditions to a
main server, and can acquire a minimum-time path to their
destination from the server. This optimal path is calculated
by the server using a flow deviation algorithm. [9] is another
centralized approach, in which vehicles upload their intended
destinations and trajectories to a main server through access
points. The server then tries to predict future traffic based on
current traffic and vehicles’ intended destinations.

There is also work on fully-distributed congestion avoid-
ance systems that rely mainly on inter-vehicular communica-
tions. [18] demonstrates that these systems can be designed
with minimal infrastructure costs but still achieve promising
results. Their network model and assumptions, however, are
not compliant with 802.11p. A state-of-the-art congestion
avoidance mechanism is presented in [12]. Vehicles measure
their travel time on each road and store it in their database.
They selectively broadcast some of their measurements and
measurements they hear from other vehicles. The selection
process depends on the freshness of the measurements and
their map coverage. Each vehicle also holds an aggregated
summary of the whole map, built and updated using the
measurements they generate and hear. Congestion avoidance
decisions are made by each car according to their knowledge
of congestion levels. However, the success of this approach
would be highly dependent on its broadcast frequency. More
insight on this will be given in the subsequent sections. In
contrast, [7] suggests the use of a query-response protocol to
collect congestion-related information. Such queries are stored
and forwarded by nearby vehicles. They are optimized by the
addition of cache structures and query expiration times. [16]
studies peer-to-peer systems in which vehicles hear from others
that are geographically ahead of them. The intuition is that
leading vehicles (or ones that are traveling in the opposite
direction) should have a better understanding regarding what
this vehicle may expect. In case there is an upcoming traffic
anomaly or congestion, the vehicle can be warned ahead of
time and re-route itself accordingly. This offers a reasonable
way to avoid abrupt traffic situations, but does not consider a
healthy detection, quantification and dissemination of conges-
tion information for more detailed navigation decisions.

III. CONGESTION AVOIDANCE: PRELIMINARIES

A. Discussion on Earlier Work and Design Decisions

In this paper we choose to create a distributed congestion
avoidance scheme, rather than employing centralized servers
and/or road-side infrastructure. Also, we consider a reactive
mechanism (i.e., request/reply) rather than a system that relies
on all-out periodic broadcasts.

There are several advantages of centralized congestion
avoidance algorithms. First, a centralized server can have a
more global knowledge of its realm, assuming it can receive
and hold information originating from anywhere on the map.
This may help deduce more accurate navigation decisions,
especially over longer distances. Second, centralized methods
do not require computation power and the map knowledge of
the vehicles; it shares very little information with a vehicle
(e.g., an optimal route to intended destination), as opposed to
continuous reports of congestion levels.

There are also inherent problems with using centralized
algorithms:

• Inability to achieve micro-management and immedi-
ate response. Current VANET technology supports
delivery of vehicle-to-vehicle beacons that are sent
every 0.1 seconds. Therefore, networked cars can be
extremely fast in warning their surroundings regarding
a blocked road, accident, traffic congestion, etc. How-
ever, it is not entirely feasible to have a central server
receive messages via 4G with such high frequency.

• Additional infrastructure for communication, e.g.,
RSUs. Existing centralized methods that use VANETs
make use of specialized infrastructure. The deploy-
ment of such units would be costly. Considering
standard VANET transmission range, too many RSUs
might have to be deployed to cover an entire urban
area.

• Need for 4G/LTE connection so that either nodes
directly connect to a main server for cloud approaches.

• Single point of failure. A malfunctioning RSU might
mean an entire area is blacked out. These may moti-
vate cyberattacks on VANETs, e.g., DoS on RSUs.

