
Improving the Security

of Android Inter-Component Communication

Adam Cozzette,∗ Kathryn Lingel,∗ Steve Matsumoto,∗ Oliver Ortlieb,∗ Jandria Alexander,†

Joseph Betser,† Luke Florer,† Geoff Kuenning,∗ John Nilles,† and Peter Reiher†

∗Computer Science Department

Harvey Mudd College

301 Platt Blvd.

Claremont, CA 91711
†The Aerospace Corporation

El Segundo, CA

Abstract—In the Android operating system, each application
consists of a set of components that communicate with each
other via messages called Intents. The current implementation of
Intent handling is such that developers can inadvertently write
insecure code that allows malicious applications to intercept or
inject Intents to steal sensitive information or induce undesired
behavior. We prevented these exploits by modifying Android’s
Intent handling behavior to err on the side of safety except where
the developer seems to explicitly specify otherwise. Additonally,
we confirmed the pervasiveness of Intent vulnerabilities by
analyzing the 497 most popular free applications in Android’s
official application market, and proved the effectiveness of our
modifications by manually verifying that they closed a substantial
number of the security holes we identified.

I. INTRODUCTION

Applications in Google’s Android operating system commu-

nicate via messages called Intents. These messages are passed

between the core components of applications, and as such are a

critical piece of the Android architecture. However, if not used

carefully, Intents can open several security vulnerabilities.

For example, Intents can be explicit (addressed to a specific

component) or implicit (without a named destination). Using

an implicit Intent when the desired destination is known may

enable other applications to intercept the messages, potentially

leaking sensitive data. In addition, an application component

which registers to receive implicit Intents becomes publicly

visible by default, allowing any other application to send it

Intents. These unexpected Intents can cause the application to

crash or result in undesired behavior.

While these vulnerabilities can be avoided through careful

coding by developers, such an expectation is unrealistic, given

the open nature of the Android application market. Chin et

al. [1] propose several changes to the Android architecture

to mitigate these problems, and we implemented the changes

suggested in two of these recommendations:

• Intent resolution: we modified Android’s process of Intent

resolution so that implicit Intents are directed to compo-

nents within the same application whenever possible.

• Component visibility: we tightened the criteria for making

components publicly visible, protecting applications from

potentially harmful Intents unless they clearly indicate

that they anticipate Intents from outside applications

through certain properties (Sec. III).

The changes to the Intent resolution process maintained

correct behavior in a random sample of applications we tested

manually, but the changes to component visibility broke some

functionality in a second random sample. In Section V, we

discuss the defense’s effectiveness and propose an extension to

Chin’s suggested changes that promotes much better backward

compatibility.

II. INTENT VULNERABILITIES

Android uses a single type of Intent for both inter- and

intra-application communication. As a result, developers can

inadvertently involve outside applications when they intend

to perform communication solely within the boundaries of a

single application. These problems give rise to several notable

security vulnerabilities:

Unauthorized Intent Receipt. While explicit Intents are

designed for sending messages to known destinations, implicit

Intents can achieve the same results, albeit less securely. We

have found that many applications take this shortcut (Sec-

tion IV). A malicious component can register itself to receive

standard Android Intents and thus intercept implicit Intents

used by many other applications. This allows an attacker to

intercept another application’s private data; the Intent can then

be re-sent to its original destination so that neither the user

nor the original sending component is aware of the attack.

Alternatively, the malicious application could handle the Intent

on its own, e.g. by starting its own Activity or Service, as part

of a more sophisticated attack such as phishing [1].

Intent Spoofing. By default, any component with an Intent

filter is “exported” by Android and made publicly visible to the

entire phone. Often developers are unaware of this behavior

and do not correctly handle the possibility of receiving an

Intent from an unexpected source. A malicious component can

take advantage of this to induce incorrect behavior by sending

an Intent that the vulnerable component blindly accepts.

This vulnerability often arises when one component sends

an implicit Intent to another in the same application. The

receiving component will have an Intent filter, but might

808978-3-901882-50-0 c©2013 IFIP

only be built to handle internally generated Intents. Malicious

applications could inject information into the vulnerable app

by sending it an appropriate Intent; the vulnerable app has no

way of identifying where the Intent came from, so it will treat

the malicious Intent as if it were a trusted one from the app’s

own internal component.

