A Position Statement: An Approach to Measuring
L arge-Scale Distributed Systems

JunLi, Peter Reiher, Gerald Popek Mark Yarvis Geoffrey H. Kuenning

{lijun, reiher, popek} @cs.uclaedu mark.d.yarvis@intel.com geoff@cs.hmc.edu
University of California, Los Angeles Intel Labs Harvey Mudd College

Abstract: Redi stic measurement of large-scde distributed systems pases unique
challenges. Empiricd measurements can cgpture the true behavior of ared
system, but this approach is only feasible when the system is small in scde.
Simulationis more scdable, but without running red software, it is difficult
for simulation todsto cepture dl redistic dfeds.

This paper explores a different approach to measuring large-scae distributed
systems. We introduce an overloading technique that uses arelatively small
number of physical machines but supports the deployment of a distributed
system consisting of alarge number of logical nodes. We discussthe

chall enges and advantages of this approach and demonstrate its use to measure
the Revere security update dissemination system.

1 INTRODUCTION

Conventional methods of measuring the performance of a distributed
system face a dilemma between scalability and redism. Redlistic
measurements of large-scal e distributed systems are particularly challenging.
While empirical measurements can capture the true behaviour of a rea
system, the st of gaining access to, configuring, maintaining, and
obtaining results from more than a few hundred nodes is typicaly
prohibitive. Simulation is a more scalable gproach, but it is difficult for a
simulation to capture dl aspects of ared system, such as hidden costs and
subtletiming effeds. In addition, the simulated version of a software system
istypically diff erent from the software that would actually be deployed.

We eplore a different approach to measuring large-scale distributed
systems in this paper. In this approach, each individual node in adistributed
system runs the red code, and a fairly large number of nodes may be used.
Our approach employs a technique alled “overloading” in which multiple
instances of a software system execute on the same physica node.

In the purely real world, a physical machine typically maps to one
individual node of a distributed system. Via this overloading technique,
however, a physical machine can be overloaded with many nodes of a
distributed system, where each logica node still runs the rea code and

J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning

communicates with other logical nodes, just as it would in the real world.
Large scale can then be achieved using multiple physical machines, each
supporting many logical nodes.

One fundamental issue that arises is how to run a distributed system with
this overloading technique while still achieving accurate measurement
results. In particular, messages between the nodes will now follow different
transmisdon paths than would be taken in the purely real world. For
example, two logical nodes that are collocated on the same physical node
will now communicate without crossng awire.

We adress these and cther isaues that arise from overloading in this
paper. Sedion 2will describe how alarge-scale distributed system can run
with a limited number of physicd machines, using a virtual topology to
assign logical nodes to a smaller number of physicd machines and to model
the cmmunication between those nodes. In Section 3 we discuss
measurement using this overloading approach, including techniques that
compensate for resource sharing ketween logical nodes on physical nodes.
In Sedion 4 we illustrate our measurement approach by applying it to a
specific example—measuring the performance of a security-update
dissmination system. Section 5 describes open iswes remaining in this
approach, and we @nclude the paper in Section 6.

2. RUNNING ATOP A VIRTUAL TOPOLOGY

The nodes of any distributed system must exist on top of some topology.
When overloaded on top of physical machines, however, the nodes of a
distributed system will have a different topology than they would in the real
world. Such atopology, which may consist of a single machine, will nat, by
itself, reflect the characteristics of the topology of the distributed system.

A virtual topdogy can be employed to solve this problem. Eacdh node of
a particular distributed system can be viewed as attached to a particular
location in a virtual topdogy. Such a node communicates through this
virtual topology to another node, which is attached to the same virtua
topaogy. A virtua topology can be generated using one of many existing
topadogy generation tools, such as GT-ITM [1], Tiers [3], Inet [4], or Brite
[5], depending on the charaderistics of the distributed system.