Most of the current VANET functionality (e.g., safety and
collision avoidance warnings) depends on frequent broadcasts.
Much work has gone into creating efficient network protocols
that are particularly suitable for VANETs. A traffic congestion
avoidance system such as ours needs to disseminate as much
information as possible, while retaining a reasonable level of
network overhead. Unlike our system, the success of others,
that periodically broadcasts congestion-related information, is
very dependent on its broadcast frequency. Higher broadcast
frequency shares more information, but causes redundancy and
network degradation. There are also cases in which continuous
broadcasts may provide no benefit despite the overhead: (1)
There are very few or no vehicles in the vicinity of the sender.
Information could be broadcast without anyone demanding
or potentially making use of it. (2) If numerous vehicles
are sitting in a terrible traffic jam, they could flood nearby
recipients with redundant messages.

We therefore use a request-reply based system. Instead
of introducing a constant communication and computation

overhead, our system scale better by being reactive. When
there are no vehicles within its transmission range, the system
will mostly remain idle. When there are exceedingly many, it
would issue a request only when it should, and its peers would
respond only if they have relevant useful information.

B. Measuring Congestion: Choice of Congestion Metric

The ultimate goal of a congestion avoidance system is to
minimize the trip times of vehicles, which requires an accurate
and up-to-date representation of the current traffic congestion
levels. To choose the best route, the routing algorithm must
calculate and compare trip times for multiple possible routes
from a starting point to a destination. One simple approach for
measuring congestion is measuring the time needed to travel
on each road. However, this metric could be too sensitive to
irrelevant incidents. For example, a car might make a pit-stop
on a road, which would cause its trip time to rise dramatically.
Also, in a road with several lanes, the car might be stuck
in a lane that is very slow whereas the most other lanes
move much faster. Systems that use the travel time metric
acknowledge such situations, and usually assume that they will
not exist [12]. This motivated us to find another relevant, but
less sensitive (i.e., less prone to extreme cases) metric.

We assume that every vehicle has (or can easily obtain)
some basic information about the map, including the length
of each road. Knowing that average speeds are inversely
proportional to the time needed to travel, one can easily convert
one to the other, given the length of a road. Hence we decided
to use average speeds as our congestion metric, but with a
catch: A car will sample and average its own speed together
with other vehicles’ speeds that are traveling on the same road
(and direction, if the road is bi-directional). This computation
is powered by the exchange of heartbeat beacon messages
(BSM/CAM) and will be detailed in the next section.

IV. PROPOSED SYSTEM

A. Message Types and Information Exchange

For the communication among all cars, we assume standard
signal range of the 802.11p protocol, which is 100 meters
[17]. In addition to the Basic Safety Messages (BSM) that
are regularly sent to nearby vehicles (as explained in [10] and
standardized in [5]), two types of messages are implemented
in our system: congestion request and response.

1) Beacons / Basic Safety Messages: There are several
fields within a BSM that are of interest to our application. First,
the current speed of a vehicle is obviously crucial in the speed
averaging process. Second, the position of the vehicle can be
used to determine which road the vehicle is on (so that the
recipient can figure out whether the message is from a car in
the same road). Third, if the road is bidirectional then the angle
of the vehicle would be used. Even though BSMs can be sent
as frequent as every 0.1 seconds, one can perform sampling
over the stream of incoming BSMs (i.e., choose a meaningful
subset instead of evaluating all) if the computational power
required by the speed averaging process is undesirably high.
Creation of a sophisticated sampling algorithm is beyond the
scope of this paper, yet some algorithms can be found in [20].
BSMs can be correlated with their senders via sender IDs, and
for each sender we chose to sample BSMs every 2 seconds in
our implementation on the simulator.

2) Congestion Request Messages: When a car approaches
the end of a road and can choose from two or more routes, it
will need congestion measurements from other cars in order
to make the choice that will minimize its remaining trip time.
Hence, it broadcasts a congestion request message to all nearby
cars in its communication range to obtain this information. The
content of this message is a list of roads of interest; these are
the roads that form the candidate paths to destination. The
car will choose its next path based on the responses it gets. In
other words, these are the roads that will help a car differentiate
between multiple paths and choose one over the other.

