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Abstract

Packet forwarding on the Internet is solely based on the destination address of packets, and it is easy to forge the source
address of IP packets without affecting the delivery of the packets. To solve this problem, one can have routers check
whether or not every packet comes from a correct direction based on its source address field. However, due to routing
asymmetry in today’s Internet, a router cannot simply reverse its forwarding table to determine the correct incoming
direction of a packet.

In this paper, we present the source address validity enforcement protocol, SAVE, which allows routers to learn valid
incoming directions for any given source address. SAVE is independent from—and can work with—any specific routing
protocol. By only interfacing with the forwarding table at routers, SAVE allows routers to properly propagate valid source
address information from source address spaces to all destinations, and allows each router en route to build and maintain
an incoming tree to associate each source address prefix with a corresponding incoming interface. The incoming tree is
further valuable in handling routing changes: although a routing change at one router could affect the incoming direction
of source address spaces from many locations, only the router that sees the change needs to send out new updates. Finally,
SAVE has a good performance with low overhead.
! 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the source address of IP
packets in today’s Internet can be easily forged.
When an Internet router sends traffic towards its
destination, the router will forward it solely based
on its destination address, no matter what the
source address of the packet is. This ease of source
address spoofing has helped attackers to hide
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themselves and has made innocent end-hosts be
both blamed and attacked. Typical examples
include DDoS attacks [2], TCP SYN flooding
attacks [3], smurf attacks [4], and reflector attacks
[5]. Moreover, this problem impairs many source-
address-based functions often performed by routers
at the core or edge of the Internet; for example, rou-
ters may need to perform per-source fair queuing,
congestion control, or source-address-based traffic
management schemes.

Researchers have studied both reactive and pro-
active approaches to handling packets with forged
IP source addresses. Unfortunately, there are
defects in existing approaches. In employing a reac-
tive approach, one can try to trace back the real ori-
gin of packets [6–9], or discover that a packet is
from a path already identified as an attack path
[10,11]. However, packet tracing takes place after
an attack is detected, not when it is occurring.

If one already can determine that a packet carries
an invalid source address, one could proactively fil-
ter such a packet right away. For example, if one
can assume that routing is symmetric (i.e., the route
from a node A to B is the same as that from B to A),
one could use a router’s forwarding table to deter-
mine whether or not a packet with a specific source
address arrives from the same interface as forward-
ing a packet toward that address [12]. However, we
know that paths through the Internet are frequently
asymmetric [13], which means that the forwarding
tables used by routers to deliver packets are not reli-
able for determining where packets should come
from. Or, before a packet leaves a stub network to
enter the Internet, one can check whether or not
the packet indeed carries a source address from
the stub network, i.e., ingress filtering [14]; similarly,
for packets reaching a stub network from the Inter-
net, one can apply egress filtering to ensure they do
not carry a source address from the stub network
[15]. But, with the ingress or egress filtering, edge
routers can only check a packet’s incoming direc-
tion with a very coarse granularity (i.e., whether
toward or from a stub network), and routers not
at the edge cannot help at all. One could also filter
packets by checking whether or not a packet carries
a specific key or some kind of cryptographic authen-
tication information [16,17], or even a TTL value
within an expected range [18,19]. But relying on
keys remaining secret is not always safe, and crypto-
graphic operations become too expensive on a per-
packet basis; filtering based on invalid TTL values
is frequently imprecise.

What is much needed is a reliable, lightweight,
and proactive approach that would allow a router
to easily verify source addresses of IP packets. Rou-
ters currently have forwarding tables that specify
the outgoing interface for each destination address
space (or destination address prefix). If they also
had tables specifying proper incoming directions
for source address spaces, then an attacker’s choice
of forgeable IP source addresses will be sharply
reduced. All improperly addressed packets could
be easily dropped as soon as the forgeries were
detected, and attack-tracing tools can much more
easily determine the possible sources of attacks
[20]. Moreover, this table could be used for non-
security related purposes, such as source-based traf-
fic engineering, congestion control, or fair queuing.
A router performing reverse path forwarding (RPF
[21]) can track down hop by hop those routers that
are on the delivery path from a source to itself, and
multicasting protocols (such as DVMRP [22], CBT
[23], and PIM [24]) that use RPF to build reverse
shortest-path multicasting trees now could build
true shortest-path trees.

In this paper, we present our source address
validity enforcement (SAVE) protocol. SAVE
builds incoming tables at routers, enabling them to
verify whether each received packet has arrived
from the expected incoming interface according to
the packet’s source address. In addition, based on
the ‘‘incoming tree’’ concept we will describe, SAVE
can help a router learn the path that packets from a
specific source address would travel to reach this
router. The SAVE protocol aims to have the follow-
ing properties:

• SAVE is independent of the underlying routing
protocol, so that it can easily run on top of differ-
ent routing infrastructures;

• SAVE should respond to routing changes and
adjust incoming table entries at every SAVE rou-
ter in a timely manner;

• SAVE must be lightweight in order to minimize
router overhead and scale well while achieving
its goals;

• SAVE needs to cleanly handle various advanced
routing techniques in use throughout the Internet
(such as mobile IP, tunneling, multipath routing,
as well as the inter-domain and intra-domain
routing infrastructure);

• SAVE can only be deployed incrementally, and
should offer benefits with incremental deploy-
ment; and
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• SAVE must be secured or attackers could bypass
any security it offers or even directly use SAVE to
launch certain attacks.

The rest of this paper is organized as follows:
Section 2 discusses related work; Section 3 describes
the basic approach of SAVE; Sections 4–6 describe
the protocol in detail; Section 7 discusses how
SAVE deals with advanced routing techniques; Sec-
tion 8 presents simulation results on the costs of
running the protocol and demonstrations of its effi-
cacy; Section 9 touches on remaining issues; and
Section 10 concludes the paper.

2. Related work

Source address validity enforcement can be either
router-based or end-host-based. We briefly touch
upon end-host-based solutions first, then focus on
router-based solutions since SAVE is router-based.
We also describe hybrid solutions that need partici-
pation from both routers and end-hosts, or that
both routers and end-hosts can separately apply.

2.1. End-host-based approaches

A variety of end-host-based detection appro-
aches can be found in [19]. These approaches can
be further classified as active or passive, depending
on if end-hosts actively probe to determine source
address validity, or if they simply observe the
incoming packets.

However, routers and end-hosts both need the
source address of IP packets to be valid (see Section
1). An end-host-based approach will not help rou-
ters in this regard.

In fact, although end-host detection is easier to
deploy, it is the lack of source address inspection
at routers that allows IP spoofing to run wild.
Purely end-host-based approaches can indeed help
verify the validity of IP source address, but only a
router-based solution can prevent packets with an
invalid source address from crossing the network
and reaching victims.

2.2. Router-based approaches

Below we focus mostly on router-based meth-
ods, as SAVE is also router-based. Existing works
include forwarding-table-based filtering, ingress/
egress filtering, route-based distributed filtering,
key-based approaches, and general filtering.

Recall the strength of SAVE is that it allows
every router to learn and rely on the incoming
direction of IP packets in order to validate their
source address.

Forwarding-table-based-filtering [12,25] assumes
that the outgoing interface that a router uses to
reach a given address, as specified by its forwarding
table, is also the valid incoming interface for packets
originating from that address. Unfortunately, rout-
ing asymmetry on the Internet is common [13],
invalidating this assumption.

At the border of a stub network, ingress [14]
and egress [15] filtering respectively ensure that
packets from the stub network and toward the
stub network have valid source IP addresses.
However, this approach does not provide every
router with incoming direction knowledge; and
for routers at the edge of a stub network, it only
can tell whether a packet with a specific source
address should be inbound or outbound. SAVE
allows every router to learn the correct incoming
interface of source addresses.

