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a b s t r a c t

The Dynamic Recursive Unified Internet Design (DRUID) is a future Internet design that
unifies overlay networks with conventional layered network architectures. DRUID is based
on the fundamental concept of recursion, enabling a simple and direct network architec-
ture that unifies the data, control, management, and security aspects of the current Inter-
net, leading to a more trustworthy network. DRUID’s architecture is based on a single
recursive block that can adapt to support a variety of communication functions, including
parameterized mechanisms for hard/soft state, flow and congestion control, sequence con-
trol, fragmentation and reassembly, compression, encryption, and error recovery. This
recursion is guided by the structure of a graph of translation tables that help compartmen-
talize the scope of various functions and identifier spaces, while relating these spaces for
resource discovery, resolution, and routing. The graph also organizes persistent state that
coordinates behavior between individual data events (e.g., coordinating packets as a con-
nection), among different associations (e.g., between connections), as well as helping opti-
mize the recursive discovery process through caching, and supporting prefetching and
distributed pre-coordination. This paper describes the DRUID architecture composed of
these three parts (recursive block, translation tables, persistent state), and highlights its
goals and benefits, including unifying the data, control, management, and security planes
currently considered orthogonal aspects of network architecture.

� 2010 Elsevier B.V. All rights reserved.
. All rights reserved.
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1. Introduction

The Dynamic Recursive Unified Internet Design (DRUID)
is a future Internet architecture based on the repeated use
of a single, flexible functional unit for different capabilities
over different scopes of a communication service. DRUID
allows common protocol functions and capabilities to be
reused from within a single block, avoiding the need for
recapitulated implementation, and allowing these func-
tions and scopes to be dynamically determined, enabling
the service to adapt to changes in the local machine and
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Fig. 1. Heterogeneity of parties leads to O(M2) translators (left) or a layer
of M translators (right).
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network context. It also unifies many different aspects of
networking, providing a single architecture to integrate
the data, control, network management, and security
planes in a single, coherent approach. DRUID allows tre-
mendous flexibility and extensibility in network behavior
and functionality, while simultaneously maintaining a
simple unified architecture.

DRUID explores the impact of layering and scoping on
network architecture. It is composed from a single recur-
sive block together with a graph of translation tables repre-
senting relationships between different scopes in the
network. The recursive block includes both code and data,
and as it recurses, guided by this graph, it refers to and
modifies persistent state, so these simple components can
support a wide range of communication services. Paths
through the graph of these tables – both at end systems
and intermediate nodes, including routers, tunnel boxes,
and NATs – can adjust, e.g., in reaction to DoS attacks, when
local or intermediate node resources change, or in reaction
to network path properties.

DRUID applies the concept of recursion as a fundamen-
tal network primitive, unifying aspects of USC/ISI’s RNA
[56,58] and BU’s RINA [44] projects, and augmenting them
with more detailed description of the impact of the naming
hierarchy on the recursive architecture, and discussing
how this approach is related to the first principles of mul-
tiparty communication. DRUID also explores the relation-
ship of resource discovery, routing, forwarding, and
layering as aspects of a single, unified approach. This pro-
vides an opportunity to unify the data, control, manage-
ment, and security planes, allowing one architecture to
support coordinated transport state control, network mon-
itoring and management, and reaction to attacks, and to
integrate stateful associations at different scopes, e.g.,
allowing end-to-end streams (e.g., TCP) to easily map onto
subpath streams (e.g., wavelength lightpaths). DRUID fur-
ther affords an opportunity to explore more dynamic ser-
vice composition and service adaptation, allowing
composed protocols to react to local resources, network re-
sources, policy, economics, and threats.

DRUID’s approach helps provide a basis for potentially
new understanding of multiparty communication, and for
integrating many extensions currently considered artificial
or external. It provides a coherent, unifying view of net-
working, supporting the coordination of the data, control,
management, and security planes rather than considering
them independently. Whether successful as a replacement
to the Internet or not, it represents a unique opportunity to
impact the community’s view of network architecture as
more than mere archaeology (studying implementation
artifacts), driven by a concept core to the basis of computer
science – recursion.

The remainder of this paper presents the motivation for
a recursive architecture in Section 2, the architecture itself
in Section 3, including how it addresses trust, a key defi-
ciency in the current Internet. Section 4 discusses issues
and challenges in realizing the architecture, and Section 5
presents other discussion. Section 6 summarizes the
current implementation status, which focuses on our
individual current projects. Our future plans for the
implementation are discussed in Section 7, and some
related work on which DRUID is based is presented in
Section 8.
2. Motivation

DRUID is partly motivated by some fundamental obser-
vations about multiparty communication [61]. Consider
first the standard Shannon two-party communication
channel model. In this model, the exchange of data be-
tween two endpoints is typically characterized in terms
of the channel error and encoding overhead. The model
and its descendents derive numerous properties about
such a two-party channel, but this is of little direct rele-
vance to network architecture because the two endpoints
are considered known a priori. The most challenging part
of network architecture – knowing who you want to talk
to – is removed from the model by the initial conditions.

When going beyond two parties, multiparty communi-
cations are driven by three properties – the heterogeneity
of the parties, the potential that any subset might want to
communicate, and the dynamics of the ways in which
communicating parties associate. Given a set of M hetero-
geneous endpoints, communication either requires O(M2)
translators, or M translators that all support a common
interchange format, as shown in Fig. 1.

In either case, at some layer the data is converted be-
tween a local representation and one used to reach the
destination that requires a different format, so as data tra-
verses between layers, it needs to be converted, not only in
the common interchange format of the layers, but also be-
tween the names or identifiers available at a given layer
(Fig. 2). Layering itself thus leads to the need for a resolu-
tion mechanism.

All parties might want to interact with each other, but
just as it is not feasible to have M2 translators, it is not al-
ways feasible to assume there are O(M2) direct links. Sup-
porting arbitrary pairwise communication thus requires
some sort of forwarding as well (Fig. 3). RNA demonstrated
that forwarding is equivalent to tail recursion [56].

