Automated Planning for Open Architedures

Peter Reiher, Richard Guy, Mark Yarvis, and Alexey Rudenko
University of California, Los Angeles

Abstract — End-to-end connedions experience a high level of
diversity in network characteristics. At one etreme, an
application may recdve highly degraded service leaving the
application unusable. At another extreme, the @sts to
guarantee some level of service may be undesirably high to the
user or overall system. Open architedure networks help
applications push adaptation technology into the network and
reduce the dfeds of poor network characteristics. Automated
planning is important for the services that are supported by the
open architedure. The remedies that modify an application’s
data stream to adjust it to unfavorable network conditions
should be located and ordered to provide goad data transfer and
network resources use. The search for goad plansis a hard Al
problem and requires additional research.

Index Terms—adaptation, active networks, planning.

|I. INTRODUCTION

Some open architedure systems asaume that applications
must be written or re-written to take alvantage of the new
networking fedures they offer [3, 4, 7, 8]. Other open
architedure systems ®ek to provide their benefits even to
programs and dbta streams that are unaware of the new
posshilities. Some examples of the latter are protocol
boosters [5], the Berkeley proxy system [2], and Condictor
[9]. These agplicaion-unaware systems ometimes require
explicit user or system administrator configuration, such as
designating a proxy pant, or pre-deploying various forms of
adaptation modues. However, this approach limits their
utility, since they provide benefit only when some person is
intelligent and knavledgeable enough to foresee posshle
benefits and take gpropriate adion. Ancther approach is to
automaticdly apply adaptations to data streans withou
explicit user intervention. At alimited level, this approach is
aready taken by potocols such as TCP, which do not
demand that human users or applications assst it in adjusting
to congestion ontheline. In general, automatic goplicdion o
adaptations requires intelli gent planning to ensure that proper,
compatible aaptations are gplied in appropriate places.
This paper describes the problem in more detail and oulines
some basic gpproach to a solution.

In Sedion Il we describe the problems of automated
adaptation by open architedure systems. Sedion Il covers
the Panda system, which provides suppat for applicaions
that are unaware of the existence of the alaptation agent
service Sedion IV describes principles of automated
planning d adaptations and the plan ogimizaion problem.

Thiswork was partially suppated by the Defense Advanced Reseach
Projeds Agency under contrad DABT63-94-C-008Q Authors may be
contaded at: {reiher, rguy, yarvis, arudenko} @fmg.cs.ucla.edu.

Sedion V outlines our plan for future work. Sedion VI
provides concluding remarks.

Il. THE PROBLEMS OF AUTOMATED ADAPTATION

If users are not diredly involved in chocsing and
deploying the open architedure alaptations that a data flow
needs, the system must automaticaly solve several problems.

First, the system must understand the format of the data
stream it seeksto improve well enoughto take proper adions.
In some caes, not only the data strean must be onsidered,
but the gplicaion end padnts of the stream, the hardware
devices at those endpants, or even the wishes and reels of
the users.

Seowond the system must deted problematic condtions
reliably and quickly, so it can knov what remedial adionsto
take. It must also get some sense of the longer outlook for
network condtions, at least for the life of the data flow.

Third, the system must be ale to apply multiple remedial
adions to the same data stream. The strean may encourter
multiple problems at various points along the transmisson
path, and generally different adions will be required to solve
those problems. Applying multiple ations implies that the
system must be @le to determine if a set of adions are
compatible. The canoricd example of incompatibility is to
mee problems of seaurity and inadequate bandwidth by first
encrypting the data stream, then ineffecdually compressng
the encrypted version d the stream.

Fourth, the system must be ale to determine if the open
architedure is willi ng and able to run al adaptations that the
system proposes at the locaions it chooses. Some
adaptations might not run properly on particular nodes. Some
nodes might be unwiling to run particular kinds of
adaptations. Perhaps me nodes limit the resources
expendable on asingle padet or entire data flow at that noce.
These @nstraints may cause adifferent set of adaptations to
be performed, or may affed where adaptations are located.

