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Abstract Multiplayer games are representative of a large

class of distributed applications that suffer from redundant

communication, bottlenecks, single points of failure and poor

reactivity to changing network conditions. Many of these

problems can be alleviated through simple network adapta-

tions at the infrastructure level. In this paper, we describe a

model in which game packets are directed along the edges of

a rooted tree connecting the players, aggregated during the

upstream flight and multicast from the root to the leaves. This

tree is constructed based on a heuristic, and can dynamically

adjust itself in response to changes in network conditions.

This gaming infrastructure is built and maintained using ac-

tive networks, which is currently the only open architecture

suitable for these types of applications.

We have designed and implemented a prototype us-

ing ANTS that performs these adaptations for unmodified

DOOM clients. We present analytical and simulation results

that illustrate the reduction in communication overhead, and

show that the multicast tree can quickly adjust to changing

network conditions. The overhead of the active network-
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based middleware is acceptable, especially in wide-area

networks.
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1. Introduction

In recent years, the computer gaming industry has exploded,

creating billions of dollars of revenue, even rivaling the movie

industry. Multiplayer games, or games that involve two or

more human entities, usually enjoy the most popularity with

users [26]. Although a large part of this industry in the past

few years has been taken over by console-based gaming such

as PlayStation, Xbox and GameCube, the network-based PC

game market continues to dominate and expand. Millions

of gamers around the world play EverQuest, StarCraft and

Counter Strike everyday. Older games like Quake and DOOM
provide the best user satisfaction when played on a LAN,

and support, at most, tens of players. Nowadays massively

multiplayer online role-playing games like EverQuest rule

the roost; thousands of players can be supported in a gaming

environment, with hundreds of such environments running

simultaneously over the Internet.

A number of technical issues are involved in making mul-

tiplayer gaming a pleasant experience. Most of these games

require that the entire game state, or a large subset of it, be

visible to each player at all times; this involves communicat-

ing a large quantity of data. For these games to be playable,

a number of real-time constraints must be satisfied. Graphics

and animation quality improve every year, and game envi-

ronments become more detailed and intricate. Consequently,

the amount of state information that needs to be transferred
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among players keeps increasing. The network, therefore, be-

comes the performance bottleneck.

Much work has gone into improving the performance and

scaling of these games, largely focusing on improving re-

sponse time while maintaining consistent state among player

nodes, assuming unreliable packet delivery; this is usually

done by reducing the amount of data communicated or by

delaying communication [8, 10, 13]. Delivering only the es-

sential data for an individual client has become an important

research focus. On the other hand, little work has been done to

improve the underlying game network infrastructure, which

would not only provide throughput gains and reduce commu-

nication overhead, but also improve consistency and interest

management.

Traditionally, game world designers have used one of two

models: peer-to-peer and client-server. In the former, each

player performs multiple unicasts of the game state to all

other players; this provides optimal response time to the play-

ers and is feasible in a broadcast medium like a LAN, but

fails to scale much beyond that. Also, identical game state is

sent repeatedly, resulting in redundant communication from

the overall system perspective. In client-server architectures,

each player sends updates to a server, which computes new

state and sends relevant information to all the players. The

average response time perceived by players is suboptimal,

but this approach scales well. Unfortunately, the server be-

comes a bottleneck and a single point of failure. Also, a static

topology causes the players to experience skewed response

times. Nonetheless, this model is popular with game compa-

nies since it allows them to retain administrative control.

Though the Internet provides the universal connectivity

that is essential for multiplayer games, it has some inherent

drawbacks that create difficulties for game designers.

No guarantees of packet delivery are offered, let alone

quality of service. Network and end-host characteristics

are heterogeneous. Broadband is getting common, and

game companies can afford to buy more bandwidth to their

servers, but the average game player is still likely to have

a dialup or a low-bandwidth DSL connection. Experiencing

variable bandwidth, high latency and significant jitter could

make game playing a bad experience. These problems occur

irrespective of the underlying system infrastructure. Also,

with non-optimally positioned servers, response times tend

to be highly skewed in favor of some players. The structures

tend to be static and cannot respond well to changes in

network and node conditions, nor to the joining and leaving

of players, which would significantly change the game

network topology.

To improve scaling and reduce skew in response time,

mirrored-server architectures are used widely, one example

being the architecture used in EverQuest. A mirrored-server

architecture [7] is a compromise between the client-sever

and the peer-to-peer models; a number of servers performing

identical functions are deployed on the Internet, with clients

connecting to the servers nearest to them. As in the client-

server case, administrative control can be retained and com-

munication overhead kept low; as in the peer-to-peer case,

latency is significantly reduced. The topology remains static

though; in the face of heterogeneity and changing conditions,

these architectures still fail to provide optimal structures.

The approach that we describe in this paper retains most

of the virtues of both the peer-to-peer and the client-server

models and eliminates many of their drawbacks. We con-

struct a multicast tree connecting the players that has a low

average player-to-player latency. This tree is rooted at a cen-

trally located node. Player packets are aggregated at the tree

branch points and propagated upwards. The root multicasts

an aggregated packet to the clients, who extract the game

packets. The root monitors network conditions periodically;

when changes in network conditions are detected, the tree

structure is changed and the root is relocated, with the aim

being minimization of average player-to-player latency. All

the nodes in the tree, including the players and intermedi-

ate nodes, participate in the building and monitoring of the

infrastructure, though it is only the root that makes the deci-

sions. This infrastructure is transparent to the application, so

that the game need not be modified. It also enhances relia-

bility and performance. Practically, such a framework would

require a number of “intelligent” nodes distributed through-

out the network that could be dynamically selected to be part

of the tree at any point of time, in addition to “intelligence”

at all player nodes. An actual deployment would require the

cooperation of Internet Service Providers for placement of

such nodes at strategic points in a network.

