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Abstract 
 
The notions of the critical path of events  and critical 
time of an event are key concepts in analyzing the 
performance of a parallel discrete event simulation.  The 
highest critical time of any event in a simulation is a lower 
bound on the time it takes to execute a simulation using 
any conservative simulation mechanism, and is also a 
lower bound on the time taken by some optimistic 
methods.  However, at least one optimistic mechanismis 
able to beat the critical path bound in a nontrivial way.   
 
In this paper we make a systematic study of the meaning 
of the critical path in parallel simulation, and describe 
criteria that determine when a simulation is bounded by its 
length and when it is not.  We show (again) that no 
conservative mechanism can beat the critical path, but that 
at least four known optimistic mechanisms are all capable 
of supercritical speedup.    We give performance data for 
the JPL Time Warp Operating System showing two 
specially constructed applications using different methods 
to beat the critical path. 
 
 
1 Introduction 
 
The notion of the critical path of a parallel discrete event 
simulation has long been used as a standard of  against 
which parallel simulation mechanisms have been com-
pared.  The length of the critical path in a simulation, 
calculated from the real time it takes to exe cute each event 
on a particular architecture and from the precedences 
induced among the events by causal dependencies, is a 
lower bound on the time it takes to execute a simulation 
using any conservative simulation mechanism on that 
architecture, and is also a lower bound on the time taken 
by some optimistic methods.  It is well-known that at least 
one optimistic mechanism (Time Warp with lazy 
cancellation) is able to beat the critical path bound in a 
nontrivial way.  Until recently this observation has not 
been studied in detail, and has been treated as something 
of a performance curiosity.   
 
In this paper we make a systematic study of the meaning 
of the critical path in parallel simulation, and describe 
criteria that determine when a simulation mechanism is 

bounded by its length and when it is not.  We show 
(again) that no conservative mechanism can beat the 
critical path bound, but we also show that at least four 
known optimistic mechanisms, Time Warp with lazy 
cancellation, Time Warp with lazy rollback, Time Warp 
with phase decomposition, and the Chandy-Sherman 
space-time family of mechanisms, all can do so.  As a 
result, we say that those mechanisms are capable of super-
critical speedup.   
 
Supercritical speedup is, for now at least, of more 
theoretical than practical interest.  We do not know of any 
cases where a realistic simulation of some useful model 
has ben shown to achieve a beginning-to-end supercritical 
speedup in practice.  However, if an implementation 
contains one or more supercritical mechanisms, super-
critical speedup should occasionally be realized for short 
periods during realistic simulations.  We should thus 
expect that supercritical mechanisms might have an overall 
positive effect on a simulation’s performance if their 
overhead is not too high. 
 
Two of the supercritical mechanisms we discuss, lazy 
cancellation and phase decomposition, are both imple-
mented in the JPL Time Warp Operating System (TWOS).  
In the last section of this paper we give performance data 
from two specially-constructed simulations to show that 
the critical path can be beaten in practice, at least for 
artificially constructed simulation models.   
 
 
2 Critical Times and the Critical Path 
 
The notion of the critical time  of an event and the critical 
path of a simulation can be defined for any discrete event 
simulation that is statically decomposed into parallel 
processes that communicate by event message.  For 
simplicity we will consider a rather well-structured model 
of parallel simulation, with several semantically 
troublesome cases excluded, though none of these 
exclusions have any affect on the conclusions of this 
paper. 
 
Consider a simulation S decomposed into processes P1 ... 
Pn, where  each process Pi is in turn decomposed into 



  

m(i) events which, when ordered by increasing simulation 
time, we denote by ei,1 ... ei,m(i).  For any event e we 
denote by V(e) the virtual time (simulation time) at which e 
occurs.  In our model of simulation an event occupies only 
a single instant of virtual time, although of course it takes 
a nonzero interval of real time to execute. 
 
