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Abstract—Vehicular ad hoc networks (VANETs) are designed
to provide traffic safety by exploiting the inter-vehicular commu-
nications. Vehicles build awareness of traffic in their surroundings
using information broadcast by other vehicles, such as speed,
location and heading, to proactively avoid collisions. The effec-
tiveness of these VANET traffic safety applications is particularly
dependent on the accuracy of the location information advertised
by each vehicle. Therefore, traffic safety can be compromised
when Sybil attackers maliciously advertise false locations or other
inaccurate GPS readings are sent. The most effective way to
detect a Sybil attack or correct the noise in the GPS readings
is localizing vehicles based on the physical features of their
transmission signals. The current localization techniques either
are designed for networks where the nodes are immobile or
suffer from inaccuracy in high-interference environments. In this
paper, we present a RSSI-based localization technique that uses
mobile nodes for localizing another mobile node and adjusts itself
based on the heterogeneous interference levels in the environment.
We show via simulation that our localization mechanism is
more accurate than the other mechanisms and more resistant
to environments with high interference and mobility.
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I. INTRODUCTION

Due to the large number of injuries and fatalities caused by
traffic-related crashes, traffic safety is a big concern worldwide
[11]. Traffic accidents are mainly caused by human error,
such as a driver’s slow reaction to local visual and acoustic
cues or unsafe actions due to insufficient traffic information
[18]. Vehicular ad hoc networks (VANETs) have emerged as a
promising approach to increasing traffic safety and preventing
collisions by enhancing both the accuracy of traffic information
and the delivery of alarms.

In a VANET, vehicles communicate with each other over
a wireless channel and exchange routine traffic information
through Basic Safety Messages (BSMs) [19], which contain
current speeds, locations, and directions, as well as emergency
alarms, such as notifications of emergency braking, etc. With
VANETs, vehicles can collect more accurate traffic information
electronically than drivers can visually. The direct activation
of commands (brakes, accelerator, steering wheel, etc.) by an
alarm will ensure a vehicle’s prompt reaction to abrupt traffic
events without depending on the driver’s alertness. These
VANET traffic safety applications, however, rely highly on
the correctness of location data. If the location information
is compromised, by Sybil attacks, inaccurate GPS data, or
other bugs in a vehicle’s software, the safety of the vehicular

network will be jeopardized. Intelligent Sybil attacks use the
most extreme forms of inaccuracy to achieve their goals, so
mechanisms resistant to such attacks are likely to also handle
accidental errors and inaccuracies. It is therefore necessary for
VANETs to deploy a localization mechanism with built-in sup-
port for Sybil attack detection to defend against such attacks
and enhance the safety of the network. Such a mechanism
can also improve traffic safety by providing location data to
VANET traffic safety applications since GPS is unreliable and
sometimes unavailable in indoor locations such as a tunnel [6].

There are numerous localization mechanisms proposed in
the literature. However, most of them are either designed for
networks with stationary nodes—such as sensor networks—
and therefore perform poorly in networks with high mobility,
or they have requirements that are unrealistic in the presence of
malicious nodes. Most of the existing localization mechanisms
that are specifically designed for VANETs do not provide Sybil
attack detection. The state-of-the-art localization mechanism
that also defends against Sybil attacks is presented in [20] and
will be referred as POEST in this paper.

POEST is an RSSI-based localization mechanism that uses
the stationary roadside units (RSUs) to localize a vehicle. It
estimates the location of the vehicle as a point and detects pos-
sible Sybil attacks using this point. It uses a radio propagation
model that is—to some extent—interference-aware; however,
due to its several drawbacks, which are discussed throughout
paper, it suffers from inaccuracy in case of high interference
levels and mobility. In this paper, we propose our localization
mechanism, INTERLOC, that is resistant to extreme levels of
interference and mobility. It continuously learns and adapts
to heterogeneous and changing interference levels by using
an interference-aware radio propagation model more effective
than POEST. It uses the vehicles on the map to localize another
vehicle to minimize the effect of mobility on accuracy. Using
multiple vehicles as observers also provides faster interference
adaptation. For Sybil attack detection, it estimates an area
that contains the localized vehicle rather than a point, which
provides a better detection accuracy than POEST. We also
designed another version of INTERLOC by just replacing its
radio propagation model with FRIIS [16]—an interference-
unaware model—in order to show the importance of taking
interference levels into account in localization.

