
GHOST: Concealing Vehicular Botnet
Communication in the VANET Control Channel

Mevlut Turker Garip, Peter Reiher, Mario Gerla
Department of Computer Science, University of California Los Angeles

{mtgarip, reiher, gerla}@cs.ucla.edu

Abstract—Vehicular ad hoc networks (VANETs) are expected
to play a big role in our lives in the near future; they will both
improve traffic safety and revolutionize the driving experience.
Their expected deployment in autonomous cars will induce
attackers to design new methods to target these systems, and
to organize the vehicles they compromise into vehicular botnets.
Vehicular botnets enable new attacks that reveal previously
unknown security flaws in VANETs. Effectively defending against
such botnets requires investigation of their characteristics and of
the attacks that these cooperating malicious vehicles can perform
on VANETs. One important characteristic of a botnet is the way
its members communicate to coordinate their attacks, with an
emphasis on stealth. In this paper, we investigate alternatives for
vehicular botnets to communicate to perform attacks. We design
and demonstrate a VANET-based botnet communication protocol
that hides itself in the ongoing network traffic over the control
channel. We show via simulation that it is infeasible to detect
such botnet communications due to the vulnerabilities existing in
the VANET standards, and discuss possible countermeasures.

Keywords—Vehicular Ad hoc Networks, VANET Security, Vehic-
ular Botnets, Vehicular Botnet Communication, Autonomous Cars

I. INTRODUCTION

Traffic safety is a main concern for most countries [17].
Countries mainly focus on passing new traffic regulations and
improving road infrastructure to prevent accidents; however,
the improvement rates are still minimal. Therefore, exploiting
modern technology is considered to be the most effective
approach to improve traffic safety [7]. Insufficient traffic in-
formation and slow driver reaction are the root causes of most
accidents [14]. VANETs can significantly improve traffic safety
by providing information about traffic conditions spanning
many miles and by delivering timely alarms that effectively
prevent accidents. VANET-enabled autonomous vehicles could
save 30,000 lives and prevent 2.2 million car accident injuries
each year in the US alone [27]. In 2020, all cars are expected to
have a certain degree of autonomy allowing the on-board com-
puter to maneuver the car [30]. Major car manufacturers such
as Audi, BMW, Ford, GM, Lexus, Mercedes-Benz, Nissan, and
Volvo have already started prototyping their autonomous cars
[27]. VANETs will not only increase the collision avoidance
capabilities of these vehicles, but also make their deployment
easier and faster, since manufacturing these cars will be
cheaper without the dependence on highly expensive sensors.

History has shown that as computing and communications
capabilities are added to new environments, inevitably some
fraction of the new equipment is compromised by attackers.
Adding computational capabilities to automobiles and connect-
ing them by VANETs should be expected to follow the same
path. Already researchers have demonstrated that computers

and internal networks on board of cars can be compromised
and exploited, allowing varying degrees of control of the vehi-
cles [23] [28]. In some cases, the vehicles can be compromised
remotely, using V2V unlicensed network connections from a
distance. They can also be attacked from incautious Internet
downloading via an otherwise secure LTE. As we increase
cars’ cyber capabilities, the attack surface they present and
the increased number of targets will certainly attract cyber
attackers, and some attacks will succeed in compromising the
vehicles. As the internal computers take greater and greater
control over vehicular capabilities, leading eventually to au-
tonomous cars, the reward a successful attack can harvest will
only make compromising them a more attractive target. Earlier
work has proven these autonomous cars can be compromised
[22] [24]. A compromised vehicle of this kind not only offers
computation and communication capabilities, but the ability to
perform real world actions that can have severe consequences.

Some attention has been paid already to the cybersecurity
of autonomous and networked vehicles [18], particular to
ensuring that vehicles can provide strong authentication for
their messages [21]. Existing research on these lines has been
primarily oriented towards preventing vehicle owners from
lying to other vehicles and roadside infrastructure. Such re-
search offers some leverage against attackers who compromise
a single vehicle. However, attackers who realize that they can
compromise a single machine quickly move on to multiple
machines, and to organizing them into a distributed resource
of greater total power than its individual parts.

