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We describe a new approach to power saving and batter 3' life extension on an untethered laptop 
through wireless remote processing of power-costly rusks. We ran a series of experiments comparing 
the power consumption of processes run locally with that of' the same processes run remotely. We 
examined the trade-off between communication power expenditures and the power cost of  local 
processing. This paper describes our methodology and results of our experiments'. We suggest ways 
to further improve this approach, and outline a soJgvare design to support remote process execution. 

I. Introduct ion 
Power management is one of the most challenging problems in 
making portable computers more useful. Portable computers 
have their greatest utility when they can truly be used any- 
where at any time, and one of the greatest limitations to that 
goat is battery power. Often AC power connections are not 
available and the portable computer must run off its battery. 
However, the battery life of existing and expected batteries is 
not sufficient for many situations. Users must either alter their 
behavior or limit their use of the portable computer to pre- 
serve the battery's charge. Any user whose portable computer 
has run out of power while in the middle of a long air flight 
understands the impact of insufficient batteries. 

If the battery's power capacity cannot be improved, the 
other alternative is to find ways to use less power, preferably 
with no impact on the user. Many researchers have looked at 
this problem [3], [14], [19]. Solutions range from intelligent 
management of the disk and screen [41, [7], [81, [131 to slow- 
ing down the CPU clock rate [6], [23] or powering down com- 
ponents of the computer not currently in use. Many of these 
innovations have already found their way into commercial use, 
a strong indication of the importance of the problem. 

Wireless communication devices are becoming increasingly 
common in portable computers, since they help solve one of 
the other fundamental problems of portable computing: that 
is, when wired connections are unavailable, wireless devices 
can maintain network connectivity, allowing remote file ac- 
cess, sending and receiving of email, and web browsing. Gen- 
erally, wireless communication devices are regarded as con- 
tributing to the power management problem, rather than the 
solution, as they use significant power when sending and re- 
ceiving. However, this paper demonstrates that wireless de- 
vices can sometimes be used to save a significant amount of 
battery power. 

A portable computer's battery power is drained by perform- 
ing tasks for the user. Some of these, by their nature, must 
be performed locally. For example, information must be dis- 
played on the local screen. Other tasks, however, could be 
performed anywhere, provided the results came back to the 
portable computer. If the power cost of sending the task else- 
where and receiving the results back is lower than the cost of 
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running it locally, remote process execution could save battery 
life for the portable computer. 

This possibility makes little sense without wireless devices. 
If the user can plug in a wired Ethernet card, he could probably 
also plug in a power cord. But an untethered user can still 
communicate via wireless networks. One realistic scenario is 
an office in which untethered users can move around through 
a ubiquitous wireless network, migrating processes to server 
machines that have no power constraints. 

In its simplest form, remote process execution for power 
management would involve moving new tasks from the 
portable computer to a server machine before the task start 
running. The server would execute the task and ship the results 
back to the portable computer. In the meantime, the portable 
computer would continue running other tasks, going idle if 
nothing else is to be done. If the user runs many tasks that 
drain a lot of power, and the costs of moving the tasks to and 
from a remote server are low enough, remote execution could 
save a large amount of power and allow portable computers to 
run untethered for much longer. 

Since wireless cards themselves consume significant 
amounts of power, there is no guarantee that migrating typical 
realistic tasks would actually save power. This paper describes 
experiments that have proved that such power savings are pos- 
sible, and that the size of the savings can be very significant. 
We compared the amount of power consumed by migrating 
various large tasks off portable computers over a wireless de- 
vice to the amount of power consumed by running the tasks 
locally on the same portables. We discovered that significant 
power savings are possible for certain common tasks of realis- 
tic size. This paper describes our experimental methodology, 
presents our results, analyzes those results, and suggests what 
would be required to make remote process execution a feasible 
power management tool for realistic environments. 

II. Experimental  Methodology 
We ran an extensive series of experiments to determine if re- 
mote process execution could save significant amounts of bat- 
tery power. We identified a set of applications likely to profit 
from remote execution and ran them in both local and remote 
modes, measuring the battery power consumed in each case. 
The experiments consisted of requesting a task on an unteth- 
ered client machine, and either running it locally or migrating 
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it to a tethered server machine. In the latter case, the server ran 
the application and shipped the results back to the client when 
completed. 