Finally, the desire to vary the association of groups
dynamically itself leads to recursion, because each group
can easily be considered a recursive component of the lar-
ger set, as a virtual subset (Fig. 4) [15,56]. Such recursive
virtualization was explored in the X-Bone [53], and is cur-
rently a fundamental part of several emerging extensions
to the Internet, including Rbridges (TRILL in the IETF
[60]) and LISP (in the IETF [21]).



Fig. 2. Layering leads to the need for resolution (arcs) between layers (bars).

Fig. 3. Arbitrary communication requires O(M2) links (left) or forwarding
(right).

Fig. 4. Dynamic grouping can be easily supported by recursion (bubble to
lower right).
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Overall, this suggests the conclusion that recursion is a
native property of multiparty communication, and that it
can thus support the required layering, resolution, for-
warding, and virtualization, and further does all these in
a dynamic, flexible fashion. The remainder of this paper
develops this concept further.
3. Architecture

The DRUID architecture is based on the fundamental
principle of recursion, where a single recursive block is re-
used to create composed layers of capability with different
scopes and between different named regions. The architec-
ture is very simple and direct, yet powerful enough to ex-
press not only the existing Internet architecture but also
the variety of advanced capabilities DRUID affords, includ-
ing late binding, unification of network management, mon-
itoring, provisioning, routing, forwarding, naming, and
protection (including trust) in a single basic mechanism.
DRUID utilizes three basic components: the recursive block,
persistent state, and the translation table. The recursive
block is where protocol functions are realized. The transla-
tion table is where name spaces are represented and where
conversion between name spaces is indicated From a
space To another space. Persistent state is accessed and
maintained by the recursive block in the context of the
translation table it previously traversed through and the
translation table it will ultimately next traverse through.
These components are described further as follows.

3.1. Recursive block

The DRUID architecture is based on the idea that all pro-
tocols can be expressed as varying recursive instances of a
single, universal recursive block of code and data, a com-
bined perspective of the metaprotocol (MP) of USC/ISI’s
Recursive Network Architecture (RNA) [56,58,65] and the
distributed IPC facility (DIF) of Boston University’s (BU)
Recursive InterNet Architecture (RINA) [15,16,44] (Fig. 5).

Example code for RNA’s version of this block is also
shown in Fig. 5. The block is called with a message, from
a source to a destination. Inside the block, the message is
processed, which can include recoding, fragmentation/reas-
sembly, or various other data manipulation functions. The
location is examined, and if the data is at the destination,
the block returns; if not, the block first determines the cor-
responding source/destination address of the next layer of
recursion (the resolve function), and then calls itself (recur-
sing). The process of traversing a network, either vertically
through protocol layers or horizontally within a protocol
layer through forwarding, is accomplished by this one basic
process through a combination of resolution and recursion.

This block is initially invoked by an application, and
ultimately invokes a physical interface to allow data to exit
a network node. When invoked, the application indicates
its communication requirements (e.g., stream or message,
reliable or not, ordered or not, etc.). As it recurses, these
requirements (needs) are matched to the configuration of
new recursive blocks (e.g., by setting a flag indicating
stream vs. message, etc.), or to the properties native to
physical interfaces; this needs/capability matching oper-
ates as a search to provide the desired services from among
the available blocks.

The recursive block includes a variety of mechanisms,
all implemented in a single location, that support the vari-
ety of data operations typical in protocols, such as com-
pression, fragmentation, error correction, reordering, flow
control, congestion avoidance, cryptography, etc. This prin-
ciple represents the observation that many of today’s pro-
tocols already recapitulate similar mechanisms at various
layers of a layered protocol stack, e.g., including flow con-
trol at the transport, tunnel, and network layers, or adding
repeated layers of encryption at different endpoints.
DRUID retains the use of multiple layers, as noted in
RNA, to support the instances of these same functions over



Fig. 5. DRUID recursive block, with RNA’s version of its internals (right).

Fig. 6. DRUID persistent state.
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different scopes, in order to support aggregation at various
locations in a network, to support scale, and to recognize
that different mechanisms and policies are appropriate
and efficient over different timescales and numbers of
participants.

The use of a single recursive block allows mechanisms
to operate at different scopes, but also facilitates mecha-
nism reuse, so that, e.g., three-way handshake’s compli-
cated set of states and transitions need not be
reimplemented to be useful for both TCP and VPN tunnel
coordination. The set of such core mechanisms (e.g., as
would be included in the process step in the RNA example
code in Fig. 5) includes the following:

� Data transfer issues.
– Fragmentation/reassembly (data unit management).
– Error detection and correction (FEC, ARQ, reordering,

etc.).
– Compression.
– Privacy (encryption, traffic hiding, etc.).
� Meta-data (control) issues.

– State management and parameter negotiation (hard
state, soft state).

– Flow and congestion control.
– Tuning.
� Policy (management) issues.

– Access (permissions, authorization).
– Identity (credentials, anonymous identifiers).
– Resources (BW, CPU, memory, payment).
� Ordering of the above functions (e.g., compress before

encrypting).

The block includes a recursion interface that describes
how instances of the block interact with other instances,
whether recursing down as data is emitted at a sender or
recursing up (‘‘popping’’) as data is handled at the receiver.
The environment interface describes how the block inter-
acts with persistent state, such as cryptographic keys or
reliable data delivery information, and shared non-com-
munication resources, such as memory and CPU.

3.2. Persistent state

During the recursion, the block also interacts with its
environment, representing shared resources (e.g., the OS
interface, for CPU, memory, etc.), and persistent state
(Fig. 6). This needs/capability coordination mechanism is
similar to that explored in North Carolina State University
(NCSU) and the Renaissance Computing Institute’s (RENCI)
SILO project [3,4,18,19,52,64].