The execution of a simulation induces four causality 
relations on its events: 
 

Event e is the (immediate) predecessor of e’, (or 
e’ is the successor of e) if  e and e’ are in the same 
process P,  and V(e) < V(e’), and there are no 
events e’’ in P such that V(e) < V(e’’) < V(e’).  
The predecessor of an event e (when defined) 
will be denoted pred(e). 
 
Event e is the antecedent of e’ if e schedules e’, 
i.e. if e posts the event notice for e’, or (in 
distributed terminology) if e sends the event 
message that schedules e’.  The antecedent of an 
event e (when defined) will be denoted ante(e). 
 

Notice that e can be the antecedent of e’ whether or not 
they are in the same process.  For simplicity we assume 
that if e is  the antecedent of e’, then V(e) < V(e’), thereby 
excluding the case of “zero-delay” messages where V(e) = 
V(e’).  We also assume that no event has more than one 
antecedent, i.e. that no two events are ever scheduled for 
the same virtual time at the same process.   
 

We define e <- e’ (e leads to e’ ) if either e is the 
predecessor of e’ or e is the antecedent of e’.   
 

Both the ante(e) and the predecessor of pred(e) are 
immediate causal ancestors of e, with a semantically 
symmetric relationship to e; but since in current 
technology there are different performance issues 
involved (e.g. the presence or absence of message com-
munication delay, and the notion of same or different 
“process”) we will observe the somewhat artificial 
distinction here.  When the distinction is not relevant, we 
will use e <- e’ 
 
Finally we let the <- relation induce a partial ordering << 
on the set of events in the simulation.   

 
We define e<<e’  (e influences e’) if there exists a 
sequence of events e=e0, e1, e2, ..., en=e’ such 
that ei <- ei+1 for all 0 <= i < n.  (Since 0 < n we 
are excluding e<<e.) 

 
These relations can be summarized in Figure 1, where the 
events of a simulation are shown in a spacetime diagram.   
Event e11 is the predecessor of e12, and e12 is the 

predecessor of e13, etc.  Event e11 is the antecedent of 
e21, which in turn is the antecedent of e33.  Event e31 is 
both the predecessor and antecedent of e32.  And any two 
distinct events e and e’ have the property e<<e’ if there is 
a path from e to e’ in the diagram that proceeds only 
upward, and never downward.  Hence e11<<e33, and 
e31<<e13. 
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Figure 1: Precedence relations among events in the 
spacetime diagram of a simulation.  Vertical arcs 
represent predecessor relationships; other arcs 
represent antecedent relationships. 
 
 
Some events (e11, e21, and e31) have no predecessors; we 
will call such events initial.  Some initial events have no 
antecedents, e.g. e11, and we call them start events.  
Nonstart events have exactly one antecedent, but an 
event may be the antecedent of any number of events, 
including zero.   
 
The spacetime diagram of a simulation such as that of 
Figure 1 expresses apparent (but not always actual) 
precedence constraints on the order of event execution by 
showing the paths of (potential) information flow among 
events in the simulation.  Any correct simulation 
mechanism must execute the simula-tion in such a way 
that it appears that the events were executed in a real time 
order consistent with these constraints; it must appear 
that if e<<e’, then e finished execution before e’ started.  
Of course, it is not actually necessary to obey those 
precedence relations strictly; it is only necessary that the 
output of the execution be as if it were executed that way. 
 
Let us associate with each event e the amount of real time 
T(e) > 0 that it takes to execute e sequentially.  We will call 
T the timing function.  We assume that events are atomic, 



  

with no internal sequentiality, parallelism, synchronization, 
etc.  Once started, an event e proceeds to completion 
without any delays, interrupts, context switches, rollbacks, 
etc., always taking exactly T(e) seconds.  The assump tion 
that events have no internal sequential structure implies 
that all messages sent by an event to schedule other 
events must be considered to be sent in the last instant of 
execution of that event, excluding the possibility that an 
event sends several messages, one at a time, at different 
points during its execution.  Although most real parallel 
simulation mechanisms permit event messages to be sent 
sequentially during the execution of an event, properly 
modeling this feature would force us to consider an 
“event” to be a sequence of “microevents” each of which 
is either the start of the event, the sending of an event 
message, or the completion of the event.  This would 
merely complicate our analysis without changing our 
results.   
 
