Rumor: Mobile Data Access Through
Optimistic Peer-to-Peer Replication

Richard Guy', Peter Reiher', David Ratner?, Michial Gunter®, Wilkie Ma',
and Gerald Popek”

! University of California, Los Angeles, Los Angeles, CA 90095-1596, USA
http://fmg-www.cs.ucla.edu/rumor98/replication.html
rumor-report@fmg.cs.ucla.edu
2 currently with Software.com
® currently with Silicon Graphics, Inc.

4 also affiliated with PLATINUM technology, inc.)

Abstract. ! Rumor is an optimistically replicated file system designed
for use in mobile computers. Rumor uses a peer model that allows oppor-
tunistic update propagation among any sites replicating files. The paper
outlines basic characteristics of replication systems for mobile computers,
describes the design and implementation of the Rumor file system, and
presents performance data for Rumor. The research described demon-
strates the feasibility of using peer optimistic replication to support mo-
bile computing.

1 Introduction

Mobile computers typically suffer from weaker connectivity than that enjoyed by
wired machines. Latencies are significantly higher, bandwidth is limited, power
conservation requirements discourage communication, some communications me-
dia cost money to use, and long-duration disconnections are the norm. In this
context, data management techniques that dramatically reduce the need for con-
tinuous connectivity are highly desirable.

One such potential class of solutions is data replication, in which copies of
data are placed at various hosts in the overall network, generally ‘near’ to users
and often local to users. In the extreme, a data replica 1s stored on each mobile
computer that desires to access (read or write) that data, so all user data access
is local. Ideally, all replicas of a data item should have the same value at all times,
and 1t 1s the responsibility of the replication system to maintain consistency in
the face of updates. Specific goals for a replication system often include improved
reliability, availability, data autonomy, host and network traffic load balancing,
and data access performance.

! This work was supported by the United States Defense Advanced Research Projects
Agency under contract number DABT63-94-C-0080.

This paper describes the Rumor replicated file system, which was designed for
use in a mobile environment. The goal of mobility led to development decisions
focusing on availability, autonomy, and network traffic reduction from the mobile
machine’s point of view. The paper discusses design alternatives for replicated
file systems, the decisions made for the Rumor system, the architecture of that
system, performance of the Rumor system, and lessons learned in developing
Rumor.

2 Replication Design Alternatives

Replication systems can usefully be classified along several dimensions: conser-
vative vs. optimistic update, client-server vs. peer-to-peer, and immediate prop-
agation vs. periodic reconciliation.

2.1 Conservative vs. optimistic update

A fundamental question in replicated data systems is how to handle updates
to multiple copies of the same data item. If the copies cannot communicate
instantaneously, then concurrent updates to different replicas of the same data
item are possible, violating the ideal semantics of emulating single copy data
storage.

Conservative update replication systems prevent all concurrent updates, caus-
ing mobile users who store replicas of data items to have their updates rejected
frequently, particularly if connectivity is poor or non- existent. Even when con-
nected, mobile users will spend bandwidth to check consistency at every update.
Conservative strategies are often appropriate in the wired world, but they work
poorly in most mobile environments.

Optimistic replication allows any machine storing a replica to perform an
update locally, rather than requiring the machine to acquire locks or votes from
other replicas. Optimistic replication minimizes the bandwidth and connectivity
requirements for performing updates. However, optimistic replication systems
can allow conflicting updates to replicated data items. Both simulation results
[17] and extensive actual experience [7], [14] have shown that conflicts are rare
and usually easy to resolve.

2.2 Client-server vs. peer-to-peer

In client-server replication, all updates must be propagated first to a server ma-
chine that further propagates them to all clients. Peer-to-peer systems allow any
replica to propagate updates to any other replica. Client-server systems simplify
replication systems and limit costs (partially through imposing a bottleneck at
the server), but slow propagation of updates among replicas and are subject to
failure of the server. Peer systems can propagate updates faster by making use of
any available connectivity, but are more complex both in implementation and in
the states they can achieve. Hybrid systems use peer replication among servers,

with all other machines serving as clients. These hybrid systems typically try to
avoid the disadvantages of peer systems by requiring tight connectivity among
all servers, implying that none of them can be disconnected mobile machines.

Client-server replication is a good choice for some mobile systems, such as
mobile computers that disconnect from a central network and remain discon-
nected until they return. Workers who take their machines home at night, or go
on trips with their portable computer and only connect to the home machine via
modem while away, are examples of mobile computing suitable for client/server
replication. Peer replication is a good choice when the connectivity patterns of
the mobile computers are less predictable. Environments suited to peer replica-
tion include disaster relief teams that must carry their own infrastructure or a
wireless office of cooperating workers.