We should thus expect that the future will bring us vehicu-
lar botnets, collections of autonomous and networked vehicles
under the coordinated control of remote attackers. These bot-
nets can enable various attacks that have not been investigated
yet. In VANETs, as with the Internet, botnet attacks are more
powerful and harder to defend against than attacks from single
sources. Similar to Internet botnets, effective defense against
vehicular botnets requires that we first understand the nature
of the attacks they can perform and how their communication
works. In this paper, we demonstrate a VANET-based botnet
communication session that hides in the control channel traffic.
We believe that the most successful defense against any type of
botnets starts with a detailed analysis of their communication
and investigation of the ways to disrupt it.

In Section II, we present the related work in VANET
security and compare Internet botnets with vehicular botnets in
terms of communication. In Section III, we demonstrate our
vehicular botnet communication protocol. In Section IV, we
show the performance of botnets in action and experimentally
prove the challenge to detect them. In Section V, we discuss
possible solutions to detect and disrupt botnet communication.



II. RELATED WORK

The existing work on security of autonomous vehicles and
VANETs is primarily related to bad behavior or compromises
of individual vehicles, with a related body of research on
privacy issues in VANETs. [21] provides a good survey of
the early research on these topics. This paper mentions the
possibility of multiple cooperating malicious entities in the
VANET, but does not discuss them in detail. Following work
on defenses against security problems in VANETs focused
on ensuring the correctness of cryptographic authentication
[11]. More recent work looked at tamperproof hardware in
cars [1], [10], [18] and analysis of messages sent by VANET
members to evaluate plausibility [2], [3], [6], [9], [13], [15],
[20], [26], [33] or trustworthiness of the sender [4]. [19]
assumes cooperating attackers, but does not discuss them in the
context of a botnet. While the general approach of analyzing
messages for plausibility and evaluating trust in nodes has
promise, it does not attempt to identify cooperating attackers,
or at best assumes that a majority of the data comes from
honest vehicles. Therefore, none of these solutions consider
vehicular botnets and investigate defenses against them.

Attackers form botnets by first compromising individual
entities. More recently, a number of papers have described
successful cyberattacks on particular vehicles [12], [22], [23],
[24], [28]. These attacks demonstrate that existing vehicles
with computer and communications capabilities are already
vulnerable and can be compromised. As advanced VANETs
and autonomous vehicles are developed and deployed, it is a
valid assumption that vehicular botnets will be created by orga-
nizing these compromised autonomous cars. We demonstrated
the first vehicular botnet attack in the literature in [8] and
showed how powerful such attacks can be by causing severe
congestion on any road of our choice. This particular botnet
attack did not require vehicular bots to communicate with
each other; however, we can expect future attacks to utilize
a vehicular botnet communication protocol for collaboration.
Therefore, investigating the characteristics of such commu-
nication is crucial for defending against vehicular botnets,
especially considering that the most effective way to stop a
botnet is taking down its communication [16]. This paper is
the first that addresses vehicular botnet communications.

The functional requirements of a vehicular botnet commu-
nication are similar to Internet botnets; they need to protect the
identity of botmaster and bots, avoid detection, and be resistant
to the loss of several bots. However, how these requirements
can be satisfied by vehicular botnets is fundamentally different
than the Internet botnets. This is because the characteristics of
the communication over the Internet and VANETs are funda-
mentally different. Unlike the Internet, in VANETs vehicles
have to use a shared medium to communicate, which every
other vehicle can listen to (i.e., control and service channels).
In order to protect the identity of botmaster, the same approach
with Internet botnets can also be used by the vehicular botnets,
which is using multiple levels in their command and control
(C&C) hierarchy to reach the botmaster. However, ensuring
the infeasibility of getting detected during the communication
among bots is much more challenging in VANETs than it
is in the Internet. How we achieve to satisfy these botnet
communication requirements—while at the same time being
restricted by the characteristics of VANETs—is explained in
detail in the subsequent sections.