Once the simulation, the simulation method, and the timing 
function have been fixed, we can define start(e) as the mo -
ment at which the exe cution of event e begins, and 
complete(e) = start(e) + T(e) as the moment at which the 
last instruction of e is finished and commit(e) as the 
moment at which the execution of e is committed, i.e. the 
moment at which the result of e is considered irreversible, 
and all options for undoing any of its side-effects are 
relinquished.  We now define the critical time  for each 
event e recursively as 
 

crit(e) = max(crit(ante(e)), crit(pred(e))) + T(e), 
 
where if ante(e) is not defined, then the term crit(ante(e)) is 
defined to be zero, and if pred(e) is not defined, then the 
term crit(pred(e)) is defined to be zero.  Because they 
involve real time measurements, both T(e) and crit(e) are 
machine-dependent.  
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Figure 2: Simulation’s computation times. 
For a given simulation S and timing function T, there will a 
set of events, called final events, whose critical times are 
maximal.  Critical paths through the simulation (not 
necessarily unique) are sequences of events from start 
events to terminal events defined most easily in reverse 
chronological order as follows: 

 
1) All final events are on a critical path 
 
2) If e is on a critical path, and crit(ante(e)) >= 

crit(pred(e)), then ante(e), if it exists, is 
on a critical path. 

 
3) If e is on a critical path, and crit(pred(e)) >= 

crit(ante(e)), then pred(e), if it exists, is 
on a critical path.  

 
As an example, Figure 2 shows a simulation whose events 
are annotated with the timing function T(e) that it takes to 
execute events.  In Figure 3, we show the same simulation 
annotated with the critical times for each event, and 
display the critical path of the simulation (unique in this 
case) in bold.  The event with the maximal critical time of 
140 is  the final event. 
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Figure 3: Critical times and critical path for the example 

simulation of Figure 2. 
3 Conservative and Optimistic Mechanisms  
 
A parallel simulation method is called conservative if it 
never uses any form of event undoing, abortion, or roll-
back.  Once an event e starts executing, it executes directly 
to completion in T(e) seconds, and is never undone or re-
executed.  An optimistic mechanism, by contrast, is one 
that is not conservative, i.e. it does use event rollback in at 
least some circumstances.  Some events may be executed, 
and then rolled back, with their side-effects completely 
nullified.  An optimistic mechanism can be thought of as 
tentatively executing an event and then deciding later 
whether to commit it, or undo it (roll it back).  If an event 
execution ends up being committed, we will refer to it as a 
real,  or committed event; if it is eventually rolled back we 
will refer to it as a pseudo-event.  Hence, conservative 
mechanisms execute only real events, while optimistic 
mechanisms are characterized by the possibility of 
pseudo-events.  Of course, all correct simulation 
mechanisms executing a particular simulation S decom-
posed into processes in a particular way will produce the 
same trace of committed events connected by the same 
antecedent, predecessor, <- and << relationships.  But two 
optimistic mechanisms executing S (or the same one exe -
cuting S twice) may differ on the set of pseudo-events.  
The relationships of antecedent, predecessor, <- and <<, 
and also the notions of critical time and critical path, will 

be interpreted as applying only to committed events; they 
do not apply to pseudoevents. 
 
Even after completion of event e, an optimistic mechanism 
may retain the option to undo its side-effects until it can 
be ascertained that effects of all influencing events have 
been included.  At some point that option is relinquished, 
and that moment is, by definition, the mo ment of 
commitment.  Hence, for optimistic methods there is a 
distinction between the times of completion and 
commitment, and the relationship between them is start(e) 
< start(e) + T(e) = complete(e) <= commit(e), for all events 
e.   
We define elementary scheduling to be any event 
scheduling mechanism such that for all committed events 
e and e’, whenever e <- e’, then complete(e) <= start(e’).  
Thus, an elementary scheduling mechanism enforces the 
principle that no committed event can start exe cution 
before its antecedent and predecessor committed events 
(if any) are completed.  Notice that the definition of 
elementary scheduling says nothing about pseudoevents. 
 