2.3 Immediate propagation vs. periodic reconciliation

Updates to data replicas must be propagated to all other replicas. Update prop-
agation can be attempted immediately when the update occurs, or at a later
time. Immediate propagation notifies other replicas of the new state of the data
as quickly as possible, when it works. However, it may use scarce, expensive
resources to do so, perhaps when immediate propagation was not very impor-
tant. Alternatively, updates can be propagated at a later, more convenient time,
typically batched. This option of periodic reconciliation does not spread updates
as quickly, but allows propagation to occur when it is cheap or convenient. In
systems permitting disconnected operation, some form of periodic reconciliation
must be supported, since immediate propagation will fail when machines are
disconnected. Both options can be supported, at the cost of extra complexity
and possibly higher use of scarce, expensive resources.

3 Rumor Design and Architecture

Rumor is an optimistic, peer-to-peer, reconciliation-based replicated file system.
Rumor is built at the user level, which has advantages in portability and lim-
iting replication costs. It has been operational for several years in our research
laboratory and other sites worldwide, and runs on several Unix systems.

To achieve higher portability, Rumor is built strictly at the application level.
Rumor has its intellectual roots in the Ficus replicated file system [2], which
was an in-kernel, SunOS 4.0.3-based implementation of an optimistic, peer-to-
peer replication system that used immediate propagation with reconciliation as
a fall-back. Rumor borrows much of the internal consistency policies and algo-
rithms from Ficus. Both systems allow updates whenever any replica is available.
The reconciliation algorithms of both systems reliably detect concurrent file sys-
tem updates and automatically handle concurrent updates to directory replicas.
Both Rumor and Ficus permit users to write tools to automatically reconcile
concurrent file updates for other kinds of files [13].

Rumor operates entirely at the application level. Rumor requires no kernel
modifications or dynamically loadable libraries. Installation is accomplished en-
tirely without super-user (root) privileges, allowing anyone to install or upgrade
Rumor. The benefits of this application-level implementation include being eas-
ily portable across different systems and platforms, free distribution of Rumor
source code with no license restrictions, and no Rumor performance overhead
during the normal operation of the host machine. Nothing is installed in the
critical path of the user’s operations, so Rumor users pay no performance cost
except when they choose to reconcile.

Rumor is purely optimistic, and uses peer replication. While Rumor’s peer
replication mechanically permits any replica to reconcile with any other replica,
mechanisms exist to effectively constrain the patterns of reconciliation. Thus,
Rumor can emulate a client-server system or any other constrained topology of
update propagation suitable for particular situations. Rumor maintains consis-
tency purely by a periodic process called reconciliation. Rumor does not attempt
instant update propagation. Periodic reconciliation makes the problems of tem-
porary network and machine failures easier to solve, as reconciliation guarantees
to maintain consistency when communication can be restored. Additionally, mul-
tiple updates to a single file can often be batched and transmitted as one update,
with the usual batching performance improvement. Furthermore, the costs of
communicating with other replicas are amortized, since updates to multiple files
are handled in a single reconciliation.

Rumor operates on file sets known as volumes. A volume is a continuous
portion of the file system tree, larger than a directory but smaller than a file
system. For example, a user’s mail directory might constitute a volume. Volumes
have been used in many systems because they offer several key benefits. They
take advantage of locality for performance by grouping logically connected files
into a single physical location. Performance-intensive tasks are initiated once for
the volume entity, instead of once per volume member. Volumes provide natural
firewalls that prevent the propagation of errors and help establish fundamen-
tal security barriers. Volumes also assist in naming, by allowing a collection of
logically connected files to be identified and acted upon with a single name.

Reconciliation operates at the volume granularity. At reconciliation time,
replicas synchronize a single volume. When machines store multiple volumes,
reconciliation periodically executes separately on each volume. The reconciliation
interval controls the balance point between consistency and system load. Users
are free to customize or add intelligence such as load-threshold values to the
reconciliation interval.

A disadvantage of pure volume replication is that entire volumes must be
stored at each replica and reconciled as a whole. This is a significant disadvan-
tage for a mobile computing system, where disk space available for storage may
be limited, and small quantities of bandwidth suitable for propagating only very
important updates might be available. Rumor overcomes this problem by selec-
tive replication [10] and a per-file reconciliation mechanism. Selective replication
allows particular replicas to store only portions of a volume, while still guar-

anteeing correct operation. Per-file reconciliation permits individual files to be
reconciled, rather than the entire volume, at much lower costs.