With the nation of avirtual topology, adistributed system can be aeated
asfollows. After generatingavirtual topology, treat each logical nodein the
virtual topdogy as an individual node of the distributed system. For each
virtual node, run the software of the distributed system on top d a physica
machine, where multiple instances of the software program may be invoked
on the same machine. Asaresult, the performance of this distributed system

An Approach to Measuring Large-Scale Distributed Systems

B qub-domain router
= transit-domain router
®00 n4esin adistributed application

Fig. 1. A virtual topology with nodes of adistributed system
The nine holl ow circles attached to token-ring networks represent nodes assigned to the
same physicd machine, the threeshaded circles attached to an Ethernet represent nodes on
ancther physicd machine, and the eght solid circles are to athird physicd macine.
can be measured. (We will discussthe measurement procedure in the next
section.)

While it may be possble to map al nodes of a virtual topology to a
single physicd machine, multiple machines will typicaly be required for
larger scalahility, each assigned a subset of nodes from the common virtual
topdogy. The node assgnment can be fulfilled by contading a virtual
topdogy server that keeps track of which nodes are already assgned and
which are still outstanding.

Figure 1 shows a virtual topdogy in which a distributed application runs
with 20 nodes that communicate across transit-domain routers and stub-
domain routers. As hown in the figure, these 20 nodes are assgned to three
physicad machines.

One important issle is to ensure that the real software still functions in
this new mode of execution. One side dfed of overloading is the
identification of each node in the distributed system. In area system, the
addressof the underlying physical machine an be used to identify alogica
node. Since each physical node is overloaded with multiple logical nodes,
logical nodes can no longer be identified using the machine address To
solve this, each node now has to be identified using the machine aldress
coupled with some unique number, such as a TCP port number bound to the
logical node (which is unique since two logical nodes will not be dlowed to
use the same port number).

J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning
3. MEASURING ATOP A VIRTUAL TOPOLOGY

Since overloading typically maps sveral logica nodes onto a single
physicd node, the logical hodes must share the resources of the physical
node. This resource sharing can, but does not necessxily, affect the
performance of individual logical nodes.

Many results obtained in a virtual topoogy will not differ from those
obtained while running atop a real topoogy with the same structure. For
example, whether the underlying topology is red or virtual, the storage cost
or bandwidth cost incurred at an individual node of a distributed system will
not typicdly be df ected.

Also, the characteristics of the communication paths between any two
nodes of a distributed system can be easily determined based on the
specification d avirtual topoogy. For instance, if the length of every link
in avirtual topology is known, the shortest path between any two nodes on
the virtual topology can be calculated using Dijkstra’s algorithm [2], instead
of being measured.

However, logical nodes on the same physicad node must share the
processor and memory. Thus, the procesang time of each individual node
performing a particular task will be dfected. Due to the overloading of the
underlying physical machine, multiple nodes, if running concurrently, will
cause resource contention and result in longer processng times.

This problem can be solved in three ways. The first approach is to
remove the resource cntention, thus causing the measured processng time
on an overloaded nade to be the same & the real value. If only a single
logical node & a time is alowed to proceed with full usage of system
resources, the time spent by this node on a task should incur approximately
the same amount of time & it would in the real world. However, this
approach may require alogicd node to wait for aaessto the resources to
perform a particular task. If latency is important, this approach will not be
appropriate.

The second approach is to calculate adowdown factor and apply that to
the measured processng latency. A sowdown factor can be estimated by
overloading with a different number of nodes on a physicd machine and
comparing the impacts. For example, if atask consumes t, seconds when n
nodes of a distributed system are evenly loaded into n physicd machines,
but t seconds if al n nodes are overloaded onone physicad machine, we then
can obtain a dowdown factor t/t, for physicd nodes overloaded by a factor
of n. This method works well when the processng time slows down
linealy; otherwise, it must be carefully applied. To gain a more accurate
understanding d the slowdown factor of a distributed system, measurement
of overloadingfadors should be performed.