Theorem 1: For any simulation executed with elementary 
scheduling, crit(e) <= complete(e), for all committed events 
e.   
 
Proof. By induction over committed events, using the <- 
relation.  If e is a start event, then crit(e) = complete(e) 
trivially.  If e is not a start event, then we will assume it has 
both an antecedent and a predecessor, i.e. there are two 
distinct committed events e’ and e’’ such that e’ <- e and 
e’’ <- e.  (The case where there is only an antecedent can 
be handled similarly.)  By definition 

 
crit(e) = max(crit(e’), crit(e’’)) + T(e), 
  = max(crit(e’)+T(e), crit(e’’)+T(e)) 

 
By the induction hypothesis crit(e’) <= complete(e’) and 
crit(e’’) <= complete(e’’), so  

 
crit(e) <= max(complete(e’)+T(e), complete(e’’)+T(e)) 
 

Since e’<-e and e’’<-e, we know by the hypothesis of 
elementary scheduling that complete(e’) <= start(e) and 
complete(e’’) <= start(e).  Hence, 
 

crit(e) <= max(start(e) +T(e), start(e) + T(e))  
              = start(e) + T(e) = complete(e). 

end proof 
 
Hence, we can conclude that no committed event can ever 
complete before its critical time unless the scheduling 
mechanism is nonelementary.  If the arcs in the spacetime 
diagram are viewed as precedence constraints for 
purposes of event scheduling, then a simulation 
mechanism that can achieve supercritical speedup must 
violate at least one precedence constraint: there must exist 



  

two committed events e <- e’ on the critical path that are 
scheduled in such a way that start(e’) < complete(e).   
 
Theorem 2: All conservative mechanisms are bound by 
the critical times of events, i.e. with a conservative 
mechanism, for all simulations S and all events e in S, 
crit(e) <= complete(e).  
 
Proof: We show that all correct conservative simulation 
mechanisms must use elementary scheduling.  Suppose a 
correct simulation mechanism does not use elementary 
scheduling, and that e and e’ are two committed events in 
S such that e < e’, with complete(e) > start(e’).  We will 
show that any conservative mechanism might execute the 
simulation incorrectly. 
 
Either e is the predecessor or the antecedent of e’.  If e is 
the predecessor of e’, then the last instruction of e might 
create a side-effect that affects the process state for event 
e’.  If e’ is started before e finishes, then it cannot execute 
in the context of the exact state produced by e; the last 
instruction of e might produce a state change upon which 
e’  depends.  Hence e’ might execute incorrectly.   
 
Likewise, if e is the antecedent of e’, then any mechanism 
that would start to exe cute e’ before finishing e must in 
effect be “guessing” that e’ will be scheduled at the end of 
event e, and also “guessing” what the parameters from e 
to e’ would be.   (Recall our assumption that e can only 
send the event message to schedule e’ at the very end of 
e’s exe cution.)  Since those guesses might be wrong, the 
simulation might be incorrect. 
End proof 
 
 
4 Supercritical Simulation Mechanisms  
 
In the following analysis we will take Time Warp with 
aggressive cancellation and the Cancelback Protocol as 
our “standard” Time Warp mechanism denoted by TW.  
Other Time Warp mechanisms will be considered as 
variations on TW. 
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From Theorem 2 we know that any simulation mechanism 
that is able to achieve supercritical speedup must be 
optimistic.  But the converse is not true; not all optimistic 
mechanisms can be supercritical.  For example, in our 
standard Time Warp, TW, if we extend our notation 
momentarily to apply to pseudoevents, we can see that for 
any pair of (pseudo)events e <- e’, if event e is rolled back, 
then e’ is also rolled back.  Hence, if we confine our atten-
tion only to committed event executions, ignoring pseudo-
event executions, we can see that for any pair e <- e’, even 
though TW may execute e and/or e’ more than once it 
always completes e for the last time (the committed 
execution) before starting e’ for the last time.    Hence, 
TW’s scheduling is  elementary; even though it is 
optimistic, it cannot achieve supercritical speedup. 
 