This brief description ignores many importar~t issues that 
might influence the outcome of the experiment. Here we de- 
scribe all the conditions under which we ran the experiments. 
The results of  the experiments are presented in Section 3. 

The experiments were conducted on Dell Latitude XP 
portable computers running the Linux operating system. Dell's 
rechargeable Li-ion battery rating is t4.4V 2200mAh, 2A. 
Both the client and the server were Dell Latitude XPs in this 
experiment. In realistic situations the server would likely be a 
more powerful machine. We chose to use the same machine 
for both client and server for two reasons. First, it was con- 
venient for experimental purposes, since the wireless devices 
available to us did not fit into any of  our other machines, and it 
allowed us to avoid issues of  possible incompatibility between 
the client and server machines. Second, it was a conservative 
choice, since in realistic circumstances the server would run 
faster, thus causing the c!ient to lose less power while waiting 
for its results. 

The wireless device used for the experiment was the 915 
MHz AT&T Wavelan card [1]. This network adapter con- 
sumes 250 mW to achieve a data rate of  2 Mb/sec at ranges 
up to 800 feet. In the basic experiments, we took great care to 
insure that the Wavelan cards in the client and server were the 
only devices using that portion of  the electromagnetic spec- 
trum within range of  each other. The experiments were per- 
formed in a location containing no other Wavelan cards or 
other wireless communications devices. For the baseline re- 
sults, we needed to know whether remote execution could ever 
win, even in rather favorable circumstances. We added inter- 
ference to the channel in later experiments, as described in 
Section 3.2. 

We chose three applications for test cases. These applica- 
tions were chosen because they were known to be fairly large 
and time-consuming, making them good candidates for power 
savings by remote execution. The three tasks were a compi- 
lation of  a large program, text formatting of  a 200-page docu- 
ment using LaTeX, and Gaussian solution of  a system of linear 
algebraic equations. The compilation task performed signifi- 
cant CPU processing, along with a good deal of  disk activity 
to read the source, write and read temporary files, and write 
the resulting object and executable files. The text formatting 
task performed a moderate amount of  CPU processing, but rel- 
atively little disk activity. The Gaussian elimination problem 
performed trivial amounts of file access, but made very heavy 
demands on the CPU and on memory. The size of  the ma- 
trix varied, but was never large enough to cause significant 
amounts of  virtual memory activity. 

In all cases we were able to vary the amount of  information 
that had to be sent from the client to the server machine. In 
the cases of the compilation and text formatting tasks, we ar- 
ranged it so that the client and server each had copies of  the 
source, but that the client had altered some varying fraction of 
the source. Thus, to run the process at the server the client 
had to move only the altered fraction of  the source. The client 
and server stored previously computed object files correspond- 
ing to unchanged sources, so the amount of  work required to 
perform these tasks varied depending on the fraction of  data 

changed. The amount of data shipped back by the compilation 
and text formatting jobs was constant, since the executable or 
Postscript document was always the same size. in the case of  
the Gaussian solution process, the entire source matrix had to 
be moved to the server, but we varied the size of the matrix, 
thus varying the amount of  data shipped and the amount of  
work done. A larger source matrix required shipping a larger 
result vector as well. 

Neither the client nor the server performed any other user- 
level activity during the course of the experiment. We made 
no attempt to prevent the operating system from performing 
its normal housekeeping activities, but we turned off many of  
the Linux daemons that would typically run periodically in the 
background. The periodic intrusion of  these daemons into the 
experiment could cause an undesirable noisy impact on power- 
cost measurements. This decision allowed us to isolate the 
actual costs and benefits of  executing the tasks locally and re- 
motely. In normal conditions these daemons would slightly 
shorten the battery's life. 

Existing power-management techniques can have a dra- 
matic impact on the amount of  power consumed by a portable 
computer running off its battery, so we controlled these tech- 
niques carefully. Our research showed that screen timeout and 
disk spindown were the most important power-management 
tools. We set the screen timeout and disk spindown intervals 
to one minute on the client machine. We also allowed the client 
to go into idle mode during remote execution. We did not per- 
mit the client machine to suspend, since the server would be 
unable to ship the results back to a suspended machine. Since 
the server was connected to AC power, it performed no power 
management. Usually, the client screen timeout would occur 
during local execution, but disk spindown would not. Typi- 
cally, both screen timeout and disk spindown occurred on the 
client during remote execution. The client generally went into 
idle mode during remote execution. These power-management 
settings are similar to the ones our portable computer users 
typically set for normal situations. 