III. VEHICULAR BOTNET COMMUNICATION

Creating a vehicular botnet requires building a communi-
cation infrastructure to organize and control the compromised
vehicles so that the attacks can be performed cooperatively
by these vehicles. Since using vehicles’ Internet connections
for communication among vehicular bots will raise a flag,
our vehicular botnet communication needs to use the existing
VANET infrastructure. Using existing communication mecha-
nisms of the current Internet botnets for vehicular botnets is
not feasible since the Internet architecture is fundamentally dif-
ferent than the VANET architecture. Therefore, we designed a
vehicular botnet communication protocol that takes advantage
of the existing VANET infrastructure to control the vehicular
bots and facilitate collaboration for vehicular botnet attacks.

A. Design Overview

The VANET communication infrastructure has two differ-
ent wireless channels that vehicles can use: the control and
service channels. Basic Safety Messages (BSMs) are broadcast
through the control channel; other non-safety applications use
the service channel. Using the service channel to exchange
many botnet messages among a particular set of vehicles would
be suspicious, so we decided to hide the vehicular botnet
communication in the plain sight. Vehicular bots will inject
their messages into BSMs, which are already being flooded
across the network, but no vehicle except our vehicular bots
will know the existence of these secret messages and be able to
decode them. We designed the injection mechanism in a way
that the altered BSMs will not look suspiciously different than
the normal BSMs. In addition, we do not inject botnet data into
every BSM and we constantly change the injection frequency
to further decrease the possibility of raising suspicion; details
are explained in the subsequent sections.

Figure 1. BSM fields where botnet messages will be injected into and the
effect of the injection on the field values.

Not all the fields in a BSM can be altered without causing
implausible data and raising any flags. We alter only four fields
in a BSM where an injection can stay undetected based on the
resulting value of each field. Figure 1 shows the content of a
BSM according to the IEEE 802.11p standards [32]. The fields
that we use for injection are colored green: “Transmission &
Speed” for the vehicle’s current speed, “Positioning Accuracy”
for the noise in calculation of the vehicle’s heading relative to
true north, “Latitude” and “Longitude” for the vehicle’s GPS
location. We inject half a byte to each field by replacing the



least significant 4 bits of the field. We limit the size of each
injection to half a byte so that the changes due to the injection
in the field values are not suspicious. As shown in Figure 1, our
injection can change the value of the speed field at most 0.67
miles/hour, positioning accuracy field at most 0.08 degrees and
GPS position at most 24 centimeters (max. on equator), which
are completely natural variations even without an injection.

B. Vehicular Botnet Message

The size of each vehicular botnet message is 2 bytes, which
will be divided into four equal parts to be injected into a BSM.
Each botnet message has 3 fields as shown in Figure 2:

Figure 2. Botnet message that will be injected into BSM.

Stream/Attack ID: In a vehicular botnet, the same botnet
communication infrastructure has to be used for different at-
tacks, sometimes even simultaneously. Each bot should be able
to separate data streams from each other based on which attack
each stream belongs to. Therefore, we have a stream/attack
ID field in the botnet message which specifies which stream
this message belongs to so that bots can separate different
data streams. We allocated 3 bits in the botnet message for
the stream ID, which supports performing up to 8 different
vehicular botnet attacks simultaneously.

Character Offset: Due to the limited size of injection in
order to stay under the radar, each botnet message has only a
single byte allocated for the payload. The data that a bot needs
to send is divided into individual characters, each of which is
sent with a separate botnet message. Since BSMs altered by
these botnet messages might arrive out of order at the receiver
bots, we allocated 5 bits in the botnet message to hold the
character offset so that the data received can be reconstructed
with the original order. Therefore, at most 32 characters can be
sent in a single stream due to 5-bit character offset; multiple
streams can be used if larger data needs to be sent, decreasing
the number of simultaneous attacks possible.

C. Communication Secrecy

Our vehicular bots do not communicate with each other
through the Internet, a separate wireless frequency or an
individual service channel in the VANET, existence of which
might get detected. Our botnet communication is completely
hidden in BSMs, which are broadcast and flooded to the entire
VANET. Detecting the existence of secret messages embedded
in BSMs is difficult since the changes in the field values after
injections are negligible and expected due to the noise in sensor
readings. Our mechanism discussed in the subsequent sections
is designed to provide confidentiality if anyone ever suspects
that vehicular botnets use BSM broadcasts to communicate.

