
Automated Planning for Open Architectures 

Peter Reiher, Richard Guy, Mark Yarvis, and Alexey Rudenko 
University of Cali fornia, Los Angeles

Abstract   – End-to-end connections experience a high level of 
diversity in network characteristics.   At one extreme, an 
application may receive highly degraded service, leaving the 
application unusable.  At another extreme, the costs to 
guarantee some level of service may be undesirably high to the 
user or overall system.  Open architecture networks help 
applications push adaptation technology into the network and 
reduce the effects of poor network characteristics.  Automated 
planning is important for the services that are supported by the 
open architecture.  The remedies that modify an application’s 
data stream to adjust it to unfavorable network conditions 
should be located and ordered to provide good data transfer and 
network resources use. The search for good plans is a hard AI 
problem and requires additional research. 

 
Index Terms—adaptation, active networks, planning. 

I.  INTRODUCTION 

Some open architecture systems assume that applications 
must be written or re-written to take advantage of the new 
networking features they offer [3, 4, 7, 8].  Other open 
architecture systems seek to provide their benefits even to 
programs and data streams that are unaware of the new 
possibiliti es.  Some examples of the latter are protocol 
boosters [5], the Berkeley proxy system [2], and Conductor 
[9].  These application-unaware systems sometimes require 
explicit user or system administrator configuration, such as 
designating a proxy point, or pre-deploying various forms of 
adaptation modules.  However, this approach limits their 
utilit y, since they provide benefit only when some person is 
intelli gent and knowledgeable enough to foresee possible 
benefits and take appropriate action. Another approach is to 
automatically apply adaptations to data streams without 
explicit user intervention.  At a limited level, this approach is 
already taken by protocols such as TCP, which do not 
demand that human users or applications assist it in adjusting 
to congestion on the line.  In general, automatic application of 
adaptations requires intelli gent planning to ensure that proper, 
compatible adaptations are applied in appropriate places.  
This paper describes the problem in more detail and outlines 
some basic approach to a solution. 

In Section II we describe the problems of automated 
adaptation by open architecture systems.  Section III covers 
the Panda system, which provides support for applications 
that are unaware of the existence of the adaptation agent 
service.  Section IV describes principles of automated 
planning of adaptations and the plan optimization problem.  

                                                           
  This work was partiall y supported by the Defense Advanced Research 
Projects Agency under contract DABT63-94-C-0080.  Authors may be 
contacted at: { reiher, rguy, yarvis, arudenko} @fmg.cs.ucla.edu. 
 

Section V outlines our plan for future work.  Section VI 
provides concluding remarks. 

II .  THE PROBLEMS OF AUTOMATED ADAPTATION 

If users are not directly involved in choosing and 
deploying the open architecture adaptations that a data flow 
needs, the system must automatically solve several problems.  

First, the system must understand the format of the data 
stream it seeks to improve well enough to take proper actions.  
In some cases, not only the data stream must be considered, 
but the application end points of the stream, the hardware 
devices at those endpoints, or even the wishes and needs of 
the users. 

Second, the system must detect problematic conditions 
reliably and quickly, so it can know what remedial actions to 
take.  It must also get some sense of the longer outlook for 
network conditions, at least for the li fe of the data flow. 

Third, the system must be able to apply multiple remedial 
actions to the same data stream.  The stream may encounter 
multiple problems at various points along the transmission 
path, and generally different actions will be required to solve 
those problems.  Applying multiple actions implies that the 
system must be able to determine if a set of actions are 
compatible.  The canonical example of incompatibilit y is to 
meet problems of security and inadequate bandwidth by first 
encrypting the data stream, then ineffectually compressing 
the encrypted version of the stream. 

Fourth, the system must be able to determine if the open 
architecture is willi ng and able to run all adaptations that the 
system proposes at the locations it chooses.  Some 
adaptations might not run properly on particular nodes.  Some 
nodes might be unwilli ng to run particular kinds of 
adaptations.  Perhaps some nodes limit the resources 
expendable on a single packet or entire data flow at that node.  
These constraints may cause a different set of adaptations to 
be performed, or may affect where adaptations are located. 