Fig. 1: An over-simplified routing decision with three potential
route choices

Figure 1 demonstrates a scenario where the car is supposed
to choose from R1, R2 and R3 to arrive at its destination,
denoted by a star. The arrows represent the roads of interest
that the car would like to learn about. Note that there are two
streets that are associated only with R3. If R3 was no longer
a potential route for this car because one of these two streets
were blocked, then the car would delete all additional roads
due to R3 from its list in congestion request, because they are
no longer useful in choosing between its potential paths.

3) Congestion Response Messages: A congestion response
message is sent only when a congestion request is received and
there are related entries in the congestion information database
of the receiving car, ensuring that no superfluous information
is transmitted. The response includes congestion information
about the roads of interest available at the receiver.

B. Congestion Information Database

1) Creating and Storing Congestion Information: In order
to store and exchange congestion measurements, vehicles make
use of congestion info structs. Each struct consists of the
following fields:

Creator ID: The unique ID of the vehicle that created this
measurement.

Edge ID: The unique ID of the road that this measurement
belongs to. (Bidirectional roads are assumed to have two
separate IDs, one for each direction.)

Average Speed: Average of the speed readings from all the
cars on the same road with the car that crates this measurement.

Timestamp: Time of the measurement’s creation to ensure
the freshness of measurements and prioritize most recent ones.

2) Maintaining the Congestion Information Database:
The congestion information database consists of the vehicle’s
own measurements and measurements learned from others as
a result of the congestion request-response protocol.

Let m denote a measurement which is a congestion
information struct. We define the following functions:

c(m) : unique ID of the car that created m
e(m) : unique edge ID of the road which m belongs to
s(m) : average speed in m
t(m) : timestamp of m

Let DBx be an abbreviation for the local congestion
database of car x. DBx consists of zero or more congestion
measurement entries. Let E be the set of all the edges (roads)
in the map:

DBx = {m1,m2,m3, . . . ,mn}, 0 ≤ n ≤ |E|

There are two cases in which a measurement will be
inserted to the database. The first is when the car creates
its own measurement by sampling its own speed, together
with the speeds of other cars on the same road it is passing
along. In this case, the car will force this measurement into
its database, overwriting an existing entry for that road (if
one exists). The second is when measurements are obtained
through congestion responses received from other vehicles. As
stated earlier, a congestion response message CR consists of
several measurements. Assume that a car sent out a congestion
request with a set of interesting roads denoted by I . A
congestion response message will be triggered at a recipient.
The recipient will check whether any information regarding
roads in I exists in its database. If not, no reply is sent. If a
match is found, the response will have the following format:

CR = {m1,m2,m3, . . . ,ms}, s ≤ |I|

Each mi ∈ CR will then be given to Algorithm 1 as an input.
The algorithm decides whether mi should be dropped or added
to a car’s database.

tα is a time threshold that determines when a measurement
created by the car itself becomes outdated in its congestion
information database. Cars prioritize the measurements that
they created themselves over measurements originating from
others. They will ignore fresher measurements heard from
other cars if their own recordings are not at least tα older
than the received measurements.

At this stage, two important features should be highlighted.
First, at all times, a car’s database will contain at most one
tuple for each road in the map. Second, since vehicles respond
to congestion requests using the information in their database,
if vehicle Vk gets measurement mj from vehicle Vj in response
to a request, Vk might later send mj to a third vehicle Vs in
response to the third vehicle’s request. In other words, cars
also disseminate congestion information learned from other
cars in response to later requests. Since each measurement is

Algorithm 1 Insertion of measurement from a CR message

if 6 ∃ m ∈ DBx, e(m) = e(m′) then
DBx.add(m

′)
else

m← measurement from DBx, where e(m) = e(m′)
if t(m′) > t(m) then

if c(m) 6= cx then
DBx.remove(m)
DBx.add(m

′)
else if t(m′)− t(m) > tα then
DBx.remove(m)
DBx.add(m

′)
else
drop(m′)

end if
else

drop(m′)
end if

end if

associated with its creator by Creator ID, it can always be
traced back to the car where it originated. Authenticity can be
enforced using signatures [14].