Even though one cannot guess which and how many fields
bots are injecting their messages into and the size of each
injected botnet message by just monitoring BSM exchanges,
we still decided to assume that this information can be obtained
just in case police might apprehend one of our bots and access
the source code of our vehicular botnet software.

In Section III-F, we show that, even in this situation, our
mechanism can still ensure the confidentiality of the exchanged
botnet messages by the use of tokens and periodic password
updates. In the next few sections, we describe how a compro-
mised vehicle joins the vehicular botnet and the mechanism
by which it periodically mutates the injection scheme.

D. Initialization of Bots

Bots do not use their Internet connection to communicate
with the other bots. However, they will use it for occasional
communications with the botmaster (attacker who owns the
botnet). There are two packet types for this communication
between the botmaster and bots: password request packet and
password response packet. These packets are used by the bot-
net not only for the initial setup, but also for synchronization
and confidentiality purposes even after the initial setup, which
is further explained in Section III-F.

When a vehicle first gets compromised, our botnet software
is downloaded onto the vehicle. The software comes with a
unique token that is different for each compromised vehicle;
these unique tokens are generated by the botmaster and can
only be used once and only for the initial setup. The compro-
mised vehicle will send a password request to the botmaster
for the first time with this token and its “Temporary ID” in
order to obtain a unique bot ID and the current password in
the botnet, and register its “Temporary ID”. This temporary
ID is a unique identifier for each car as required by the IEEE
802.11p standards [32] (see Figure 1). After receiving this
password request, the botmaster will then check its unused
token database and confirm if the token exists. If it exists, the
botmaster will generate a unique bot ID, add the (bot ID, token)
pair to its used token database, add the (bot ID, temporary ID)
pair to its bot database, and send a password response that
contains this bot ID, the current password in the botnet and a
list of all the temporary IDs in the bot database back to the
compromised vehicle. Then, the vehicle overwrites its bot list
with this list sent by the botmaster.

E. Botnet Message Broadcast

The current password in the botnet is used to configure the
injection mechanism. It is constantly updated by each bot at
the same time, thus, the injection configuration mutates with
it. Since the next password is generated from the previous
password and every bot updates its password at the same time
in a distributed manner, all the bots will be using the same
injection mechanism at all times despite the constant mutation.
Bots synchronize their times based on the GPS timestamp,
avoiding issues of clock synchronization. The password struc-
ture in each bot is designed as follows:

Password: The current password in the botnet. All the follow-
ing values are set based on the current value of the password.
Injection order: This determines which permutation of the
half bytes of botnet message will be injected to the four fields
(e.g., fourth half byte is injected to the longitude field while
first is injected to the speed field in the BSM).
Encoder/Decoder ID: This specifies which encoder-decoder
function pair should be used by both sender and receiver bots
to encode the character sent and decode the character received.
Injection Frequency: This determines the frequency at which
injections on BSMs will occur (e.g., inject every fifth BSM).



Next Password Update Time: This specifies the time that cur-
rent password must be updated by each bot so that all bots can
switch to the same configurations without any coordination.

Each bot continuously checks BSMs, at a frequency de-
termined by current configuration to extract any injected
character. First, each bot will check if the temporary ID
associated with the BSM is in its bot list, which is the only
way to understand whether the BSM is coming from a bot or
not. If it exists in the list, then each bot will extract the 2-
byte botnet message according to the current active injection
configurations, and check whether it is a valid message or not.
An invalid botnet message is indicated by setting all its bits
to 1. The reason that this special botnet message exists is that
every bot has to inject something to the BSM when it is time
to inject, regardless of whether there is a character to send in
the bot’s message buffer. Therefore, each bot needs to inject
this special botnet message (all bits are set to 1) if all of its
message buffers are empty, to let other bots know that it did
not have any character to send. If the extracted botnet message
is valid, it will be placed at the correct offset in each receiver
bot’s message buffer belonging to the attack specified by the
Stream/Attack ID in the botnet message. If not, the extracted
botnet message will be discarded.