Reconciliation operates between a pair of communicating replicas in a one-
way, pull-oriented fashion. A one-way mode i1s more general than a two-way
model, and lends support for inherently uni-directional forms of communication,
such as floppy-disk transfer. At reconciliation time, the target replica selects a
source replica with which to reconcile; selection is based on a number of criteria,
described below. Once a source replica has been identified and contacted, rec-
onciliation ensures that the target learns all information known by the source.
This information includes gossip: the source replica transfers not only its local
updates, but also all updates it has learned of from previous reconciliations with
other replicas. For instance, two machines that rarely or never directly commu-

nicate can still share data if a mutually-accessible third machine gossips on the
others’ behalf.

Reconciliation involves only pairs of replicas, rather than all replicas, because
there 1s no guarantee that more than two will ever be simultaneously available.
For example, mobile computers operating in a portable workgroup mode may only
be connected to a single other computer. Additionally, operating in a point-
to-point mode, with an underlying gossip-based transfer mechanism, allows a
more flexible and dynamically changeable network configuration in terms of the
machines’ accessibility from each other. Broadcast or multicast reconciliation will
often save significant amounts of bandwidth, but they are not yet implemented
in Rumor.

Reconciliation is responsible for maintaining data consistency on all user-
nameable files. Rumor uses Parker’s version vectors [8] to detect updates and
update/update conflicts (concurrent updates). A version vector is a dynamic
vector of counters, with one counter per replica. Each counter 7 tracks the total
number of known updates generated by replica i. Each replica independently
maintains its own version vector for each replicated file; by comparing two version
vectors, the update histories of the corresponding file replicas can be compared.

The particular choices of communication partners between sites forms the
reconciliation topology. While the reconciliation algorithms are topology inde-
pendent, the actual topology can affect both the number of messages exchanged
between all replicas and the time required to reach consistency. Rumor utilizes
an adaptive ring between all volume replicas, which reconfigures itself in response
to current replica availability and provides that reconciliation occurs with the
next accessible ring member. In the extreme, if only two replicas are in com-
munication, the adaptive nature of the ring allows them to reconcile with each
other. The adaptive ring requires only a linear complexity in the number of vol-
ume replicas to propagate information to everyone, and additionally is robust to
network failures and reconfigurations. Due to its adaptive nature, the ring does
not require point-to-point links interconnecting all members, and thus allows
sharing to occur between rarely or never-communicating participants by relying
on third-party replicas to gossip on their behalf. However, the ring does not scale
well in number of replicas.

Rumor is designed to handle arbitrary numbers of replicas and correctly man-
age data consistency between all of them. Performance, rather than correctness,
dictates replication factor scaling for Rumor. Rumor scales gracefully to approx-
imately 20 replicas of any given volume. An extension to Rumor, called Roam,
allows an order of magnitude better scaling [11].

Replicated systems face special problems when handling deallocation of sys-
tem resources (such as disk space) held by unnamed file system objects. This
deallocation process is called garbage collection. In a centralized system, garbage
collection is relatively simple. Whenever the last name for a file 1s deleted, all of
the file’s resources can be reclaimed. Garbage collection is harder in a distributed,
replicated environment due to dynamic naming. Dynamic naming allows users to
generate new names for existing files; since a file should not be removed until all
names have been removed, including new names at remote replicas, local removal
of the last name may not indicate that the resources should be reclaimed. Rumor
uses a fully distributed, two-phase, coordinator-free algorithm to ensure that all
replicas learn of the garbage collection process and eventually complete it, even
though any given set of participants may never be simultaneously present. Ru-
mor enforces the Ficus no lost updates semantics [7], which guarantees that the
most recent data version will be preserved so long as the file is globally accessible.

3.1 Rumor architecture

Rumor needs to manage attributes above and beyond the standard file system
attributes, such as version vectors. All replication state is maintained by Rumor
in a lookaside database hidden within the volume. Currently, Rumor uses a
specially formatted file for this database, but it could use any general database
facility that supports transactions, which are required to recover from failures
and unexpected terminations during execution.