C. Dynamic Rerouting

Our dynamic route planning technique helps cars avoid
congestion by choosing the route with the minimum trip
time. This optimal route is calculated using the congestion
information available to the car. There are two limitations in
real-time trip time optimization:

• Calculating a global optimum is challenging due to
the amount of congestion information required. Addi-
tionally, the global optimum may change frequently
since congestion levels are often highly dynamic.
Therefore, we designed a checkpoint-based approach
and minimize trip times for each sub-trip after dividing
a long trip into several sub-trips.

• Running a link-state shortest-path algorithm (e.g.,
Dijkstra) on-the-fly is computationally demanding, in
both simulation and real life. There can be frequent
updates on the average speeds of the roads, which
will also cause total trip times to change frequently.
As known, link-state shortest-path algorithms are not
scalable in the case of frequent updates in the link
cost table due to the computational overhead of table
reconstruction. We present the ”RoutingAPI” to over-
come this problem.

1) Checkpoints: In our congestion avoidance mechanism,
instead of optimizing the routes globally in terms of trip times,
we perform a local optimization. When a car calculates a
shortest path to the destination in terms of distance at the
beginning of its trip, we place checkpoints on the path with
equal distance among them. In case any of the checkpoints
turns out to be in a congested area, we push it further away on
the path. In other words, checkpoints are dynamically changed
along the way in order to solve this problem. Our algorithm
calculates the least congested path only to the next checkpoint.
When the car arrives there, it calculates a new least congested

path to the next checkpoint, and so on. This approach is
more efficient and effective than global optimization for two
reasons. First, cars can collect local congestion information
much faster than global information since every car in the local
area will be in the wireless communication range. Second, the
local congestion information will be more up to date since by
the time the car arrives at a distant road, congestion levels
will change and a globally optimum route calculated at the
beginning of the trip will end up being a suboptimal one later.

This approach also scales better than global optimization
since cars will not have to store the congestion levels of all
the roads in the map and local optimum route calculation will
require less computational overhead. Additionally, by placing
checkpoints on the shortest path in terms of distance, we
minimize the number of checkpoints and prevent loops in the
routes. Also this way, when our system becomes idle when
there is no congestion or there are no cars around, vehicles will
follow the shortest path in terms of distance. Therefore, our
algorithm is highly tolerant to lack of or partial information.

2) RoutingAPI: Instead of finding all possible routes be-
tween two points during the simulation, we use an API
to perform this operation at setup-time. The API stores all
potential routes between two points, and returns the shortest
k routes when asked. This connectivity data is generated
offline; cars will just download it once and start querying
the API (instead of generating it themselves). Note that the
routes returned by the API are k best routes in terms of
distance, calculated without the existence or assumption of any
congestion information. Upon receiving these potential routes,
a car will still need to use the congestion information available
to it in order to select the least congested route.

The success of the API depends on two variables. First is
the number of routes it returns, i.e., k. When k gets large, we
ensure that more routes are considered by the vehicles when
they reroute. As a result, a less congested route is less likely
to be missed (i.e., left undiscovered). However, it also causes
the size of the API database and the selection set of the cars
to become larger. Hence, the computational cost required for
rerouting will grow. The second parameter is the checkpoint
interval, i.e., distance between the checkpoints as discussed
in the previous section. A larger interval requires a larger k;
otherwise most routes that make sense will be omitted from the
selection. If the interval is too low, cars will be less flexible in
their rerouting decisions. Existence of these parameters offers
freedom with respect to the amount of resources available to
the cars. For example, an unbounded k would mean a car will
consider every possible route from source to destination, which
might be desired assuming the car has enough computation
power and space. On the other hand, it is best to set a
reasonable k to run a giant simulation with limited resources.
Similarly, checkpoint intervals can be set according to the
reliable transmission range of the communication medium.