In Section II, we present the existing localization mech-
anisms and their drawbacks. In Section III, we give an
overview of the POEST and FRIIS mechanisms as alternatives
to INTERLOC. We describe the design of the INTERLOC
mechanism in Section IV, along with a detailed comparison



with its alternatives in Section IV-E. In Section V, we show the
results of our experiments conducted on FRIIS, POEST and
INTERLOC, and demonstrate that INTERLOC performs better
than its alternatives even under highly challenging conditions.

II. RELATED WORK

Wireless localization is a well-studied area and there is
a significant body of related work. The existing work on
localization is mostly for sensor networks [3], [10], [13],
[14], [15] and the localization approach used—exploiting the
properties of radio signals—generally involves using one of
these four methods: time of arrival (ToA), time difference of
arrival (TDoA), angle of arrival (AoA) and RSSI.

The use of ToA and TDoA [10], [14], [15] must assume
that the localized node is cooperative, which is not realistic
since a Sybil attacker will not cooperate. Also, they both
require the time that a signal was sent and received by all
nodes, which can easily be faked by a malicious node. [15]
uses AoA but it requires specialized hardware to detect the
angle of a signal. [10] attempts to circumvent the need for spe-
cialized hardware, but states that calculating and normalizing
the angle of a signal require at least two antennas (stationary
and rotational), which is not applicable for VANETs.

We believe that exploiting RSSI for localization is the
most effective and lightweight approach. Other localization
methods have also concluded that measurements of RSSI is
the most reliable mechanism, while maintaining the freedom
to work in a dynamic environment without expensive hardware
[14]. Unfortunately, RSSI values can be affected significantly
by the interference levels in an environment. Some methods
overcome this problem by having a dense network of highly
repetitive values, as well as the limited mobility of their
environment [14]. RSSI also has a tendency to reach extremely
low values, which can easily be solved by a filtering strategy
[5]. INTERLOC is especially designed to be robust with noisy
RSSI values in high-interference environments.

Most existing localization mechanisms are designed for
and work well in networks with stationary nodes, but are
infeasible in high mobility networks. They either require a
phase to learn the map prior to localization [3] or require
anchor points (special stationary nodes) on the map [13].
An algorithm without these requirements is clearly preferable.
Localization mechanisms for VANETs should specifically be
designed for high mobility and optimized based on the VANET
specifications and their expected deployments and uses.

There are some localization mechanisms designed for
VANETs. [7] does not actually localize but improves the
already advertised locations by a prediction model. [1] and [4]
rely on the localized car to be cooperative, which is again not
realistic due to the aforementioned reason. [12] proposes using
RSUs for localization; however, RSUs might have limited
availability since they are expensive. [8] has some similarity
with INTERLOC in a way that vehicles use inter-vehicular
communication to calculate the distance to a vehicle; however,
the motion and GPS information are used to increase the
accuracy, which can easily be faked by malicious nodes. [2]
uses signal strength obtained from BSMs for localization but
it is only for vehicles to localize themselves. Furthermore,
all these localization mechanisms for VANETs neither have
a Sybil attack detection mechanism nor guidelines on how
they can be used for that purpose. We believe that every
VANET localization mechanism should be designed either with

a built-in support for Sybil attack detection or in a way that
makes later deployment of such mechanism convenient. In
that manner, POEST [20] is the state-of-the-art localization
mechanism with already built-in Sybil attack detection. We
discuss the drawbacks of POEST mechanism in Section IV-E.

III. POEST AND FRIIS OVERVIEW
A. POEST

POEST is mainly designed for Sybil attack detection and
uses RSUs for localization. Each RSU samples the RSSIs from
the vehicle being localized and sends these values to the RSU
that is responsible for estimating the location of the vehicle
in question. Localization is then performed by minimizing the
following Mean-Square Error (MSE) formula:

MSE(p) =

∑k
i=1(Sr(wi)− Sm(wi, p))

2

k
p is a potential position of the sender vehicle, k is the

number of RSUs (witnesses) that participate in the localization,
Sr is the received signal strength at witness wi, Sm is the
signal strength that witness wi is supposed to observe from
a sender node given its position p, according to the radio
propagation model presented in [9]. The formula of the radio
propagation model that is used by the Sm function after the
input p is converted to distance is:

PT − PR = PL0 + 10γ log10(
d

d0
) +Xg

PT is the transmission power (in dBm) of the sender node
and PR is the power of the signal measured at the receiver
side. PL0 represents the path loss (PT0

−PR0
) at the reference

distance d0. The initialization variables PL0 and d0 have to
be set in the beginning before the formula is used and they
have to stay the same afterwards. These variables configure the
formula according to the general path loss of the environment
according to the map size. γ is the coefficient that can be
used to fine-tune the formula based on the interference levels
on the map. POEST sets γ to a value that, to some extent,
represents the overall interference level on the map before it
starts localizing any vehicle and never changes it after that.
Xg is a normal random variable and is set to zero in this case.

POEST minimizes the MSE by varying p, and the p̂
that gives the minimum MSE becomes the optimal estimated
position while the resulting minimum MSE indicates the error
in the localization. After comparing this estimated location
against the advertised location, POEST reports a Sybil attack
if the locations are different.

B. FRIIS

FRIIS [16] is another radio propagation model that can
be used by any localization algorithm as an alternative to
the shadowing model presented in [9]. It demonstrates the
relationship between transmitted and received signal strength
based on distance in an ideal environment. In other words,
unlike the shadowing model, FRIIS does not consider path
loss or interference levels in the environment. The formula of
this propagation model is:

PR

PT
= GTGR

(
λ

4πR

)2

PR and PT represent the received power and the trans-
mission power respectively. GT and GR are the antenna



gains, which are both set to 1 in our simulations since the
test environment does not incorporate any antenna gain. λ
is the wave length of the transmitted signal, and R is the
radius/distance that is traveled by the transmitted signal.

IV. INTERLOC MECHANISM

A. Overview

INTERLOC is a RSSI-based localization algorithm that
is designed both for detecting Sybil attacks and providing
the location of any vehicle—when its GPS is not available
or noisy—to improve traffic safety. It dynamically learns the
new interference levels and adjusts itself accordingly, and is
therefore robust to high and changing interference levels in the
environment. INTERLOC does not depend on the existence
of RSUs or any other stationary roadside infrastructure for
localization. Since we believe that the most effective way of
localizing a mobile node is using other mobile nodes to collect
the RSSI values, INTERLOC uses the vehicles (observers) on
the map to localize another vehicle. Therefore, it is also highly
robust to the extreme levels and change rates of mobility in
the network, since observers will have the same mobility at
that time as the vehicle being localized.
B. Localization Algorithm

INTERLOC uses the same radio propagation model as
POEST but does not perform MSE minimization to estimate
the position of the vehicle. Instead of estimating the exact point
with an error, INTERLOC estimates an area where the vehicle
is certainly located without an error. Each observer samples the
RSSI values by listening to the BSMs that are continuously
broadcast from the vehicle being localized and estimates its
distance to the vehicle using the following formula:

d = d0 ∗ 10
(
PT−PR−PL0

10γ

)
d is the estimated distance between the observer and the

localized vehicle. Other variables were explained earlier in
Section III-A. After all observers in the vicinity of the localized
car estimate their individual d, they send their current location
and the estimated d to the chosen observer for it to process this
aggregated data. Time lags due to various delays (propagation,
the observer selection, etc.) are resolved by this processing
observer using the timestamps of the received measurements.

Figure 1. Localization performed by the observers and the estimated area

The chosen observer then creates a circle for each par-
ticipating observer, where the centre point is equal to the
location of the corresponding participating observer and the
radius is the d estimated by that observer. After all the
circles are created, the chosen observer calculates the polygon
whose corners are the intersection points of these circles. The
localized car will be inside this polygon without any estimation
error, since each d will always be greater than or equal to the
actual distance between the observer and the localized car.
In an ideal environment without any interference in the RSSI
values, the estimated polygon will just be a point on top of the
localized car. As the interference levels increase, RSSI values
will get lower increasing each d based on the interference
measured by the associated observer. Therefore, the size of the
polygon will get bigger but it will always contain the localized
car inside due to the way d values are updated.
C. Mechanism for Learning Interference Levels

Learning and adapting to the changing interference levels
are performed by exploiting the two variables of the radio
propagation model: PL0 and γ.