The main goals of our research are to enable the build-

ing of self-configuring and self-optimizing structures for the

routing of packets between game clients. It is our aim to en-

sure that the number of packets containing game information

transmitted through the network be minimal while also ensur-

ing that the average time taken by a packet to move from one

client node to another be as low as possible. Scalability is not a

primary aim of our research. The basic approach we describe

in this paper should scale for tens to hundreds of clients. Our

approach, though, can easily be extended or adapted to cre-

ate scalable infrastructures for massively multiplayer games;

this topic is dealt with in a later section in this paper.

The techniques we describe here are not just applicable

to networked games, but also to a larger class of distributed

applications, of which games are a part. As we shall see, our

methods are similar to those used to achieve interest manage-

ment, or filtering and dispersion of relevant information, in

distributed simulations [11] and publish-subscribe systems.

A scheme that uses multicast trees to group data for interest

management is described in [12].

We use active networks [5] to enable computation at both

end nodes and intermediate nodes through the use of injected
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code. Each node in such a network is “active”, i.e. it can

perform computation on a data stream, in addition to rout-

ing packets. Among open architectures, only active networks

offers the flexibility and the range of functionality like dy-

namic code execution, new protocol deployment, creation

of overlay networks, and support for load-balancing, all

of which are necessary for the multiplayer gaming infras-

tructure that we have described above. In addition, active

network-based frameworks like Panda [24] can adapt legacy

applications with minimal effort and little or no modification.

This paper is organized in the following way. In section 2,

we will describe current and former projects that are related

in some way to ours, both as an adaptation middleware and

as a gaming infrastructure. Section 3 contains a description

of the design of our framework, and section 4 the imple-

mentation details of an ANTS-based prototype. In section

5, we will analyze the advantages and disadvantages of our

system. Section 6 contains actual test and simulation-based

results that will prove the conclusions obtained in section 5.

Towards the end, we will describe different ways in which

our design could be modified to support other kinds of games

and distributed applications, and to provide added function-

ality. In the following sections, we will sometimes refer to

our architecture as dynamic multicast.

2. Related work

Our work has been influenced by two systems previously de-

signed in our lab. Panda [24] is an active networks-based

framework that enables intelligent adaptation of unaware

network applications. Panda responds in real-time to chang-

ing network conditions and deploys active network adapters

to optimize UDP communications; it also performs dy-

namic planning for adapter deployment. Conductor [17] is

a TCP-based open architecture framework that provides a

distributed, coordinated, application-transparent adaptation

facility. It possesses a security architecture as well as a reli-

ability model. Where we significantly differ from both Con-

ductor and Panda is that we perform infrastructural adap-

tations that can change the topology and routing behavior

dynamically, rather than just adaptations of the data stream

flowing through an end-to-end connection.

Various projects have used active networks to perform

routing adaptations, including multicasting. The ARRCANE

project [1] investigates active routing in mobile ad hoc net-

works, which are in constant flux; the protocol is resilient to

changes in network conditions. Reliable and customized mul-

ticasting using active networks has been investigated in [14,

23]. The feasibility of using active networks for multicasting

has been investigated in [16]. Gathercast is a generalized net-

work protocol that optimizes communication by aggregating

packets that are flowing in the same direction; the result is

far fewer packets, reducing the amount of processing that

routers need to do. This protocol, which is similar to packet

aggregation in our middleware, has been implemented using

active networks [25].

Considerable work has been done in building dynamic

and fault tolerant multicast trees. Revere [21] builds overlay

networks that forward security updates, handling reconfigu-

ration for broken connections and failed nodes. A distributed

algorithm for building multicast trees that adapts to group

members joining and leaving the tree during execution has

been described in [9]. Most other reliable multicast work

has focused on ensuring that each packet eventually reaches

each group member [2]. We aim for something weaker; a

small amount of packet loss is not a concern so long as the

tree is repaired (or simply adjusted) quickly. As we shall see

later in this paper, our infrastructure also manages to ensure

that game packets are not lost during the tree reconfiguration

phase.

There has been a lot of work done in recent years on the

design of gaming infrastructures that enhance performance.

The MiMaze architecture [18] is a completely distributed

peer-to-peer architecture that uses IP multicast for packet

delivery, being built on top of the MBone, which is a wide

area overlay of multicast capable nodes. It uses RTP/UDP/IP

communication protocols and has support for recovery from

packet loss. Synchronization mechanisms allow game partic-

ipants to compute coherent game states at the same moment.

Unfortunately, it suffers from many drawbacks: its topology

is very static, scalability is limited and traffic reduction is

suboptimal.

Cronin et. al. [7] have designed and implemented a mir-

rored server architecture for multiplayer games with a focus

on providing increased scalability along with low latency

packet delivery. To achieve low latency, the infrastructure

relies on a custom-built reliable multicast protocol called

CRIMP. The infrastructure, along with a description of the

implementation of multiplayer Quake is described in [7].

Coherency in game state among clients is ensured by the

trailing state synchronization protocol [8]. During bootstrap-

ping, clients are allowed to locate the nearest game servers

using two methods: i) a master server that locates candidate

game servers, and ii) using a server selection service named

qm-find. This architecture provides benefits like scalability

and decreased latency, but has no mechanisms for fault tol-

erance; each of the servers is still a single point of failure.

The network topology is also static and does not respond to

changes in conditions.