In this section we present the main theoretical results of 
our paper: that four known optimistic mechanisms, Time 
Warp with lazy cancellation (TWlazy-can), Time Warp 
with lazy rollback (TWlazy-roll), Time Warp with phase 
decomposition (TWphase), and the Chandy-Sherman 
space-time family of mechanisms (SpaceTime) are all 
capable of supercritical speedup.  Three of these 
mechanisms are Time Warp variants, and are not mutually 
exclusive; in principle all three variations can be combined 
into a single Time Warp variant that could be supercritical 
more often than any of the individual variants.  Of these 
results, only the one for TWlazy-can  
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
has been specifically noted.  The fact that the possibility 
of supercritical speedup is so common among optimistic 
mechanisms suggests that there may be a deeper signifi-
cance to optimism than has heretofore been understood. 
 
For a simulation mechanism to produce supercritical 
speedup it is essential that there be at least one occasion 
when there are two committed events e and e’ such that 
e<-e’ and complete(e) > start(e’).  We begin our 
discussion of supercritical mechanisms by examining 
Figures 4a and 4b, which show two stages in an optimistic 
execution of a fragment of the critical path of a simulation 
involving two processes P1 and P2.  Figure 4a shows the 
apparent relationship among events as it has been 
computed up to a certain mo ment in real time by an 
optimistic mechanism.  Events A and C are apparently 
successive events in process P1, with C scheduling event 
D in process P2.  At the moment shown in this snapshot 
event A and pseudoevents C and D have all executed, and 
the processes P1 and P2 have proceeded ahead to higher 
simulation times. 
 
Figure 4b shows the spacetime diagram describing the true 
behavior of the same simulation as reached by the 
optimistic execution some time later.  All events, states, 
and messages in Figure 4b are committed.  The differences 
between Fig. 4a and 4b all derive from the fact that  mes-
sage m1’ requesting event B’ has (finally) arrived at 
process P1 at a simulation time between that of A and C.  
The state s1 that had been input to C has now been used 
by event B’, producing a new state s2’;  event C, which 
had s1 as input to it, now has s2’ as input, and since that 
presumably makes a difference, C has been relabeled as C’.  
The message m2 that C sent to schedule event D may 

have been affected as well, so m2 and D have been 
relabeled m2’ and D’ to indicate the possible difference.  
At the moment shown in the snapshot in Fig. 4b we 
assume that events A, B’, C’, and D’ have all completed 
and have been committed, and processes P1 and P2 have 
executed ahead to higher simulation times, never to return 
to revise this portion of the computation again.   
 
As mentioned before, for a simulation mechanism to 
produce supercritical speedup it is essential that there be 
at least one situation in which there are two committed 
events e and e’ on the critical path such that e<-e’ and 
complete(e) > start(e’).  Let us now suppose that in Figure 
4b, events A, B’, C’, and D’ are all along a critical path, 
and examine some of the known optimistic execution 
mechanisms in such cases. 
 
4.1 Time Warp With Lazy Cancellation 
 
Let us denote by TWlazy-can

 our standard Time Warp 
mechanism TW but with lazy cancellation substituted for 
aggressive cancellation.  The fact that TWlazy-can can 
achieve supercritical speedup was first reported in [1] and 
studied further in [2], [3], [4], [5], and [6].  For complete-
ness we repeat that result here with a different proof. 
 