This state can be transient, created anew when the
recursive block arrives on an arc, and destroyed when it
leaves (by using the next translation table), or the state
can persist, matching the name of the current scope of
the recursive block (thus enabling a recursive block to find
the appropriate state among many). State is maintained by
information added to messages within the process step in-
side the recursive block; state is maintained using conven-
tional means, including hard state establishment (three-
way handshake), state update (e.g., updating parameters
and acknowledging them), and timers (to evolve state in
the absence of such information). We are specifically look-
ing at variants of the Delta-t protocol to manage such state
[24,66].
3.3. Translation tables

The block interacts with translation tables (Fig. 7). These
tables represent the way in which names and identifiers at
one domain are translated into their corresponding values
in other domains. Each instance of a table represents a map
between a From domain to a To domain, where the map
represents the scope of the translation table. Such tables
already exist in the Internet, implemented via a distributed
protocol as with DNS, or by simple flooding mechanisms
such as ARP. IP forwarding uses the same kind of tables,
where the From and To domains are both, e.g., IPv4, but



Fig. 7. DRUID translation table.

J. Touch et al. / Computer Networks 55 (2011) 919–935 923
the metric for selecting a valid To value is nearness to the
desired destination. DRUID’s translation tables can be
managed by such pull (ARP) or push (OSPF, BGP) protocols,
or can be managed either explicitly (manually) or using
metadata (automatic network management); by using a
single translation table structure, any of these mechanisms
can be used with any table, as desired.

These translation tables are related to each other such
that a recursive block can walk a graph that represents
all possible protocol stacks (i.e., composed services). This
graph connects translation tables by directed arcs, where
the To domain of one table is connected by an arc to every
table whose From domain has the same domain type (as
illustrated in Fig. 8). At each arc – where the block’s core
functions operate – there is persistent state (Fig. 6). The
structure of translation tables and persistent state is what
the recursive block traverses until it reaches an exit inter-
face; such interfaces are shown as diamonds in Fig. 8. Also
in this figure, there are multiple such states shown for the
WDM path on the right, so that the table above these
(shown with a shadow) would indicate a specific state by
the optical ID (O-ID) determined in the map of the table.
Note that this table is similar to protocol graphs in the X-
Kernel [26], Click [35], or Netgraph [39], except that in
DRUID the graph components and recursive block are each
just a single implementation with many instances.

Fig. 9 demonstrates the two modes of the recursive
block: processing and recursive graph traversal. Processing
involves interacting with local state, here soft state that
matches the identifier in a given scope (here ‘‘JN3E’’).
Recursive graph traversal occurs when processing is com-
plete, and the block determines what next scope is most
appropriate. It resolves the local identifier (‘‘JN3E’’) in the
table, based on access controls, and uses the To identifier
(here ‘‘223.45-7’’) in the scope of the recursive instantia-
tion (shown small in yellow, expanded below to show de-
tail). Note that here the service also has an identifier (‘‘42’’),
which can help a node optimize searches for corresponding
persistent state and paths through the translation table
graph by caching or prefetching state using protocol nego-
tiation (e.g., ‘‘prefetching the means’’ [14]).

This graph structure exists at all nodes that participate
in any protocol, both the communication endpoints and
intermediate devices, such as routers, switches, home
gateways, NATs, or tunnel managers. The graph is tra-
versed from the top-down for outgoing data, and each
recursive invocation (calling the block at each translation
table boundary) accesses not only the available persistent
state, but also the information in the data. This information
can be augmented with additional metadata that helps
drive the ‘‘popping’’ of the recursion at the receiver, direct-
ing the traversal up the graph there as well as providing
context for updating the state as it goes. At intermediate
nodes, the graph can be augmented (extended using addi-
tional protocols as transits, e.g., via encapsulation using
tunnels), or truncated and replaced (as in a router, when
the later recursive steps are ‘‘popped’’ relative to the
incoming context and replaced with a different set of
recursive operations, based on the outgoing context).

3.4. Invariants and interactions

The basic components of this architecture are the recur-
sive block, persistent state, and namespace translation tables.
These components are the basis of the first set of
invariants:

� There is exactly one recursive block; all protocol func-
tions are contained therein.
� All services are created by the recursive use of the

recursive block.
� All decisions are made inside the recursive block.
� All namespaces are encoded in at least one translation

table.

The translation tables represent an implicit graph,
where each translation From namespace A To namespace
B is connected by directed arcs both to potential child ta-
bles (From namespace B To some other namespace, e.g.,
C), and to potential parent tables (From some other name-
space, e.g., D, To namespace A), as shown in Fig. 10. Notice
in this figure that arcs always connect compatible name-
spaces, but some To names in one translation table may
not exist in all target translation table From entries; here
IP-1 is in both tables, but IP-9 is in only the right optical
(WDM) table. Also note that some arcs pass through persis-
tent state, here indicating that IP-1 and IP-9 have soft-state
associated with them, such as monitoring state at the IP
scope associated with these IP addresses (an indicator that
messages involving this path should be used to update the
accounting information in the state).

This structure provides the basis of the remaining
invariants:

� All physical network interfaces must have an entry in at
least one To namespace of a translation table, or they
cannot be used to compose services in DRUID.
� All user applications can refer to remote network end-

points only by names that have a From entry in at least
one translation table, or are the name of a physical
interface (in the latter case, the application cannot use
those names in any DRUID composed services).
� All persistent state exists relative to two namespaces, so

that the identifier of the persistent state exists in at
least one From namespace and at least one To
namespace.
� All services are composed of acyclic paths through the

translation table graph.
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The description above indicates the interaction between
the components, i.e., that the recursive block, when recur-
sing, considers its current namespace as From and exam-
ines the translation tables for matching From
namespaces, with matching entries for the current name
being used, and permitted policies, etc. The recursive step
involves encapsulating information in the data path suffi-
cient to coordinate state on the receiver’s graph (where
the recursion ‘‘pops’’), using the given To name as indi-
cated in the translation table. The recursive block restarts
in the context of any state located that matches its current
scope (between the From and To translation tables it is
traversing) and current name. The recursive block may also
obtain information about shared context that represents,
e.g., local memory, processing, or other resources; this
state is no different in concept than that deposited and re-
tained to encode a persistent connection, provisioned cir-
cuit, or other endpoint association.