An Approach to Measuring Large-Scale Distributed Systems

The third approach, using a divide-and-conquer method, is to dvide the
task being measured into several digoint subtasks that are more eaily
measured. Here, some conditions must be met: (1) every subtask must be
independent of the others, (2) subtasks must not overlap in terms of
processng latency, and (3) the sum of al subtasks must be the total
processng latency. For example, to evaluate the delay of forwarding a
padket from source to destination, literally measuring the interval from
sending time to receiving time is inaccurate when machines are overloaded.
On the other hand, by dividing the whole delay into transmisson delay along
the wire, processng delay at each router, and queuing delay at each router,
each component can be measured separately.

The first approach usually requires a new resource-control mechanism to
coordinate the usage of system resources. Thus, this approach will be eaier
to implement for some distributed systems than it is for others. The third
approach is preferable to the second if a task can be easily divided into
several subtasks, and each subtask can be easily and accurately measured. It
may aso be possible to combine these goproaches. For example, a subtask
may be measured by applying a crresponding slowdown factor. In the next
section, we will illustrate the use of the first and the third approach in an
example system.

4. EXAMPLEO MEASURING REVERE

Revere is a system that provides saure information dissemination at
Internet scale [6]. For instance, Revere @n be used to distribute virus
signature updates from a secure dissemination center. Participating Revere
nodes organize themselves into an overlay network on top o the Internet, so
that each nock is able to both hea security updates and forward updates to
others. This overlay network uses redundant data paths to provide fast and
resilient service.

Rather than first deploying Revere into the Internet, Revere's
performance @n be measured using the overloading technique. In this
section we introduce several key metrics for measuring Revere, describe our
measurement procedure, justify our measurement method, and show several
results.

4.1 Metrics

1. Join latency: Revere dlows a new node to join Revere by attaching itself
to one or more parent nodes on the overlay network. Join latency is the

J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning

time that a new node spends becoming a participant in the Revere

overlay network.

Join bandwidth: The bandwidth spent to join the Revere overlay network.

Dissemination latency: The latency for a security update to reach an

individual Revere node. Also relevant is the time needed to reach a

certain percentage of al Revere nodes.

4. Overlay network resiliency: The percentage of Revere nodes that can still
receive security updates, given that each nade has a particular probability
of failure.

wnN

4.2 Applying the M easurement Methodology to Revere

To overload different numbers of Revere nodes onto physical nodes, we
used a testbed that consisted of ten machines. Every machine was equipped
with an AMD Thunderbird 1333 GHz CPU, 1.5GB SDRAM, and a
100 Mbps Ethernet interface.

To create virtua topoogies, we used GT-ITM [1] to generate arouter-
level topdogy and designated certain numbers of Revere nodes to each
router node. In each experiment, a topology server assgns every testbed
machine the same number of Revere nodes.

We artificially divided the lifetime of Revere into three phases: the join
phase, the dissemination phase, and the resiliency test phase. During the
join phase, nodes squentially join Revere and gradualy form an owerlay
network. After all nodes have joined, the system advances into the
disemination phase, during which the dissemination center sends security
updates through the overlay network to individual nodes for ten rounds.
Finally, in the resiliency test phase, dissemination is tested in the face of
broken nades.

During the join phase, the join latency will be artificially increased if
every physica machine is overloaded with a number of Revere nodes. The
join bandwidth should na be affected by overloading. To gain accurate
results, a token-controlled medhanism was designed to evauate the join
performance of each individua node, corresponding to the first approach
discussed in Section 3 A Revere node can only begin running after it is
granted a token by atoken server, and it must return the token after it joins
Revere. By enforcing only ore token for all Revere nodes on all physical
machines, only one node will be in the processof the join procedure & any
time during the joining phase. Other nodes may be temporarily activated
when requested to interact with the joining node. In doing so, the measured
results of join latency and join bandwidth should be gproximately the same
asthered cost of joining asinge node.

An Approach to Measuring Large-Scale Distributed Systems

During the disemination phase, each node behaves in a store-and-
forward manner. But again, because many Revere nodes are running ona
physicd machine, simply measuring the interval between sending a security
update and receiving it a a node cannot reflect the redlistic value of
dissmination latency. Given the atificially heavy load on the physicd
machines, both the processng delay and the kernel-space-crossng delay will
be lengthened.