 

Figure 5b

A

B'

C

P1

s1

s2'

s3'

m1'

Figure 5a

A

B

C

P1

s1

s2

s3

m1

 
Suppose in Figs. 4a and 4b that m2 = m2’, so that event C 
operating from state s1 sends exactly the same message to 
process P2 that C’ does from state s2’.  Then under 
TWlazy-can the following sequence of events might occur 
to take the simu lation from the situation in Fig. 4a to that 
of Fig 4b. 
 
1. Message m1’ arrives, causing process P1 to roll 

back to state s1. 
 



  

2. Event B’ executes, producing state s2’. 
 
3. Event C’ executes, producing  output message 

m2’. 
 
4. The lazy cancellation mechanism notes that m2’ = 

m2, and suppresses its transmission to P2.  As a 
result, event D’, which is the same as D, is not re-
executed, and has a completion time before the 
start of C’. 

 
As a result of this analysis we have identified two critical 
path events C’<-D’, such that 
start(D’) < complete(D’) < start(C’) < complete(C’). 
 
4.2 Time Warp With Lazy Rollback 
 
Let us denote by TWlazy-roll

 our standard Time Warp 
mechanism with the lazy rollback mechanism added.  
TWlazy-roll does not necessarily include lazy cancel-
lation; the two are independent mechanisms.  Lazy 
rollback (also called lazy reevaluation and jump forward) 
was first described, implemented and studied by Darrin 
West in [7].  It is perhaps most easily described as the 
state-message dual of lazy cancellation, i.e. it does for 
states what lazy cancellation does for messages. 
 
Figures Figs. 5a and 5b represent two snapshots of an 
optimistic execution similar to those in Figs. 4a and 4b.  In 
Fig. 5a the computation has executed to the situation 
shown, but in Fig 5b a rollback has caused message m1 to 
be cancelled and replaced with m1’, causing event B to be 
rolled back and re-executed as B’.   
 
Assume that events A, B’, and C are all on the critical path 
of the simulation, that the virtual time of B’ is the same as 
the of B, and that s2 = s2’.  Then under TWlazy-roll the 
following sequence of events might occur to take the 
simulation from the situation in Fig. 5a to that of Fig 5b. 
 
1. Message m1’ arrives, causing process P1 to 

rollback to state s1. 
 
2. Event B’ executes, producing state s2’. 
 
3. The lazy rollback mechanism notices that s2’ = 

s2, and suppresses the re-execution of C, which 
was already correctly executed.   

 
As a result of this analysis we can see that committed 
event C is completed before committed event B’, and we 
have identified two critical path events B’<-C, such that 
start(C) < complete(C) < start(B’) < complete(B’). 
 
 
 

4.3 Time Warp With Phase Decomposition 
 
Let us denote by TWphase

 our standard Time Warp 
mechanism with the addition of phase decomposition (but 
without either lazy cancellation or lazy rollback, though it 
is compatible with both).  Time Warp with phase 
decomposition was first described in [8], and is a rather 
dramatic departure from other Time Warp mechanisms.  
Previously the fundamental unit into which simu lations 
were decomposed was the process (or object).  But with 
this mechanism a process can be further decomposed 
temporally into phases, where a phase is the execution of a 
process during an interval of simulation time.  For example, 
a process P, might be decomposed into phases P[0..100), 
P[100..500), and P[500..8 ).  The three phases might reside 
on different processors, and can even exe cute in parallel in 
some circumstances.   
 