These last two problems require the system to be able to 
plan.  Given knowledge of what the data stream needs to do, 
what problems it faces, and what possible remedial actions 
are available, the adaptation system must create a plan of 
which actions to use, in which order, located at which 
adaptation points in the open architecture.  If there are many 
possible types of data streams, many possible types of 
problems, many possible remedial actions, many adaptation 
points available, and many constraints on what adaptations 
may be performed, creating such a plan can be challenging.  
Further, the plan must be created relatively quickly, since the 
data stream cannot be delayed indefinitely in search of the 
perfect plan.  Depending on the specifics of the data stream, 
between microseconds and very small numbers of seconds 
are available to plan the remedial strategy.  If the code 



implementing remedial actions is not ubiquitous, deployment 
costs must also be considered in planning. 

III .  PANDA 

We are investigating methods of automatically planning 
the choice and deployment of adaptations in open 
architectures.  We are working in the context of an 
application-unaware active network support system called 
Panda.  Panda automatically traps non-active data streams 
and converts them into streams of active packets.   Panda also 
creates plans for which active services should be performed 
at each active network node or switch along the path.  A 
Panda prototype has been used in our lab for over a year.  The 
planning capabiliti es of the original prototype were extremely 
primitive.  We are currently implementing an improved 
prototype that will offer better planning support. 

Active services in Panda are implemented as adapters that 
should be deployed according to a plan on nodes designated 
by the plan.  After the plan is activated the adapters modify 
all data packets arriving at the node.  Adapters increase the 
cost of the connection, using resources such as CPU cycles, 
storage, network controls, etc.  The deployment of adapters 
also requires extra time and network bandwidth.   

Two adapters may have different characteristics even if 
they do the same kind of adaptation for a data stream.  For 
example one adapter might compress a data stream by 
converting color images to black-and-white images; another 
adapter can achieve the same level of compression by 
reducing the resolution.  The choice of a particular adapter in 
this case depends on the requirements of the user for the data 
stream.   

The location of an adapter affects the characteristics of 
data stream.  It might be better to extend the number of links 
covered by some adapters.  For example, assume that some 
link requires the adapter that uses the Ziv Lempel technique 
for data compression.  Then locating as many links as 
possible between the nodes that run compression and 
decompression will i mprove overall communication because 
each link will benefit by forwarding compressed data, even if 
it has suff icient bandwidth.  At the same time it is undesirable 
to extend the effects of a forward error correction adapter on 
links that do not actually require extra reliabilit y because this 
adapter increases the amount of data that must be sent.   

Figure 1.  A Panda Node 

The Panda prototype consists of three basic components (Fig. 
1). The Panda Interception Component (PIC) traps messages 
sent by applications that do not use active networking 
capabiliti es. It examines such messages and gives those it 
thinks Panda can assist to the Panda Adaptation Component 
(PAC). The PAC is responsible for planning which adapters 
to use on behalf of a given data flow and deploying them at 
the proper locations in the network. The planning function of 
the PAC requires information about conditions in the 
network. The third Panda component, the Panda Observation 
Component (POC) provides this information. The POC 
observes network and node conditions and provides 
information to the PAC as required for planning. If conditions 
change drastically, the POC can signal the PAC, which may 
choose to abandon the existing plan and re-plan. 

Panda uses the ANTS Execution Environment [8] to 
provide basic active networks services. 

Panda must be deployed at any node where adapters are to 
be run. Panda planning requires information and cooperation 
from all Panda nodes traversed by a data flow. 
 

IV.  THOUGHTS ON PLANNING 

The basic problem in automatic planning is to find 
remedies to a given set of problems located at particular 
nodes or links in a data path.  Fig. 2 shows a simple example.  
Here, in a data path that traverses four links, the entire path 
lacks the security required for the data transmission.  Also, 
the second link does not have suff icient bandwidth for the 
transmission.  The third link is noisy.  The final li nk is subject 
to frequent bursty cross traff ic, which will t end to cause 
unacceptable jitter in the delivery of the data stream. 