To solve this problem, we employed the divide-and-conquer method as
described in Section 3 First, we divided the latency of dissminating a
security update into three parts: the seaurity update processng delay at each
hop, the transmission delay of crossng the virtua topology, and the kernel-
space-crossng delay. Second, we evaluated each part separately. Without
overloading a physical node, the true processing delay per hop can be
measured in a separate experiment. In the same manner, the kernel-space-
crossng delay per hop can also be measured. The communicaion latency
can be cdculated using Dijkstra’s algorithm over the virtual topology graph
underneath. To transmit a 1-kilobyte seaurity update over the virtual
topaogy we used, the router-to-router latency ranges from 1ms to 70ms,
with the average 23ms. Third, we alded al parts of the dissmination
latency together. Notice that with a given overlay network structure, the
hops that a security update travels to reach a node are invariant, no matter
how many nodes are simultaneously running on the same physical node. By
multiplying the processing celay per hop and the kernel-space-crossing
delay per hop, and adding the communicaion latency, we can obtain a very
good approximation of the dissemination latency in large-scale scenarios.

During the resiliency test phase, each node on the overlay network was
assigned a uniform probability of failure to test how many nodes are till
reachable during the dissemination procedure. The divide-and-conquer
method was again used to evaluate the latency of disseminating security
updates toward the remaining nodes. The disemination latency was
divided, as before, into three parts, and measurement was performed as in
the dissemination plese.

4.3 Selected M easur ement Results

Figure 2 shows the outbound kandwidth that each nade incurs during the
join phase, for various szes of Revere networks. This bandwidth cost
includes the messages that a node sends when joining the overlay network
and the messages snt responding to the join requests of other nodes.

Figure 3 shows the latency experienced by a node joining Revere, in
Revere networks of various szes. In this experiment, each node mmpletes
the join procedure dter successfully attaching itself to two existing Revere

J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning

28 2000
- 24 n
s = 1500 1 3
2 |20 o
T v g
c < 2 *
S 016 4 .
s 3 € 1000 |
c <124
25 g
228 4] y = 4862.8Ln(x) - 19219 S y =338.93Ln(x) - 1128.3
5 = 500
[S) ol -
s
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
number of total Revere nodes number of total Revere nodes
Fig. 2. Outbound bandwidth per node during Fig. 3. Join latency per node
joining phase (confidencelevel: 95%) (confidencelevel: 95%)

nodes. The st of both oubound join bandwidth and join latency are
acceptable, basically following logarithmic trends as the number of nodes
grows.

To understand the dissemination property of Revere, we first measured
the average and maximum hop count for disseminating security updates
(Figure 4). Both aso
follow logarithmic trends 1
versus the total number . N
of nodes. T L :

We obtained the
dissmination latency of
each node and derived
the percentage of nodes
covered as the
disemination proceeds. 2]
Figure 5 shows the
glvse?n:: ?T?etl Ofnor ;ngrﬁe ° 0 550 10‘00 15‘00 20‘00 25‘00 30‘00
node disemination. In

i
o

8 L g

average and maximum
hop count per node
o
Q\

number of total Revere nodes

- 0, . average hop count trendline: y=0.77Inx-1.81
thlS Ca%’ lm f:)ajOf the [] maximum hop count — — — trendline: y=1.82Inx-3.90
noaes are reed In a
short time (less than 1 Fig. 4. Hop court of seaurity update dissemination
second). (confidencelevel for average hop count: 99.9%)

Figure 6 depicts the resiliency characteristics of the Revere network.
After thefailure of as many as 15% of the nodes, a high percentage (93%) of
the remaining nodes are till able to receive security updates without
readjusting the structure of the dissemination overlay network.