III. IMPROVED INTENT HANDLING

As we have seen, the Intents system leaves naı̈vely im-

plemented Android apps open to attack by malicious apps

on the same phone. While mitigating these vulnerabilities

requires modifying Android to handle Intents more securely,

it is important to achieve this in a backwards-compatible way

to preserve the many applications on the market that have

these weaknesses. While a complete overhaul of the system

to separate intra- and inter-application communication would

provide increased security, it would be almost impossible

to build a backward-compatible system or to automatically

upgrade existing apps to the new communication framework.

Therefore, guided by Chin et al.’s paper [1], we have proposed

several guidelines for how Intents should be handled.

In particular, outbound Intents should be sent to a compo-

nent to within the sending application whenever possible, and

should only use the current resolution rules if this fails. The

intuition is that if a developer sends an implicit Intent that

can be resolved by a component in the same application, she

probably intended the communication to go to that component.

This policy is not likely to break many applications, because

if a component in the same application is capable of receiving

the Intent, then delivering it is almost certainly a correct

outcome.

To secure inbound Intents, components should only be

exported if it meets one of the following criteria:

• The component explicitly declares itself exported,

• It registers to receive Intents that carry data, or

• It registers to receive one of the standard Android Intents.

This approach effectively inverts the current system, which

is biased toward exporting any component that declares an

Intent filter. The first criterion is a clear sign of the developer’s

desires; the other two are not a guarantee that the component

should be public, but suggest that the developer probably

intends to provide functionality to other applications on the

phone.

IV. ANALYSIS OF EXISTING ANDROID APPLICATIONS

To study these Intent vulnerabilities and their prevalence in

real applications, we downloaded the 497 most popular (as

of March 2012) free Android applications. 1 Although we

did not analyze any paid applications, we believe that our

sample is a reasonable representation of common Android

applications and their security flaws, especially given that

many applications come in both free and paid flavors that share

most of their code.

1We had planned to analyze the top 504 but were unable to complete seven
of the downloads.

To study our sample, we decompiled each application’s

Java bytecode using dex2jar and apktool, and statically

analyzed the resulting source. We also used apktool to

extract the manifest file from each package. In our analysis we

focused on two main aspects of existing Android applications:

how often they use implicit Intents for internal communication,

and how often components are automatically exported despite

the developer’s probable intentions.

A. Implicit Intents Used for Internal Communication

To investigate how frequently implicit Intents are used for

internal communication, we analyzed both the manifest file

and the decompiled Java source for each application. Using

the Intent filter declarations in the manifest file, we determined

the full set of implicit Intent types that the application’s

components were willing to accept, and from the Java source

we determined the set of Intent types that the application could

potentially send. Then, by taking the intersection of these

two sets, we were able to determine what kinds of implicit

Intents could be sent from one component of the application

to another.

The static analysis tool was able to successfully decompile

and analyze 487 of the top 504 applications. 2 2.15% of the

Intents in this sample were flagged by the tool as implicit

Intents used for intra-application communication. In 115 of

the sampled applications, this type of Intent appeared at least

once. To evaluate the correctness of our static analysis tool,

we picked a random sample of 20 applications and manually

reviewed them to determine the rate of false positives and

the percentage of reported true positives that were actual

security vulnerabilities. In this sample, a total of 65 Intents

were flagged as implicit Intents used for intra-application

communication; three were false positives. Of the remaining

62 identified true positives, 60 could lead to Intents being

delivered to the wrong recipient.

B. Automatic Exporting of Components

One dangerous consequence of using implicit Intents for

internal communication is that components listen for them by

declaring an Intent filter, which will automatically export them

unless they specify otherwise. Therefore, we investigated how

often components are exported this way and how often our

modifications would prevent them from being exported. To

answer these questions, we changed the PackageParser

code for Android, which is responsible for parsing the man-

ifest file that is packaged with each application. Of the 497

applications we tested, 344 would be exported in a normal

Android system but not in our modified version of Android.

From the 344 applications that have components which are

automatically exported but which would not be exported with

our changes, we selected a random sample of 20 for detailed

investigation. We found that 14 of these 20 applications were

vulnerable to simple denial-of-service attacks: by sending

simple but carefully constructed Intents from an unprivileged

2The jad decompiler was not able to decompile ten of the applications in
the downloaded 497.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper 809

process we were able to crash them. Most of the exploits

involved inducing null pointer exceptions by omitting parts of

the Intent that the receiving component expected. We crashed

five applications by omitting the Intent action string, four by

omitting an expected extra field, one by omitting the Intent’s

data URI, and one by setting an invalid extra field. For the

remaining three vulnerable applications the cause of the crash

was unclear.