When botmaster wants to send a message to all of the
bots, it chooses one or more representative bots based on the
sparsity and number of the bots. It sends the message to the
representative bot(s) over the Internet along with the associated
Stream/Attack ID. The representative(s) will break the mes-
sage into individual botnet messages with the corresponding
character offsets and attack ID, and inject one botnet message
at a time to BSMs according to the current active injection
configurations. Received botnet messages will be saved by the
other bots in their associated message buffers. When the next
injection time comes, the other bots will then randomly choose
a character among all of the received characters so far in their
message buffers, and broadcast it like the representative(s)
according to the configurations at that time.

F. Discussion on Secrecy and Consistency

Our botnet communication is resilient to attempts by the
authorities to eavesdrop on the messages being exchanged
among bots. Without knowing the current password, no one
will be able to guess the current active injection configurations
and reconstruct the botnet message. Before one might figure
out the current configurations by brute force, they will already
have changed due to the constant password updates. Successful
brute force in a timely manner is infeasible because one needs
to consider every BSM as injected, try all x! * y combina-
tions (x=number of fields, y=number of encoding/decoding
functions) and filter out the combinations that result in invalid
messages before the password is updated.

One can try to brute force a token to be able to tap
the botnet communication. However, each token is created
in the moment of compromising a vehicle and immediately
used by the compromised vehicle to join the vehicular botnet.
Therefore, window of opportunity to brute force this token is
extremely small, making this approach infeasible.

The only problem that might occur is that police might
apprehend one of our bots and access the botnet communica-
tion software. Police can obtain the token associated with this
captured bot, but due to not allowing token to be used more

than once, the token cannot be used by the police car to join the
botnet. However, police can still use the captured bot itself to
eavesdrop on the communication; therefore, we implemented a
technique to remove the apprehended bots from our vehicular
botnets. The botmaster generates a new random password
every 13 seconds, which is independent from the previous
password. It sends a password response, which contains this
password and the list of current bots’ temporary IDs, to all
the bots in its bot database. When the botmaster detects that
one of the bots got apprehended, it will remove the bot from
its bot database and its associated token from the used token
database. Therefore, the password generated by the botmaster
will not be sent to the apprehended bot, and the bot list that is
sent to all the other bots will not contain the captured bot. This
way, the apprehended bot will be out of sync with the other
bots and will not be able to extract botnet messages properly.
As a result, even if police obtains the current password in the
botnet communication, it will be obsolete in at most 13 seconds
after the apprehension is detected. How a botmaster can detect
the apprehension of bots is for future work. One way would
be making the bot send a message to the botmaster if the
executable of its botnet communication software is accessed
for reading. Read—rather than execute—access will indicate
an attempt for reverse-engineering.

Between these random password generations, the botmaster
keeps updating its password based on the previous password
periodically like all the other bots do. Bot vehicles, which
were turned off by their owners for some time because they
were parked, will miss several password updates and not be
able to communicate with the other bots. Therefore, when they
get turned back on, they will send a password request to the
botmaster with their valid bot IDs to receive the current active
password that the other bots are using in order to catch up
with the current botnet communication.

As aforementioned, bots use their bot list and the temporary
IDs associated with received BSMs to determine if they are
sent by the bots. However, as mandated by the IEEE 802.11p
standards, every vehicle updates its temporary ID periodically
for privacy reasons. Therefore, every time a bot updates its
temporary ID, it will send a password request to the botmaster
with its bot ID and the updated temporary ID. The botmaster
then will update its bot database so that it can be shared with
the other bots through the periodic password response.

IV. EVALUATION

We used Veins [25] (which combines the SUMO and
OMNeT simulators) to conduct experiments to evaluate our
vehicular botnet communication. SUMO is responsible for
simulating realistic vehicular traffic while OMNeT is used to
simulate the communication capabilities of the vehicles with
IEEE 802.11p integration [32].