The ButterflyGrid [28] project uses latest grid comput-

ing technology to provide an infrastructure that massively

multiplayer games can run on. The system developers claim

that this platform is highly scalable and dynamic; it can sup-

port potentially “unlimited” number of players in a game,

and manage multiple games across the same resource base.
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The Butterfly Grid is a completely distributed system, with

decentralized control. The architecture is designed in an

object-oriented fashion, with well-defined layers from the

grid network up to the layer that recognizes and manages

game objects. It is flexible, allowing game designers full cus-

tomization of the network protocols that they need to use. The

open source Globus toolkit that implements the Open Grid

Services Architecture implements the lowest layer. The grid

acts as a dynamic resource allocator for the infrastructure.

Game play is instantiated by game servers that are responsi-

ble for certain regions. Servers that are part of the same game

are connected using a multicast tree. In this respect, the infras-

tructure resembles a mirrored-server. Servers can be added

and removed dynamically without interrupting game-play.

On the downside, this platform requires wide-scale deploy-

ment of grid services. It is also somewhat tightly coupled

with the game engine, and cannot support legacy games.

The WorldForge project [29] aims to build an engine for

massively multiplayer online games that provides a much bet-

ter gaming experience than currently available with games

like Ultima Online and EverQuest. The architecture is based

on the client-server model, with a WorldForge server manag-

ing player and non-player characters (in a role playing game),

client interactions and world events. The focus here is not on

building an optimized infrastructure, but rather on improving

server performance and scalability. One of the advantages of

this project, as most gamers will appreciate, is the flexibility

to modify the clients, the software being completely open

source; currently, this works only in a Linux/Unix environ-

ment. On the downside, the infrastructure does not attempt

to address any of the problems that currently plague Internet

games, as discussed in the section 1.

A common drawback to all these systems is that they re-

quire extensively remodeling of the game, or a completely

new game design. Our framework supports unaware adapta-

tions for legacy games; this has been our philosophy from the

beginning, and one of the reasons for using active networks

to build the middleware.

3. Design

One of the key aims of our design, and one which also is one

of its biggest advantage, is that the game application is left un-

modified to the greatest extent, ideally not at all. This does not

preclude the active network-based infrastructure from being

customized to the needs of specific games, and indeed, other

kinds of applications. This infrastructure is designed as a mid-

dleware that physically lies beneath the application layer and

above or parallel to the IP layer, depending on the implemen-

tation of the active network (currently, most implementations

build application layer overlays). This middleware captures

packets that are sent out by the game client, routes them

through the network and queues them up to the application

at the receiving ends. Logically, we can conceive of the in-

frastructure as having the following components: an overlay

network with a multicast tree that routes packets, an algo-

rithm based on some cost metric that is used to construct a tree

connecting the players on a graph, and a monitor for detection

of change in network conditions and connectivity. Each of

these components can be designed separately and “plugged”

in the framework as per the designer’s requirements.

3.1. Game packet routing infrastructure

We connect all the game, or player, nodes to form a tree net-

work, similar to building a multicast tree. One of these nodes,

at a “central” location with respect to all the player nodes, is

selected to be the root of the tree, similar to the core in a core-

based multicast tree. The definition of central could vary; in

our case, we use communication latency to measure distance

between nodes. The center must be chosen to minimize its la-

tency from all players. This heuristic ensures that none of the

players experience a response time that is much worse than

the average. The position of the center has an impact on per-

formance because all game packets pass through this node.

Figures 1(a) through 1(g) illustrate how packets are routed

in this model. Fig. (a) shows each player sending out a packet,

containing its update of the game state, along its upward link,

i.e., the link along the path to the root of the tree. When a

branch node on the tree receives packets from each of its

incoming links, it aggregates them into a single packet and

forwards them along its upward link; we can observe this in

Figs. (b) and (c). This routing goes on until the root node

receives packets through each incoming link. It aggregates

these packets into a single packet and multicasts them to

the player nodes along the edges of the tree; the first step

in the multicast process can be observed in Fig. (d). Every

intermediate node waits for packets to arrive from all its

children. Packets that arrive early are cached; the root caches

the packet from its right child in Fig. (c) while it waits for

a packet to arrive from its left child. Received packets are

duplicated at every branch node on the tree and sent along

all downward links of that node, i.e., every link that is not an

upward link. Figs. (d), (e) and (f) illustrate the multicasting.

This process terminates when each leaf node receives an

aggregated packet, since all leaf nodes must be players. At

every player node, the received packet is deaggregated into

individual game packets and delivered to the game client; we

can observe this in Figs. (f) and (g).

3.2. Tree building and center location

As we have emphasized, minimization of communica-

tion latency is of paramount importance in a real-time

game. The parameter that determines packet communication
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Fig. 1 Illustration of a single game step in an example multicast tree. (Note: A player can be an intermediate node also)

latency must be taken into account when constructing the

tree connecting the players. There has been much research

done in the area of multicast tree building, which we lever-

age for the purpose of selecting a suitable algorithm for our

infrastructure.

Multicast trees can be classified into two categories:

source-specific and group-shared [15]. In source-specific

trees, a single node is the only multicast traffic source; this

node initiates tree building. Group-shared multicast trees,

also called core-based trees, allow any group member to be

a traffic source and have some arbitrary node appointed as

the core so that all traffic passes through it. Most multicast

routing protocols in use today are source-specific, but group-

shared trees are more suitable for our application, where ev-

ery player must deliver packets to the other players, and de-

termining the optimal location of the root (server) is part

of the problem. The general problem of finding an optimal,

minimal delay, group-shared multicast tree is the well-known

NP-complete Steiner tree problem [4, 20]. Any practical al-

gorithm for building multicast trees must involve tradeoffs

between algorithmic complexity and the quality of tree pro-

duced. For example, a simple heuristic solution of complexity

O(n3), in the worst case, produces a tree that is twice as bad

as the optimal NP-Complete solution [22].
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We use a centralized algorithm, based on Dijkstra’s single

source shortest path algorithm; this is run by a pre-selected

root. Initially we have a network of nodes. In the general case,

a subset of nodes will be active, but for the purpose of this

discussion, we will consider only the overlay active network.