3) Least Congested Route Selection: We minimize the
trip time between two checkpoints after getting k-best routes
between them from RoutingAPI. Every time a car approaches
the end of a road, it calculates what its roads of interest are in
order to differentiate a less congested route from these k routes.
The car then sends out a congestion request asking for these
roads. Congestion responses received will be merged with the
congestion information database of the car using Algorithm 1
as described before. The routing decision then becomes a set

of arithmetic operations; the trip time for each of the k routes
will be computed, and the car will choose the one with the least
trip time as the chosen route. Let RSet be the route database
of the car that consists of the k candidate routes explained
above. Each route R is a series of edges (roads) which are
represented by E.

RSet = {R1, R2, R3, . . . , Rk}, R = {E1, E2, E3, . . . , Ei}

Therefore, the selection of the least congested route from RSet
is performed using the following calculations:

RChosen = min
∀R∈RSet

(
∑

∀E∈R

Length(E)/AvgSpeed(E))

V. EVALUATION

We used Veins [2] that couples SUMO [3] and OMNeT
[4] simulators for our experiments. SUMO simulates vehicular
traffic, whereas OMNeT takes care of communication between
the vehicles. We simulated traffic in a Manhattan grid for 3600
simulation seconds (1 hr). We set random start and end points
for each car entering the grid.

To better understand the effect of our congestion avoid-
ance algorithm, we experimented with three levels of traffic:
low (one car generated every 2 seconds), medium (one car
generated every 1 second) and high (one car generated every
0.8 seconds). We observed no serious traffic congestion with
low level of traffic. For medium amount of traffic, there was
a slight increase in cars’ trip times. There was a visible traffic
jam when traffic volume was set to high, as average trip times
increased by 100%. We can not report results for even higher
volumes of traffic (e.g., cars generated every 0.5 seconds)
because then traffic becomes so jammed that it is impossible
to get reliable results within reasonable amount of time.

In Figure 2, we compare offline and online route assignment
strategies. In the offline case, SUMO’s user assignment module
(duarouter) is used to calculate shortest-path routes, which are
then fixed. Cars do not use V2V communications or re-plan
their routes on the fly. In the online case, however, all cars use
our VANET-based congestion avoidance mechanism. One can
validate that there is an increase in average trip time as the
traffic volume is increased; a rough calculation would show
that the amount of time wasted in traffic goes from a mere
10-20% of vehicles’ trip times to approximately 50% as the
volume of traffic is increased. Although the benefits of using
our system is marginal when the traffic volume is low (Figure
2(a)), reduction in trip times increases as the traffic volume
gets bigger. The reason is that our system remains idle when
there is no congestion to avoid to save vehicles from redundant
calculations and communications. This way, as opposed to
other systems in the literature, our system consumes vehicles’
resources exactly as much as needed.

In addition to trip times, we also observed changes in the
number/density of vehicles in the simulated area, as shown
in Figure 3. Again, enabling or disabling our congestion
avoidance system does not offer much when the level of traffic
is low. Yet, it performs as well as (or slightly better than)
being completely offline, thanks to the initial checkpoints. For
high levels of traffic, we observe a significant reduction in the
number of vehicles between 1500sec and 3000sec, since our
system gets more active and aggressive as the congestion level
increases.

(a) Traffic volume: low (b) Traffic volume: medium (c) Traffic volume: high

Fig. 2: Average trip times with respect to time. Red lines result when the congestion avoidance algorithm is not used, green
lines depict average trip times when the algorithm is enabled. The axes share the same scale in all three graphs.

Fig. 3: Number of vehicles for different levels of traffic, with
and without the congestion avoidance algorithm.