Route-based distributed packet filtering (DPF)
research in [20] studied benefits of DPF filtering
for attack prevention and traceback, and partial
deployment strategies. Unfortunately, the work
assumed the existence of a DPF system without
actually designing an approach for routers to learn
the correct route for every source address. More
recently, researchers have proposed DPF-like imple-
mentations, including IDPF [26] and BASE [27].
However, besides being very BGP-specific, IDPF
only learns feasible paths, not actual paths. BASE
is also tightly tied to BGP, and it cannot handle
AS-level routing asymmetry well.

SPM [17] utilizes keys associated with source-des-
tination AS pairs. Unlike SAVE, it cannot be used
for router-based services that require incoming
direction knowledge. Designed only for spoofing
prevention, SPM is specific to BGP and benefits
participating ASes at the AS level. Perhaps most
distressing, if attackers learn the correct key for a
source-destination pair, they can successfully send
spoofed packets from anywhere in the network with-
out raising suspicion.

Baker [12] proposes a general filtering approach
where many fields, including but not limited to the
source address, can be used for filtering. For
instance, martian address filtering allows routers
to discard packets if their source addresses are spe-
cial addresses (loopback address, broadcast address,
etc.) or are not unicast addresses.
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2.3. Hybrid approaches

Besides methods which only routers can imple-
ment, or that only end-hosts can implement, other
approaches exist which either routers or end-hosts
could possibly utilize. Still other approaches require
both routers and end-hosts to work together. We
describe these approaches below.

One such approach is to apply cryptographic
operations to guarantee authenticity of packet
information, represented by IPsec [28]. IPsec can
be run in two modes, tunnel mode and transport
mode. In tunnel mode, packets are protected
between two routers, or an end-host and a router.
In transport mode, packets are protected between
end-hosts. Unfortunately, the high computational
cost of cryptographic operations prevent such
approaches from being widely employed per packet.

Hop-count filtering [18] relies on spoofed packets
traveling over a different number of hops than legit-
imate traffic. The concept could be applied by either
end-hosts or routers. But, with only a small range of
possible hop-counts, it has limited efficacy.

Packet tracing has been widely studied [6,29,9],
and often involves packet marking [7,8,30–34]. Gen-
erally, packet tracing involves both routers and end-
hosts: routers must mark packets while end-hosts
often decide which packets to trace. While comple-
mentary to each other, a fundamental difference
between SAVE and tracing is that tracing is typi-
cally performed after an attack is detected, possibly
too late to avoid damage! Tracing IP packets with
forged source addresses requires complex and often
expensive techniques to observe the traffic at routers
and reconstruct a packet’s real path. Many tracing
methods become ineffective when the volume of
attack traffic is small or the attack is distributed [35].

Similar in concept to packet tracing, routers run-
ning Pi [10] or StackPi [11] mark each packet to iden-
tify the path that it traveled. End-hosts use the path
identifiers to filter out packets which traveled along
an identified attack path. Detecting attack paths,
and dropping attack packets is up to the end-hosts.
Routers cannot filter attack packets, nor can they
discover incoming direction information.

3. SAVE primer

3.1. Basic approach

The goal of the SAVE protocol is to allow routers
to filter packets with forged source addresses, or reli-

ably perform various source-based functionalities.
SAVE accomplishes this by building an incoming
table at each router that specifies the valid incoming
interface for packets with a specific source address.

The information needed to construct an incom-
ing table is inherently different from that used to
build a forwarding table. In a routing protocol,
routing updates advertise the set of destination
address spaces that routers can reach and the prop-
erties of the routes used. Each router then uses these
updates and some local policies to calculate its best
outgoing interface for each destination address
space. On the other hand, the SAVE protocol
should be designed to inform routers about the path
that has already been chosen, in order to allow rou-
ters on the path to a destination to deduce valid
incoming interfaces for specific source addresses.

In SAVE, every router is associated with a set of
source addresses. For packets from these addresses,
they must go through this router to reach certain
destinations. A router that forwards packets on
behalf of hosts in a local area network (LAN) has
a source address space that covers addresses of
those LAN hosts; a border router of an autono-
mous system (AS) handles the source address space
of the entire AS; and a transit router with no
attached hosts has a source address space that con-
sists of all its own IP addresses.

The basic approach of SAVE works as follows.
For every entry in its forwarding table, a SAVE rou-
ter periodically generates SAVE updates toward the
corresponding destination address space that travel
along the same path as legitimate packets from this
router’s source address space. Forwarding table
changes will also trigger new SAVE updates. In both
cases, an update will specify the originating source
address space and carries the destination address
space. Since every SAVE update arrives on the same
incoming interface as the valid IP packets from the
source address space of the update, every router en
route between the source and final destination can
record the incoming interface of a SAVE update as
the legitimate incoming interface for the source
address space of the update. In addition, in order
to reduce bandwidth overhead, SAVE allows inter-
mediate routers to piggyback their own source
address spaces on a passing-by SAVE update.

3.2. Fundamental challenges

Although the basic SAVE operations are simple,
there are several fundamental challenges. Here we
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discuss two of them: (1) ensuring SAVE updates fol-
low the same path as valid data packets and (2)
reacting to routing changes. We cover additional
issues related to reducing overhead and handling
advanced routing techniques in Sections 6 and 7,
respectively.

The first issue is to ensure that the SAVE updates
follow the proper packet delivery paths. The key
here is that a SAVE update is forwarded toward a
destination address space, not a single IP address.
The SAVE protocol must account for all paths
toward the addresses in a destination address space.
In Fig. 1, for the SAVE update that router B initi-
ated on behalf of the source address space SB, if
router A only forwards the update toward router
R, router r will not be able to learn the valid incom-
ing interface for SB. Instead, in order to ensure all
downstream routers can learn the proper incoming
direction information, the SAVE protocol needs to
generate one SAVE update toward router R, and
one toward router r.

The second issue concerns routing changes.
Routing changes establish new paths from sources
to destinations, and SAVE must make sure the
incoming interface information will be up-to-date
at every router for every source address space. In
the basic approach, SAVE routers that notice a for-
warding table change will initiate new SAVE
updates. However, not all routers that should gener-
ate SAVE updates will necessarily experience a
change in their forwarding table. In Fig. 2, router
D initially chooses router B as the next hop to reach
address space SA. The incoming table of router A is
shown in Table 1a. Assume that due to the failure of
link BD, router D updates its forwarding table so
that router C becomes its new next hop to SA.
Although D will send a new SAVE update to SA,
which indicates to A that packets from SD should
now arrive from interface 2 instead, routers E and

F do not change their forwarding entries for SA,
and thus they will not regenerate SAVE updates!
As a result, router A will have stale information
about address spaces SE and SF (Table 1b).

Periodically sending SAVE updates solves the
problem eventually, but not in a sufficiently timely
manner. What is needed is that when router A
receives a SAVE update that changes the incoming
interface for address space SD, router A can decide
right away that the same change should also be
applied to address spaces SE and SF. SAVE handles
this issue through the use of an incoming tree mech-
anism, which we describe in Section 5.2.

3.3. Architecture of SAVE

SAVE effectively addresses the above fundamen-
tal challenges. While only interfacing with the for-
warding table at routers, SAVE allows routers toFig. 1. An example of SAVE update forwarding.

Fig. 2. An example topology of routers and their source address
spaces. (SX stands for router X’s source address space.) After link
BD fails, router D changes its route to SA. A SAVE update is thus
triggered at D and sent toward SA, causing router A to update its
incoming table. But E and F do not detect the routing change,
leaving two stale entries about SE and SF in A’s incoming table
(Table 1).