We did not attempt to turn off the Wavelan card at any point 
in the experiment. The Wavelan consumes 1.48 watts even 
when it is neither sending nor receiving, so there were signif- 
icant power costs to not turning the card off. However, if the 
card is turned of/, timeout or human intervention would be re- 
quired to turn it back on when the results were to be shipped 
back from the server. Doing so would have been neither real- 
istic nor convenient for running the experiments. 

Measurement of  tile power consumed by a task caused some 
problems. The most accurate way to measure power consump- 
tion would have been to insert appropriate electronic instru- 
mentation between the battery and the computer it was driv- 
ing. Practical problems with such instrumentation suggested 
the use of  less direct methods. The readily available metrics 
for power currently in a battery are rather unreliable. The Dell 
Latitudes used in these experiments use the Advanced Power 
Management (APM) tools, which will report a battery's charge 
as a percentage of  maximum. However, the APM measure- 
ments are not very reliable. In some cases, the amount of  
power reported by APM will go up over time, even though 
the machine has remained untethered. In addition, the amount 
of  power expended to perform a particular task, as reported by 
APM, varies widely. 
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We considered two options for measu~-i,ig the amount of 
power consumed by a task. First, we couid i~telTogate the 
APM metric before the task, interrogate it again aRer the task 
completes, and report the difference. Alternately, we could 
completely charge a battery, repeatedly run the task until the 
battery dies, and divide 100% battery life by the number of ex- 
ecutions required to drain the battery. Our experiments showed 
that the two methods produced substantially similar results, 
but the use of the APM metric gave more stable variances then 
the alternative method for the same number of runs. The re- 
sults presented here rely on the APM metric. 

Our experimental methodology was to fully charge the bat- 
tery of the client portable, then repetitively perform tasks (ei- 
ther locally or remotely) until no battery power remained. We 
measured and recorded the power consumed for each task. Be- 
cause of the noisiness of the APM metric, we performed nu- 
merous runs to achieve sufficiently low variance. Since the 
number of runs required caused the battery to discharge and 
recharge hundreds of times, we were concerned that the bat- 
tery's power storage and consumption characteristics might 
change over time. However, measurements done at the be- 
ginning and the end of the experimental period showed no sta- 
tistically significant difference in the battery's capacity. 

III. Exper imenta l  Results  

We ran 220 experiments, consuming approximately 900 hours, 
to obtain the data presented here. Typically, each point plot- 
ted on the curves represents four to eight hours of experimen- 
tation. All results are shown with 95% confidence intervals. 
The compilations used real software packages designed in our 
laboratory. The LaTeX texts were real papers and dissertations 
written in our laboratory. As a result, some file sizes are not 

round numbers. 

A. N o i s e l e s s  e n v i r o n m e n t  

The first part of the experiments was run in a noiseless environ- 
ment. All major sources of noise (like other laptops equipped 
with wireless cards) were isolated from the room where the 
laptop experiments were performed. Figure 1 shows the power 
consumption for local and remote execution of the compilation 
process. The left bar of each pair shows the amount of power 
used for local execution of the task, and the right bar for full 
remote execution.1 The X axis shows the number of kilobytes 
of C source code that were altered. The amount of work re- 
quired to perform the compilation thus varies from point to 
point. Also, the amount of data shipped over the wireless 
link for remote execution varies with the amount of altered 
code, since only altered modules were shipped. In the remote- 
execution case, the server shipped back only stripped executa- 
bles, object files were not shipped. In the local case, stripped 
executables (6.9MB) were saved directly to disk. (We per- 
formed the same experiment with unstripped executables. The 
results were qualitatively the same, though the transmission 
costs for the larger executables made the percentage improve- 

ments smaller.) 