Average Max Theoretical Max
Latitude (d) 5.02E-07 7.67E-07 15E-07

Longitude (d) 5.25E-07 7.73E-07 15E-07
GPS Position (cm) 8.08 12.11 24

Positional Accuracy (d) 0.02 0.03 0.08
Speed (Miles/Hour) 0.29 0.40 0.67

Figure 3. Changes in the values of the injected fields during the experiment

First, we show that it is infeasible to detect our botnet
communication. Figure 3 shows the average changes on the



four BSM fields due to the injection of botnet messages,
as well as the maximum changes observed during our
experiments. It can be seen that actual changes on these fields
are much lower than the theoretical maximum values that we
anticipated in Section III-A. Changes in the speed values stay
under the speedometer errors tolerable by the UN regulations
[29]. Changes in the GPS position and positional accuracy are
much lower than the expected errors in the sensor readings
(≈1 meter for the state-of-the-art GPS sensors [31] and 1
degree for the magnetic compasses [5]). These results show
that it is infeasible to detect our botnet communication.

Packet Loss (%) 0.0 0.5 1.0 1.5 2.0
Average Sync Time (s) 20.43 20.84 18.02 20.91 22.80

Figure 4. Average synchronization times with different packet loss rates

Our botnet communication is resilient to packet loss.
We tested our systems with different packet loss rates and
measured, for each rate, the average time it takes for a bot
to receive the complete message associated with an attack
(average sync time). Figure 4 shows average sync times
mostly increase as the loss rate increases, but the changes are
negligible; bots receive complete message in a timely manner.

Figure 5. Sync time graph when the packet loss rate is 2%

Figure 5 shows how resilient our botnet communication is
to packet loss and explains the reason of the results in Figure
4. Sync times increase throughout the simulation as more
packets are lost, but our system quickly adapts to the lossy
links and stabilizes at acceptable values. It stabilizes sync
times by a randomization strategy we designed for advertising
botnet messages. For each botnet message, bots broadcast a
character at a random index in their message buffer so that
the variety of characters being advertised at each time is
maximized. As a result, the probability for a bot to receive a
character which it has not received yet will increase and sync
times will improve compensating the existing packet loss rate.

Bot Percentage (%) 5 10 20
Average Sync Time (s) 11.10 12.96 20.43

Figure 6. Average synchronization times with different botnet percentages

We also investigated how scalable our botnet communica-
tion is when a large number of bots use the botnet commu-
nication, by testing our system with different bot percentages.

Figure 6 shows the average sync times when 5%, 10% and 20%
percent of the vehicles in the simulation are bots. As expected,
the average sync time increases as the bot percentage increases
due to the computation overhead and packet loss introduced
by this overhead. However, the increase is logarithmic and
therefore tapers off before exceeding acceptable sync times.

Figure 7. Sync time graph when 20% of the cars in the simulation are bots

Figure 7 shows how fast our botnet communication adapts
to the overhead caused by the large number of bots when the
bot percentage is 20%. It stabilizes sync times this quickly by
exploiting the large number of bots for the aforementioned
randomization strategy; when the number of bots is high
enough, this strategy successfully compensates for the packet
loss induced by the overhead. Also, the stabilization of the
sync times in Figure 7 is much faster than it is in Figure 5 with
high packet loss, since the effectiveness of our randomization
strategy increases as the number of bots gets higher.

V. POSSIBLE COUNTERMEASURES

The success of our vehicular botnet communication pro-
tocol depends on the infeasibility of detecting the communi-
cation. Even though we implemented mechanisms to prevent
others from eavesdropping on the botnet messages, authorities
can still remove the bots from the network if the botnet
communication gets detected in any of the bots’ messages.
However, currently no one can accuse any vehicle of participat-
ing in a botnet communication since the changes in the values
of injected BSM fields are negligible and even less than the
natural variations in these values due to noisy sensor readings
(see Figure 3). The reason that the injections go unnoticed is
how the VANET standards define BSM fields. The precision
of the fields that we chose to inject and the allocated number
of bytes for them in BSMs help half-byte injections not to
change the values noticeably. For example, “Transmission &
Speed” field in the BSM counts in the unit of 0.02 meters/sec
(0.04 miles/hour). There is no reason to have a precision this
high for a value that is already very noisy. Therefore, one
defense against our botnet communication would be to change
the standards for BSMs to get rid of the unnecessary precisions
and to avoid allocating more bytes for the fields than required.
For instance, decreasing the size of the injected fields by half
a byte will decrease their precision by a factor of 16, which
is sufficient to make the injections detectable.