Table 1
Example incoming tables

Source address space Valid incoming interfaces

(a) Router A’s incoming table before router D’s routing change
(Fig. 2)

SB 1
SC 2
SD 1
SE 1
SF 1

(b) Router A’s incoming table after router D’s routing change
(Fig. 2)

SB 1
SC 2
SD 2
SE 1 (should be 2)
SF 1 (should be 2)

J. Li et al. / Computer Networks 52 (2008) 399–417 403
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properly propagate SAVE updates, ensuring SAVE
updates follow the correct path; furthermore, SAVE
introduces an incoming-tree-based mechanism to
learn and store the valid incoming direction infor-
mation for different source addresses, as well as cor-
rectly handle routing changes in a timely manner.

Fig. 3 shows the architecture of the SAVE proto-
col. SAVE’s main components include generating
SAVE updates, processing SAVE updates, and
updating the incoming tree and incoming table
based on SAVE updates. We describe these compo-
nents in detail below. Section 4 describes the
method SAVE uses to communicate incoming direc-
tion information. Then Section 5 goes into how a
router stores incoming direction information in a
novel manner.

4. Communicating incoming direction information

SAVE routers communicate incoming direction
information through SAVE updates. In this section,
we describe SAVE updates themselves in detail, fol-
lowed by how the updates are generated and
propagated.

4.1. SAVE update

Every SAVE update has a destination
address space field that specifies the final desti-
nation address space of this SAVE update. This field
helps downstream SAVE routers correctly propa-
gate a SAVE update. If a SAVE update originated
from router R1 has crossed SAVE routers R2,
R3, . . .,Rn in sequence in reaching the destination
address space of the update, packets from the source
address space of R1 will also cross R2, R3, . . .,Rn in
sequence. (We will describe the SAVE update prop-

agation procedure in Section 4.3.) These crossed
routers can then record the incoming interface of
the update as the valid incoming interface for pack-
ets from the source address space of R1.

In fact, while heading toward its destination
address space, every SAVE update also has an
address space vector (ASV) field to record a
chain of source address spaces that are associated
with the routers that the SAVE update has crossed
in sequence, starting with the origin router of the
update. If a SAVE update originated from R1 has
crossed SAVE routers R2, R3, . . .,Rn in sequence,
the ASV field will have the form hS1, S2, . . .,Sni,
where Si is the source address space of Ri (i = 1,
2, . . .,n). Every router that receives this SAVE
update can be certain that valid packets en route
from address space Si, towards the update’s destina-
tion, will cross Ri+1, Ri+2, . . .,Rn before reaching
itself. (There may be some unlisted routers between
Rn and the current router, as we can see in Section
6.1.) In other words, every router along the path
of a SAVE update can record the incoming interface
of the SAVE update as the legitimate incoming
interface for packets from every source address
space in the ASV of the update.

Finally, to reduce bandwidth overhead by SAVE
updates, in certain circumstances a SAVE router
can append its update on a passing update. In other
words, every SAVE update also has an append-
able flag to indicate whether downstream SAVE
routers can append their source address spaces to
this update’s ASV field. We will illustrate this flag
in detail in Section 6.1.

4.2. Generating SAVE updates

A SAVE router generates SAVE updates for
every entry in its forwarding table. If router R has
source address space SR and has a forwarding entry
for destination address space D, the corresponding
SAVE update will be: hdestination address
space = D, ASV = hSRi, appendable = truei. At
this point, the ASV field only contains the source
address space of R, but the next SAVE router on
the path to D will be allowed to append its source
address space since the appendable flag is true.

This SAVE update will head toward D. In partic-
ular, it will be forwarded along the outgoing inter-
face specified in the forwarding entry for D. Along
with the update propagation process that will be
illustrated in Section 4.3, this is necessary to ensure

Fig. 3. The architecture of the SAVE protocol.
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that the update will take the same path as packets
from this router’s source address space.

SAVE supports both triggered updates and peri-
odic updates. Not only will a SAVE router periodi-
cally initiate SAVE updates, but whenever it detects
a change in a forwarding table entry, the router will
also trigger a SAVE update corresponding to this
entry. The pseudocode in Fig. 4 describes steps for
generating SAVE updates.

4.3. Propagating SAVE updates

Unless a SAVE router is the last hop for every
address from the destination address space of a
received SAVE update, the router is an intermediate
hop for this update and needs to further propagate
it downstream. In order for the SAVE update to
reach its destination address space, the router will
forward the update in the same way as it would for-
ward regular packets toward the destination address
space of the update. Doing so, the incoming inter-
face of the SAVE update at every downstream
SAVE router will be the same as—thus also
recorded as—the incoming interface of all source
address spaces carried in the ASV field of the
update.

An intermediate SAVE router uses its forwarding
table to decide how to forward a SAVE update.
Denoting D the destination address space of a
SAVE update, recall that the update should travel
along the same path as regular packets toward D.
However, the router may not have a forwarding
table entry that points exactly to D. The router
could have one or more forwarding table entries
that point to the sub-spaces of D, or a forwarding
entry that points to a super-space of D. To forward
a packet with a specific destination address in D, the
router needs to choose the most specific forwarding
table entry that matches the destination address of

the packet. Thus, in order for an update to travel
along the same direction as packets towards all
addresses of D, the update must be forwarded
according to all such forwarding table entries.

As described in the pseudocode in Fig. 5, SAVE
is designed to propagate a SAVE update as follows:

• For every forwarding entry that specifies a route
toward a sub-space of D, the router will create a
new SAVE update, which is a duplicate of the
original SAVE update except that the destination
address space in the new update will be set to this
sub-space. The router then needs to recursively
propagate the new SAVE update in the same
way as the update in question. Here, creating
new updates will result in splitting the original
SAVE update into multiple SAVE updates.

• If there are no sub-space forwarding entries, or
all sub-space forwarding entries together do not
cover the whole space of D, the forwarding entry
toward the smallest super-space that covers D—
which could be the entry that exactly points to
D if it exists—will be used to forward the SAVE
update. This is because this forwarding entry will
be used for forwarding data packets toward D, or
toward the part of D not covered by sub-space
forwarding entries. Note that in this case the des-
tination address space of the SAVE update does
not change.

Finally, if a passing update is appendable accord-
ing to its appendable flag (we describe the flag in
Section 6.1), an intermediate SAVE router will
append its own source address space to the update’s
ASV field before further forwarding it downstream.
The ASV field allows downstream SAVE routers to
record and adjust the incoming interface of packets
from not only the source address spaces in the ASV
field, but also other source address spaces. We illus-
trate this concept in Section 5.

Fig. 4. SAVE update generation pseudocode.
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5. Storing incoming direction information

SAVE routers employ two data structures for
keeping track of incoming direction information:
the incoming table and the incoming tree. The
incoming table at a SAVE router is simple: it con-
tains entries that specify valid incoming interfaces
for different source address prefixes. The incoming
tree, which is in fact used to create the incoming
table, is slightly more complicated.

5.1. Incoming table

The incoming table needs to be fast and efficient
since it must be inside a router’s fast path. Its simple
concept and similarity to forwarding tables helps in
this regard; routers are already highly optimized
for table lookups for forwarding tables, and this
optimization can also help when using incoming
tables to look up valid incoming direction
information.