IThe regression equation is y = 2.7z + 3.0 for local execution and y = 
1.2x ~- 0.3 for remote execution The R 2 values are 0.99 and 0.97, respectively. 
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Figure 1: Power savings for remote execution of a compilation 

For small amounts of changed code, which corresponds to 
small amounts of work to be done by the compilation, mov- 
ing the task to the remote server consumed more power than 
local execution. The power cost of receiving the executables 
from the remote machine, combined with power wasted by the 
portable while waiting for the result, dominated any benefits. 
However, as the amount of work increased, the value of mov- 
ing the work off the portable computer became clear. For 500 
kilobytes of altered source, shipping the task to the remote 
server consumed less than half the battery power needed to 

compile locally. 
Some of the power cost of remote execution is due to using 

the Wavelan card to move the data to the server and the results 
back to the portable computer, while other components of the 
cost reflect power wasted by the portable computer while wait- 
ing for the results to come back. If one assumed that the server 
had significantly more compute power than the portable com- 
puter, the waiting period would have been much shorter, since 
the more powerful server would have completed the compi- 
lation faster. To isolate this effect, we measured the costs of 
pure transmission of the required data and results. We pre- 
compiled the source code for each case and stored the results 
on the server. When the client portable requested remote exe- 
cution of the task, instead of compiling we shipped the saved 
results back immediately. This experiment shows the effect of 
an extremely powerful server and gives some insight into the 
amount of power the portable computer uses for data transport 
versus the amount of power spent waiting idly for the server to 

complete the task. 
Figure 2 shows the difference between the power consumed 

by local execution, by remote execution, and by simply ship- 
ping data and results back and forth, using the compilation ap- 
plication shown in Figure 1. The left bar of each group shows 
the amount of power used for local execution of the task, the 
middle bar for full remote execution, and the right bar tor sim- 
ply shipping the data and results over the wireless network. 2 

For zero bytes changed, the cost of remote execution is sta- 
tistically indistinguishable from the cost of transmitting the 
data and the results. Since the server stores the results of the 
compilation with no changes made, this case is identical to 
the pure transmission case, though minor amounts of work are 

2The regression equation is y = 2 . 7 x  - 3.0 for local execution, y = 

1.9x - 0.3 for remote execution, and y = 0.2x + 0:5 for transportation cost. 
The R 2 values are 0.99, 0.97 and 0.88, respectively. 
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Figure 2: Total power cost of  locat and remote execution com- 
pared to transmission costs 

done on the server to verify through a make utility that no re- 
compilation is required. In the other cases, however, note that 
the transmission costs are half or less of  the costs of the re- 
mote execution. The remainder o f  the costs occurs because 
of  various inefficiencies in how the portable computer behaves 
while waiting for the compilation to complete. For example, 
its Wavelan card enters idle mode for this time, but the idle 
mode still consumes about 1.48 watts of  power. The disk con- 
tinues to spin for at least one minute after it was last accessed, 
the screen displays an image for at least one more minute af- 
ter the last key was pressed, and some other devices must be 
considered in that total as well. Thus, if the computer had 
a more efficient power-saving mode, remote execution would 
have saved significantly more power, bounded by the transmis- 
sion costs shown in this figure. 

Figure 3 shows the power saved by remote execution for 
the Gaussian solution of  the system of algebraic equations. 3 
In this case, the size of  the task is controlled by the number 
of  rows in the matrix. The entire matrix had to be shipped 
and solution vector returned, in the case of  remote execution. 
For relatively small matrices, less than 500x500, the costs of  
moving the computation were greater than the benefits, or the 
results were statistically indistinguishable. But for larger ma- 
trices, the savings were as great as 45%. 

Unlike compilation, the Gaussian application performed 
very little disk 1/O. The savings shown on a large Gaussian 
solution thus demonstrate that performing tasks remotely can 
offer benefits even if the task is largely compute-bound. Trans- 
portation expenses for the shipment of the data grow slower 
than the workload, because they are quadratic with respect to 
the size o f  problem, while the workload grows at a rate of  
O(N3), where N is the number of  simultaneous equations. 

Figure 4 shows the results of  migrating a text formatting 
application. This application used LaTeX to format 30- to 
200-page documents containing multiple figures, references, 
and equations, making it a moderately large text formatting 
process. 4 Remote execution did not improve the power con- 

3The regression equation is y = 2.0z - 0.6 for local execution and 
y : 1.17x - 0.3 for remote execution. The R 2 values are 0.99 and 0.99, 
respectively. 