An Approach to Measuring Large-Scale Distributed Systems

100% 100%
90% 4 - - - ,:'f::' 77777777 0% 4 - - - - -F;- - - - - -
80% - - -fE- - - - - - - 80% + - - - -F- - - - - - - -
T R - R
60%f - - g- - - - - - - - - - 60%+ - - -F - - - - - - - - -
50% 4 - A - o L

Z L s T
g

O

20% - f 77777777777
10% f ffffffffffff

0%

0% - g - -

percentage of nodes reached

20% 1 -F - - - - - - - - - - -

0% +£- - - - - - - - - - - -

percentage of working nodes reachec

T T T T 0% T T T T
250 500 750 1000 1250 250 500 750 1000 1250

Time (ms) Time (ms)
Fig. 5. Seaurity update disemination Fig. 6. Resili ency test for a3000-node
coverage for a 3000-node dissemination dissmination with 15% of nodes fail ed
(confidencelevel of coverage: 99%) (confidencelevel of coverage: 99%)
5. OPEN ISSUES

This approach to measuring large-scale distributed systems requires that
multiple nodes of a distributed system, if collocated ona physical machine,
can ill perform correctly. In practice, however, distributed systems are
typically designed with the presumption that a single instance of the
software exeautes on each physica node. Slight modifications to the
distributed system may be necessary to alow it to be measured using this
approach. As we pointed out earlier, for instance, systems that use an IP
addressas a node name will require modification.

Theoretically, it is also possble to build a cmmmon framework based on
this approach to support measurement of differing distributed applicétions,
and a specific distributed system can be measured by simply plugging it into
such a framework. Designing an interface between the framework and the
application being measured must be caefully considered.

Another isae is the scalability of this approach itself. Given that
multiple nodes under this approach can contend for resources of the same
physica machine, some resource locking mechanism is needed to dbtain
accurate results. An example of this approadh is the token medanism used
in measuring the join performance of Revere. However, this technique
dows down the measurement process. The token-controlled mechanism
used to measure joins in Revere, for example, required about 100 minutes of
measurement for 3000 nodes.

J. Li, P. Reiher, G. Popek, M. Yarvis, G. Kuenning
6. CONCLUSIONS

As more distributed systems run at Internet scale, understanding the
performance of a system at large scaleisimportant. Unfortunately, it can be
difficult to measure a system that consists of very large numbers of nodes
that are part of alarge-scale network.

Without actua deployment, measurement of a large-scale system can be
performed in two ways. simulation a the overloading approach described in
this paper. Simulation is a popular approach for large-scale systems.
However, since a simulation daes not typically use the actual software and
cannat accurately emulate dl environmental factors, it is very hard for
simulation toolsto capture dl the real eff ects of the system.

Our overloading methodology coll ocates a large number of nodes of a
distributed system on a machine, while still allowing each node to run the
real software. This methodology can accurately report those metrics that are
invariant with respect to overloading, and can minimize those inaccuracies
introduced due to overloading and resource contention.

Meaningful results can be obtained. We demonstrated this using the
overloading approach for a seaurity update dissemination system. While the
measurements reported in this paper correspond to a 3000-node network, the
results were obtained using only 10 nales. We believe that Internet-scale
results can be obtained using only a few hundred or a few thousand nales.
In addition, we believe that this approach can be further generalized into a
common framework to support measurement of different distributed
systems.

REFERENCES

[1] K. L. Calvert, M. B. Doar, and E. W. Zegura. “Modeling Internet Topology,” |[EEE
Communications Magazine 35, 6 June 1997.

[2] EW. Dijkstra. “A note on two problemsin connexion with graphs,” Numerische
Mathematik, 1:269--271, 1959.

[3] M. B. Doar. “A better model for generating test networks,” Proceedings of Global
Internet, November 199.

[4] C.Jin, Q. Chen, and S. Jamin. “Inet: internet topology generator,” University of Michigan
Technicd Report CSE-TR-433-00, 2000.

[5] A. Medina, |. Matta, and J. Byers. “On the origin of power laws in Internet topologies,”
ACM Computer Communication Review, 30(2), April 2000,

[6] Revere projed home page. http://lasr.cs.ucla.edu/revere.