PL0 is used to represent the initial overall interference
levels before the localization can be performed. POEST sets
this variable after a few iterations among a small number of
stationary observers. INTERLOC sets it after measuring power
losses between every vehicle that is d0 away from each other
on the map, which enables sensing interference levels with
a finer granularity and a wider range of angles than POEST.
The value of d0 is set in a way that maximizes the number
of observers participating in the PL0 calculation. As a result,
INTERLOC represents the initial interference levels on the
map much better and more thoroughly than POEST.

Learning the initial interference levels alone is not suffi-
cient for achieving a high localization accuracy. Configuring
only the PL0 is considering interference levels to be the same
everywhere on the map. However, interference levels differ
based on where the localized vehicle is on the map and the
angle between the vehicle and each observer. Also, the position
of the vehicle being localized and the angle between the
vehicle and each observer will continuously change. Therefore,
we exploit the γ in the radio propagation model to dynamically
adapt to the heterogeneous and changing interference levels.

Each observer has a set of (θ, γ) pairs, where each γ is
calculated by sampling the interference level in the direction to
another observer in the communication range and θ is the angle
to that observer. Each observer recycles its set periodically due
to the constant changes in positions and angles in order to
adapt to the changing interference levels. Each (θ, γ) pair is
calculated by the following formulas where the positions of
the sampling and the other observer are (x1, y1) and (x2, y2):

γ =
PT − PR − PL0

10 log10(
d
d0
)

d =
√

(x1 − x2)2 + (y1 − y2)2

θ =


arctan(x1−x2

y1−y2 ), if x1 ≤ x2 and y1 < y2

180◦ + arctan(x1−x2
y1−y2 ), if y1 ≥ y2

360◦ + arctan(x1−x2
y1−y2 ), if x1 > x2 and y1 < y2

d is set to the distance between the advertised positions of
the two observers and θ is the clockwise angle from true north
of the sampling observer to the other observer. An example of
the θ calculation is shown in Figure 2.



Figure 2. γ selection performed by each observer based on θthreshold value

When a vehicle is to be localized, every observer in the
vicinity of the vehicle attempts to choose the best (θ, γ)
pair to use from its set, based on the angle to the vehicle
being localized (θloc). Since θloc cannot be calculated without
first knowing the estimated location of the vehicle, the initial
estimation is performed by each observer using a default
γ. Similarly to PL0, the default γ is set to the value that
minimizes the estimation error at setup time.

After the initial estimation of the vehicle’s location by
using the default γ, each observer then calculates its own θloc
and determines the best (θ, γ) pair to use from its own set
based on this θloc. The pair with the closest θ to θloc is regarded
as the best choice (θbest, γbest) and will be subjected to the
final threshold test. If |θbest−θloc| ≤ θthreshold, then the γbest
will be used in the localization; otherwise, the default γ will
be used until there is a θbest that passes the threshold test.

Figure 2 depicts the γ selection mechanism along with how
an observer calculates θ using true north. In this scenario,
γ3 will be used by the observer on top since currently θ3
is the angle that passes the threshold test. Every observer
participating in the localization performs this γ selection based
on its own set and can use different γ values than the other
observers. This makes INTERLOC take the heterogeneity of
interference levels into account for localization. Since the an-
gles and locations of the vehicles are constantly changing, each
observer periodically updates its γ value used in localization
along with periodically recycling its set with new (θ, γ) pairs,
which ensures the adaptation to changing interference levels.

D. Sybil Attack Detection and Traffic Safety

INTERLOC uses the estimated localization areas to detect
active Sybil attacks. Every observer continuously participates
in the localization of all the vehicles in its communication
range while listening to their location advertisements in the
BSMs at the same time. All the chosen observers—each of
which is responsible for processing the data obtained from the
other observers to calculate its localization area—check if any
advertised location falls outside the area where the advertising
vehicle is estimated to be in. If such an inconsistency gets
detected, the chosen observer that detected it will mark the
vehicle as a Sybil node and notify the authorities about it.

When a legitimate car wants to advertise its location, it
uses the built-in GPS unit to find the location and broadcasts

it through the BSMs. However, there might be some minor
fluctuations from its true location due to the natural noise in
GPS [6]. If a localization mechanism estimates a point and
compares the advertised location with this point to detect Sybil
attacks, a legitimate vehicle might be marked as a Sybil node
due to these fluctuations. INTERLOC gets rid of these false
positives by estimating the smallest area that certainly contains
the vehicle being localized even with all the GPS fluctuations
that might occur. Therefore, if the advertised location of a
vehicle is outside the localization area, then it is safe to
mark the vehicle as a Sybil node. There still might be false
negatives when the localization area is large and the Sybil
attacker is advertising a relatively close location to the true
location. However, the radii of the localization areas estimated
by INTERLOC are generally smaller than the differences from
the true location that are caused by Sybil attacks; therefore,
false negative rates of INTERLOC are also fairly low.