We run Dijkstra’s algorithm iteratively over the nodes of this

network, each node being the source in a particular iteration.

For each resulting tree, the cost can be calculated as the sum

of edge packet communication latencies. The lowest cost

tree among these is selected for the gaming infrastructure. A

min-priority queue implementation of Dijkstra’s algorithm

implies that each of the n iterations runs in O(n2) time, n be-

ing the number of nodes. Therefore this algorithm terminates

in O(n3) time. This complexity will not have a huge bearing

on the performance of our gaming infrastructure, since con-

struction or reconstruction of a tree is not expected to be a

frequent event. It will occur only during bootstrap and when

changes occur in network or game conditions, and this over-

head is a price worth paying for the added reliability and fault

tolerance.

Once the multicast tree has been built for the given set of

game players, a central node is selected to be the root. This

roughly implies that the average distance from every node

in the network to the root must be minimized. The graph-

theoretic definition of center fits our requirements perfectly,

and we apply it directly to our algorithm.

First, we define some terms that apply to weighted, undi-

rected graphs. The eccentricity of the vertex of a graph is

the longest distance from that vertex to any other node in the

graph. The radius of a graph is the smallest value of eccen-

tricity among all vertices. The center of a graph is a subset

of its vertices, the eccentricity of each vertex being equal

to the radius; there can be at most two center vertices for a

tree. Our algorithm calculates the center of the tree based on

this definition. If there are two candidates, one is chosen at

random to be the root.

3.3. Network monitoring

The multicast tree infrastructure performs continuous net-

work monitoring to detect change in conditions that might

cause the current tree structure to become suboptimal with

respect to average latency between nodes. Changes in con-

ditions could be any of the following: addition or loss of

connectivity between two nodes in the underlying network,

congestion, failure of intermediate nodes, or players join-

ing and leaving the game. When such a change is detected,

the current routing structure may not remain optimal; in this

case, a new tree is constructed based on current network in-

formation, following which a new root is selected. The player

nodes remain where they were before, but can play different

roles in the new tree. For example, a player who was a leaf in

the old tree can become a branch point performing aggrega-

tion and duplication in the new tree. The entire multicast tree

is now relocated to the new one, which becomes a routing

medium as soon as all nodes have been given the updated

information and assigned their new roles.

It is the responsibility of the root node to monitor net-

work conditions, and also to execute the tree-reconstruction

and the root-location algorithms. As this root performs more

work than the other nodes in the tree, it can be visualized as a

virtual server, and the modification of the tree can be consid-

ered a server relocation operation. No external intervention

is needed to perform this relocation; only the initial tree is

configured statically.

3.4. Role of active networks

This infrastructure is built using active networks. Tree-

building requires knowledge of a set of active nodes as input

along with the location of the players. All nodes in this (over-

lay) tree must be active; this is necessary for them to perform

the necessary adaptation functions.

Game packets are intercepted by the active networks-

based middleware and queued to the virtual (overlay) net-

work layer, which performs packet-forwarding independent

of the lower IP layer. The game packet is encapsulated as an

active packet, the only addition being a header that contains

application-specific information. Adapter code is deployed

at every active node and is executed upon receiving an ac-

tive packet. In our infrastructure, aggregation, duplication

or deaggregation adapters are deployed at the nodes. Every

node knows its immediate neighbors in the tree and maintains

routing information. The node also has a set of roles, i.e., that

of a player, a branch point or a monitor. It can take on one or

more of these roles. It must also maintain game state. If it is

performing aggregation, it needs to wait for packets to arrive

from all its children; it queues them for aggregation until all

arrive. At this point, packets are aggregated and sent to the

parent. Duplication and deaggregation are performed based

on knowledge of roles and current game state, e.g., the node

is waiting for a packet to arrive from its parent in the tree.

Using active networks as an application-independent plat-

form enables the middleware to support multiple game ses-

sions in parallel. A number of different game trees could run

on a single overlay network simultaneously. Multiple pack-

ets of different game sessions could be aggregated, providing

valuable savings in network bandwidth.

4. Implementation

For the purpose of evaluating our approach, we designed and

implemented a prototype gaming infrastructure in our lab.

The multiplayer game chosen for our implementation was

DOOM, a first person shooter game, and one of the earliest
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ones of its genre. The game protocol proceeds in lock-step.

Each player computes its state periodically and sends it to

other players. The game state at a player’s node advances only

when he has received an update from every other player. A

fast-paced game, DOOM requires real-time updates to main-

tain a smooth flow.

We chose a peer-to-peer UDP-based version of DOOM

due to the relative ease of adapting peer-to-peer games rather

than server-based ones, and because one of our goals was to

eliminate a centralized server; also, this enabled us to exam-

ine the routing infrastructure in isolation from the other fac-

tors that could influence performance. This version of DOOM

supports only a handful of players. This was sufficient for the

building and demonstration of a prototype on our laboratory

LAN, and for overhead measurements.

We used the ANTS active networks platform [6], a Java-

based toolkit that provides an execution environment and

a protocol programming model allowing customization of

packet-forwarding. The ANTS execution environment was

layered on top of the Janos NodeOS [27]. We implemented

under Linux, using the IPcept kernel module designed for

Conductor and Panda to perform transparent socket proxying

and masquerading.