Four of the 20 applications appeared to expose functionality

that was intended for internal use only and could potentially

be abused. The most worrisome of these was PayPal’s free

Android application, which allows a user to send electronic

payments to others. We found that by sending appropriate

Intents, we could construct a payment of an arbitrary amount,

payable to an arbitrary party, while bypassing all but one of

the normal interaction screens. The single screen we failed

to avoid was the final “Send” confirmation screen; the user

must still tap that button to complete the transaction. However,

we came up with several possible schemes for tricking a

user into doing so. For example, the malicious application

could masquerade as a game that encouraged the victim to tap

rapidly and repeatedly in the area of the “Send” button; while

that was going on a carefully timed Intent could be sent to

the PayPal application, causing it to bring up its confirmation

screen just as the user tapped.

V. DEFENSE EVALUATION

Having verified that the vulnerabilities we identified are both

real and dangerous, and having implemented a defense, we set

out to evaluate the practicality of our approach.

A. Effectiveness Against Existing Exploits

As mentioned above, we found 62 cases where implicit

Intents were used for internal communication in the 20 ap-

plications we analyzed manually. Of those 62, our defense

prevents 60 of them by delivering the Intents to components

in the same application that sent them.

Of the 14 Intent spoofing vulnerabilities we found, our

defense eliminates 10 of them by preventing the vulnerable

components from being automatically exported by Android.

B. Effect on Existing Applications

We did not find any issues regarding the Intent interception

defense and its compatibility with current applications on

Google Play. We manually reviewed 20 randomly selected

applications to test the effect of our defense, including ap-

plications with and without Intents affected by our defense

to observe its effects on both kinds of apps. Our testing did

not uncover any cases where applications were broken by the

Intent interception defense.

However, we found that our Intent spoofing defense breaks

some functionality in all 20 of the applications we examined

by hand. Most of the problems involved one or more of

the following: Android’s billing system, the Cloud to Device

Messaging framework (C2DM), the app widget system, Ama-

zon in-application purchasing, live wallpapers, analytics, ad

networks, and Broadcast Receivers such as those that listen

for SMS and MMS messages.

Fortunately, many of these problems can be easily resolved

by making two changes to the criteria suggested by Chin et

al. [1] to decide whether to block a component from being

exported. First, if a component is protected by a permission,

we should allow it to be exported. This would solve the

problems we observed with C2DM, Amazon in-application

purchasing, and live wallpaper, because the components that

used these features correctly used the permissions system to

restrict which applications could send Intents to them. This

change would not sacrifice much security, because components

that are already protected by permissions have little need for

additional protection.

A second change, which would resolve most remaining

backward compatibility problems, would be to allow a compo-

nent to be automatically exported unless it filters exclusively

for Intents within its own namespace. Usually when a compo-

nent filters for Intents outside of its application’s namespace,

it does so because it expects to receive Intents from other

applications. By allowing these components to be exported,

we can ensure that they can receive the Intents they need for

correct functionality.

VI. RELATED WORK

Introductions to Android security can be found in Burns [2]

and in Enck et al. [3]. Relevant application characteristics are

surveyed by Enck et al. [4] and Felt et al. [5], [6].

Chin et al. [1] focused on how to secure applications

from each other by improving the safety of inter-application

communication, particularly communication via Intents. They

identified two broad classes of Intent vulnerabilities, Intent

spoofing and unauthorized Intent receipt, and developed a

tool, ComDroid, which they used to disassemble and statically

analyze DVM bytecode. This approach uncovered many vul-

nerabilities in a sample of existing Android applications. Based

on their results, they presented recommendations for changes

to how Intents are handled; these recommendations form the

basis for (but are not identical to) our own modifications to

Android.

One potential consequence of Intent vulnerabilities is priv-

ilege escalation: by sending a cleverly crafted Intent, a ma-

licious application might escalate its own permissions by

tricking a vulnerable application into doing its bidding with

higher permissions. Davi et al. present a proof-of-concept that

uses a (now fixed) vulnerability in the Phone application to

mount a privilege escalation attack [7]. Felt et al. consider

“confused deputy” and “unintentional deputy” attacks [8] and

present IPC Inspection, which ensures that an application

cannot enhance its privileges by delegating a task.

SCanDroid [9] is a tool that tracks data flows through

and across application components, identifying flows that

violate the security policy implied by the relevant permissions.