 Fig. 3 shows how an open architecture system like Panda 
might handle the problem.  Adapters (indicated as boxes) are 
deployed at various locations.  Data encryption is performed 
end-to-end.  Since one of the links has insuff icient 
bandwidth, data sent across that link should be compressed; 
but because encryption is being done end-to-end, 
compression must also be done end-to-end, before the 
encryption is applied.  The system can attach error correction 
codes to the encrypted data crossing the noisy link, and can 
use active services (such as JRSVP [1]) to reserve bandwidth 
on the final li nk.  Other sets of adaptations and locations 
could be chosen, of course.  For example, bandwidth could be 
reserved end-to-end, as well , or the data could be decrypted 
on one side of the low bandwidth link, compressed, and re-

POC

PAC

PIC

ANTS

POC

PAC

PIC

ANTS

Insecure

Low 
bandwidth

Noisy Bursty 
Cross traff ic

Figure 2.  A data path with multiple problems
Insecure

Low 
bandwidth

Noisy Bursty 
Cross traff ic

Insecure

Low 
bandwidth

Noisy Bursty 
Cross traff ic

Figure 2.  A data path with multiple problems



encrypted before transmission, with reverse operations on the 
other side.  

The problem for the planner is to go from the set of 
problem conditions shown in Fig. 2 and a set of possible 
remedies to a feasible solution, such as the one shown in Fig. 
3.  

One simple solution is to precompute a set of reusable 
plans suitable for common circumstances.  If the situation 
seen in Fig. 2 happens frequently, someone can, in advance, 
devise a sensible plan for improving the situation and encode 
it in some format.  The planner need merely find a match for 
its observed problems from among the set of precomputed 
plans.  This solution has the advantage of requiring a very 
unsophisticated planning component, but the disadvantage of 
littl e flexibilit y.  It can only deal with specific sets of 
problems we foresee.  The basic idea can be extended to 
allow precomputed plans with slots to be fill ed in by the 
planner at runtime [6], or by allowing the planner some 
flexibilit y in where to locate adapters.  The more powerful 
the extensions, the greater the flexibilit y, but the greater the 
complexity of the planner. 

Looked at another way, finding a good plan is a searching 
problem.  Remedies solving particular problems must be 
found, they must be located on nodes that are properly 
positioned in the data stream and that offer suff icient 
resources.  There are a finite number of problems, a finite 
number of remedies, a finite number of potential remedy 
locations, and a finite number of constraints on what can be 
done at a given location for each flow.  The combination of 
these factors defines the space of all possible plans for each 
flow that can be calculated.  Feasible plans, the plans that can 
actually work for the connection, are an interesting subset.  
Some feasible plans are closer to optimal than the others in 
terms of the eff iciency of the data transfer and the resources 
needed to deploy and run the adaptations.   

One can imagine functions that define the value of certain 
solutions, based on whether they solve the problems faced 
and the costs they incur in doing so.  The evaluation function 
must calculate a certain numerical interpretation of all factors 
of network communication and adapter deployment, such as 
throughput.  Monetary cost of the use of the links in the 
connection is another important factor in the evaluation 
function.  The evaluation function must also take into account 
the execution resources of the nodes that run adaptations, as 

well as the cost of deploying adapter code.  A search 
algorithm could evaluate various possibiliti es to find the 
optimal solution, or at least a feasible solution that solves all 
problems at an acceptable cost.   

There is an obvious tension between providing optimal 
behavior for a single flow and providing overall optimal 
network behavior.  We do not presume to offer fresh insight 
on this problem, but suggest it can be limited by the 
commonly chosen means in active network research, limiting 
the resources devoted to a given flow network wide.  
Additional research in this area is ongoing in the active 
network community, and we will l everage this work. 