A typical system contains a set of ANTS-enabled nodes,

including the game clients. These nodes communicate using

ANTS packets, which are referred to as capsules. Initially,

a static tree is built, with roles assigned to each node, and

a root node chosen manually. Each active node stores the

adapter code and maintains a routing table for known active

nodes, as well as a neighbor list consisting of active nodes

located one hop away. A computation of the best tree and root

position could be done during the bootstrapping phase by the

manually chosen root; alternatively, tree computation could

be done by hand, since this step is performed only once. After

the initial tree is chosen, the system behaves autonomously.

Once the root is selected, all the active nodes in the vicinity

that are interested in participating in the infrastructure must

send registry capsules to the root. The root maintains at all

times a list of nodes that could potentially be part of the

multicast tree. Every other node maintains a list of pointers

to its parent and its children.

When the DOOM client sends out multiple packets to

other players, these packets are intercepted by IPcept, which

passes them to the middleware layer. Since these packets

contain identical data with only the destination address be-

ing different, only one packet is actually encapsulated and

forwarded. The tree structure is responsible for routing the

packet to all the other clients. When capsules containing

game packets reach a tree branch point, they are aggregated

into a single capsule and forwarded to the parent. Game pack-

ets are extracted from the received capsules, concatenated,

and the capsule header appended. Every node performing

aggregation maintains an ANTS-defined NodeCache object

in which packets can be temporarily stored until it is time for

aggregation. Because of real-time constraints, we have set a

timeout period, typically 1 millisecond in our experiments.

If all expected packets do not arrive within that period, the

cached packets are aggregated and forwarded. Deaggrega-

tion is the reverse of aggregation; the ANTS header is stripped

off, and the game packets are extracted based on knowledge

of their sizes (the typical size of a DOOM packet is 16 bytes).

The value of the timeout period must be chosen care-

fully, taking application and typical network conditions into

account. Large timeouts could disrupt smooth flow of the

game, whereas small timeouts would reduce the number of

aggregations. Having a timeout period is not mandatory, as it

can introduce jitter, but is advisable in less than ideal network

conditions. Timeouts also do not affect the synchrony of the

underlying application as the middleware and the application

are independent of each other. In our implementation, every

DOOM client would simply wait for packets to arrive from

all its neighbors before progressing to a new state.

For latency monitoring, each node “pings” its active neigh-

bors periodically and sends its observations as capsules to the

root. The root now has a set of nodes and weighted edges to

work with. Each edge has two weight values, as perceived

by the two end-points; we take the conservative approach of

choosing the higher value. Based on this information, the root

executes the tree-building algorithm as outlined in Section

3.2. If the new tree is different from the existing one, control

capsules are sent to the new tree nodes instructing them to

assume their new roles. Once all the updates have been re-

ceived, the new tree comes into effect and packets are routed

through it. The old tree nodes are not deactivated, so any

packets still in flight will be routed to the clients, preventing

any packet loss. No accumulation of state information takes

place at any active node in the long term; old state (or role)

information is just replaced by new information.

5. Analysis of benefits

In this section, we give theoretical and analytical arguments

to show the benefits of using our architecture compared to

existing peer-to-peer and client-server models.

Consider the total number of packets that game players

send out into the network, given that the number of game

players is n. For a pure peer-to-peer model, each player must

send n − 1 packets, one to every other node. The total num-

ber of packets sent out into the network is n ∗ (n − 1), which

is O(n2). In a client-server model, each player sends one

packet to the server, which then sends n packets, one to each

client. The total number of packets is O(n). In our dynamic

multicast tree, each player sends out one packet, so the total

number of packets is O(n). Also, in the client-server case,

the server must handle O(n) messages, as compared to O(b)
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Fig. 2 Example multicast tree

messages by the root in dynamic multicast, where b is the

branching factor at the root and b ≤ n; asymptotically, the

two orders are equal to O(n). Analyzing a general mirrored-

server architecture is difficult, since it depends on the amount

of server replication. If the number of servers is small com-

pared to the number of players, the behavior will be similar

to the client-server model, with performance increasing by at

most a constant factor; if the number of servers is relatively

large, the behavior will be similar to a P2P network.

The network traffic generated per round of game state

updates is the total number of packets traversing network

links. This would also be a measure of the total bandwidth

consumption if all packet sizes were the same. In general,

for a naı̈ve implementations, the bandwidth consumption is

O(n2) for all the models. If a server uses interest manage-

ment techniques to filter out irrelevant data, the bandwidth

consumption drops to O(n). This will also be true for peer-

to-peer models if messages are sent only to a subset of nodes

that are in the region of interest of a node [7].

On the other hand, network traffic as we have defined

it is highly topology and routing table dependent, and we

will not attempt a study of the complexity of the models

in this respect. We shall demonstrate the difference between

the three models through an example. Fig. 2 shows a network

of nodes, with a tree connecting the player nodes. The tree

edges are marked as solid lines, whereas the other network

edges are marked as dotted lines. (Note: This tree is not

representative of the actual one that would be constructed

using our algorithm.) Consider the packet communication

during one round of updates for each model, and assume the

tree root for the dynamic multicast acts as the server in the

client-server case. Except for the dynamic multicast case, all

communication takes place along the shortest path between

peers or from client to server. Table 1 shows the reduction in

network traffic that dynamic multicasting achieves.

The amount of transmitted data can vary depending on

the size of the packets. Aggregation achieves packet reduc-

tion, but the total byte content remains the same (in fact, it

increases slightly in our model due to the appended capsule

headers). Thus, our comparison of the client-server model

with the multicast model is not strictly fair, since multiple

Table 1 Comparison of models based on the network in Figure 2

Peer-to- Dynamic

Peer Client-Server Multicast

# packets sent 56 16 8

out by players

# packets in the 207 40 26

network

packets transmitted over a link in the former case might con-

tain less data than an aggregated active packet. But aggre-

gation reduces the number of packets, and real-time game

packets are on the order of a few tens of bytes (16 bytes in

DOOM), so there is less chance of congestion with an ag-

gregated packet unless the number of players is very large.