INTERLOC can also significantly improve traffic safety.
Due to the fluctuations from the true locations of vehicles
caused by the noise in GPS, or to the absence of GPS data
in the places like tunnels, the advertised locations in BMSs
can sometimes be inaccurate or not available. This can cause
serious accidents since the VANET traffic safety applications
are highly dependent on the correctness of the advertised
location data. In order to resolve this problem, vehicles can
use the “Positioning Accuracy” field in the BSM [19], which
indicates the error in GPS. If GPS is erroneous beyond some
threshold, vehicles can switch to the localization mode and ask
the responsible observer for the associated localization area.
Afterwards, all traffic safety applications can use this area for
avoiding collisions, which increases their tolerance to the noisy
or unavailable location data.

E. Comparison with POEST and FRIIS

POEST uses the RSUs to collect RSSI values from a
vehicle and localize it. The RSUs are stationary and not
available in many places since it is expensive to install them.
Therefore, using RSUs to defend against Sybil attackers is not
an effective method since once they leave the area covered
by the RSUs that POEST uses for localization, the attackers
cannot be found anymore. RSUs also lose the vehicles when
they enter a tunnel even if the vehicles are in their communi-
cation range. Since INTERLOC uses vehicles to localize other
vehicles, localization can continuously be performed virtually
anywhere on the map—even in a tunnel. While POEST uses
a static γ value for all the nodes performing the localization,
which introduces high inaccuracy due to the heterogeneous
and changing interference levels, it is even more severe for
the tunnel cases. On the other hand, INTERLOC is likely to
perform very well in these cases since the measurements of the
observers in the tunnel will be weighed more in the localization
formula than the observers outside the tunnel—thanks to the
usage of different and always up-to-date γ values. Furthermore,
localization by mobile nodes makes INTERLOC more resistant
to the mobility than POEST.

POEST estimates a point after the localization and uses
this point to detect a Sybil attack, which causes a high false
positive rate. INTERLOC has no false positives due to the
usage of localization area instead—without increasing the false
negative rate. Since the only difference between INTERLOC
and FRIIS is the deployed propagation model, FRIIS also has
no false positives. However, its false negative rate is much



higher than INTERLOC’s—the localization areas estimated
by FRIIS are much bigger since it does not incorporate the
interference levels into its propagation model.

V. EVALUATION

We used Veins [17] (which combines the SUMO and OM-
NeT simulators) to evaluate the three localization algorithms.
SUMO is responsible for simulating realistic vehicular traffic
while OMNeT simulates the communication capabilities of the
vehicles, with IEEE 802.11p integration [19].

We benchmarked FRIIS, POEST and INTERLOC in en-
vironments that are intentionally designed to be highly chal-
lenging and to reveal the worst-case-scenario accuracies of
these three mechanisms. Any localization algorithm designed
for VANETs will face such worst-case scenarios very often
due to the nature of these networks, where extreme sparsity or
density levels occur very often, and nodes are highly mobile.
Therefore, this approach provides a more realistic performance
analysis of these three mechanisms and a more thorough
comparison between them. We ran one simulation for the Sybil
attack detection accuracy graph and a separate simulation for
each value on the x-axis of the remaining graphs (e.g., one
simulation for 5% observers, one for 10%, etc.), each of which
was 1000 seconds long. In each of these simulations, all three
mechanisms were evaluated at the same time with the same
number of observers (stationary for POEST and mobile for
INTERLOC and FRIIS), and there were approximately 300
localizations performed.

Figure 3. False positive and false negative rates during Sybil attack detection

We first evaluated the success of the localization mech-
anisms against a Sybil attack scenario we implemented. In
our scenario, any vehicle can be a Sybil attacker and begin
advertising false locations with a probability that is input to
the simulation. In order to challenge the precision of each
algorithm, each malicious vehicle advertises locations only
subtly different (≈ 10meters away in any direction) than its
actual location. Figure 3 shows the false positive and false
negative percentages during the detection of Sybil attacks by
the three mechanisms. INTERLOC performs approximately
twice as well as FRIIS and POEST in detecting Sybil attacks.
FRIIS and INTERLOC do not have any false positives since
they estimate a localization area rather than a point and use
this for Sybil attack detection, as discussed in Section IV-D.