The incoming table is further optimized to reduce
the storage cost by leveraging symmetries in net-
work routing. When routing is symmetric, i.e., a
router uses the same interface for both forwarding
packets to an address space and receiving packets
from that space, the router’s forwarding table entry
for that space can also serve as the incoming table
entry for that space. In other words, the router does
not need to create a new incoming table entry for
that space. Otherwise, when routing is asymmetric,
the router adds a flag to the forwarding table entry
to indicate that the incoming table must be con-
sulted to determine the correct incoming interface.
The degree to which this optimization saves storage
space depends on the degree of routing asymmetry
present.

5.2. Incoming tree

The incoming tree at a SAVE router serves two
purposes: (1) to derive the incoming table of that

Fig. 5. Recursive SAVE update propagation procedure.
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router, and (2) to maintain the relationship of differ-
ent source address spaces. The former is straightfor-
ward: Every node on the tree represents a source
address space and is mapped to the valid incoming
interface for that address space (except the root of
the tree). Note a source address space can include
one or more address prefixes. For the latter, the
incoming tree is designed to have the following
properties:

• If—and only if—a SAVE update crosses router A
and then router B before reaching a router R,
node SA will be the child of node SB on R’s
incoming tree. Here SA and SB are A’s and B’s
source address space, respectively. Note that B
and R could be separated by other routers, or
are the same router. For defining parent/child
relationships, SR is treated as the root node of
router R’s incoming tree.

• As a natural result of the first property, the
incoming interface that a child node is mapped
to is determined by—and the same as—the
incoming interface that its parent is mapped to.

• Recursively applying the second property, all
nodes from a sub-tree that is directly below the
root are mapped to the same incoming interface,
making building an incoming table from an
incoming tree even more straightforward.

Consider router A in Fig. 2. Its incoming tree
before link BD fails is shown in Fig. 6a, where SD

is the parent of SE, and SE is the parent of SF. Trig-
gered by the routing change at D, SD’s new SAVE
update will cross C before reaching A, causing A
to modify its incoming tree so that SD becomes
the child of SC, and all source address spaces of
D, E, and F will now correctly map to interface 2
(Fig. 6b).

Another important property of an incoming tree
is that not only can it help determine the ‘‘incoming
interface’’ for packets from a specific source, but
also the ‘‘incoming path’’. For example, Fig. 6b
indicates that packets from SE will pass through
router D, and then C, before reaching router A.
We leave the possible usage of incoming path
knowledge as a topic for future investigation.

5.3. Updating an incoming tree

Upon receipt of a SAVE update, a SAVE router
uses the ASV of the SAVE update to maintain its
incoming tree, and thus its incoming table (see
Fig. 7 for a pseudocode description of the
algorithm).

In general, an ASV has the form hS1, S2, . . .,Sni,
where Si is the source address space of a SAVE rou-
ter Ri (i = 1, . . .,n). To preserve the properties of the
tree discussed in Section 5.2, the incoming tree
updating procedure must first ensure that the ASV
will be ‘‘grafted’’ into the tree as an intact branch,
where Si will be the direct child of Si+1. Second,
the procedure must map this branch to the incoming
interface that the SAVE update arrived on. Third,
descendants of Si on the tree must map to the same
incoming interface as Si.

The tree update procedure therefore parses the
ASV in reverse order (see Fig. 7), processing Sn,
the last ASV element, first. If Sn is not yet in the
tree, it is grafted directly under the root; otherwise,
if Sn’s existing interface in the tree is not this
update’s incoming interface, the sub-tree under Sn

(not just Sn itself) will be remapped to the new inter-
face and grafted under the root. For any other ele-
ment of the ASV, Si (i 5 n), given that node Si+1

has just been positioned into the tree correctly, the
whole Si sub-tree can be relocated directly under
node Si+1. This could map the Si sub-tree to a
new interface.

6. Optimizing SAVE

6.1. The appendable flag

Instead of initiating a new update toward a des-
tination address space SD, a SAVE router can pig-
gyback the update on a passing SAVE update U
that also heads toward SD. But, if the router has just
initiated its own SAVE update toward SD, it can
mark U as non-appendable by setting U’s append-
able flag as false. This router still appends its own

SCSB

SD

SE

SF

1 2
SCSB

SD

SE

SF

1 2

(a) The incoming tree at 
router A before router D’s
routing change.

(b) The incoming tree at
router A after router D’s
routing change.

Fig. 6. Incoming tree example for topology in Fig. 2.
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source address space, but all downstream routers
will stop appending their source address spaces into
U’s ASV field, thus keeping the size of U from
unnecessarily growing.

Now that downstream routers do not always
append their source address spaces, the ASV field
of a SAVE update does not always map to the
entire path that the update has traversed. However,
every downstream router will still be able to derive
a complete ASV that corresponds to all the routers
that a SAVE update has crossed, as illustrated
below.

Assume a downstream router R receives a SAVE
update U(R1) that originated from R1. The ASV
field of U(R1) is expressed as hS1, S2, . . .,Sni, where
Si is the source address space of a SAVE router Ri,
and U(R1) is marked as non-appendable. The non-
appendable flag suggests that Rn is an intermediate
router and must have already initiated a SAVE
update, denoted as U(Rn), toward the same destina-
tion address space as U(R1). R should receive both
U(R1) and U(Rn). Assume the ASV field of U(Rn)
is hSn, Sn+1, . . .,Sn+mi. If U(Rn) is appendable, its
ASV will map to the entire path from Rn to R. R
can then concatenate the ASV of U(R1) and the
ASV of U(Rn) to obtain a complete ASV, i.e. hS1,
S2, . . .,Sn, Sn+1, . . .,Sn+mi. And this ASV maps to

all routers on the path from R1 to R. If Rn’s update
is marked as non-appendable, R can still success-
fully obtain the complete ASV for U(R1) by execut-
ing a recursive procedure: learning the complete
ASV corresponding to U(Rn). Note that the above
concatenation does not happen literally; instead, it
is implicit because of the incoming tree update
procedure.

6.2. Replaceable updates

As another optimization, SAVE does not need to
forward those updates that are replaceable. An
update is replaceable from the point of view of a
specific SAVE router if every address space element
in the update’s ASV is contained by this router’s
source address space. This router already has pro-
duced or will produce the necessary SAVE updates
to carry the information in replaceable updates.
This optimization matches well with the two-level
routing infrastructure of the Internet: since all pack-
ets from an AS to the outside must cross a border
router, and the whole AS space is the source address
space of that border router, those SAVE updates
from within an AS are all replaceable and will not
leak beyond the AS. Section 7.2 further discusses
AS-level replaceable updates.

Fig. 7. Incoming tree update procedure upon receipt of a SAVE update.
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6.3. Routing-protocol specific optimization

As described thus far, the design of SAVE is
routing-protocol independent. This important
aspect allows SAVE to run on top of any routing
infrastructure. However, further optimizations are
possible if SAVE is allowed to use protocol-specific
information.

If SAVE only runs on BGP routers, SAVE’s
overhead can be further reduced. Instead of using
network prefixes to represent its source address
spaces, a router can simply use its AS number. This
optimization could decrease both the storage over-
head and the traffic overhead. With a single AS
number generally replacing multiple prefixes, the
space required to represent a source address space
decreases—possibly dramatically if the AS number
is replacing many prefixes. Thus, anywhere source
address spaces are used, we will see a reduction in
SAVE’s overhead. Specifically, a router’s incoming
tree will require less space, and the ASV of a SAVE
update will be smaller. (In order to keep a router’s
fast path as streamlined as possible, AS numbers
can be translated into prefixes when building the
incoming table from the incoming tree.)