Fewer packets also mean less work at routers, so the overall

latency is reduced. For a large number of nodes, the packets

can be aggregated only so long as they remain within a fixed

size limit. As we saw earlier in this section, the bandwidth

consumption upper bound is the same for all the models, but

decreasing the number of packets will make a difference in

the performance. As we will see in the following section, our

experimental results will illustrate that peer-to-peer models

are the worst in this respect, followed by client-server, with

our dynamic multicast model being better than either of these.

Another important point to be noted in our comparison is that

a server in the client-server model would rarely be at the same

place as the root of a multicast tree constructed by our algo-

rithm because the server is static and not chosen relative to

the position of the clients. Therefore, packets may traverse

more edges than in our multicast tree, leading to increased

traffic. In the worst case, the multicast tree root may have to

handle as much data as the server in a client-server model,

creating a potential bottleneck.

The multicast tree aggregation model should scale for a

few tens or hundreds of players, but possibly not for mas-

sively multiplayer games supporting thousands of players as

the aggregated packet size will become too large to escape

fragmentation. The framework could be made more scalable

by having multiple roots, each of which takes responsibility

for a certain portion of the tree. Detailed investigation of this

enhancement is beyond the scope of this paper.

The dynamism and self-adjustment of the game infras-

tructure is a step toward ubiquitous gaming environments.

Fault-tolerance is also enhanced. With small adjustments,

this architecture can handle failure of the active nodes and

the virtual links between them. Increased reliability would

offset the disadvantages of the tree adjustment overhead.

There is no centralized server node in our infrastructure

that is absolutely essential for game play. The root is a type

of server, but with very restricted functionality that can be

easily moved from one site to another.
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The average response time latency is nearly equal for

all players in most of the cases because of the central root

location; we don’t consider queuing effects at the routers.

All packets pass through this root, ensuring that two players

never perceive a widely inconsistent game state due to very

different response times.

6. Experimental results

We have designed and implemented a prototype of the adap-

tation middleware described in Section 4. This middleware

was deployed on HP Omnibook 4150 and Dell Inspiron 3500

laptops running Linux. The IPcept kernel module was used

to perform transparent proxying and masquerading of sock-

ets. (This functionality can also be performed in kernels of

version 2.4.x and higher using the netfilter framework and

setting suitable firewalling rules using the IPtables toolkit.)

The laptops were connected by Ethernet cables.

We performed a variety of tests on the test bed described

above. A number of network topologies of active nodes were

tried out, with selected nodes in each network acting as game

players. An ANTS utility called makeroutes was used to build

the overlay network routing tables from the active network

specifications; this user-level routing table functionality was

also used extensively in our middleware for tree building.

We were interested in observing the performance of our

system from two perspectives: 1) comparison with the tra-

ditional peer-to-peer and client-server models; and 2) fea-

sibility of active networks as a platform for building this

type of middleware. We chose network traffic to be a metric

for the former, as described in Section 5. For the latter, we

considered the time overhead incurred by the middleware;

this also allowed us to observe how quickly the tree modified

itself when required. We do not present a quantitative or mea-

surement analysis of other features of our infrastructure, like

aggregation, which has been investigated by He et al. [25].

The technique used for comparing architectures was dif-

ferent from that used to measure overhead. System overhead

could be measured using the actual implementation on our

test bed. Network traffic comparisons would be meaning-

ful only with a reasonably large number of nodes and an

Internet-like topology; this was done by simulating the ac-

tive network.

To measure the base cost, or overhead, of the middle-

ware, we used a simple topology that directly connected

game-playing nodes as described in Fig. 3. Players on both

machines played DOOM with one another for about 5 min-

Fig. 3 Simple topology for overhead measurement

utes, and the time taken to execute the adapter (ANTS) code

at each client was recorded during every game step. The aver-

age overhead produced by the middleware code was observed

to be approximately 4.1 milliseconds. But we also observed

that about 93% of the overhead values were less than the

average. The readings were mostly in the range 1–2.5 mil-

liseconds, with periodic bursts of a few tens of milliseconds

to a couple of hundred milliseconds, as we can observe in

Fig. 4. Therefore it makes more sense to consider the median

value, approximately 1.75 milliseconds, as the typical over-

head introduced by the middleware at each client node. The

reasons for the high variations will be explained shortly.

The numbers obtained above (∼2 milliseconds) seem to

agree with naked eye observations. Hardly any difference in

quality was perceived when DOOM was played over active

networks; game-playing experience remained almost as good

as it was without the middleware. Slight jitter was observed

periodically, coinciding with the high overhead observations.

Observations for other topologies with a larger number

of nodes were similar to the 2-node case. In a network of 3

nodes connected in a chain, with the end nodes being game

players and the middle node being the root, the overhead

at the player nodes was approximately 2.8 milliseconds on

average, with a median value of 1.85 milliseconds, 92% of

values being less than the average. The overhead due to the

aggregation and duplication adapters at the root was approx-

imately 2.3 milliseconds on average, with a median of about

1.5 milliseconds, 93% of values being less than the average,

as can be observed from Fig. 5. Variations in overhead sim-

ilar to the 2-node case were observed at the client and root

nodes, leading to the belief that the median, rather than the

mean represents the typical overhead per game step.