The attribute database is not updated at file modification time, since Ru-
mor contains no kernel code and does not trap updates. Instead, updates are
detected at reconciliation time. By comparing file modification times, and oc-
casionally resorting to checksum comparisons, Rumor i1s guaranteed to detect
all file updates. In the case of directories, a list of directory entries is utilized
instead of a checksum; in general, checksum comparisons are rare and only re-
quired in special circumstances involving explicit manipulation of timestamps or
updates that occur during reconciliations. Because the attribute database is only
periodically updated, transient files created and removed between reconciliation
executions are never even noticed by Rumor. Such temporary files are by defini-
tion unimportant, and periodic database updates saves the user the expense of
replicating such files.

Reconciliation can be separated into three distinct phases: scan, remote-
contacting, and recon. Figure 1 shows data and control flows during reconcil-
1ation. The scan phase is responsible for determining the set of files in the vol-
ume, including detecting new files, updating the attributes of existing files, and
noticing the removal of previously managed files. The remote-contacting phase
finds a remote replica, informs it of the reconciliation, and performs a scan

Local Machine Remote Machine
P Attribute
Scan Phase [« Database
Fetch Remote | / o . o | Atiribute
Attributes | P~ Send Attributes | Database
y /
Recon Phase |g p| Data Server

Fig. 1. Overall Rumor architecture, indicating control and data flow.

at that remote replica. The recon phase takes the list of local file attributes
and the list of remote file attributes received from a remote replica during the
remote-contacting phase and compares the two, taking the appropriate action
(e.g., update the local replica) as determined by a comparison of the two sets of
attributes.

The scan phase reads the previous set of file attributes from the database and
recursively traverses the volume, detecting new files and modifying the attributes
for previously known files if they have been updated. Updates are detected by
examining modification timestamps and occasionally checksums, or a list of di-
rectory entries for directories. If an update has occurred, Rumor increments the
version vector, obtains a new checksum, and updates the remaining attributes.
The scan phase detects files that have been removed by the user by comparing
the output traversal with the list of files from the previous scan, stored in the
attribute database. When the scan phase completes, Rumor writes the new list
of files and attributes into the lookaside database and provides them to the recon
phase for processing.

The remote-contacting phase locates a remote replica of the volume accord-
ing to the reconciliation topology and obtains a list of that replica’s files and
attributes. The remote site generates its list of files and attributes simply by
initiating a scan phase on its volume. File data is not transferred during this
phase, unless reconciliation is using a uni-directional transport mechanism, such
as floppy disks. In this case, data must be sent by the remote site because there
will be no further communications.

The recon phase performs the majority of the reconciliation work. Given the
two lists of files and attributes, one local and one remote, file versions are com-
pared and reconciliation actions are taken when appropriate. The comparison
can yield four different results:

— The local version dominates (is more recent than) the remote version; no
action need be taken, because the remote site will obtain the new version
when it initiates a reconciliation.

— The remote version dominates; a request for file data is made of the remote
site.

— The two versions are equivalent; no action need be taken.

— The two versions conflict (they each received concurrent updates); conflict-
resolving and processing actions are taken. Often the conflict can be auto-
matically resolved [13], but when it cannot, the user is notified of the conflict
by email along with instructions on how to resolve it.

The recon phase also detects new files and deletions of old files. Data is requested
for the new files, and they are created locally. File removals are processed by
removing the appropriate local object and participating in the garbage collection
algorithm.

Data requests are serviced by an asynchronous server at the remote site. Data
requests are generated by the recon phase and are asynchronously processed by
the remote server, which returns file data via the transport mechanism. Per-
forming the data request and transfer asynchronously allows the recon phase to
perform useful work during what would otherwise be wasted time waiting on
network transmissions.

Rumor interacts with the specific data transport mechanism with very sim-
ple operations. Currently supported transport mechanisms include NFS, rshell,
email, and floppy-disks.

The asynchronous data server receives data requests and processes them by
performing a limited rescan of the file to ensure that the attributes to be sent
with the file data are up to date. File updates could have been generated between
the time that the list of files was sent and the data request was received, and
Rumor does not trap such updates. Unless Rumor checks the attributes again
before sending the data, updates might not be propagated correctly in some
complex cases. Any new attributes are both written into the attribute database
and shipped to the recon phase on the other machine. Similarly, before installing
updates on the machine pulling the updates, Rumor must check the attributes
of the file to ensure that simultaneous user activities have not updated them.
Otherwise, Rumor would not always propagate data properly and might miss
conflicting updates.

Rumor contains a selective replication facility that allows users to specify
which files in a volume should be stored in a particular replica. Reconciliation
does not transport updates to files that are not stored at the pulling site. How-
ever, such files are scanned locally during each reconciliation, allowing the local
attribute database to be updated.