The tables are maintained themselves by applications
that use the protocol stack, just like any other applications.
This is how current Internet routing protocols operate, e.g.,
where OSPF uses IP to update intradomain routing tables,
or BGP uses TCP to manage interdomain routing tables.
In DRUID, each table can be managed by any mechanism
desired, with the advantage that once a mechanism is
developed it can be deployed to manage tables at any de-
sired scope. A mechanism that maintains these tables as
a cache with broadcast queries can be used for the link-
to-IP tables, implementing ARP; that same mechanism
can relay queries based on patterns in the namespace,
implementing the DNS. Common mechanisms, such as
cache maintenance, can be used in a variety of namespaces
(ARP tables, DNS resolvers) without requiring repeated
custom reimplementation.

These elements compose the basic core of the architec-
ture of DRUID. The remainder of the architecture is repre-
sented in the interfaces of the recursive block, the
translation table entries and their associated context (rep-
resenting distance, cost, capacity, permissions, trust, pol-
icy, etc.), and the way in which persistent state is
managed and aggregated.

4. Issues and challenges

DRUID is a single integrated system with a simple core
architecture, but it also affords an opportunity to investi-
gate a number of different network architecture issues,
including trustworthiness and security, protocol discovery
and composition, state management and coordination, re-
source management, network management and monitor-
ing, and routing and naming. There are also a variety of
implications of DRUID’s recursive architecture that are
interesting to explore, as we discuss at the end of this
section.

Trustworthiness and security are of key importance to
DRUID, not only because they have often been overlooked
in the current Internet, and they thus represent a critical is-
sue to address in future Internet architectures, but because
DRUID presents interesting opportunities and challenges.
DRUID’s flexibility and dynamic composition present new
potential vulnerabilities, where one user can masquerade
as another and acquire their resources. For example, the
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stack used for a particular user and transmission through a
DRUID network may be something that requires access
control. Perhaps another user should not be allowed to
use the same composition of blocks, particularly if all in-
stances of a particular block at one router share some re-
source. If sharing of such a block is not controlled, there
may be opportunities for information to leak between
users or for denial of service by overloading the shared re-
source. If blocks can be guaranteed to avoid such sharing
and the resulting possibilities for unintended interactions,
these security issues can be avoided, but it is not clear that
we can design DRUID’s interfaces and supporting systems
to guarantee such non-interference. If we cannot, identify-
ing management and trust accumulation will be of partic-
ular interest in DRUID.

However, DRUID also provides an opportunity to man-
age these identities, resources (including economics), and
policy through a unified mechanism in the recursive block
and a unified mechanism in the translation tables in the
graph. The dynamic decisions of the recursive traversal of
the translation table graph, as well as the persistent state,
help DRUID to be more adaptive and context dependent, so
that various protections and compensation can be added as
needed, delaying the cost of expensive mechanisms until
they are of real benefit. For example, certain types of DDoS
protection [37,41] require adding marks to packets and
checking for those marks at various points in the network.
DRUID’s ability to add and remove blocks dynamically
would permit inserting and removing the necessary blocks
at the appropriate locations only when DDoS defense was
actually required, rather than at all times. Although other
networking approaches could be adapted to achieve simi-
lar goals, the inherent dynamism of DRUID stack composi-
tion would make the process simple and less prone to
errors, as well as making it possible for a wide range of op-
tions to be deployed, instead of just one previously chosen
defense. DRUID’s modularity further makes it easier to
integrate security across different scopes, as well as to
add or augment capabilities throughout the system, e.g.,
to replace flawed component mechanisms.

The recursive block operates and recurses, guided by
the graph of translation tables, making decisions at each
step to result in a graph path that effectively composes
protocol functions active at various scopes. The recursive
block thus needs a reentrant interface, together with a
language to specify the needs (from the user level down)
and capabilities (from the physical layer up) of each in-
stance of recursion. DRUID needs to manage the stability
of the protocol composition of the recursive layers, e.g.,
so that congestion control at one layer does not interfere
with congestion or flow control at another. For some
cases, this can be managed through the reentrant recur-
sive block interface, e.g., by passing the timescale of the
feedback mechanism (so that lower layers operate over
longer, more stable timescales). For other functions, a sim-
ple flag suffices – e.g., once the data is compressed at one
layer, it is unlikely that further compression will help.
Many of these issues have been explored in SILO
[18,19,52,64] and will be incorporated into DRUID as a re-
sult, and others are being developed in RINA and will be
adapted here as well.
DRUID relies heavily on a coordinated state manage-
ment capability, both to establish state at various scopes
(i.e., for a single connection), as well as to coordinate state
across instances, i.e., to manage the persistent state located
throughout the translation table graph. This state also in-
cludes protocol capability discovery [23], so that one end-
point can determine how best to communicate with
another – rather than determining its local graph path so-
lely on local information. This protocol coordination can
help optimize communication between two endpoints,
notably by managing persistent state between the end-
points in advance of other data connections (i.e., persistent
state pre-placement). State management also helps deter-
mine what metadata is needed to manage and coordinate
persistent state between the endpoints of a connection,
as well as enabling that information to be used for network
monitoring and management, in some cases also driving
provisioning.

The DRUID architecture manages resources as part of
how the recursive block interacts with the environment,
including how it interacts with persistent state and how
it recurses. This management can be used to address QoS
by reserving or coordinating use of network capacity
[32], and the same mechanism and interface can help limit
use of critical shared endpoint resources such as memory
and CPU, limiting DoS attacks. This resource information
can also be used to help manage automatic provisioning,
where this information can be left behind as part of the
graph path search process, e.g., by leaving information be-
hind about previous requests that failed – such as when a
user wants a stream, but cannot alone afford (or fully uti-
lize) an optical WDM circuit. Resources also help deter-
mine authorization and payment to use these resources
[28], and are guided by the trust and security issues previ-
ously discussed.