VI. CONCLUSION AND FUTURE WORK

In this paper, we review existing VANET-assisted conges-
tion avoidance mechanisms and propose a novel approach.
We point out several design considerations and try to justify
our choices through intuitive arguments and examples. We
acknowledge that smart navigation systems with capabilities
of avoiding traffic congestion are crucial in today’s world
and show that VANETs can be utilized to achieve this goal.
The system we propose relies on sending information request
messages whenever a vehicle desires or needs to learn more
about upcoming roads and traffic. We believe that this scheme
reduces the potential redundancies in frequent periodic broad-
casting, and ensures a low computation overhead and scalable
network load; this is crucial in a highly dynamic real-life traffic
scenarios.

As part of future work, we plan to extend and evaluate this
system by experimenting with changing request rates, changing
percentage of cars that volunteer to use our system, and various
BSM sampling frequencies/techniques. Also, we have made
an implicit assumption in this paper that all vehicles honestly
follow the protocols and algorithms to the best of their ability,
e.g., they do not flood the system with excessive number of
requests or supply bogus congestion information. We plan to
investigate these issues in our future work as well.

REFERENCES

[1] http://www.fastcompany.com/3022489/innovation-agents/self-driving-
cars-let-go-of-the-wheel/.

[2] http://veins.car2x.org.
[3] http://sumo-sim.org.
[4] http://www.omnetpp.org.
[5] Dedicated short range communications (dsrc) message set dictionary.

WIP Standard J2735, November 2009.
[6] R. Bauza, J. Gozalvez, and J. Sanchez-Soriano. Road traffic congestion

detection through cooperative vehicle-to-vehicle communications. In
IEEE 35th Conference on Local Computer Networks, 2010.

[7] W. Chen, S. Zhu, and D. Li. Van: Vehicle-assisted shortest-time path
navigation. In IEEE MASS, 2010.

[8] S. Fontanelli, E. Bini, and P. Santi. Dynamic route planning in vehicular
networks based on future travel estimation. In IEEE VNC, 2010.

[9] P. J. He, K. F. Ssu, and Y. Y. Lin. Sharing trajectories of autonomous
driving vehicles to achieve time-efficient path navigation. In IEEE VNC,
2013.

[10] J. Kenney. Dedicated short-range communications (dsrc) standards in
the united states. Proceedings of the IEEE, 99(7):1162–1182, July 2011.

[11] W. Kim and M. Gerla. Navopt: Navigator assisted vehicular route
optimizer. In 5th International Conference on IMIS, 2011.

[12] I. Leontiadis, G. Marfia, D. Mack, G. Pau, C. Mascolo, and M. Gerla.
On the effectiveness of an opportunistic traffic management system for
vehicular networks. IEEE Transactions on ITS, 12(4):1537–1548, 2011.

[13] M. Milojevic and V. Rakocevic. Distributed vehicular traffic congestion
detection algorithm for urban environments. In IEEE VNC, 2013.

[14] M. Raya and J. P. Hubaux. Securing vehicular ad hoc networks. Journal
of Computer Security, 15(1):39–68, 2007.

[15] D. Schrank. Urban Mobility Report (2004). DIANE Publishing, 2008.
[16] V. Verroios, K. Kollias, P. K. Chrysanthis, and A. Delis. Adaptive

navigation of vehicles in congested road networks. In ICPS, 2008.
[17] Wireless LAN Working Group. Wireless access in vehicular environ-

ments. IEEE Standards, July 2010.
[18] L. Wischoff, A. Ebner, H. Rohling, M. Lott, and R. Halfmann. Sotis -

a self organizing traffic information system. In VTC, 2003.
[19] Y. Yang and R. Bagrodia. Evaluation of vanet-based advanced intelli-

gent transportation systems. In ACM VANET, 2009.
[20] J. Zhang, J. Xu, C. Zhu, W. Wang, and S. S. Liao. Constructing

summarizations for v2v traffic data based on sampling methods. In
IEEE VNC, 2010.