We consider the number of nodes that run the adaptations 
as an important factor of the search strategy.  The fewer the 
nodes running the adaptations, the smaller the solution space 
is, and the easier it is to find the optimal plan.  However, the 
set of the plans that are built on a smaller number of nodes 
may not contain feasible plans due to a lack of resources.  For 
instance, if only the endpoints are considered, a PDA at one 
endpoint may have insuff icient memory or CPU cycles to 
adapt a video stream in real-time.  Also, plans built on a 
limited number of nodes may not be feasible because they do 
not include a particular node required by an adapter.  For 
example, the adapter that provides an electronic signature 
must be applied exactly at the node whose electronic 
signature is needed.  If it is located at another node, it cannot 
provide the proper signature.  At the same time, if all nodes 
are to be considered some other strategy for reducing the 
search space is needed.  

Looking at the problem as an example of search suggests 
some solutions.  The most obvious is an exhaustive search.  If 
an evaluation function properly values the costs and benefits 
of applying various candidate solutions, exhaustive search 
will find the optimal solution.  If the number of candidate 
solutions is small enough, an exhaustive search is a fine 
method.  Consider, however, a data stream like that in Fig. 2 
that faces four problems, with 256 different adapters 
available.  Assuming one adapter is required to solve each 
problem, and a purely exhaustive approach to deciding which 
adapters to use, the system must examine over 4 billi on 
possibiliti es.  If the problem of adapter ordering is 
considered, or the problem of where to locate adapters is 
added, the possibiliti es grow. 

One quick way to limit the growth of the search space is to 
encode adapters with the problems they solve.  Instead of 
blindly trying all possible adapters for all possible problems, 
the planner can consider only adapters known to solve the 
particular problems being faced.  In the example above, if the 
256 adapters each solve a different problem, the only issues 
an exhaustive planner would face would be ordering the 
adapters and locating them on particular nodes.  For a small 
enough number of adaptation locations, the total number of 
possible solutions would be reasonable.  But if there are 25 
different data compressors, 12 encryptors, half a dozen error-
correcting encoders, and three or four reservation schemes, 
the number of possible solutions skyrockets.  Part of the 
promise of open architectures is that they will allow a 
proli feration of adapters that help data streams, so designing a 

compress

encrypt

Apply 
FEC

Error
Correction

decompress

decrypt

Bandwidth
Reservation

Figure 3.  Adaptations deployed to remedy problems

compress

encrypt

Apply 
FEC

Error
Correction

decompress

decrypt

Bandwidth
Reservation

Figure 3.  Adaptations deployed to remedy problems



system suitable for only a small number of adapters seems 
short sighted. 

Non-exhaustive search strategies can start from an initial 
candidate solution and attempt to move towards a better 
solution.  One initial solution is to do nothing, with each 
search step being the addition or replacement or relocation of 
an already chosen adapter.  A different initial solution is to 
deploy some remedial adapter in the immediate vicinity of 
each problem.  Each search step would be to replace an 
adapter, move it to a different location, or merge it with 
similar adaptors deployed elsewhere (as, for example, 
merging two similar compression adaptors initially located on 
different links).  Another initial solution is to locate all 
required remedial adapters on the source and destination 
nodes, with each step relocating adapters to more appropriate 
locations.   

The amount of work done to find superior solutions must 
be limited by the amount of latency acceptable to the user.  If 
the planning process takes too long, simply sending unaltered 
data over an unassisted path may be better.  However, if one 
of the as-yet-undetected problems turns out to be insuff icient 
security, this decision could be disastrous. 

V.  FUTURE WORK 

A number of other issues remain to be addressed.  Most 
important, we must decide on a basic search strategy and 
define suitable cost functions to use for that search.  Once this 
step is taken, we can test the search system with various 
alternatives, starting with simple ones and progressing to 
more complicated cases.  When we are satisfied with the 
basic planning capabilit y, other problems can be addressed. 