4The regression equation is y=0.24x-0 for local execution and y=0.2x-0.1 
for remote execution. The R 2 values are 0.97 and 0.84, respectively. 
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Figure 3: Power savings for remote execution of  Gaussian so- 
lution of  a system of  linear algebraic equations 

1.2 

1.0 

0.8 
Percentage 
of Battery 0.6 
Consumed 

0.4 

0.2 

0.0 

[] Local 

N Remote 

35 112 439 843 

Kilobytes of Altered Text 

Figure 4: Power savings for remote execution of  text format- 
ting 

sumed by this application. In most cases, there was no sta- 
tistically significant difference between local and remote exe- 
cution. Only for the case of  439 kilobytes of  altered text was 
the difference significant at the 95% level, and in this case re- 
mote execution performed worse than local execution. There 
are several possible explanations for the text formatting appli- 
cation's failure to benefit from remote execution. The most 
obvious and most likely is that the application consumed less 
than 1% of  the total battery power, even at its heaviest work- 
load. With such minor power consumption, adding anything 
that itself consumes significant power (such as moving the re- 
sult files back to the portable computer over the wireless link) 
is likely to have a major impact on the total power consump- 
tion. Note that the compilation and Gaussian elimination ap- 
plications tended to consume 2% or more of  the total battery 
power, leaving more room for paying an up-front penalty to 
reduce the overall costs. 

The results presented so far were performed on an otherwise 
unused medium. The only traffic in the Wavelan frequencies 
in the testing area was generated by the migration of  tasks and 
results. In a realistic environment, the Wavetan frequencies 
would be used for other tasks, including other machines also 
trying to execute processes remotely. We performed further 
experiments to determine the power- saving characteristics of  
large applications in the presence of  noise on the wireless net- 
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Figure 5: Power savings for remote execution of  a compilation 
with noise in background 

work. However, since text formatting did not show improve- 
ments in the noiseless case, we did not perform experiments 
for that application in the noisy environment. 

B.  E x p e r i m e n t a l  d a t a  i n  n o i s y  e n v i r o n m e n t  

Network noise has many different characteristics. Assuming 
multiple senders and receivers, and multiple patterns of traffic 
presented to the network, a vast number of different exper- 
iments are possible. Our goal was to examine a reasonable 
case, not to exhaustively examine the entire realm of  possi- 
bilities. However, we did want a challenging case, not a triv- 
ial one, since the noise-free experiments had already given us 
best-case results. We chose to introduce two new machines in 
the environment. One of  these machines opened a socket to 
the other new machine and sent data down that socket as fast 
as it could. We refer to this as saturated-socket noise. Since 
the Wavelan cards use an Ethernet-style protocol where colli- 
sions cause backoff and retransmission, we expected that the 
interfering with communications would significantly impede 
attempts to move data and results, but that it would not en- 
tirely block those activities. 

Of course, it would be possible to introduce multiple pairs 
of  communicating machines, or to direct some of  the traffic 
to either the portable computer being tested or its server. Ei- 
ther of  these options would be expected to cause even more 
problems, and either is a defensible "realistic" situation, so in 
the future we may expand our experiments to include them. 
Other variations in the noise experiments are also possible, in- 
cluding more realistic forms of  communication between the 
noise-making machines, such as file transfer or attempts by 
these machines to perform their own remote executions. 

Figure 5 presents the effects of  saturated-socket noise on 
the compilation task. 5 With this background noise, only the 
largest compilation saved a statistically significant amount of 
power by using remote execution, and its savings were only 
around 20%, as opposed to a 51% improvement without noise. 
Clearly a large amount of  noise in the environment has a major 
effect on the power savings achievable by remote execution. 

5The regression equation is y = 2.7x - 3.0 for local execution and g = 
1.7x + 0.3 for remote execution in noisy environment. The R 2 values are 
0.99 and 0.99, respectively. 
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Figure 6: Power cost of  transmission with and without noise 
for compilation 

Again, the power consumed in this experiment is partly due 
to transmission costs and partly due to the power expended 
by the portable while waiting for its results. Given that the 
portable and the server now have to contend for the Wavelan 
radio spectrum with a very heavy consumer, more collisions 
and retransmissions occur while transmitting the remote exe- 
cution data and results over the network, thus increasing the 
amount of  power consumed. The remainder of  power con- 
sumed is spent by the portable while waiting for the server 
to complete its task. This distinction is relevant because dif- 
ferent techniques would be required to reduce the costs of  
each component. Reducing the power costs of  transmitting 
in a noisy environment would involve changing the wireless 
protocol to cause fewer collisions, or to make collisions less 
costly. Reducing the power costs of  waiting would involve ei- 
ther improvements in the portable's power management soft- 
ware, improvements in the wireless connnunications device's 
use of power, or reducing waiting times by using faster servers. 
We believe that there might be also other ways to improve the 
power cost characteristics of  the remote processing. 