7. SAVE and advanced routing techniques

7.1. Multihoming and multipath routing

With the SAVE protocol implemented as
described thus far, problems will arise regarding
the use of multihoming and multipath routing.
When multihoming or multipath routing is in use,
a downstream router may receive multiple SAVE
updates for the same source address space, but from
different incoming directions. Without any modifi-
cations, the incoming tables of downstream routers
would only consider packets matching the incoming
direction for the last SAVE update received to be
valid.

To solve this problem, we introduce a simple,
optional tag to the source address space entries
within the ASV (address space vector) field of SAVE
updates. This tag identifies which home or path the
update originated from or passed through, respec-
tively. The tag only needs to be unique amongst
all of the multiple homes or multiple paths. This is
simple to achieve, since when an address space is
multihomed, the routers in charge of that space will
know; similarly, when a router has multiple outgo-
ing paths for the same destination space, it knows.

So, when a router is in charge of a multihomed
space, or a router uses multipath routing, it adds
the tag for the corresponding home or path to its
source address space in any outgoing update’s
ASV. As described earlier in Section 5.2, each
unique source address space in the ASV (now fur-
ther differentiated by tags) corresponds to a unique
node in downstream routers’ incoming trees. This
allows downstream routers to correctly maintain
their incoming trees, and therefore incoming tables.

Fig. 8a and Table 2a show a multihoming exam-
ple. Similarly, Fig. 8b and Table 2b contain a mul-
tipath example. Note, this solution may create
incoming trees that are no longer true trees; nodes
may have multiple parents. However, since the
graph is directional, the functionality is not
impaired.

7.2. Hierarchical routing

The concept of replaceable updates (Section 6.2)
can be extended to work with the routing hierarchy
present in the Internet. Both the intra/inter-AS

S  :1CSB

SD

SE

1 2

S  :2C

SCSB

SE

SF

1 2

S  :1D S  :2D

(a) The address space 
corresponding to SC is 
multihomed at routers 
C and F (SC = SF).

(b) Router D uses multipath
routing; both router B and
router C are its legitimate
next hop before reaching A.

Fig. 8. Incoming tree examples with multihoming and multipath.
The topology from Fig. 2 is used.

Table 2
Incoming tables with multihoming and multipath routing

Source address space Valid incoming interfaces

(a) The incoming table corresponding to Fig. 8a
SB 1
SC = SF 1,2
SD 1
SE 1

(b) The incoming table corresponding to Fig. 8b
SB 1
SC 1
SD 1,2
SE 1,2
SF 1,2
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hierarchy for BGP routing and the intra/inter-area
hierarchy for OSPF [36] routing can help reduce
the size of routing tables, and the intra/inter-AS
hierarchy for BGP further allows organizations to
hide their internal routing information from outside
parties. SAVE can also take advantage of this hier-
archy to have smaller incoming trees and incoming
tables, while still not exposing internal routing
information to outside parties.

The general idea is simple and is as follows. Uti-
lizing the intra/inter-AS hierarchy, all border rou-
ters of a given AS act as one ‘‘virtual router’’ with
the entire AS as its source address space. Any
update from an internal router towards an external
destination space will simply be dropped by the bor-
der router. If the internal routing change which trig-
gered the internal update also caused an AS-level
routing change, the border router will generate an
update itself, representing the entire AS. If there is
no AS-level routing change, the border router has
no reason to generate or forward the internal
update towards external ASes; as far as border rou-
ters from other ASes are concerned, no incoming
directions have changed. Similarly, an update trav-
eling from an external router towards internal desti-
nations is also dropped. As far as an internal router
is concerned, the ‘‘virtual’’ router is always the
incoming direction of all external traffic.

The above optimizations do not change signifi-
cantly for OSPF intra/inter-area operation. For
our purposes, OSPF area border routers function
essentially like AS border routers above. All of the
area border routers for a single area function as a
single virtual router. An area border router does
not forward intra-area updates to external areas,
nor does it forward inter-area updates to internal
routers.

When deployed at the AS-level, further optimiza-
tions from Section 6.3 can also be applied. Since all
AS border routers use BGP, instead of representing
the source address space of an AS using network
prefixes, a border router can use the AS number
of the domain. In this way, internal routers use net-
work prefixes, while border routers use AS
numbers.

7.3. Mobile IP and tunneling

Some Internet traffic does not use default routing
behavior, and SAVE must handle such traffic prop-
erly. Such cases include mobile IP, tunneling, source
routing, etc.

Mobile IP [37] potentially conflicts with SAVE in
that a mobile host’s packets, if carrying its home IP
address, would be rejected whenever the mobile host
is outside its home network (since generally it uses a
different path to the destination than the rest of its
home network). The reverse tunneling technique
[38], proposed to handle such conflicts for general
address filtering, also works for SAVE. A mobile
host’s packets are first tunneled from a foreign net-
work back to its home agent, and then forwarded to
the destination; thus, the source addresses of those
packets are valid on each segment of the path.
IPv6 requires that a packet from a mobile host in
a foreign network use a care-of address (an address
belonging to the foreign network) as the packet’s
source address [39], thus also solving the problem.

IP tunneling complicates source address valida-
tion. A packet’s true source address is buried inside
a wrapping IP header that contains the source
address of the ingress of a tunnel, thus the true
internal source address can bypass the validation.
Source validation must be performed before a
packet enters a tunnel as well as after the packet
departs from the tunnel. For example, in Fig. 9a
spoofing packets from attacker A enter a tunnel at
router I and depart from the tunnel at router E
before reaching the destination router at D. If their
source address can be found to be spoofing by
SAVE routers along the path from A to I or from
E to D, these packets can then be caught.

When a SAVE update reaches the ingress point
of a tunnel, the update will be encapsulated and
then forwarded through the tunnel as a regular data
packet. There is no SAVE-related action taken on
this update until it is decapsulated at the egress
point of the tunnel.

In the view of SAVE, there are two different types
of tunnels: those that merely add one level of encap-
sulation (and perhaps also IPsec for a secure tun-
nel), which follow the same route as regular data
packets, and those that deviate from the regular
routing path. The latter type can cause legitimate
packets to be dropped. As shown in Fig. 9b,
whereas packets from S toward D normally go
through router I along path ID to reach D, if I rero-
utes these packets through a tunnel before reaching
D, they will appear to D as arriving from an illegit-
imate incoming direction. We handle this case using
our solution for multipath routing (Section 7.1).
When the ingress point of a tunnel (router I in
Fig. 9b) recognizes that the tunnel may introduce
two legitimate paths toward a destination, it will
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add a tag to its source address space when forward-
ing SAVE updates through the tunnel, and another
tag when forwarding SAVE updates through a reg-
ular path.

8. Performance evaluation

8.1. Simulation design

We have implemented and tested the SAVE pro-
tocol in a custom simulation environment. We per-
formed extensive simulation experiments to obtain
information related to: (1) whether all spoofed
packets can be successfully detected and dropped,
(2) whether valid packets are dropped erroneously,
(3) the transient behavior of SAVE, and (4) the cost
of SAVE.

In the simulation, all routers run the SAVE pro-
tocol in addition to routing protocols. Correspond-
ing to the two-level routing infrastructure of the
Internet, we used the transit-stub topology genera-
tor from GT-ITM [40] to generate inter-domain
connectivity and intra-domain connectivity. We
simulated both inter-domain routing and intra-
domain routing. We also introduced asymmetric
routing.

For inter-domain routing we used BGP [41], the
de facto inter-domain routing protocol. For intra-
domain routing, we chose RIP [42] as it is the easiest
to implement in simulation. In fact, SAVE is inde-
pendent of routing protocols; any routing protocol
would suffice as long as it correctly creates forward-
ing tables.