Whenever a phase such as P[0..100) completes execution, 
it produces a final state which must also be the first state 
of the next phase, P[100..500).  Hence, part of the phase 
decomposition mechanism involves sending the final state 
of P[0..100) to the processor where P[100..500) resides and 
installing it as the first state of P[100..500).  If at that 
moment P[100..500) has executed beyond time 500, it must 
roll back to 500.  The feature that makes phase 
decomposition behave supercritically is this: if P[0..100) 
transmits a state s to P[100..500), and then later rolls back 
and re-executes its final event, but produces the identical 
final state s the second time as it did the first, then the 
second transmission of s to P[100..500) is suppressed, and 
P[100..500) need not roll back.  Because this involves 
comparison of states for equality, phase decomposition is 
similar to lazy rollback permitted only at phase boundaries. 
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Phase decomposition is illustrated in Figures 6a and 6b.  
Two phases of process A are shown, P[0..100) and 
P[100..500).  Fig. 6a shows a snapshot of the optimistic 
execution in which phase P[0..100) has tentatively 
completed and transmitted state s3 to phase P[100..500), 
which has executed beyond event C.  Figure 6b shows the 
final, true behavior of the simulation as reached later in the 
optimistic execution.  The difference is that a message m1’ 
has arrived for phase P[0..100), causing it to rollback and 
to re-execute event B (now called B’) in state s2’ instead of 
s1.   
 
Suppose that events A’, B’, and C are on the critical path, 
and that for some reason event B’ produces the same 
output state, s3, as event B did, i.e. s3’ = s3.  Then the 
phase decomposition mechanism might behave as follows: 
 
1. Message m1’ arrives, causing process P[0..100) 

to rollback to state s1 and execute event A’, 
producing state s2. 

 
2. Event B’ executes, producing state s3’. 
 
3. s3 is the final state of a phase, but the phase 

decomposition mechanism notices that s3’ = s3, 

and suppresses the transmission of s3’ to 
A[100..500), which was already correctly 
executed.   

 
As a result, we can identify events B’ and C on the critical 
path of the simulation such that B’ <- C, but start(C) < 
complete(C) < start(B’) < complete(B’). 
 
Supercritical speedup from phase decomposition is similar 
to supercritical speedup from lazy rollback, but has one 
other characteristic.  Unlike lazy rollback, phase 
decomposition permits two events for the same object to 
be performed simultaneously on different nodes of a 
processor, thereby allowing supercritical speedup under 
some circumstances when lazy rollback could not achieve 
it. 
 
4.4 Chandy-Sherman Space-Time Method 
 
Chandy and Sherman invented a very general theory of 
parallel simulation called the Space-Time approach, first 
described in [9] but then studied further in [10] and [11].  
They imagine that a simulation has a space axis (roughly 
corresponding to the parallel threads of activity in the 
model being simulated) and a temporal axis (simulation 
time).  Their simulation method requires that the 
programmer partition his model, not into processes (which 
would correspond to vertical strips of space-time), but into 
arbitrarily-shaped regions of space-time.  Each region of 
space-time is simulated in parallel and “communicates” 
with neighboring regions of spacetime, including those 
directly ahead and behind in simulation time.  Since the 
behavior of a model in a region of space-time depends 
generally on the behavior of neighboring regions, Chandy 
and Sherman propose a general relaxation scheme that 
repeatedly simulates each region as long as its inputs from 
neighboring regions are changing.  Much of the 
performance of this method is dependent on efficient 
techniques for detecting convergence. 
 
The Space-Time approach is not so much a single 
mechanism as a family,  so general that with suitable 
specialization it can emulate all other known parallel 
simulation mechanisms.  For example, Time Warp with 
phase decomposition is similar in spirit to the Space-Time 
method restricted so that the regions of space-time must 
be rectangular, and one process wide in the spatial 
dimension.  Hence, each of the examples given in Sections 
4.1-4.3 could occur in principle in a Space-Time simulation, 
and thus it too is capable, at least in principle, of 
supercritical speedup.  
  