The power-management tools available to us did not give 
any indication of  which effect causes the use of  power, just 
the amount of  power used. Thus, we could not directly mea- 
sure the fraction of  power used for retransmissions versus the 
fraction wasted waiting for results. Instead, we indirectly mea- 
sured the contributions of  these effects. 

The cost of  retransmissions was approximated by measur- 
ing the power consumption of simple transmission. Figure 6 
shows these costs. As in Figure 2, we measured the costs of  
transmitting the data, fetching the results off the server with- 
out recompiling, and transmitting the results back. Figure 6 
shows the power consumed by this process without noise com- 
pared to the power consumed with noise. 6 These results are a 
reasonable approximation for determining the power cost of  
collisions and retransmissions due to noise. The figure shows 
that the increased cost of transmissions in the noisy medium 
consumed an additional 1.5% to 2.5% of the battery. We con- 
jecture that the power consumed by increased transmissions is 
similar in the normal remote execution case. 

These costs are significant, and they almost fully explain 

6The regression equation is y=3.8x+2.0 for the execution in a noisy envi- 
ronment and y=l.6x-0.48 for the execution in a noiseless environment. The 
R 2 values are 0.90 and 0.88, respectively. 
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the increased costs for remote execution in the fi,~ce of noise as 
shown in Figure 5. The remaining component of cost is extra 
battery power consumed in the noisy case while waiting for 
the server to complete. This extra cost appeared to be almost 
negligible, so the portable's cost of waiting for a unit of time 
is approximately the same in the noisy and noiseless cases. 

Due to space limitations, we do not show the results from 
the Gaussian elimination experiments with noise. They are 
similar to the results from the compilation experiments. 

IV. D i s c u s s i o n  a n d  F u t u r e  Work  

Our results show that remote execution of large tasks can re- 
duce their power consumption by up to 50%. Better power- 
management features added to portable computers in the fu- 
ture, and wireless communications devices that consume less 
power, will make the improvement even greater. The power 
expended by the portable computer while waiting for results 
to come back could be minimized by having idle modes that 
are entered either on command or very aggressively, and that 
consume very small amounts of power. The fact that there is a 
significant difference in the client portable computer's power 
consumption for actual remote execution versus pure transmis- 
sion of data and results (Figure 2) shows that the amount of 
power expended purely on waiting is quite significant. Other 
experiments done earlier in our work suggested that if the user 
manually turns the portable completely off and turns it back on 
again when the computation is complete, the amount of power 
consumed by the portable is much, much lower. Of course, 
this is not a practical way to operate in the real world, but 
if the power-saving mode can come closer to expending zero 
power, remote execution will show more benefits. 

A. Improving Power Management  

The high cost of pure data transmission shown in Figures 1 and 
6 and the cost of listening to the channel suggest that certain 
improvements in wireless communications devices could also 
improve the performance of remote execution. Wavelan wire- 
less cards, and wireless communications cards in general, are 
fairly new phenomena that are not yet ubiquitous. As a result, 
they have not been heavily optimized. The Wavelan card, for 
example, operates in three modes: transmitting, receiving, and 
sleeping. These modes take approximately 3 watts, 1.48 watts, 
and. 18 watts, respectively [ 1 ]. The transmission and receiving 
modes consume as much power as a typical disk drive, which 
is known to be one of the most power-consumtive devices in 
a typical portable computer. Other devices, such as the Metri- 
com communications card, have reduced these figures by a sig- 
nificant amount. The Metricom card expends approximately 1 
watt, .4 watts, and .1 watt for the same modes as the Wave- 
lan card [22], but unfortunately at the cost of a much lower 
data rate than the WaveLAN. Proxim RDA radios spend 0.375 
watts in transmitting and receiving modes and 0,001 watt in 
standby mode, with a data rate of 0.242 Mb/sec [16]. Future 
improvements can be expected. 