Reconciling an entire volume may be very costly when bandwidth is limited.
Rumor permits users to specify individual files to be reconciled, giving the user
more control over the costs paid to maintain file synchronization. This option
limits the costs of reconciliation to the costs of shipping metadata related to the
particular file and, if necessary, the file’s contents. Basically, single-file reconcili-
ation applies the Rumor reconciliation mechanism to one file instead of an entire
volume.

Rumor itself provides no data transmission security, nor does it enforce poli-
cies on who may replicate particular files. The Truffles system [12] works with
Rumor to provide those protections. Rumor provides the mechanism for portable
computer users to store local replicas of files, but does not help them decide which
files should be replicated. The Seer system [5] provides automatic file hoarding
for this purpose, using Rumor as a replication mechanism to enforce Seer’s de-
cisions about which files to hoard. Better secondary storage space management
is a growing requirement for portable computers.

4 Performance

Determining the overall performance of an optimistically replicated system is
not easy [4]. In particular, determining the degree to which the system achieves
the same semantics as a single-copy file system can be very difficult. The best
available data of this kind comes from [13] and [17]. While not directly measuring
Rumor, this data is suggestive of this aspect of Rumor’s performance.

Space permits only limited discussion of Rumor performance, but we include
data on two of the most important metrics: the run time to perform reconciliation
on realistically large volumes and the disk storage overheads required to support
Rumor. Rumor’s design is such that both time and space overheads are more
visible with larger numbers of smaller files, and so the data reported here focus
on that portion of the exploration space.

We ran experiments on reconciling updates to a large volume replicated on
two machines. The machines were Dell Latitude portable computers running 486
processors at 100 MHz, with 48 Mbytes of main memory. The communications
media was a dedicated Ethernet running no other traffic. The test volume used
8 Mbytes of disk space to store 1779 files; the median file size was 3 Kbytes, and
the maximum file size was 116 Kbytes.

In the experiments, various percentages of files in the volume were updated
on one replica, and the other replica invoked reconciliation to pull the updated
versions across. Figure 2 shows the resulting elapsed time to perform these rec-
onciliations. These measurements represent five runs at each graphed point, with
95% confidence intervals displayed.

Reconciling a large volume with no updates thus took around 2 1/2 minutes.
Reconciling the same volume with 10% of its files (by number, not by size of data)
updated took a little less than 4 minutes. As Figure 2 shows, the increase in run
time is close to linear. Running a minimal recursively executed command that
only printed file names on the same volume took 6.3 seconds. The reconciliation
times shown here are reasonable for periodic reconnections, such as via modem,
but ideally they should be shorter.

The disk overhead to store Rumor attributes and other necessary information
was 7.8% at each replica.

Figure 3 shows the number of bytes transported across the wire to perform
the reconciliations. These figures include both the actual changed user data and
Rumor’s exchange of file lists, as well as any other communications overheads

Run Time (seconds)

Kbytes Moved

250

200

150

100

50

1600

1400

1200

1000

800

600

400

200

o 2 . 6 s
Percent of Volume Updated
Fig. 2. Rumor Reconciliation Times
o 2 . 6 s 10 12

Percent of Volume Updated

Fig. 3. Data Transferred During Reconciliation

11

added by Rumor. The maximum amount of data transferred was 1.2 Mbytes.
Given the times required to perform reconciliation, even a modem could handle
the data transfer rate required by Rumor without further slowing down the
process.

Rumor has not been fully optimized for either space or time. The overheads
reported here could be improved significantly with more optimization.

5 Related Work

There are many replicated file systems and database systems. Rumor’s ancestor
Ficus [2], which in turn was strongly influenced by Locus [9], shares many of
the same goals as Rumor, but did not address mobility concerns. CMU’s Coda
[14] is an optimistic, client-server replication system targeted at mobility. The
optimistic Bayou [16] system from Xerox PARC provides peer replication, but
requires application-aware conflict detection and resolution, and does not yet
provide selective replication. Mitsubishi’s reconcile [3] facility was designed to
support multiplatform (DOS and Unix) replicated directories, but is not cur-
rently available.

A number of commercial filesystem and database products support opti-
mistic replication to varying degrees. Novell Replication Services [6] supports
reconciliation-based, optimistic file replication with selective replication. Sybase’s
Replication Server [15] supports optimistic database replication, but the support-
ing documentation discourages such usage. Similarly, Oracle’s Oracle7 relational
database product allows optimistic updates, and provides semantic tools to help
designers avoid conflicting updates wherever possible [1].