As noted earlier, DRUID incorporates network manage-
ment and monitoring as an integral aspect of the recursive
mechanism and persistent state. The metadata – informa-
tion about the data, such as delay, loss, reordering – can be
used not only to manage the transfer (for retransmission,
pacing, etc.), but also can be extracted for use in network
monitoring and management. The same information can
be collected and used at any level of the system, because
it can be relied upon as it is implemented in the recursive
block, and maintained in the persistent state. Of particular
interest is the notion that such statistics are always being
collected at various granularities and aggregated and
stored in soft-state, where user network management
applications can send messages to collect the information
before it expires if desired. Similar soft-state information
is kept about the recursive graph path traversal process it-
self, so that an attempt to use a translation table that fails
(for policy, economics, or other reasons) can later be recon-
sidered in the context of other requests some short time in
the future, and can potentially assist in automatic network
reprovisioning, or used to share context across connections
and state at a given scope.

Routing and naming are integral to the DRUID architec-
ture, represented in the translation tables and their mainte-
nance. Namespaces are global within a particular layer, and
translation between namespaces happens only when the
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recursive block indicates. New namespaces can be added
dynamically by creating a new table that maps between
values of existing namespaces and inserting it into the
appropriate location in the namespace traversal graph
(Fig. 10). DRUID emphasizes that namespaces do not exist
solely at a single layer, but rather rely on translation tables
both To and From that namespace, so that the namespace
exists only when it is defined in terms of translation to
other, existing namespaces. The only exception is the phys-
ical namespace, which is defined by the physical interfaces;
all other names must map to those names, ultimately.

Routing is the distributed maintenance of the shared
entries of the translation table across different nodes, and
these tables incorporate access control and resource pro-
tection to further integrate trustworthiness and security.
DRUID also enables concurrent use of overlapping name-
spaces, so that, e.g., both BGP and secure BGP (sBGP) can
have actively maintained translation tables, and a service
can choose based on policy (use only secure routing), per-
missions, or availability (prefer secure routing, use nonse-
cure if needed).

Finally, there are various issues of interest based on the
novelty of the DRUID architecture itself, as an example of a
future Internet architecture. DRUID was developed from
first principles of multiparty communication, and thus
has potential impact on the science of networking, to ex-
plore ways in which our understanding of networking can
be driven by fundamental concepts rather than just the
examination of artifacts (so-called ‘‘network archaeology’’).
The architecture further affords interesting opportunities
to leverage the existing Internet as a constrained case,
where the tables and service paths are pre-selected (except
at the last, link access layer), to support incremental
deployment and backward compatibility. DRUID also cre-
ates services on demand, and does not distinguish between
the kind of services offered by an ISP and that offered by a
single user node; tunnel creation, multiplexing, and other
coordinated transit capabilities could exist at a continuum
of capabilities, not as a binary decision as in today’s Internet
(one is either an ISP or one is not). As a result, DRUID has
implications on the legal regulation of Internet access
[29,30] (e.g. net neutrality), and on the economic motiva-
tions of ISPs and application providers [31] (e.g., vertical
integration and exclusive service offerings).

5. Discussion

DRUID’s high-level objective is to explore the unique
capabilities of this approach for integrating a variety of
network concepts, many as graceful continua rather than
orthogonal aspects, including the following:

� Resource discovery, address resolution, scoped naming,
routing, and forwarding.
� Recursive functions, virtualization, and protocol

layering.
� Data, control, and management planes.
� Hard state, soft state, and network provisioning.

The DRUID approach supports the dynamic composition
of services and protocols, and unifying a number of
networking aspects currently considered outside the con-
ventional stack architecture. DRUID’s architecture encour-
ages a modular design, in which different protocol
functions are more easily integrated. This modularity and
the repeating nature of the components of the system sup-
ports compartmentalization; compartments, together with
dynamic capabilities, make it easier to integrate security
and trustworthiness into the architecture at the outset
and to augment it as needed. By ensuring that modules ad-
here to a well-understood interface and are constrained by
strong compartmentalization, we can better analyze and
understand the security implications of transitions be-
tween modules. We can also enforce security assertions
during dynamic composition. In contrast to less structured
methods of extending the functionality of a network, the
security issues involved in the addition of a new module
can be more easily understood and guaranteed. In terms
of trustworthiness, since each module is intended to pro-
vide particular well-defined functionality, we can either
statically analyze the module to determine if it does indeed
do what it says, or dynamically watch its operations to de-
tect deviations from its stated purpose. In an approach
where there is no standard interface and no common def-
inition of functionality, determining the trustworthiness of
extensions to the system is much harder. Compartmental-
ization also allows the isolation of modules that are delib-
erately or inadvertently attacked, perhaps temporarily
replacing them with restrictive but more resilient modules
to operate that network layer in a ‘‘safe’’ mode.

The use of the recursive block allows each layer to
dynamically determine the next layer, where that choice
is first limited by the domain of the current namespace,
but also by the context of the current block – its identity,
privileges, and resources – and the corresponding access
controls on the translation tables available (including vari-
ations on a per-entry basis). This dynamic nature makes
DRUID very flexible and adaptive because recursive in-
stances make decisions in different contexts. Some deci-
sions can be shifted from very high in the stack to later, a
kind of late-binding, to allow the composed service (the re-
sult of the entire path chosen) to more rapidly react. Other
decisions can allow overlapping choices, so a single ad-
dress might have appropriate translations in a number of
tables, where the recursive block selects the desired one
based on context. However, such decisions can also be
inefficient if made repeatedly and often, which is where
DRUID’s persistent state can be used to dampen the deci-
sion process as desired, caching previous results, whether
from previous connections (e.g., support for TCP Control
Block Sharing [6,62]) or to support multiplexing associa-
tions over a single connection.