The reason for the periodic spikes in overhead can be

traced to the nature of the functionality that the adapters per-

form. Apart from processing and forwarding packets, net-

work monitoring is done periodically by every active node.

These occurrences of monitoring corresponded one-to-one

with the instants at which high overhead was observed. We

also simulated network condition change at certain intervals,

leading to tree computation at the root, causing the overhead

to rise to a couple of hundred milliseconds. We have im-

plemented the monitoring code as a user-level application;

moving this function to the kernel should reduce (or elimi-

nate) spikes in overhead.

Another interesting observation was the smoothness of

transition from one tree to another. Upon emulating latency

change between nodes, we observed that the time taken

to relocate the tree root for the topology in Fig. 6 was a

few hundreds of milliseconds, about 800 milliseconds in the

worst case. As in the network monitoring case, game players

observed some jitter.

We must keep in mind that these observations were made

in a LAN environment, where the average node-to-node
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Fig. 4 Overhead due to middleware in the 2-node case.
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Fig. 5 Overhead at the root in the 3-node case.

communication latency was less than 1 millisecond. This

only served to emphasize the difference between adapted

and unadapted DOOM. For MANs and small WANs, where

the communication latency could run into tens of millisec-

onds, the observed overhead would be negligible. Also,

considering that the overhead at an individual active node

remained somewhat constant for different topologies (an

increase of 0.1 milliseconds from the 2-node topology to

the 3-node one), this infrastructure promises to be quite

scalable.
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Fig. 6 Topology for testing transition overhead. Bottom three nodes
are players.

The other experiment performed was a simulation for

comparison of network traffic, measured as the total num-

ber of packets seen by network links during a single

round of message passing (see Section 5). Algorithms

for the peer-to-peer and client-server models were imple-

mented, in addition to our multicasting framework. In ev-

ery experiment instance, the server for the client-server

model was selected to be the same node as the root of

the multicast tree. In addition to the network traffic, av-

erage player-to-player distance was also measured in or-

der to compare the quality of paths in the multicast tree

and the peer-to-peer model, which uses shortest paths for

communication.

For simulation of networks and multicast groups, we used

the Georgia Tech topology generator [19]. We generated four

random undirected weighted graphs of 250 nodes each:� TS1: A transit-stub graph – One transit domain with five

nodes on average; each transit node has seven stub graphs

on average; each stub domain has seven nodes on average.� TS2: Another transit-stub graph – Two transit domains

with five nodes on average; each transit node has six stub

graphs on average; each stub domain has four nodes on

average.� R: A random graph generated using the Waxman model

[3] – 1462 edges, with parameters values 0.1 and 0.2.� H: A three-level hierarchical graph – Five nodes with edge

prob. 0.4 at the highest level; five nodes on average with

edge prob. 0.3 at the next level; ten nodes on average with

edge prob. 0.6 at the bottom level.

All nodes of these graphs were considered active for the

purpose of simulation. Edge weights represented physical

distance; if we ignore queuing effects at nodes, they could

be considered as measures of inter-node communication la-

tency. Multicast group size varied from 2 to 30, with a hun-

dred random groups chosen for each size and the average

reading taken. The comparison of network traffic and aver-

age player-to-player distance for the first transit stub graph

(TS1) are shown in the figures below. The comparison be-

tween client-server and multicast models is also shown sep-

arately in Fig. 8 in order to obtain a better perspective. All

data points are shown with 99% confidence intervals.

We obtained similar data for the three other graphs. Since

the comparison charts for these were almost identical to

the ones displayed above except for the scaling factor, we

have not shown them in this paper. The reason for select-

ing a transit-stub graph was that it is representative of an

Internet topology, unlike random or hierarchical graphs.

The other data sets indicate that the observed trends are

almost completely independent of the underlying network

topology.

As we can see, Fig. 9 shows a comparison for only

two of the models. This is because all data points for the

client-server and the multicast cases coincided, the reason

being that the server and the multicast tree root were always

made to coincide. In the real world, we would expect to

observe worse results for the client-server model, since the

server is not likely to be located at an optimal position as the

root in our multicast tree.

Figures 7 and 8 show the comparison of network traffic

among the three models. We can observe from Fig. 7 that

the P2P model generates much more traffic that the other

two models. Fig. 8 is a close-up of the comparison of client-

server and dynamic multicast, which is not clearly observable

in Fig. 7. We can observe from this figure that the dynamic

multicasting model generates less network traffic than the

client-server model. The difference between the models in-

creases monotonically with multicast group size. The P2P

curve appears to be quadratic, and the other two curves appear

to be linear; this corresponds with the observations we made

in section 5 regarding the complexity of the three models.

The 99% confidence intervals are extremely narrow, proving

that the general trends indicated by the nature of the curves

are highly accurate. Thus, processing at routers decreases

significantly in the multicast case. These results would also

be representative of bandwidth consumption, if interest man-

agement techniques are used. In real networks, a reduction

in network traffic would translate to a reduction in communi-

cation overhead, since the chances of link congestion would

be highly reduced.

From Fig. 9, we can observe that average player-to-player

distance is equal for the peer-to-peer and the multicast mod-

els at group size 2, as expected. The difference continues to

increase up to a group size of about 11. From 11 to 30, both

curves can be considered almost flat, with a constant differ-

ence of about 30 distance units. These results are expected, as

the peer-to-peer model generates shortest paths between all

pairs of player nodes; this will be impossible to guarantee for

a multicast tree since all paths must go through the root. On

the other hand, the average distances for both the models are

of the same order, and seem to remain constant with increase

in group size. For a real network, these distances would also

be indicative of player-to-player communication latencies.