6 Summary

The combination of principles embedded in the design and implementation of
Rumor is essential to effective mobile data access in the emerging computing
and communications environment of the 21st century. Optimistic, peer-to-peer,
reconciliation-based data replication techniques are well-suited to meet the chal-
lenges that lie ahead.

Rumor is a working system, implemented in an object-oriented style largely
using C++ (with support code in Perl). A beta version of Rumor for Linux and
FreeBSD is available at http://ficus-www.cs.ucla.edu/rumor.

References

1. Alan R. Downing. Conflict resolution in symmetric replication. In Proceedings of
the Furopean Oracle User Group Conference, 1995.

2. Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Jr., Gerald J.
Popek, and Dieter Rothmeier. Implementation of the Ficus replicated file sys-
tem. In USENIX Conference Proceedings, pages 63-71, Anaheim, CA, June 1990.
USENIX.

12

10.

11.

12.

13.

14.

15.

16.

17.

. John H. Howard. Using reconciliation to share files between occasionally connected

computers. In Proceedings of the Fourth Workshop on Workstation Operating Sys-
tems, pages 56—60, Napa, California, October 1993. IEEE.

. Geoffrey H. Kuenning, Rajive Bagrodia, Richard G. Guy, Gerald J. Popek, Peter

Reiher, and An-1 Wang. Measuring the quality of service of optimistic replication.
In Proceedings of the ECOOP Workshop on Mobility and Replication, Brussels,
Belgium, July 1998.

. Geoffrey H. Kuenning and Gerald J. Popek. Automated hoarding for mobile com-

puters. In Proceedings of the 16th Symposium on Operating Systems Principles,
pages 264-275, St. Malo, France, October 1997. ACM.

Novell, Inc. Novell Replication Services white paper. unpublished,
http://www.novell.com /whitepapers /nrs, 1997.

Thomas W. Page, Jr., Richard G. Guy, John S. Heidemann, David H. Ratner,
Peter L. Reiher, Ashvin Goel, Geoffrey H. Kuenning, and Gerald J. Popek. Per-
spectives on optimistically replicated, peer-to-peer filing. Software—Practice and
FEzperience, 27(12), December 1997.

D. Stott Parker, Jr., Gerald Popek, Gerard Rudisin, Allen Stoughton, Bruce J.
Walker, Evelyn Walton, Johanna M. Chow, David Edwards, Stephen Kiser, and
Charles Kline. Detection of mutual inconsistency in distributed systems. IEFFE
Transactions on Software Engineering, 9(3):240-247, May 1983.

Gerald J. Popek and Bruce J. Walker. The Locus Distributed System Architecture.
The MIT Press, 1985.

David H. Ratner. Selective replication: Fine-grain control of replicated files. Tech-
nical Report CSD-950007, University of California, Los Angeles, March 1995. Mas-
ter’s thesis.

David Howard Ratner. Roam: A Scalable Replication System for Mobile and Dis-
tributed Computing. PhD thesis, University of California, L.os Angeles, Los Angeles,
CA, January 1998. Also available as UCLA CSD Technical Report UCLA-CSD-
970044.

P. Reiher, T. Page, S. Crocker, J. Cook, and G. Popek. Truffles—a secure service for
widespread file sharing. In Proceedings of the The Privacy and Security Research
Group Workshop on Network and Distributed System Security, February 1993.
Peter Reiher, John S. Heidemann, David Ratner, Gregory Skinner, and Gerald J.
Popek. Resolving file conflicts in the Ficus file system. In USENIX Conference
Proceedings, pages 183-195, Boston, MA, June 1994. USENIX.

Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki,
FEllen H. Siegel, and David C. Steere. Coda: A highly available file system for a dis-
tributed workstation environment. IEEE Transactions on Computers, 39(4):447—
459, April 1990.

Sybase, Inc. Sybase SQL Anywhere and Replication Server:
The enterprise wide replication solution. White paper,
http://www.sybase.com:80/products/system11 /repserv.html, 1998.

Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.
Spreitzer, and Carl H. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In Proceedings of the 15th Symposium on
Operating Systems Principles, pages 172-183, Copper Mountain Resort, Colorado,
December 1995. ACM.

An-1 A. Wang, Peter L. Reiher, and Rajive Bagrodia. A simulation framework for
evaluating replicated filing environments. Technical Report CSD-970018, Univer-
sity of California, Los Angeles, June 1997.