These last two problems require the system to be ale to
plan. Given knowledge of what the data strean needs to dg
what problems it faces, and what possible remedia adions
are available, the alaptation system must creae aplan of
which adions to use, in which order, located a which
adaptation pants in the open architedure. If there ae many
possible types of data streams, many passble types of
problems, many passhle remedial adions, many adaptation
points available, and many constraints on what adaptations
may be performed, creding such a plan can be dhalenging.
Further, the plan must be aeaed relatively quickly, sincethe
data strean cannot be delayed indefinitely in seach o the
perfed plan. Depending onthe spedfics of the data stream,
between microseconds and very small numbers of semnds
are aailable to plan the remedia strategy. If the mde

implementing remedial adions is not ubiquitous, deployment
costs must also be mnsidered in planning.

III. PANDA

We ae investigating methods of automaticdly planning
the doice ad deployment of adaptations in open
architectures. We ae working in the ntext of an
applicaionunaware adive network suppat system cdled
Panda. Panda automaticdly traps non-adive data streans
and converts them into streams of adive padets. Panda dso
credes plans for which adive services sroud be performed
at ead adive network nock or switch along the path. A
Panda prototype has been used in ou lab for over ayea. The
planning cgpabiliti es of the original prototype were extremely
primitive. We ae arrently implementing an improved
prototype that will offer better planning suppart.

Active services in Panda are implemented as adapters that
shoud be deployed acmording to a plan on nods designated
by the plan. After the plan is adivated the alapters modify
al data padkets arriving at the node. Adapters increase the
cost of the mnredion, using resources gich as CPU cycles,
storage, network controls, etc. The deployment of adapters
also requires extratime and retwork bandwidth.

Two adapters may have different charaderistics even if
they do the same kind d adaptation for a data stream. For
example one aapter might compress a data stream by
converting color images to bladk-and-white images; another
adapter can achieve the same level of compresson by
reducing the resolution. The choice of a particular adapter in
this case depends on the requirements of the user for the data
stream.

The locaion d an adapter affeds the dcharaderistics of
data strean. It might be better to extend the number of links
covered by some aapters. For example, asaume that some
link requires the adapter that uses the Ziv Lempel technique
for data compresson. Then locaing as many links as
posdble between the nodes that run compresson and
decompresson will i mprove overall communicaion becaise
ead link will benefit by forwarding compressed data, even if
it has sufficient bandwidth. At the sametimeit isundesirable
to extend the dfeds of a forward error corredion adapter on
links that do nd actually require extrareliability becaise this
adapter increases the anount of datathat must be sent.

ANTS

NG

Figure 1. A Panda Node

The Panda prototype consists of threebasic comporents (Fig.
1). The Panda Interception Comporent (PIC) traps messages
sent by applications that do nd use adive networking
cgpabiliti es. It examines such messages and gves those it
thinks Panda can assst to the Panda Adaptation Componrent
(PAC). The PAC is resporsible for planning which adapters
to use on kehalf of a given data flow and deploying them at
the proper locations in the network. The planning function o
the PAC requires information abou condtions in the
network. The third Panda componrent, the Panda Observation
Comporent (POC) provides this information. The POC
observes network and node @ndtions and povides
information to the PAC as required for planning. If condtions
change dragticdly, the POC can signa the PAC, which may
chocse to abandonthe existing gan and re-plan.

Panda uses the ANTS Exeaution Environment [8] to
provide basic adive networks srvices.

Panda must be deployed at any node where alapters are to
be run. Panda planning requires information and cooperation
from al Panda nodes traversed by a data flow.