If the injections on the BSMs begin changing the field
values more than the expected natural variations, machine
learning techniques could be used to detect anomalies in the
values of these BSM fields. Some anomalies can be as simple



as an acceleration of 20 miles/hour in one second, but detecting
some of them may require monitoring the exchanged BSMs
in the whole network and learning for a significant amount
of time. After an anomaly is detected in the BSMs of a
vehicle, it can be put under further surveillance to identify
the other bots, or can be immediately removed from the
network and apprehended by the authorities. Though, it is not
a straightforward task to remove a vehicle from the network.
The most effective way to achieve this is a question for future
research. Maybe a reputation-based security system can be
used to score each vehicle based on its trustworthiness.

An additional approach can be analyzing the Internet traffic
from/to individual vehicles to identify the botmaster, or to at
least identify the bots that have suspicious Internet traffic if
the botmaster is untraceable. Identifying and shutting down
the botmaster is the most effective way to disrupt a botnet
communication; however, it is not trivial to do so. A lot of
earlier research has been conducted on this subject in the
context of Internet botnets; perhaps similar mechanisms can
deal with the vehicular botnets.

VI. CONCLUSION

In this paper, we demonstrated the first vehicular botnet
communication in the literature. We argued that the most
effective defense against vehicular botnets, as all other types
of botnets, is investigating the characteristics of the com-
munication they use to perform their attacks and designing
defense mechanisms to disrupt it. We prototyped one such
communication mechanism to allow us to study it. We showed
that it is infeasible to detect our botnet communication due
to the existing vulnerabilities in the VANET standards. We
demonstrated the resilience of our botnet communication to
lossy channels and that it is scalable even if there are a large
number of bots on the map. We discussed existing vulnerabili-
ties in the VANET standards and possible countermeasures. We
believe that vehicular botnets can facilitate dangerous attacks
performed on VANETs, and that much more research needs
to be done to effectively fight against it. This paper serves as
an important first step toward designing a general defense that
can prevent all types of vehicular botnet attacks since they all
will have to use a botnet communication protocol.

VII. ACKNOWLEDGEMENT

We would like to thank Paul Hyungmin Kim for his great
work contributing to the implementation and experimentation
of the botnet communication, and his valuable feedbacks.

REFERENCES

[1] The evita project. http://www.evita-project.org, 2008.
[2] N. Bismeyer, S. Mauthofer, K. M. Bayarou, and F. Kargl. Assessment

of node trustworthiness in vanets using data plausibility checks with
particle filters. In IEEE VNC, 2012.

[3] N. Bismeyer, C. Stresing, and K. Bayarou. Intrusion detection in vanets
through verification of vehicle movement data. In IEEE VNC, 2010.

[4] F. Dotzer, L. Fischer, and P. Magiera. Vars: A vehicle ad-hoc network
reputation system. In IEEE WoWMoM, 2005.

[5] B. Edwards. Magnetic compass accuracy, sighting, and triangulation.
http://sectionhiker.com/magnetic-compass-accuracy/, 2014.

[6] M. El Zarki, S. Mehrotra, G. Tsudik, and N. Venkatasubramanian.
Security issues in a future vehicular network. European Wireless, 2,
2002.

[7] L. Evans. A new traffic safety vision for the united states. American
Journal of Public Health, 93(9):1384–1386, 2003.

[8] M. T. Garip, M. E. Gursoy, P. Reiher, and M. Gerla. Congestion attacks
to autonomous cars using vehicular botnets. In NDSS, 2015.

[9] P. Golle, D. Greene, and J. Staddon. Detecting and correcting malicious
data in vanets. In ACM VANET, 2004.

[10] G. Guette and C. Bryce. Using tpms to secure vehicular ad-hoc networks
(vanets). In Information Security Theory and Practices. Smart Devices,
Convergence and Next Generation Networks, 2008.