DRUID unifies a number of different aspects of network-
ing, as noted earlier. Its translation tables support name
resolution and resource discovery [5]. As RNA demon-
strated, the same kind of recursive mechanism can support
forwarding, using tail recursion. DRUID carries that one
step further, recognizing that routing protocols are just dif-
ferent ways of managing a distributed set of such tables,
where different structure of the namespace can require
broadcast (unstructured names) or can be used to direct
updates only where relevant (for structured names, e.g.,
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DNS, BGP updates to IP, etc.). DRUID’s use of a continuum
of state management mechanisms, together with a
needs/capabilities matching system, allows a single archi-
tecture to support packets and circuits, and everything
in-between. It also allows, for instance, a user stream ser-
vice to use TCP to support that stream over unreliable,
packet delivery mechanisms or to use a native optical cir-
cuit (e.g., WDM) for that same user if available (and the
user can afford it). This unification also coordinates the
data, control, and network management ‘planes’, currently
considered orthogonal aspects of networking, into a single,
coherent system. In DRUID, a layer can collect statistics,
such as round trip time (RTT), packet loss, and reordering
statistics, and that information can be used not only to
manage the data at that layer (e.g., a data transport proto-
col, as with TCP, SCTP, etc.), but also to simultaneously and
seamlessly support network monitoring and management.
In DRUID, because all such information is collected by a
single recursive module, every instance can (given appro-
priate permissions) collect or react to that information,
all using the same mechanism.

Security is supported more easily in DRUID because of
the recursive block and translation table’s natural com-
partmentalization and reuse of mechanism. The architec-
ture thus facilitates linking security at various layers,
which is currently understood but cumbersome (e.g., con-
nection latching [68] and channel binding [67]). DRUID’s
use of repeated dynamic decisions allows policy and
authorization to be considered at all layers of the system
once implemented at any layer. This also makes it easier
to support reactive security, where costly (e.g., computa-
tionally intensive) mechanisms can be activated on-de-
mand at the strength needed [57], and where faulty
mechanisms can be replaced at many layers in one
operation.

5.1. Underlying principles

The two main underlying principles are recursion, as the
unifying operation, and resolution (name translation),
which provides constraints on the recursion and drives
the structure of the resulting composed services. This ap-
proach supports dynamic composition, as well as late-
binding, where decisions can be made later and thus more
locally where possible, enabling a reactive, unified archi-
tecture. An optional, but also somewhat desirable principle
for DRUID is to support the existing Internet architecture
as a special case, so as to provide a potential validation
and to determine ways to support graceful transition. The
DRUID approach based on these principles unifies a num-
ber of currently disparate aspects of existing networks,
including translation/forwarding/routing, softstate/hard-
state/network provisioning, and virtualization/real
networking.

There are a number of requirements that the DRUID
architecture is designed to satisfy. DRUID is dynamic and
adaptive, allowing context-dependent decisions at all
scopes. Its unified recursive module makes it easier to inte-
grate new capabilities and create new services, rather than
including them as awkward exceptions or ‘shims’. Network
provisioning, the process of allocating network capacity
along various paths, can be integrated as just a variant of
soft/hard state management, i.e., there is no difference be-
tween creating a new TCP connection and a new WDM cir-
cuit. It natively incorporates virtualization, i.e., there is no
difference between an interface to a newly created tunnel
and a physical interface [55]. Finally, it is easier to incorpo-
rate trust, security, policy, and economics as coordinated
constraints on the overall system due to the uniformity
of the architecture.

5.2. Trustworthiness

DRUID addresses trustworthiness across several dimen-
sions, including resource protection, policy management,
identification and authentication, and data privacy and
integrity. The architecture supports trust as an aspect of
a service that provides assurances as to the availability
and correctness of the asserted capabilities of a service.
The reuse of a common recursive block and translation ta-
ble structure makes it easier to compartmentalize resource
protection and privacy, as well as to leverage known tech-
niques at various scopes in various naming contexts.
DRUID will provide authentication when it is needed, with-
out requiring expensive cryptographic authentication
operations when it is not. Further, DRUID enables monitor-
ing mechanisms normally embedded in each protocol layer
to interact and gather accumulated information, which can
be used to check the asserted capabilities of a service, help-
ing provide an endorsement approach based on explicit
validation. This approach may be useful in verifying that
other layers are honoring agreements to provide particular
qualities of service, for example.

By regularizing how services are incorporated into
recursive stacks, there is less ad hoc retrofitting and
squeezing of shim layers into awkward places. Regular,
well-defined interfaces are far less likely to lead to uncon-
sidered security and stability problems than jerrybuilt col-
lections of irregular bits and pieces of code. To specifically
address security issues, the recursive interface of the recur-
sive block includes security properties, so that a given user
or application can obtain precisely the services permitted
and required. Trust is built using this same interface,
where even anonymous identifiers passed across the
recursive interface can be presented to shared resource
management via the environment interface, or be used in
different scopes to determine access to translation tables
and their entries. Different forms of identifiers and mecha-
nisms for authenticating them can be easily incorporated.
Such information can also govern access to persistent state.
The dynamic nature of DRUID allows addition of new secu-
rity services in the middle of a transmission, when neces-
sary. Overall, this basic architecture supports a uniform
interface for identification and associated authorizations,
accounting, and trust management. Resources – presented
either in shared state managed by the recursive block, or
by the operating system for environment properties (e.g.,
CPU, memory, interrupt frequency) can be managed in a
consistent manner using a single interface. The flexibility
of the DRUID architecture permits addition of new security
services in a regular, predictable manner, overcoming the
existing problem of deployment of such services.
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DRUID also offers advantages for other aspects of trust-
worthiness, beyond security. By having a single recursive
interface, it is easier to write correct network modules,
and to debug their operation when the network behaves
in unexpected ways. Standardized interfaces to environ-
mental information and controls also offer advantages for
stability. Generally, the regularization provided by the
DRUID recursive architecture will lead to more compre-
hensible network code, which in turn will lead to greater
stability and better understanding of network behavior un-
der varying conditions.
6. Current status

DRUID describes the common aspects and approaches
of the USC/ISI RNA and BU RINA NSF projects, which are
continuing independently in collaboration. As noted in
the Introduction, DRUID unifies these architectures as a
common description, and adds more detail on particular
aspects, such as the interaction with the structure of the
namespace hierarchy, as well as the relationship of recur-
sion to first principles of multiparty communication.