One particular area for improvement is minimizing the 
amount of power spent by the local card in the power-costly 
receiving mode. The use of a broadcast medium, and the re- 
quirement that the portable computer receive messages that it 
might not be expecting (which is very useful for any number 

of purposes), mean that some power must be expended exam- 
ining all incoming packets to see whether they are destined for 
the local node. Designs that are ab!e to synchronize communi- 
cation and allow the local card to spend some time in sleep 
mode without the loss of messages have promise for mini- 
mizing these power costs. Such designs will not only benefit 
power consumption for remote execution, but will generally 
allow portable computers with wireless cards to remain truly 
idle at minimal power cost in a shared wireless network envi- 
ronment. Communication cards that are able to remain alert 
even when the portable itself is in suspend mode, waking only 
when its own message arrives, would also be helpful. 

B,  A P o w e r - C o n s e r v i n g  I n f r a s t r u c t u r e  

Although power savings are possible through remote exe- 
cution, considerable work remains before these savings be- 
come available to average users. Our experiments used spe- 
cial scripts that performed each migration and sent the results 
back. Other scripts ensured that the server stored the appro- 
priate data and that only the required data was sent from the 
client portable to the server. However, ordinary users cannot 
be expected to be able to create such tricky scripts themselves. 
Simply using normal remote execution has disadvantages as 
well. If  the data files are stored on the portable, it will spend 
power moving them to the remote machine. If  not, the portable 
cannot operate disconnected. Generally, a transparent facility 
would be preferable. Common use of remote execution for 
power management will require a user-friendly infrastructure. 

This infrastructure will require several important compo- 
nents. First, it will require the ability to remotely execute a 
task and deliver the results back in an efficient way. Prelimi- 
nary tests have shown that the mechanism used to transport the 
data from client to server and back can have a dramatic impact 
on the power expended. 

Second, the infrastructure will require simple replication 
mechanisms that allow the client and server to synchronize 
replicas of the required data. Such replication mechanisms 
will allow users to ignore the difficult issues of exactly which 
pieces of data need to be sent to the server. Moreover, by 
running part of the replication algorithms when the portable 
computer is tethered (at least to power, perhaps to a wired 
network), the infrastructure can minimize the amount of data 
that would have to be sent to perform the task remotely. Intu- 
itively, if an earlier replication operation had already moved all 
the data associated with one of the compilations in Figure 1, 
for example, the transportation costs shown in Figure 2 would 
have been lowered. 

Third, proper remote execution of a job requires ensuring 
that all conditions at the server machine are the same as at 
the client. For example, if the server has an older version of 
a library than the client does, the resulting program will be- 
have differently if compiled remotely than if compiled locally. 
Many other issues related both to the user's personal environ- 
ment and preferences, and to the general system environment 
on the two machines, can make providing a consistent execu- 
tion environment challenging. We hope to obtain insight on 
this problem from projects that execute processes remotely for 
different purposes [ 12], [ 17], [ 18]. These and similar projects 
have dealt successfully with these challenges. 
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Fourth, the infrastructure will need to assist the user in deter- 
mining when to execute a task remotely. As the results in Sec- 
tion 3 show, only jobs above a certain size benefit from remote 
execution, and small .jobs can actually waste power by execut- 
ing them remotely. Therefore, the system must not execute all 
jobs remotely, and not even all jobs of particular types. The 
infrastructure can supply varying levels of support for remote 
execution. A very simple form of support would be to provide 
users with a command to execute a job remotely. While sim- 
ple, this puts a heavy burden on the user to decide whether a 
particular job is suitable for remote execution. A more com- 
plicated alternative would be for the user to provide the sys- 
tem with hints about when a job is and is not likely to profit 
from remote execution. For example, makefiles could be aug- 
mented with hints about whether or not particular targets are 
likely to profit. In its most complex form, the infrastructure 
could attempt to deduce automatically whether particular jobs 
were likely candidates for remote execution. 