Most open architectures work under the assumption that 
the underlying network is dynamic in various ways.  If the 
network conditions change suff iciently during the course of a 
data connection, the existing plan may be unhelpful, or even 
detrimental.  In such circumstances, the system should detect 
the problem and replan.  Replanning requires other 
capabiliti es, such as the abilit y to cleanly switch between one 
set of adaptations and another.  The abilit y to replan might 
suggest a strategy for plan creation in which an initial sub-
optimal plan is gradually refined into a better plan while the 
data flows.  If , however, the set of adapters used for a data 
flow changes very often during its li fe, the costs of ensuring 
synchronization between the different generations of plans 
can be high.  This suggests that flexibilit y may be another 
factor in evaluating a plan. 

Another interesting issue is planning for non-linear data 
streams, particularly multicasts.  In these cases, the needs of 
different receivers may conflict.  The planner must be able to 
consider tradeoffs between minimizing the number of 
adaptations performed (since each costs time and other 
resources) and providing each user with the best possible data 
stream. 

We intend to address these issues in future versions of 
Panda. 

VI.  CONCLUSION 

Panda is the example of an open architecture system that 
provides an adaptation service for end-to-end connections 
and automated planning for the selection and deployment of 
adaptations.  The planning process presumes that a search for 
a feasible plan in the space of all possible plans will succeed.  
The complexity of the search depends on the scale of the plan 
space.  We believe that in a practical system the plan space is 
very large making automated planning a hard artificial 
intelligence problem.  Our general strategy will be to start 
with a planning system that does well for relatively simple 
and obvious cases, using equally simple and obvious 
methods.  We will t est and refine our planning algorithms as 
we gain more experience with the system. 

Finding a feasible plan is limited by the temporal 
constraints of a real-time application.  Our work is focused on 
the methods of fast and eff icient plan space traversal for 
possible solutions.  We have outlined what we believe to be 
the key components and tradeoffs to the problem.  We are 
currently investigating which planning strategy best suits the 
open architecture we are working with and the kinds of 
problems we are interested in solving.  We will soon build a 
planner for use in the Panda prototype. 

 

REFERENCES 

[1] Bob Braden et al, Internal ISI memo, http://www.isi.edu/active-
signal/ARP/ index.html. 

[2]  A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P. Gauthier.  
“Cluster-Based Scalable Network Services” ,  Proceedings of the 
Sixteenth Intl. Symposium on Operating Systems Principles (SOSP-16), 
St.-Malo, France, October 1997. 

[3] Hicks, M.; Keromytis, A.D. (Edited by: Covaci, S.) “ A Secure Plan. 
Active Networks” , First International Working Conference, IWAN'99. 
Proceedings, Berlin, Germany: Springer-Verlag, 1999. p.307-14.  

[4]  Anthony D. Joseph, Joshua A. Tauber, and Frans Kaashock, “Building 
Reliable Mobile-Aware Applications Using the Rower Toolkit” , 
Proceedings of the second ACM International Conference on Mobile 
Computing and Networking (MobiCom ‘96), Nov. 1996.  

[5]  A. Mallet, J. Chung, and J. Smith, “Operating System Support for 
Protocol Boosters,” HIPPARCH Workshop, June 1997. 

[6] S.Merugu, S.Bhattacharjee, Y.Chae, M.Sanders, K.Calvert and 
E.Zegura, "Bowman and CANEs: Implementation of an Active 
Network", presented as an invited paper at the 37th  annual Allerton 
Conference on Communication, Control and Computing, Monticello, 
Ill inois, September 1999.  

[7] Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., 
Walker, K.R. “ Agile application-aware adaptation for mobility” , 
Operating Systems Review, vol.31, (no.5), ACM, Dec. 1997. p.276-87.  

[8] Wetherall , D. “ Active network vision and reality: lessons from a 
capsule-based system” , Operating Systems Review, vol.33, (no.5), 
ACM, Dec. 1999. p.64-79. 

[9]  M. Yarvis, P. Reiher, and G. Popek, “Conductor: A framework for 
distributed adaptation” , Proceedings of the Seventh Workshop on Hot 
Topics in Operating Systems. IEEE Computer Society Press, March 
1999. 

 
 
 