RNA began in August 2006, and a preliminary imple-
mentation available as patches to the Click modular router
software system has been available since 2008 [35]. This
code extends Click with a dynamic multiplexer, demulti-
plexer, buffer, and graph composition functions, as well
as adding a control API supporting on-line modification
and monitoring of the modules (Fig. 11). A configuration
file indicates the desired capabilities (what to compose),
which is translated into a set of composed recursive blocks
with particular parameters, which are dynamically config-
ured and assembled into a protocol stack (Fig. 12).

A more detailed description of the current RNA imple-
mentation is provided in Table 1, and the software is
Fig. 11. RNA implem
available at the RNA website [45]. In addition, the RNA ap-
proach has been applied to a number of different proposed
future network architectures, most recently to the design
of quantum networks [63].

RINA only recently commenced (May 2010), and is cur-
rently focused on developing specifications. This includes
its recursive block, called the Distributed IPC Facility
(DIF) [16], the IPC mechanism and associated IPC manage-
ment, as well as the Data Transfer Protocol (DTP) with
tightly bound mechanisms, and the loosely-bound Data
Transfer Control Protocol (DTCP). DTP/DTCP are modeled
after the soft-state Delta-t transmission protocol [24,66].

The project is also specifying an object-based stateless
Common Distributed Application Protocol (CDAP) to be
used by any RINA application, including management
applications, as well as an Inter-DIF Directory (IDD) that
supports the dynamic construction of DIFs. The recursive
routing process of RINA has been described and compared
against other approaches, including LISP [27]. A prototype
implementation is expected this Spring.
7. Future plans

DRUID is currently in the preliminary design phase,
where the overall recursive architecture is being aug-
mented with dynamic layered protocol systems, trusted
routing and naming systems, resource protection and trust
management systems, protocol coordination mechanisms,
and legal and economic policy frameworks.

The DRUID architecture and approach provides a conve-
nient catalyst for collaborative research. Its use of a single,
common recursive block encourages integrated design, and
makes each new function responsible for importing and
exporting its own signals. As such, it lends itself to incre-
mental development and evolution, not only over the
entation detail.



Fig. 12. The process of creating an RNA protocol stack.

Table 1
RNA implementation status.

Aspect Status

Simple stack Simple end-to-end communication with arbitrary number of MP instances shown; capabilities already in click
Modules Small number, basic; adds a new namespace; supported: buffering, reordering, Mux/Demux, encrypt/decrypt, options
Control interface Simple; allows discovery and binding; discovery: type of module/protocol, connection-orientedness, connection state,

channel properties; binding: Mux patterns, connection state
Context discovery Simple, single layer within stack, simple negotiation b/w peers; future work: multilayer, service interface, etc.
Template Preliminary; a pattern language to express composition being developed
Performance Future work
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lifetime of this project, but as an extensible architecture for
others to later augment. DRUID utilizes the basic approach
of the incremental evolution of a native implementation,
using real user data and real physical networks, and evalu-
ating the results empirically.

The basic recursive architecture includes the detailed
development of the recursive block and translation tables,
and mechanisms that manage the structure of the table
graph and the way in which state is established, main-
tained, and/or pre-placed by various recursive block ac-
tions. This core architecture is augmented with semantic
resource representations to express needs and capabilities
as part of DRUID’s recursive block interface. We are also
developing component selection mechanisms for DRUID’s
next-table selection process.

Within the recursive block, we are developing a unified
transport protocol based on soft-state based on Delta-t
[66], to be used not only for transport-like management
(reliability, reordering), but also to help manage state that
guides provisioning, monitoring, and security. This will
help in exploring the implications of composition on proto-
col stability, e.g., recursive flow and congestion control, and
optimizations not only of these compositions, but of next-
table/layer selection.
We are also exploring ways in which the composition of
services leads not only to integration of existing resources,
but also requires that the resulting service be offered as a
resource, i.e., that consumers of resources need to also be-
come providers in order for recursion to succeed. Our
exploration includes this aggregation-as-server aspect as
part of the basic recursive mechanism, extensions to ad-
dress the impact of prices on composition choices and
the impact of economics and policy, and investigating the
related trust management and resource protection issues,
e.g., to mitigate the impact of DoS attacks, IP spoofing,
and resource reservation attacks. We are also exploring
ways in which trust, protection, and policy can support
recursion, and/or are impacted by recursion, and the dy-
namic deployment of protection mechanisms in DRUID’s
recursive architecture. DRUID includes state coordination
between graphs on different hosts, to optimize future
interactions based on aggregation of state, pre-placement,
and caching of previous state. Such previous state can also
include potential request failures, which can be used to
manage provisioning and reactions to routing, security,
and trust anomalies.

Other more specific issues being investigated include
how to incorporate storage and computation as services
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in the architecture, and how to address temporal aspects of
namespaces [43] (in support, e.g., of renaming and/or
mobility). There are security issues raised by the use of
unified translation tables, and the applicability of existing
naming protections (e.g., DNSSEC [2]) to broader use at
other levels, as well as the interaction between table main-
tenance and structured naming. We are also exploring the
difference between the recursive, directed-acyclic graph of
paths in the DRUID graph and the linear stack model in
SILO, as well as ways in which reentrancy (as required by
recursion) extends their interface model. There are numer-
ous challenges in coordinating highly heterogeneous hosts
and ensuring their long-term mutual compatibility, as well
as the stability, security, and reliability of the resulting sys-
tems, when different hosts and interconnected networks
use varying implementations of the DRUID architecture
that may have evolved independently in different direc-
tions from the DRUID team’s ‘‘baseline’’ implementation.