IV. THOUGHTS ON PLANNING

The basic problem in automatic planning is to find
remedies to a given set of problems locaed at particular
nodes or linksin adata path. Fig. 2 shows asimple example.
Here, in a data path that traverses four links, the entire path
ladks the seaurity required for the data transmisson. Also,
the seoond link daes not have sufficient bandwidth for the
transmisson. Thethird linkisnoisy. Thefinal linkis subjed
to frequent bursty cross traffic, which will tend to cause
unaccetable jitter in the delivery of the data stream.

Fig. 3 shows how an open architedure system like Panda
might handle the problem. Adapters (indicaed as boxes) are
deployed at various locaions. Data encryption is performed
endto-end. Since one of the links has insufficient
bandwidth, data sent acossthat link shoud be cmmpressd;
but becaise ecryption is being dore ed-to-end,
compresson must also be dore end-to-end, before the
encryptionis applied. The system can attach error corredion
codes to the encrypted data aossng the noisy link, and can
use adive services (such as RSVP [1]) to reserve bandwidth
on the final link. Other sets of adaptations and locaions
could be chosen, of course. For example, bandwidth could be
reserved end-to-end, as well, or the data could be deaypted
on ore side of the low bandwidth link, compressed, and re-

Low Noisy Bursty
bandwidth Crosstraffic

O»O»O>0O—>0O

~— —
———

Insecure
Figure 2. A data path with multiple problems

Error
Correction
decrypt
compress Apply | | Bandwidth
FEC | [Reservation decompress
encrypt

O-O-O~0O~0

Figure 3. Adaptationsdeployed to remedy problems

encrypted before transmisgon, with reverse operations on the
other side.

The problem for the planner is to go from the set of
problem condtions swown in Fig. 2 and a set of posshle
remedies to afeasible solution, such as the one shown in Fig.
3.

One simple solution is to precompute a set of reusable
plans aiitable for common circumstances. If the situation
sean in Fig. 2 happens frequently, someone ca, in advance,
devise asensible plan for improving the situation and encode
it in some format. The planner need merely find a match for
its observed problems from among the set of precomputed
plans. This lution has the alvantage of requiring a very
unsophisticated planning comporent, but the disadvantage of
littte flexibility. It can orly ded with spedfic sets of
problems we foresee The basic idea ca be extended to
alow precomputed plans with dots to be filled in by the
planner at runtime [6], or by alowing the planner some
flexibility in where to locate alapters. The more powerful
the extensions, the greaer the flexibility, but the greaer the
complexity of the planner.

Looked at ancther way, finding a good dan is a seaching
problem. Remedies lving particular problems must be
found they must be locaed on nodes that are properly
positioned in the data strean and that offer sufficient
resources. There ae afinite number of problems, a finite
number of remedies, a finite number of potential remedy
locations, and a finite number of constraints on what can be
dore & a given locdion for ead flow. The mmbination o
these fadors defines the spaceof al possble plans for eat
flow that can be cdculated. Feasible plans, the plans that can
acdualy work for the conredion, are a interesting subset.
Some feasible plans are doser to optimal than the others in
terms of the dficiency of the data transfer and the resources
needed to deploy and run the adaptations.

One can imagine functions that define the value of certain
solutions, based on whether they solve the problems facel
and the wsts they incur in ddngso. The evaluation function
must cdculate a cetain numericd interpretation o al fadors
of network communication and adapter deployment, such as
throughpd. Monetary cost of the use of the links in the
conredion is ancther important fador in the evaluation
function. The evaluation function must also take into acount
the exeaution resources of the nodes that run adaptations, as

well as the st of deploying adapter code. A seach
algorithm could evaluate various possibilities to find the
optimal solution, or at least a feasible solution that solves all
problems at an acceptable wmst.

There is an obvous tension between providing ogimal
behavior for a singe flow and poviding owral optimal
network behavior. We do nd presume to dffer fresh insight
on this problem, but suggest it can be limited by the
commonly chosen means in adive network reseach, limiting
the resources devoted to a given flow network wide.
Additional reseach in this area is ongdng in the adive
network community, and we will | everage this work.