A major component of this last problem is identifying ex- 
actly which characteristics of a task are likely to cause it to 
consume major amounts of battery power. Clearly, disk ac- 
cesses are important, but it is less clear how many disk ac- 
cesses are required for a job to be a good candidate. Very 
large processes that will require substantial amounts of vir- 
tual memory activity may perform few file system accesses, 
but may actually exercise the disk heavily. The results we 
obtained for Gaussian elimination clearly show that a suffi- 
ciently large CPU load alone may be enough to make a task 
power-expensive. A better understanding of which activities 
in which quantities consume a great deal of power must guide 
any approach to choosing jobs suitable for remote execution. 
Design of a suitable infrastructure for remote execution is the 
next phase of our research. 

Substantial questions also exist in the realms of failure de- 
tection and recovery, security, and server design for remote 
execution support. 

V. Re la ted  Work 

Much research has been performed on power management, in- 
cluding measurement techniques, approaches, methods, tech- 
nical tools, etc. Power measurement techniques for laptop 
devices and applications and benchmark strategies were dis- 
cussed in [3], [14], and [22]. Many techniques to save laptop 
power are based on switching off or slowing down the most 
power-costly devices, such as the hard drive, CPU, and wire- 
less network devices when they are not being used. [24], [19], 
[131, [4], [7], and [8] discuss different strategies to reduce hard 
drive power cost. Measurement results show significant power 
savings where real hard drive access patterns were success- 
fully predicted. The prediction of the moment when a hard 
drive will be in use again is essential for all techniques based 
on this idea, and it is relevant to all other devices having inertia 
(floppy, CD, etc.). [23] suggests that power also can be saved 
through slowing down clock speed, with limited negative im- 
pact on performance. The authors of [2] use predictive caching 
to reduce contention on the narrow-bandwidth wireless chan- 
nel, consuming less power and allowing a mobile laptop to 
keep working in circumstances of long and frequent discon- 
nections. [6] proposes using idle periods to achieve a fairer 

distribution of the workloads of busy periods. This paper also 
includes a taxonomy of idle-detection algorithnls and idleness 
predictors. The idle periods can be used to run some tasks 
whose results are needed in future, as well as for the discon- 
nection of unused power-costly devices. 

Wireless communication devices appear to be highly power- 
consumptive. [20] discusses a technique of transmission sus- 
pension at the moment when interference in the channel is de- 
tected. It is presumed that interference is stationary and er- 
godic. During the interference the communication device can 
be suspended, and power consumption by this device reduced. 
[9] considered wireless data broadcasting as a way of dissem- 
inating information to a massive number of clients equipped 
with battery powered laptops. The user nmst periodically lis- 
ten to the channel to obtain a consistent schedule of the data 
that will be transmitted in the near future. At other times, 
the user can disconnect his communication devices and save 
power. 

Laptop and battery manufacturers have provided another ef- 
fort towards reducing power consumption. Several specifi- 
cations [10], [5], [11] address issues of power consumption. 
They are focused mainly on two points: providing system 
functions allowing connection/disconnection of any particu- 
lar device from the power source, and getting statistics about 
current status of power consumption in the system, including 
remaining battery capacity. These functions serve as a hard- 
ware/software basis for multiple packages, such as Wildboar 
[21], which supplies a user with power management utilities 
that can be used in his scripts and applications. 

[15] discussed a system designed around the InfoPad 
portable terminal, a network I/O device with no computation 
power, relying on network servers to run major processes. Lo- 
cal computing is not possible here, even when it is less power- 
costly. 

For many years, process migration and delegation have been 
discussed in the computer community for various purposes: 
dynamic load balancing, improved reliability, reduced network 
traffic. [18], [17], and [12] discuss these issues. However, 
power consumption has not previously been identified as a 
benefit of process migration. 

VI. Conclus ions  

The experimental results presented in this paper demonstrate 
that portable computers that execute their large tasks remotely 
can save significant amounts of battery power. Savings of up to 
51% were observed. While the tasks in our experiments were 
large, they were not unrealistic. They represent tasks that are 
typically performed by ordinary users every day. Thus, assum- 
ing a suitable environment, remote execution has promise for 
providing better battery life for future users. This technique 
is largely orthogonal to other power-saving techniques, adding 
to any benefits they provide. 

The savings shown in this study are not by any means the 
maximum savings possible. Larger tasks are likely to benefit 
even more. More efficient ways of moving the data may also 
provide greater savings. Improvements in wireless devices and 
power management will provide further benefits. Preliminary 
experiments under more optimistic conditions have shown up 
to a five-fold increase in battery life. 
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