 
5 Empirical results 
 
Both lazy cancellation and phase decomposition are 
implemented in the Time Warp Operating System (TWOS) 



  

that runs at JPL on and 84-node BBN GP1000 [12].  In this 
section we describe two artificial benchmarks that achieve 
supercritical speedup under TWOS, and give the 
performance measurements we have made to demonstrate 
it. 
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Figure 7:  LazyCrit’s Basic Cycle 
 
The Lazycrit application achieves supercritical speedup 
through lazy cancellation.  It consists of three objects that 
repeat a cycle of events until the cutoff time is reached.  
Figure 7 shows one cycle of this simulation.  In this 
diagram, each arrow indicates a message sent by an 
object.   Object Alpha starts out with an event at time 0.  
This event causes two messages to be sent, one to itself 
at time 10, another to Beta at time 30.  The second event at 
Alpha, at time 10, causes one message to be sent to Beta, 
at time 30.  Beta’s event at time 20 sends no messages, and 
its event at time 30 sends a message to Gamma at time 40.  
Gamma sends a message to Alpha at time 50, restarting the 
cycle at a higher set of virtual times. 
 
With appropriate delay loops in each event, Beta will 
execute the event at time 30 and send the message to 
Gamma earlier in real time than Alpha sends the message 
for time 20 to Beta.  When that message does arrive at 
Beta, Beta rolls back and executes at time 20, then re-
executes at time 30.  However, the message sent to Gamma 
is precisely the same regardless of whether the event at 
time 20 had been performed or not, so lazy cancellation 
does not resend that message.  Gamma executes its event 
at time 40 in parallel with Beta’s execution, despite Beta’s 
event preceding Gamma’s on the critical path.  This 
violates the rules of elementary scheduling, and permits 
the overall simulation to obtain supercritical speedup. 
 

The actual value of the speedup depends on the lengths 
of the delay loops in the various events.  For the following 
speedups, the delay loops in the events at time 0 and 30 
took 2 milliseconds, the delay loops for the events at time 
10 and 20 took 20 milliseconds, and the delay loop for the 
event at time 40 took 40 milliseconds.  For this set of delay 
loop values, the critical path speedup for Lazycrit was 
1.39, while Time Warp version 2.4.1 obtained a speedup of 
1.47.  The pattern of events shown in figure 7 was 
repeated 750 times for the speedups just quoted. 
 
A second TWOS application achieves supercritical 
speedup through temporal decomposition.  This 
application, called Cassandra, was described in [8].  
Briefly, it consists of ten objects that send messages to 
themselves and each other.  At the beginning of the 
simulation, every Cassandra object sends itself a flock of 
messages for all other integral simulation times up to the 
end of the simulation.  Each event caused by the arrival of 
one of these messages causes the object to send a 
message to every other Cassandra object one time unit in 
the future, until the simulation end time is reached.  The 
states of the objects never change, and the result of 
handling any message can be determined without having 
handled any other message, including the rest of the 
messages that will arrive for the same simulation time as 
this event.  
 
Cassandra is essentially a time-stepped simulation run on 
an event driven simulation engine, with each of its ten 
objects performing an event at each integral simulation 
time step.  Leaving aside some initialization and 
termination events, Cassandra is perfectly parallel without 
temporal decomposition.  Cassandra has a critical path 
speedup of 9.2 for ten objects, indicating that every object 
can execute in parallel with every other object almost all of 
the time.   
 
However, since the results of any event do not depend on 
anything other than the simulation time of that event and 
the identity of the object running it, temporal 
decomposition allows different phases of the same object 
to run simultaneously.  Once a phase has a state to work 
with, it can correctly process any event for which at least 
one input message has arrived.  On forty nodes, using 
temporal decomposition and splitting each object into four 
parts, an experimental version of TWOS achieved a 
speedup of 12.8. 
 
 
6 Conclusions 
 
There is as yet no final theory of the performance of 
parallel discrete event simulations; we do not even have a 
good nontrivial lower bounds, let alone an average-case 
performance methodology.  In this paper we show that 
critical path theory, which at first glance seems to be a 



  

plausible candidate around which a lower bound theory 
might be built, does not provide a lower bound on the 
execution time for parallel simulations, at least as naively 
applied.  Although it provides a lower bound to all 
conservative mechanisms, it does not generally apply to 
optimistic methods.  It remains an open problem to give an 
alternate formalism that provides a lower bound for all 
parallel discrete event simulation mechanisms.  
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