Considering the huge gains in communication given by dy-

namic multicast over the peer-to-peer framework, a small
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Fig. 7 Comparison of network traffic for the three gaming infrastructures.
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Fig. 8 A close-up of network traffic for the client-server and multicast architectures.
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Fig. 9 Average player-to-player distance, averaged over all pairs of players for each multicast group.

constant difference in latency is a reasonable price to pay.

Also, it will not affect game-playing experience in any no-

ticeable manner.

7. Future work and possible extensions

There are various directions in which our system could be

extended or modified to meet the needs of other applications.

Some of our ideas are mentioned briefly in the following

subsections.

7.1. Tree-building metrics

Our current system uses the simple link latency metric for

building multicast trees. Other metrics could be used for

building trees: link congestion could be monitored, with

heavily congested links getting lowest priority for selection

in the tree; load-balancing could be a criterion, with heavily

loaded nodes being eliminated from trees, or assigned roles

that involve less work on their part.

7.2. Fault tolerance

We have shown how our system can be tolerant to failures

in the underlying network. Depending on topology, failures

may not even produce degradation in service, since the sys-

tem strives to build the best possible tree at all times. Still,

a lot more needs to be done before our infrastructure can be

completely fault tolerant. If any of the active nodes, espe-

cially the root, fail for some reason, the game could stall.

There are simple techniques that we could use to overcome

this. Nodes already monitor links to their neighbors; it would

be easy to find out if a particular node becomes unreachable.

If it is any node other than the root, reconstruction of the

tree would be straightforward, based on our system design.

Failure of the root is more serious, and is discussed in the

following subsection.

Players joining and leaving could be mapped to the node

failure case, and can be dealt with in the same manner. Our

architecture supports this, but we cannot demonstrate this

here as DOOM does not support this facility.

7.3. Replicated server architecture

The current reliability of the system can be enhanced by

replicating the monitor at multiple sites, in effect having a

multi-rooted tree (somewhat similar to a mirrored server ar-

chitecture). If one monitor fails, others will take over and

obtain a new position for the root. This enhancement has the

added advantage of making the infrastructure more scalable.

These roots would ideally be distributed uniformly in the

game network so that each has to handle roughly equal load.

An enhancement to this model could be to distribute the

roots throughout the game’s virtual space, with a neighbor-

ing root taking over a larger virtual area in case of failure.
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Intermediate nodes could also perform filtering and interest

management, thereby reducing data communication.

7.4. Cluster-based infrastructure

With wide deployment of active networks, independent game

clusters could be built based on node proximity. Active nodes

could coordinate among themselves and form groups based

on proximity. They could elect roots, and admit player nodes

if the communication latency to those players fits the game-

playing constraints. These clusters could be formed without

any manual intervention, with the tree roots deciding whether

to admit a new player, and then connecting it to its closest

cluster. If a node cannot be admitted, its request could be

forwarded to another cluster that might admit it; alternatively

two or more free player nodes could be hooked up with each

other to form an ad-hoc cluster.

7.5. Adaptation of client-server games

Adapting a legacy client-server game while retaining the ad-

vantages of a dynamic topology may pose some challenges,

depending on the kind of game. If the game server is logi-

cally and physically separate from all the clients, it could be

made to run on the same physical location as the root of the

multicast tree. The rest of the architecture remains the same.

Failure of the root will be more serious in this case, since it

handles all state information. Server replication, as discussed

in section 7.3, is probably the most appropriate solution for

handling of root failure. Adaptation of any mirrored-server

based game will proceed along the same lines.

For a game like Quake, especially the earlier versions,

one of the players is expected to be the server. Therefore,

if the server has to be co-located with the tree root at all

times, the root must necessarily be static, since a player node

cannot relocate. Alternatively, we could treat the server as

just another client, and use the same architecture that we

employ for DOOM. The resulting routing framework may or

may not provide traffic reduction, depending on the extent of

aggregation performed in the tree.

7.6. Publish-subscribe applications

A lot of work has been done in building infrastructure for

distributed applications that have participant nodes publish-
ing updates about new events, and other nodes subscribing
for those updates. Without a routing framework, there will

be a lot of redundant communication, and there would be

no guarantee of a node ever being informed about the oc-

currence of a particular event. By using a framework based

on our design, all the interested parties could be connected

by a multicast tree that guarantees message delivery in the

shortest possible time. Active networks could create a lot of

possibilities in the publish-subscribe area; this is a promising

topic for future research.

8. Conclusion

The most significant contribution of our research is an in-

frastructure for multiplayer games that reduces the number

of communication channels by virtue of a tree structure and

eliminates duplicate data transfer, with a marginal increase

in latency. Additionally, this architecture is self-adjusting

and can be deployed on both local and wide area networks.

Our simulation results illustrate the reduction in communi-

cation overhead versus more traditional models. Active net-

works clearly provide a substantial benefit to gamers when

used to perform network-level adaptations. Additionally, the

application-transparent nature of our technique allows it to be

applied to both new and legacy distributed applications. In the

past, game designers concentrated on building better applica-

tions without regard to the underlying system and networking

characteristics; we have shown that tighter coupling with the

network infrastructure will enhance flexibility, functionality

and have a positive effect on performance. Many existing

multiplayer games would benefit by using this architecture;

however in the absence of widely deployed active networks,

our model would provide more efficient service when in-

tegrated into the design of multiplayer game infrastructure.

As active networks mature, it will be possible to leverage

their computational power to enable the deployment of an

adaptation model such as the one described herein.

Our approach is not restricted to the gaming world; it

will also benefit a wider class of applications like distributed

simulations. Since the only drawback of our system is the

overhead, or the latency, the performance benefits should be

more apparent in non-real-time applications than in multi-

player games.
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