[11] J. Hubaux, S. Capkun, and J. Luo. The security and privacy of smart
vehicles. IEEE Security & Privacy, 2(3):49–55, 2004.

[12] I. Roufa et al. Security and privacy vulnerabilities of in-car wireless
networks: A tire pressure monitoring system case study. In 19th
USENIX Security Symposium, 2010.

[13] T. H. J. Kim, A. Studer, R. Dubey, and X. Zhang et al. Vanet alert
endorsement using multi-source filters. In ACM VANET, 2010.

[14] S. G. Klauer, F. Guo, J. Sudweeks, and T. A. Dingus. An analysis
of driver inattention using a case-crossover approach on 100-car data:
Final report. U.S. Department of Transportation No. HS-811 334, 2010.

[15] T. Leinmuller, E. Schoch, and F. Kargl. Position verification approaches
for vehicular ad hoc networks. IEEE Wireless Communications,
13(5):16–21, 2006.

[16] Y. Nadji, M. Antonakakis, R. Perdisci, D. Dagon, and W. Lee. Behead-
ing hydras: Performing effective botnet takedowns. In ACM SIGSAC
Conference on Computer & Communications Security, 2013.

[17] W. Odero, P. Garner, and A. Zwi. Road traffic injuries in developing
countries: a comprehensive review of epidemiological studies. Tropical
Medicine & International Health, 2(5):445–460, May 1997.

[18] B. Parno and A. Perrig. Challenges in securing vehicular networks. In
ACM Hotnets IV, 2005.

[19] J. Petit, M. Feiri, and F. Kargl. Spoofed data detection in vanets using
dynamic thresholds. In IEEE VNC, 2011.

[20] R. K. Schmidt et al. Vehicle behavior analysis to enhance security in
vanets. In IEEE V2VCOM, 2008.

[21] M. Raya and J. P. Hubaux. Securing vehicular ad hoc networks. Journal
of Computer Security, 15(1):39–68, 2007.

[22] S. Rosenblatt. Car hacking code released at defcon.
http://news.cnet.com/8301-1009 3-57596847-83/car-hacking-code-
released-at-defcon/, 2013.

[23] S. Checkoway et al. Comprehensive experimental analyses of automo-
tive attack surfaces. In 20th USENIX Security Symposium, 2011.

[24] G. Smith. Driverless car could be hacked by 14-year-old from indonesia,
senator warns. http://www.huffingtonpost.com/2013/05/17/driverless-
car-hack n 3292748.html, 2013.

[25] C. Sommer. Veins: Vehicles in network simulation.
http://veins.car2x.org, 2015.

[26] H. Stubing, J. Firl, and S. A. Huss. A two-stage verification process
for car-to-x mobility data based on path prediction and probabilistic
maneuver recognition. In IEEE VNC, 2011.

[27] C. Tannert. Self-driving cars: Inside the road revolution.
http://www.fastcompany.com/3022489/innovation-agents/self-driving-
cars-let-go-of-the-wheel/, 2014.

[28] A. Tutu. Tesla model s vulnerable to cyber attacks.
http://www.autoevolution.com/news/tesla-model-s-vulnerable-to-
cyber-attacks-79407.html, 2014.

[29] UN Economic Commission for Europe. UN vehicle regulations.
http://www.unece.org/trans/main/wp29/wp29regs21-40.html, 2016.

[30] D. Undercoffler. 54 million self-driving cars will be on the road by
2035, study finds. http://articles.latimes.com/2014/jan/02/autos/la-fi-hy-
autos-ihs-autonomous-cars-study-20140102, 2014.

[31] U.S. Department of Defense. Gps standard positioning service
performance standard. http://www.gps.gov/technical/ps/2008-SPS-
performance-standard.pdf, 2008.

[32] Wireless LAN Working Group. Wireless access in vehicular environ-
ments. IEEE Standards, July 2010.

[33] G. Y. Yan, G. Choudhary, M. C. Weigle, and S. Olariu. Providing vanet
security through active position detection. In ACM VANET, 2007.