The following experiments measure the localization ac-
curacy of the three mechanisms in case they are used to
provide locations for traffic safety when GPS is not available

or is highly noisy. We discussed earlier that calculating a
localization area rather than a point is a better way for both
Sybil attack detection and localization; however, to fairly
compare POEST with FRIIS and INTERLOC, we calculate
the centroid of the estimated localization area of FRIIS and
INTERLOC just for comparison of point estimation and to
evaluate the success rate of these three mechanisms. If the
estimated point is closer to another vehicle than the vehicle
being localized, then it is a failure case; otherwise, we regard
it as a successful localization. Note that the point estimation for
FRIIS and INTERLOC is just for the sake of a fair comparison
with POEST, and is not a representation of how they will
actually perform Sybil attack detection or localization.

Figure 4. Accuracy graph with different percentages of observers

Figure 4 shows the accuracies of each localization mecha-
nism with different percentages of observers, which are used
for localization. The more observers are used for sampling
RSSI readings, the more accurate each localization mechanism
will be. However, INTERLOC always stays above the other
mechanisms since it exploits the number of observers also for
learning the interference levels on the map more effectively,
therefore, adjusting to them better and faster.

Figure 5. Accuracy graph based on the total number of cars on the map

Due to the way we calculate the accuracy of each local-
ization mechanism, the total number of vehicles on the map
has an adverse effect on the success of the localization. As
the total number of vehicles increases, the probability of each
estimated point to be closer to the other cars than the localized
car gets higher, thus decreases the accuracy of the localization
mechanisms, as shown in Figure 5. INTERLOC has a higher
overall accuracy comparing to the other mechanisms despite
these challenging conditions. Since the percentage of observers
is kept constant during this experiment, the adverse effect is



later counterbalanced—to some extent—by the increase in the
number of observers along with the total number of vehicles.

Figure 6. Size of the area of localization error with different mobility levels

In order to evaluate the resistance of the localization
mechanisms to the environments with high mobility, we use a
different metric: the area of localization error. We define the
area of localization error as the area of a circle with the radius
that is equal to the distance between the estimated point and the
true location of the car being localized—the area gets larger as
the localization error gets bigger. Figure 6 shows the changes in
the area of error for each localization mechanism based on the
different average speeds of the car being localized. We observe
that the localization error increases as the localized car moves
faster. The actual values on the y-axis of the graph in Figure
6 are missing since SUMO is using a Cartesian coordinate
system, which makes the conversion from a coordinate distance
to a meter distance too inaccurate to be used for measuring the
localization area in m2. The experiment results clearly show
that INTERLOC has a much smaller area of localization error
at each mobility level, and is very resistant to the changes in
the mobility of the vehicle being localized.

Figure 7. Failure rates with different obstacle densities and interference levels

Finally, we evaluate the localization mechanisms with
different interference levels on the map, as shown in Figure
7. Even the interference-unaware FRIIS performs better than
POEST since POEST’s estimation of the overall interference
levels in the beginning decreases its accuracy when the sub-
parts of the map have significantly different interference levels
than its initial estimation. Being interference-aware without
periodically adapting to the new interference levels produces
less accuracies than being interference-unaware. The local-
ization accuracy of INTERLOC, however, changes negligibly
with higher interference levels since it learns and dynamically
configures itself to adjust to each new interference level.

VI. CONCLUSION

In this paper, we demonstrated INTERLOC—a localization
mechanism with built-in Sybil attack detection for VANETs—
that is designed to withstand extreme levels of interference
and mobility. Unlike most localization mechanisms in the lit-
erature, INTERLOC is specifically designed for highly mobile
and noisy networks and takes the existence of malicious nodes
into account. We showed through experiments with highly
challenging test cases that INTERLOC performs much better
than its alternatives in terms of both localization and Sybil
attack detection accuracy. The high accuracy and resilience
of our localization mechanism not only enable an effective
defense against Sybil attackers, but also improve traffic safety
significantly, making INTERLOC a reliable alternative to GPS
when that system’s positioning is erroneous or not available.
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