Kirin [10] is a mechanism that enforces rules about what

sets of permissions are permissible to applications. The user

blacklists certain combinations of permissions (for example,

810 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper

the ability to record sound and send it over the network)

to prevent applications from gaining dangerous capabilities.

TaintDroid [11] uses dynamic taint analysis to monitor the

flow of sensitive data on the phone and determine when it

is leaving the phone (e.g. as an SMS message). Ongtang

et al. [12] present Saint, a system for enforcing application

security policies.

None of these approaches address the vulnerabilities in

Intent handling that we consider, though SCanDroid might be

modified to add such protections.

VII. CONCLUSION AND FUTURE WORK

We have shown that Android’s system of handling inter-

and intra-application messages (Intents) has vulnerabilities that

allow malicious applications to take advantage of innocent

ones. An extensive study of applications available on Google

Play showed that the threat is not theoretical, and in at least

one case could allow a malicious developer to steal money

from unsuspecting users.

In addition to the changes suggested in Section V-B, we

suggest a modification to the way Android’s Intent filtering

mechanism behaves. A common misunderstanding arises with

Intent filters, because declaring a filter does not actually

“filter out” any Intents. Paradoxically, declaring a filter for

a component greatly widens the set of Intents that it can

receive, because (unless it is protected by a permission)

Android’s default is to open up the component to receive any

explicit Intent from any application. Our evidence suggests

that developers incorrectly use Intent filters to guarantee cer-

tain input preconditions, causing invalid behavior when these

preconditions are not met. We recommend changing Android’s

Intent delivery so that it enforces the criteria of Intent filters

on explicit Intents as it does for implicit ones, at least for

communication between separate applications.

Although we have addressed the most common varieties of

Intent vulnerabilities, Android’s Intent system has a handful

of subtle corners that could use more attention in the future.

Sticky broadcasts persist after they have been sent and cannot

be protected by permissions. Ordered broadcasts can be halted

or tampered with by malicious applications. Another interest-

ing issue is that Intents can delegate authority either by using

pending intents or by sending Content Provider URI’s.

Finally, there are also subtleties with respect to dynamically

registered Broadcast Receivers. Unless a permission is spec-

ified, they are open to receive Intents from any application

on the phone. Furthermore, prior to 4.0, Android ignores

Intent.setPackage() when it is resolving a broadcast

to a dynamically registered Receiver, suggesting that it may

often be possible to intercept broadcasts simply by registering

a Receiver dynamically. All of these issues could use more

research into how prevalent they are in the wild and how to

mitigate related vulnerabilities.

TRADEMARKS

All trademarks, trade names, and service marks are the

property of their respective owners.

REFERENCES

[1] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in Proceedings of the 9th

international conference on Mobile systems, applications, and services,
ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 239–252.

[2] J. Burns, “Mobile application security on Android,” ser. Blackhat’09,
2009.

[3] W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android
security,” Security Privacy, IEEE, vol. 7, no. 1, pp. 50 –57, jan.-feb.
2009.

[4] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
Android application security,” in Proceedings of the 20th USENIX

conference on Security, ser. SEC’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 21–21.

[5] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proceedings of the 1st ACM workshop

on Security and privacy in smartphones and mobile devices, ser. SPSM
’11. New York, NY, USA: ACM, 2011, pp. 3–14.

[6] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference

on Computer and communications security, ser. CCS ’11. New York,
NY, USA: ACM, 2011, pp. 627–638.

[7] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on Android,” in Proceedings of the 13th international

conference on Information security, ser. ISC’10. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 346–360.

[8] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: Attacks and defenses,” in Proceedings of the 20th USENIX

conference on Security, ser. SEC’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 22–22.

[9] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automatic
security certification of Android applications,” University of Maryland,
College Park, Tech. Rep. CS-TR-4991, November 2009.

[10] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile
phone application certification,” in Proceedings of the 16th ACM

conference on Computer and communications security, ser. CCS ’09.
New York, NY, USA: ACM, 2009, pp. 235–245. [Online]. Available:
http://doi.acm.org.ezproxy.libraries.claremont.edu/10.1145/1653662.1653691

[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th

USENIX conference on Operating systems design and implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–6.

[12] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
rich application-centric security in Android,” in Computer Security

Applications Conference, 2009. ACSAC ’09. Annual, dec. 2009, pp. 340
–349.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper 811

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