We nsider the number of nodes that run the adaptations
as an important fadtor of the search strategy. The fewer the
nodes running the alaptations, the smaller the solution space
is, and the eaier it isto find the optimal plan. However, the
set of the plans that are built on a smaller number of nodes
may nat contain feasible plans due to alad of resources. For
instance, if only the endpdnts are mnsidered, a PDA at one
endpdnt may have insufficient memory or CPU cycles to
adapt a video stream in red-time. Also, plans built on a
limited number of nodes may na be feasible becaise they do
not include a particular node required by an adapter. For
example, the aapter that provides an eledronic signature
must be gplied exadly at the node whose dedronic
signature is needed. If it islocaed at ancther nodk, it canna
provide the proper signature. At the same time, if all nodes
are to be considered some other strategy for reducing the
seach spaceis nealed.

Looking at the problem as an example of seach suggests
some solutions. The most obviousis an exhaustive search. If
an evaluation function properly values the sts and benefits
of applying various candidate solutions, exhaustive seach
will find the optimal solution. If the number of candidate
solutions is gnall enough an exhaustive seach is a fine
method Consider, however, a data stream like that in Fig. 2
that faces four problems, with 256 dfferent adapters
available. Assuming ore aapter is required to solve eab
problem, and a purely exhaustive goproac to dedding which
adapters to use, the system must examine over 4 hillion
possibilities. If the problem of adapter ordering is
considered, or the problem of where to locae alapters is
added, the posshiliti es grow.

One quick way to limit the growth of the seach spaceisto
encode aapters with the problems they solve. Instead of
blindly trying all possble aapters for al possble problems,
the planner can consider only adapters known to solve the
particular problems being faced. Inthe example &owe, if the
256 adapters eat solve adifferent problem, the only issues
an exhaustive planner would face would be ordering the
adapters and locating them on particular nodes. For a small
enough nunber of adaptation locaions, the total number of
possble solutions would be reassonable. But if there ae 25
different data compressors, 12 encryptors, half a dozen error-
correding encoders, and three or four reservation schemes,
the number of possble solutions syrockets. Part of the
promise of open architedures is that they will allow a
proliferation d adaptersthat help data streams, so designing a

system suitable for only a small number of adapters sans
short sighted.

Non-exhaustive seach strategies can start from an initial
candidate solution and attempt to move towards a better
solution. One initial solution is to do ndhing, with ead
seach step being the adition a replacament or relocaion o
an arealy chosen adapter. A different initial solution is to
deploy some remedial adapter in the immediate vicinity of
eah problem. Ead seach step would be to replace a
adapter, move it to a different locaion, or merge it with
similar adaptors deployed elsewhere (as, for example,
merging two similar compresson adaptors initially locaed on
different links). Another initial solution is to locae dl
required remedial adapters on the source and destination
nodes, with ead step relocating adapters to more gpropriate
locaions.

The amourt of work dore to find superior solutions must
be limited by the anourt of latency acceptable to the user. If
the planning processtakes too long simply sending ureltered
data over an uresssted path may be better. However, if one
of the as-yet-undeteded problems turns out to be insufficient
seaurity, this dedsion could be disastrous.

V. FUTURE WORK

A number of other isaies remain to be aldresed. Most
important, we must dedde on a basic seach strategy and
define suitable mst functionsto use for that search. Oncethis
step is taken, we can test the seach system with various
aternatives, starting with simple ones and progressng to
more omplicaed cases. When we ae satisfied with the
basic planning capability, other problems can be aldressed.