8.2. Effectiveness against spoofed packets

Spoofed packets may escape in the following
stringent or rare situations: (1) if a router’s incom-
ing table specifies that a range of IP addresses
should come in from a particular direction, the rou-
ter has no way of knowing if a packet with a source

address in that range carries a forged source address
from the same range; (2) also, prior to the adjust-
ment based on newly received SAVE updates, cer-
tain entries at the incoming table of a SAVE
router may be temporarily obsolete so that spoofed
packets from a wrong direction might be regarded
as valid and thus escape.

We performed extensive simulation experiments
to verify the correctness of SAVE, focusing on false
negatives. Each simulated packet source generates
both valid packets and spoofed packets that are
controlled by two independent Poisson processes.
Spoofed source addresses were randomly chosen
from a pool of all source addresses in the network.
Every router is under an average load condition and
every packet carries a reachable destination address;
thus a packet can only be dropped due to address
filtering or a transient routing inconsistency caused
by topology changes. If SAVE can drop all spoofed
packets, the distribution of dropped packets over
time should match the generation model of spoofed
packets. This was verified in numerous scenarios
over different topologies, with the presence of asym-
metric routing and dynamic routing changes. We
report one such scenario in Fig. 10.

8.3. Correctly identifying legitimate packets

When a forwarding table changes and a new
route to a destination address space is being set
up, there is a transient period in which the incoming
tables are incorrect, due to the delay of generating,
forwarding, and processing the triggered SAVE
update. During this time SAVE must adjust every
incoming table along the new route. If a data packet
is sent toward the destination during this period, it
could be erroneously dropped even though it carries
a valid source address. More accurately, assuming
that the propagation delay of a SAVE update is
the same as that of a valid data packet, the data
packet can be dropped by mistake if:

(a) Spoong packets
from an attacker A
going through a tunnel.

Packets fromat:

(b) Legitimate packets
going through a tunnel.

I→E:

:

S→D

S→D payload

payload

S I
D

E

I D

E

A

Fig. 9. SAVE and IP tunneling.
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1. The data packet is sent while the SAVE update is
still being generated due to a forwarding table
change; in this case, the packet can reach down-
stream routers earlier than the SAVE update,
and will be validated using the obsolete incoming
information there.

2. The data packet is received at an intermediate
router or its final hop while the incoming tree
and the incoming table are still being updated
using the triggered SAVE update; due to the
obsolete entry in the incoming table, the packet
will be regarded as a spoofed packet.

Given that both windows above involve only
processing delay and are fairly short, we expect that
few legitimate packets will be dropped due to stale
incoming table entries. In our experiments we expe-
rienced no filtering drops of valid packets due to
routing changes.

8.4. Storage overhead of SAVE

The incoming table built by SAVE is on the fast
path of a router and it is important that the incom-
ing table does not take too much space. We report
two different costs for the incoming table: one is
the cost when all routes are asymmetric; the other

is the cost with an average level of asymmetry
resulted from running routing protocols in the sim-
ulation. The former case is rare but provides a worst
case scenario; in general, the amount of routing
asymmetry observed in the Internet is less.

In addition, we also compared the size of the cor-
responding fast-path data structures at a router: the
incoming table used by SAVE and the forwarding
table used by routing protocols. This comparison
is useful in the real world. As network operators
already know the storage cost of routing protocols,
they can use these comparisons to further under-
stand the storage of SAVE.

Figs. 11 and 12 show the incoming table size of
SAVE as well as its comparison with forwarding
tables built by routing protocols. Fig. 11 compares
SAVE with RIP for different single-domain topolo-
gies. Fig. 12 compares SAVE with BGP for different
multiple-domain topologies. Clearly, SAVE incurs
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Fig. 10. SAVE effectiveness verification. In this scenario, a DDoS
attack is performed from three different machines. Every packet
in the simulation has a global unique sequence number. (a) Shows
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Fig. 11. Storage cost comparison for single-domain topologies.
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equal or less storage overhead. Figs. 11 and 12 show
that, in the worst case, the incoming table is similar
in size to the forwarding table; and with more rea-
sonable amounts of asymmetry present in our simu-
lation, the storage cost of the incoming table is very
small.

8.5. Control traffic overhead of SAVE

To assess the bandwidth requirements of SAVE,
we compared the triggered and periodic bandwidth
costs of SAVE and routing protocols. Again, results
are presented as a comparison, since it is more
meaningful than raw numbers.

Assuming SAVE updates and routing updates
are initiated with the same frequency (we use every
30 s), we compared SAVE and RIP in terms of peri-
odic bandwidth cost over single-domain topologies.
Simulations over different topologies show similar
results (Fig. 13), where 10 different topologies were
measured for each given number of routers. The
ratio of SAVE bandwidth cost versus RIP band-
width cost is lower than 1 as the number of nodes
in topologies grows beyond 40, suggesting that
SAVE has better scaling properties than RIP. We
also measured the per-link bandwidth cost of
SAVE, which varies with topology. Over those sin-
gle-domain topologies in Fig. 11, the maximum per-
link bandwidth cost varies from 3.2 to 6.9 kbytes/s.

We also compared SAVE bandwidth in multiple-
domain topologies with BGP and RIP combined.
Because BGP does not initiate periodic routing
updates, we compared the bandwidth without peri-
odic transmission of SAVE updates and RIP
updates. The result is shown in Fig. 14. In the worst
case measured, SAVE uses less than 60% of the
bandwidth of BGP and RIP combined. The maxi-
mum per-link bandwidth cost here varies from 0.6

to 6.4 kbytes/s over the topologies we used in
Fig. 12.

To measure the triggered cost, we introduced
random link failures, then compared the bandwidth
cost of triggered SAVE updates with that of trig-
gered routing updates; here, the routing protocols
are BGP and RIP combined in multiple-domain
topologies. The comparison over a specific simu-
lated topology with a total of 90 routers and 97 links
is shown in Fig. 15. Depending on the topology and
the number and location of failed links, the cost var-
ies for both SAVE and routing protocols. In most
cases, however, SAVE has lower triggered band-
width cost than routing protocols. Topology
changes often start a chain reaction of triggered
routing updates; by contrast, not all of these
changes lead to forwarding table changes. Thus
SAVE updates are not always triggered and less
bandwidth is consumed.

Finally, the bandwidth cost incurred by routing
protocols is already quite small compared to data
traffic over the Internet. For instance, in our simula-
tion, SAVE’s bandwidth cost per link for a 92-rou-
ter topology is around 120 bytes/s per link, whereas
many real routers are capable of handling traffic in a
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much greater magnitude of 10 Gbps or even
100 Tbps. Incurring a bandwidth cost of the same
or less magnitude than routing protocols, SAVE
only introduces a small amount of traffic into the
Internet. SAVE’s benefits should outweigh this cost.

9. Open issues

9.1. Securing the SAVE protocol

The SAVE protocol builds incoming tables
usable for a variety of purposes, including providing
security to the network. Special care must be taken
to secure the SAVE protocol against malicious
attempts to compromise, misuse or disable the pro-
tocol. The SAVE update exchange process between
routers must be protected.

Securing the SAVE protocol shares some similar-
ities with securing a routing protocol. Just as rout-
ing updates must be protected to allow correct
routing protocol operation, SAVE updates must
be protected to allow correct SAVE operation. We
believe that existing and upcoming approaches to
securing routing protocols can be leveraged to
secure SAVE updates.

Given the above discussion, we suggest that:

• SAVE updates should be exchanged only
between routers, excluding regular hosts. Thus,
in order to mount an attack via SAVE updates,
the attacker would need to compromise some
router.

• Routers should establish trust relationships prior
to exchanging SAVE updates.