In addition to the technical aspects of our architecture,
we are also considering how it interacts with legal and eco-
nomic issues, especially because DRUID’s continuum of
services and capabilities challenges many current fixed-
tier legal and public policy approaches. Our investigation
includes how the equivalence of all layers and implicit con-
vergence of services challenge the current partitioned ap-
proach, such as deep packet inspection issues [31],
interactions between ISPs and service providers [29], and
joint traffic management and network neutrality [30].
The dynamic, adaptive nature of DRUID may expose new
potential vulnerabilities – such as ‘freeloader’ attacks
where others use a service they didn’t create, as well as
new opportunities, e.g., to dynamically adjust the protec-
tions provided in a service in reaction to detected threats.
For example, DDoS protection services like DefCOM [41]
can be dynamically deployed when attacks are present
[25], without incurring overhead when no attack is taking
place. DRUID also presents an opportunity to balance the
dynamic possibilities of sender choice with receiver
responsibility, i.e., in conjunction with protocol coordina-
tion. DRUID requires resource protection in ways some-
what beyond current architectures, which may require
novel approaches, e.g., ways to support resource protection
in the absence of a key management infrastructure, using
ISI’s ‘‘anonymous security’’ approach [59], including trust
accumulation techniques. There are also issues of privacy
in the DRUID architecture, and the extent to which applica-
tion interactions with the network system can/should be
private, and whether this has other architectural impacts.

We are developing a complete implementation of
DRUID, including all elements required to demonstrate
the value and potential of a recursive approach to network-
ing. This implementation will include functionality to sup-
port many of the examples discussed earlier in the paper,
representing a wide range of protocol functions, different
types of translation tables, and strategies for recursively
creating network services. The project includes a compre-
hensive strategy to test and measure the system in real
working conditions, to ensure that DRUID is not merely
intellectually interesting, but a practical approach to
improving the Internet. Our evaluation will not be limited
to classic network performance testing, but will incorporate
thorough security evaluations, stability testing, and eco-
nomic and legal analysis of the implications of the DRUID
approach.
8. Related work

The current Internet architecture has been accused of
ossification [42], but has supported numerous extensions,
including shim layers (SHIM6 [40], HIP [38], MPLS [47],
security with IPsec and IKE [33,34], and TLS [17]), as well
as new transport protocols (DCCP [36], RTP [49], SCTP
[51]), and other services (P2P nets, performance enhancing
proxies [9], BEEP [46]). Many of these extensions challenge
the current use of largely static protocol stacks, making it
difficult to support virtualization (i.e., VPNs, virtualization
as in the X-Bone [53], partial overlays for routing as with
RONs [1] and Detour [48], and recursive overlays [54])
and to support on-the-fly addition of capabilities (such as
to react to attacks) or changes (from IPv4 to IPv6). DRUID
overcomes these challenges by providing a simple, flexible,
architecture that unifies many different aspects of net-
working, including forwarding, scoped naming, routing,
and virtualization; connection associations, provisioning,
and monitoring; security, policy, and economics, among
others. This approach differs from the Autonomic Network
Architecture (ANA) project [10] which seeks self-managing
protocols and algorithms to sustain network evolution. The
ANA framework provides abstractions, communication
primitives, and a functional management system [50] that
composes the available (data, control, or management)
functional blocks in a customized arrangement in order
to provide a service. DRUID is developing a single block
to accomplish the same goal, but is not focused on self-
management.

DRUID unifies aspects of both USC/ISI’s RNA and BU’s
RINA approach to network architectures, in which a single
protocol operations block is reused recursively to achieve
layered, scoped services. Many protocol functions were
originally considered specific to one layer in the conven-
tional ISO seven-layer model. For example, typically, mul-
tiplexing of data units from a host happens at the
network layer, and stateful connections and congestion
control happen at the transport layer. Recently many of
these functions are being repeated at many layers in the
stack, where stateful connections can occur at the link (cir-
cuit), network (tunnel, e.g., for GRE [20], MPLS [47], or even
to provide enhancements, e.g., using PEPs [9]), transport
(connection), and even higher layers (in multiplexing lay-
ers such as BEEP [46]).

The historically ad hoc manner of providing additional
layer functionality has led to concerns both of design man-
ageability and how to provide user choice. Interaction
complexity has produced service incompatibilities that
point out a fundamental weakness in our current lay-
ered-design methodology [7,8]. Increased choice has led
to a proposal for end-to-end cross-layer negotiation [23].
Unfortunately, layering as a method of service decomposi-
tion is not now well understood. Attempts are being made
to provide a theoretical framework for it [11,12]. DRUID is
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designed to provide the flexibility needed to investigate
and address these concerns.

This replication of function suggests that the seven-
layer model could be replaced with a single, unifying
protocol, an ‘‘über-protocol’’. Such monolithic approaches
include the eXpress Transfer Protocol (XTP) [13] and TP++
[22]. However, both RNA and RINA consider that although
there is merit to incorporating any protocol function at any
layer, there remains substantial merit to retaining the lay-
ering structure itself. Layering is often considered the re-
sult of good software engineering principles, an artifact
of judicious implementation strategies. RNA and RINA con-
sider that layering itself has other merits: it helps isolate
naming domains which are viable over different timescales
and numbers of participants, and it helps compartmental-
ize functionality within these scopes. The layering of these
scopes, while reusing a single common recursive block, is
thus the basis of DRUID.
9. Conclusions

Through these various explorations, DRUID provides a
coherent, focused approach to a comprehensive network
architecture. The DRUID architecture provides a simple
and straightforward basis for this integration. Using only
a few simple components (the recursive block, the transla-
tion table, and persistent state), and their equally simple
relationships (as described by the invariants in Section 3.1),
DRUID affords the flexibility to incorporate these different
dimensions of network architecture in a single, unifying
mechanism.
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