Most open architedures work under the asumption that
the underlying retwork is dynamic in various ways. If the
network condtions change sufficiently during the curse of a
data mnredion, the eisting dan may be unhelpful, or even
detrimental. In such circumstances, the system shoud deted
the problem and replan. Replanning requires other
cgoabiliti es, such as the aility to cleanly switch between ore
set of adaptations and another. The aility to replan might
suggest a strategy for plan credion in which an initial sub-
optimal plan is gradualy refined into a better plan while the
data flows. If, however, the set of adapters used for a data
flow changes very often duingits life, the sts of ensuring
synchronization ketween the different generations of plans
can be high. This suggests that flexibility may be another
fador in evaluating a plan.

Another interesting isaue is planning for nonlinea data
streams, particularly multicasts. In these caes, the needs of
different recevers may conflict. The planner must be ale to
consider tradeoffs between minimizing the number of
adaptations performed (since eab costs time and aher
resources) and providing ead user with the best possble data
stream.

We intend to address these isaues in future versions of
Panda.

V1. CONCLUSION

Panda is the example of an open architecure system that
provides an adaptation service for end-to-end conredions
and automated planning for the seledion and deployment of
adaptations. The planning processpresumes that a search for
afeasible plan in the spaceof al passhle plans will succee.
The complexity of the search depends onthe scde of the plan
space We believe that in a pradicd system the plan spaceis
very large making automated planning a hard artificia
intelligence problem. Our genera strategy will be to start
with a planning system that does well for relatively simple
and obvous ceses, using equally smple axd obvous
methods. We will test and refine our planning algorithms as
we gain more experiencewith the system.

Finding a feasible plan is limited by the tempora
constraints of ared-time gplicaion. Our work isfocused on
the methods of fast and efficient plan space traversal for
possble solutions. We have outlined what we believe to be
the key comporents and tradeoffs to the problem. We ae
currently investigating which planning strategy best suits the
open architedure we ae working with and the kinds of
problems we ae interested in solving. We will soon buld a
planner for use in the Panda prototype.

REFERENCES

[1] Bob Braden et a, Internal 1SI memo, http://www.isi.eduWadive-
signal/ ARP/ index.html.

[2] A.Fox, S. Gribble, Y. Chawathe, E. Brewer, and P. Gauthier.
“Cluster-Based Scaable Network Services’, Proceedings of the
Sxteenth Intl. Symposium on Operating S/stems Principles (SOSP-16),
St.-Malo, France, October 1997.

[3] Hicks, M.; Keromytis, A.D. (Edited by: Covad, S.) “ A Secure Plan.
Active Networks”, First Internationd Working Conference, IWAN'99.
Proceedings, Berlin, Germany: Springer-Verlag, 1999 p.307-14.

[4] AnthonyD. Joseph, Joshua A. Tauber, and Frans Kaashock, “Building
Reliable Mobile-Aware Applicaions Using the Rower Toadlkit”,
Procedlings of the second ACM Internationd Conference on Mobile
Computing andNetworking (MobiCom ‘96), Nov. 1996

[5] A. Mallet, J. Chung and J. Smith, “Operating System Support for
Protocol Boosters,” HIPPARCH Workshop, June 1997.

[6] S.Merugu, S.Bhattacharjee Y.Chae, M.Sanders, K.Calvert and
E.Zegura, "Bowman and CANESs: Implementation of an Active
Network", presented as an invited paper at the 37" annud Allerton
Conference on Comrrunication, Control and Computing, Monticell o,
Illinois, September 1999

[7] Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, JE., Hinn, J.,
Walker, K.R. “ Agile application-aware adaptation for mobility”,
Operating Systems Review, vol.31, (no.5), ACM, Dec. 1997 p.276-87.

[8] Wetherall, D. “ Active network vision and reality: lessons from a
capsule-based system”, Operating Systems Review, vol.33, (no.5),
ACM, Dec. 1999 p.64-79.

[9] M. Yarvis, P. Reiher, and G. Popek, “Conductor: A framework for
distributed adaptation”, Proceelings of the Seventh Workshop onHot
Topicsin Operating Systems. IEEE Computer Society Press March
1999