• Each SAVE update should be signed (or
encrypted) to guarantee its integrity. Replay of
SAVE updates must also be prevented, using
standard cryptographic methods.

• The processing (including the authentication) of
SAVE updates should be lightweight to prevent
a DoS attack on the SAVE router. If a SAVE
router only communicates with trusted neighbors
and can do so in a lightweight fashion, DoS
attacks will have fewer chances to succeed.

The SAVE protocol also has a correctness issue
similar to that of routing protocols—a compro-
mised router, if undetected, can severely damage
the proper functioning of the network by sending
bogus SAVE updates. Some simple intrusion detec-
tion implemented in routers would help to counter
this problem.

A compromised or improperly configured router
may also allow some spoofing packets to get
through. If a SAVE router’s egress filtering is dis-
abled, for instance, attackers residing within that
router’s local network would be able to spoof the
addresses of networks upstream from that router.
Note that these attackers would still not be able to
send spoofed packets with any source and any des-
tination, but only packets with those source/desti-
nation pairs for which their router is along the path.

9.2. Incremental deployment

To be of any practical use, SAVE must provide
substantial value even when it is only incrementally
deployed. SAVE must ensure that incoming tables
can still be properly established and maintained in
the presence of legacy routers, which do not run
SAVE. Also, SAVE must handle data packets that
carry source addresses from a legacy router’s
address space.

With incremental deployment, those packets
which carry source addresses that cannot be found
in a router’s incoming table can be flagged by the
router, rather than immediately dropped. This flag
can tell a higher layer (such as transport or applica-
tion layer) that special handling is needed. One pos-
sibility would be to deliver copies of such packets to
an intrusion detection system near the target
address.

If a region’s routers deploy SAVE, one immedi-
ate advantage gained is that the address space of
this region will be recorded in other SAVE routers’
incoming tables, making the space unlikely to be
chosen for spoofed source addresses. Recall that
one typical DoS attack is to put the victim’s address
in the source address of TCP SYN packets, causing
the victim to be flooded by SYN-ACK packets.
Deploying SAVE routers protects the local address
space from this attack.

Researchers at Purdue have evaluated incremen-
tal deployment of route-based distributed packet fil-
tering (DPF) and suggested a deployment strategy
that decreases the number of spoofable addresses
while minimizing the percentage of routers perform-
ing the filtering [20]. Since route-based DPF is
indeed incoming-table-based filtering, this research
is complementary with the SAVE protocol and
directly applicable to many aspects of SAVE’s
deployment. It suggests that using incoming tables
created by SAVE for source address validation will
work well even if only a small percentage of routers
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run incoming-table-based filtering. It also indicates
that incoming tables built with incremental SAVE
deployment can be useful for traceback.

Incremental deployment of SAVE is complex and
still has open issues. We are currently in the process
of enhancing SAVE for incremental deployment
[43].

10. Conclusion

Up to this point packet delivery over the Internet
has been solely based on destination-address-direc-
ted forwarding. Attackers have exploited this to
forge source addresses in their malicious packets
to disguise their identities. Yet, without the knowl-
edge of what direction a packet should arrive from,
routers cannot filter out such attack packets. Asym-
metric network routing, which became common
over the years, also makes it difficult for routers to
obtain such incoming direction knowledge.

Today’s Internet requires correct, reliable, and
secure incoming direction knowledge at all routers
that need it. The SAVE protocol is the first practical
step in making it possible to learn the valid incom-
ing direction of IP packets.

The incoming tree mechanism of SAVE allows
every SAVE router to learn the valid incoming
direction of every packet, and more importantly,
to react to routing changes with a low cost and in
a timely manner! Furthermore, except for certain
optional optimizations, SAVE operates by assum-
ing no specifics of routing protocols; every SAVE
router only needs to consult its forwarding table.
We have demonstrated that the protocol produces
correct incoming tables with reasonable costs, com-
parable to or less than the costs of creating forward-
ing tables.

We believe that the benefits of incoming direction
knowledge justifies the cost of running SAVE. If for
no other reason, incoming tables are already of clear
value in handling the prevalent use of forged IP
source addresses on attack packets. Both manual
and automated responses to network attacks will
be easier as the defenders will have confidence
whether every packet bears a correct address, or at
least an address on the same network as the attack-
ing machine.

As we continue to improve the protocol and
investigate its utility, we believe that the incoming
knowledge made available by SAVE will be equally
useful for many other purposes. Network problem
diagnosis, IP multicast routing protocols, and vari-

ous source-address-based services will all benefit
from SAVE.

References

[1] J. Li, J. Mirkovic, M. Wang, P.L. Reiher, L. Zhang, SAVE:
Source address validity enforcement protocol, in: Proceed-
ings of IEEE INFOCOM, New York, 2002, pp. 1557–1566.

[2] Computer Emergency Response Team, CERT advisory CA-
2000-01 denial-of-service developments, http://www.cer-
t.org/advisories/CA-2000-01.html (January 2000).

[3] C.L. Schuba, I.V. Krsul, M.G. Kuhn, E.H. Spafford, A.
Sundaram, D. Zamboni, Analysis of a denial of service
attack on TCP, in: Proceedings of the 1997 IEEE Sympo-
sium on Security and Privacy, 1997, pp. 208–223.

[4] Computer Emergency Response Team, CERT advisory CA-
1998-01 smurf IP denial-of-service attacks, http://www.cer-
t.org/advisories/CA-1998-01.html (January 1998).

[5] V. Paxson, An analysis of using reflectors for distributed
denial-of-service attacks, ACM Computer Communications
Review (CCR) 31 (3) (2001) 38–47.

[6] S.M. Bellovin, ICMP traceback messages, work-in-progress
Internet Draft: draft-bellovin-itrace-00.txt, March 2000.

[7] S. Savage, D. Wetherall, A.R. Karlin, T. Anderson, Network
support for IP traceback, IEEE/ACM Transactions on
Networking 9 (3) (2001) 226–237.

[8] A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E. Jones, F.
Tchakountio, B. Schwartz, S.T. Kent, W.T. Strayer, Single-
packet IP traceback, IEEE/ACM Transactions on Network-
ing 10 (6) (2002) 721–734.

[9] R. Stone, CenterTrack: An IP overlay network for tracking
DoS floods, in: Proceedings of the USENIX Security
Symposium, 2000.

[10] A. Yaar, A. Perrig, D. Song, Pi: A path identification
mechanism to defend against DDoS attack, in: Proceedings
of the IEEE Symposium on Security and Privacy, 2003, pp.
93–107.

[11] A. Yaar, A. Perrig, D. Song, StackPi: New packet marking
and filtering mechanisms for DDoS and IP spoofing defense,
IEEE Journal of Selected Areas in Communications 24 (10)
(2006) 1853–1863.

[12] F. Baker, Requirements for IP Version 4 routers, RFC 1812
(1995). http://www.ietf.org/rfc/rfc1812.txt.

[13] V. Paxson, End-to-end routing behavior in the Internet, in:
Proceedings of the ACM SIGCOMM, 1996.

[14] P. Ferguson, D. Senie, Network ingress filtering: defeating
denial of service attacks which employ IP source address
spoofing, RFC 2827 (2000). http://www.ietf.org/rfc/
rfc2827.txt.

[15] T. Killalea, Recommended Internet service provider security
services and procedures, RFC 3013 (2000). http://www.ietf.
org/rfc/rfc3013.txt.

[16] S. Kent, R. Atkinson, Security architecture for the Internet
Protocol, RFC 2401, obsoleted by RFC 4301, updated by
RFC 3168 (1998). http://www.ietf.org/rfc/rfc2401.txt.

[17] A. Bremler-Barr, H. Levy, Spoofing prevention method, in:
Proceedings of the IEEE INFOCOM, 2005.

[18] C. Jin, H. Wang, K.G. Shin, Hop-count filtering: An
effective defense against spoofed DDoS traffic, in: Proceed-
ings of the Conference on Computer and Communications
Security, 2003, pp. 30–41.

J. Li et al. / Computer Networks 52 (2008) 399–417 415



Author's personal copy

[19] S.J. Templeton, K.E. Levitt, Detecting spoofed packets, in:
Proceedings of the DARPA Information Survivability Con-
ference and Exposition, vol. 1. 2003, pp. 164–175.

[20] K. Park, H. Lee, On the effectiveness of route-based packet
filtering for distributed DoS attack prevention in power-law
Internets, in: Proceedings of the ACM SIGCOMM, 2001,
pp. 15–26.

[21] Y.K. Dalal, R.M. Metcalfe, Reverse path forwarding of
broadcast packets, Communications of the ACM 21 (12)
(1978) 1040–1048.

[22] S.E. Deering, D.R. Cheriton, Multicast routing in datagram
internetworks and extended LANs, ACM Transactions on
Computer Systems 8 (2) (1990) 85–110.

[23] T. Ballardie, P. Francis, J. Crowcroft, Core based trees
(CBT): an architecture for scalable inter-domain multicast
routing, in: Proceedings of the SIGCOMM, 1993.

[24] S. Deering, D.L. Estrin, D. Farinacci, V. Jacobson, C.-G.
Liu, L. Wei, The PIM architecture for wide-area multicast
routing, IEEE/ACM Transactions on Networking 4 (2)
(1996) 153–162.

[25] F. Baker, P. Savola, Ingress filtering for multihomed
networks, RFC 3704 (2004). http://www.ietf.org/rfc/
rfc3704.txt.

[26] Z. Duan, X. Yuan, J. Chandrashekar, Constructing inter-
domain packet filters to control IP spoofing based on
BGPupdates, in: IEEE Infocom, 2006.

[27] H. Lee, M. Kwon, G. Hasker, A. Perrig, BASE: An
incrementally deployable mechanism for viable IP spoofing
prevention, in: Proceedings of the ACM Symposium on
Information, Computer, and Communication Security, 2007.

[28] S. Kent, K. Seo, Security architecture for the Internet
protocol, RFC 4301 (2005). http://www.ietf.org/rfc/
rfc4301.txt.

[29] H. Burch, W. Cheswick, Tracing anonymous packets to their
approximate source, in: Proceedings of the USENIX LISA,
2000.

[30] M. Ma, Tabu marking scheme for IP traceback, in:
Proceedings of the IPDPS, 2005.

[31] D. Dean, M.K. Franklin, A. Stubblefield, An algebraic
approach to IP traceback, ACM Transactions on Informa-
tion and System Security 5 (2) (2002) 119–137.

[32] M. Adler, Trade-offs in probabilistic packet marking for IP
traceback, Journal of the ACM 52 (2) (2005) 217–244.

[33] M.T. Goodrich, Efficient packet marking for large-scale IP
traceback, in: Proceedings of the Conference on Computer
and Communications Security, 2002, pp. 117–126.

[34] A. Yaar, A. Perrig, D. Song, FIT: Fast Internet traceback,
in: Proceedings of the IEEE INFOCOM, 2005.

[35] K. Park, H. Lee, On the effectiveness of probabilistic packet
marking for IP traceback under denial of service attack, in:
Proceedings of the IEEE INFOCOM, 2001.

[36] J. Moy, OSPF Version 2, RFC 2328 (Standard) (1998).
http://www.ietf.org/rfc/rfc2328.txt.

[37] C. Perkins, IP mobility support for IPv4, RFC 3344 (2002).
http://www.ietf.org/rfc/rfc3344.txt.

[38] G. Montenegro, Reverse Tunneling for Mobile IP, RFC
2344, obsoleted by RFC 3024 (1998). http://www.ietf.org/
rfc/rfc2344.txt.

[39] D. Johnson, C. Perkins, J. Arkko, Mobility support in IPv6,
RFC 3775 (2004). http://www.ietf.org/rfc/rfc3775.txt.

[40] E.W. Zegura, K.L. Calvert, S. Bhattacharjee, How to model
an internetwork, in: Proceedings of the IEEE INFOCOM,
1996, pp. 594–602.

[41] Y. Rekhter, T. Li, A Border Gateway Protocol 4 (BGP-4),
RFC 1771 (Draft Standard), obsoleted by RFC 4271 (1995),
http://www.ietf.org/rfc/rfc1771.txt.

[42] G. Malkin, RIP Version 2, RFC 2453 (Standard) (1998),
http://www.ietf.org/rfc/rfc2453.txt.

[43] T. Ehrenkranz, J. Li, An incrementally deployable protocol
for learning the valid incoming direction of IP packets,
Technical Report CIS-TR-2007-05, University of Oregon,
March 2007.

Jun Li is an assistant professor at the
University of Oregon, and directs the
Network Security Research Laboratory
there. He received his Ph.D. from UCLA
in 2002 (with honors), M.E. from Chi-
nese Academy of Sciences in 1995 (with
Presidential Scholarship), and B.S. from
Peking University in 1992, all in com-
puter science. His current research
includes Internet worm detection, BGP
routing, IP source address validity, and

security for peer-to-peer systems. He is a 2007 recipient of the
prestigious NSF CAREER award.

Jelena Mirkovic is a computer scientist at
the USC Information Sciences Institute,
which she joined in 2007. Prior to this
she was an assistant professor at the
University of Delaware, 2003–2007. She
received her M.S. and Ph.D. from
UCLA, where she worked on several
network security problems as a member
of LASR group, lead by Prof. Peter
Reiher. She received her B.S. in Com-
puter Science and Engineering from the

School of Electrical Engineering, University of Belgrade, Serbia.
Her current research is focused on several important network
security problems: computer worms and viruses, denial-of-service
attacks, and IP spoofing.

Toby Ehrenkranz: An Oregon native, he
received his B.S. in Mathematics and
Computer Science from the University of
Oregon in 2002. After teaching kinder-
garten in Chengdu, China for two years,
he returned to the University of Oregon
where he is currently working towards
his Ph.D. His research is focused on
worms and IP source address validity.

416 J. Li et al. / Computer Networks 52 (2008) 399–417



Author's personal copy

Peter Reiher received his B.S. in Elec-
trical Engineering and Computer Sci-
ence from the University of Notre
Dame in 1979. He received his M.S. and
Ph.D. in Computer Science from UCLA
in 1984 and 1987, respectively. He has
done research in the fields of distributed
operating systems, security for networks
and distributed computing, file systems,
optimistic parallel discrete event simu-
lation, ubiquitous computing, naming

issues in distributed systems, active networks, and systems
software for mobile computing. Dr. Reiher is an Adjunct
Associate Professor in the Computer Science Department at
UCLA.

Lixia Zhang received her Ph.D. in com-
puter science from the Massachusetts
Institute of Technology. She was a
member of the research staff at the Xerox
Palo Alto Research Center before join-
ing the faculty of UCLA’s Computer
Science Department in 1996. In the past
she has served as the vice chair of ACM
SIGCOMM, Co-Chair of IEEE ComSoc
Internet Technical Committee, and on
the editorial board for the IEEE/ACM

Transactions on Networking. She is now a member of the
Internet Architecture Board, and co-chairs IRTF Routing
Research Group. Her research interests includes security and
dynamics in large scale systems.

J. Li et al. / Computer Networks 52 (2008) 399–417 417


