
Rumor � Mobile Data Access Through

Optimistic Peer�to�Peer Replication

Richard Guy�� Peter Reiher�� David Ratner�� Michial Gunter�� Wilkie Ma��
and Gerald Popek�

� University of California� Los Angeles� Los Angeles� CA ����������� USA
http���fmg�www�cs�ucla�edu�rumor���replication�html

rumor�report�fmg�cs�ucla�edu
� currently with Software�com

� currently with Silicon Graphics� Inc�
� also a�liated with PLATINUM technology� inc�	

Abstract� � Rumor is an optimistically replicated 
le system designed
for use in mobile computers� Rumor uses a peer model that allows oppor�
tunistic update propagation among any sites replicating 
les� The paper
outlines basic characteristics of replication systems for mobile computers�
describes the design and implementation of the Rumor 
le system� and
presents performance data for Rumor� The research described demon�
strates the feasibility of using peer optimistic replication to support mo�
bile computing�

� Introduction

Mobile computers typically su�er from weaker connectivity than that enjoyed by
wired machines� Latencies are signi�cantly higher� bandwidth is limited� power
conservation requirements discourage communication� some communicationsme�
dia cost money to use� and long�duration disconnections are the norm� In this
context� data management techniques that dramatically reduce the need for con�
tinuous connectivity are highly desirable�

One such potential class of solutions is data replication� in which copies of
data are placed at various hosts in the overall network� generally �near� to users
and often local to users� In the extreme� a data replica is stored on each mobile
computer that desires to access �read or write� that data� so all user data access
is local� Ideally� all replicas of a data item should have the same value at all times�
and it is the responsibility of the replication system to maintain consistency in
the face of updates� Speci�c goals for a replication system often include improved
reliability� availability� data autonomy� host and network tra	c load balancing�
and data access performance�

� This work was supported by the United States Defense Advanced Research Projects
Agency under contract number DABT������C���
��



�

This paper describes the Rumor replicated �le system� which was designed for
use in a mobile environment� The goal of mobility led to development decisions
focusing on availability� autonomy� and network tra	c reduction from the mobile
machine�s point of view� The paper discusses design alternatives for replicated
�le systems� the decisions made for the Rumor system� the architecture of that
system� performance of the Rumor system� and lessons learned in developing
Rumor�

� Replication Design Alternatives

Replication systems can usefully be classi�ed along several dimensions
 conser�
vative vs� optimistic update� client�server vs� peer�to�peer� and immediate prop�
agation vs� periodic reconciliation�

��� Conservative vs� optimistic update

A fundamental question in replicated data systems is how to handle updates
to multiple copies of the same data item� If the copies cannot communicate
instantaneously� then concurrent updates to di�erent replicas of the same data
item are possible� violating the ideal semantics of emulating single copy data
storage�

Conservative update replication systems prevent all concurrent updates� caus�
ing mobile users who store replicas of data items to have their updates rejected
frequently� particularly if connectivity is poor or non� existent� Even when con�
nected� mobile users will spend bandwidth to check consistency at every update�
Conservative strategies are often appropriate in the wired world� but they work
poorly in most mobile environments�

Optimistic replication allows any machine storing a replica to perform an
update locally� rather than requiring the machine to acquire locks or votes from
other replicas� Optimistic replication minimizes the bandwidth and connectivity
requirements for performing updates� However� optimistic replication systems
can allow con�icting updates to replicated data items� Both simulation results
�
�� and extensive actual experience ���� �
�� have shown that con�icts are rare
and usually easy to resolve�

��� Client�server vs� peer�to�peer

In client�server replication� all updates must be propagated �rst to a server ma�
chine that further propagates them to all clients� Peer�to�peer systems allow any
replica to propagate updates to any other replica� Client�server systems simplify
replication systems and limit costs �partially through imposing a bottleneck at
the server�� but slow propagation of updates among replicas and are subject to
failure of the server� Peer systems can propagate updates faster by making use of
any available connectivity� but are more complex both in implementation and in
the states they can achieve� Hybrid systems use peer replication among servers�



�

with all other machines serving as clients� These hybrid systems typically try to
avoid the disadvantages of peer systems by requiring tight connectivity among
all servers� implying that none of them can be disconnected mobile machines�

Client�server replication is a good choice for some mobile systems� such as
mobile computers that disconnect from a central network and remain discon�
nected until they return� Workers who take their machines home at night� or go
on trips with their portable computer and only connect to the home machine via
modem while away� are examples of mobile computing suitable for client�server
replication� Peer replication is a good choice when the connectivity patterns of
the mobile computers are less predictable� Environments suited to peer replica�
tion include disaster relief teams that must carry their own infrastructure or a
wireless o	ce of cooperating workers�

��� Immediate propagation vs� periodic reconciliation

Updates to data replicas must be propagated to all other replicas� Update prop�
agation can be attempted immediately when the update occurs� or at a later
time� Immediate propagation noti�es other replicas of the new state of the data
as quickly as possible� when it works� However� it may use scarce� expensive
resources to do so� perhaps when immediate propagation was not very impor�
tant� Alternatively� updates can be propagated at a later� more convenient time�
typically batched� This option of periodic reconciliation does not spread updates
as quickly� but allows propagation to occur when it is cheap or convenient� In
systems permitting disconnected operation� some form of periodic reconciliation
must be supported� since immediate propagation will fail when machines are
disconnected� Both options can be supported� at the cost of extra complexity
and possibly higher use of scarce� expensive resources�

� Rumor Design and Architecture

Rumor is an optimistic� peer�to�peer� reconciliation�based replicated �le system�
Rumor is built at the user level� which has advantages in portability and lim�
iting replication costs� It has been operational for several years in our research
laboratory and other sites worldwide� and runs on several Unix systems�

To achieve higher portability� Rumor is built strictly at the application level�
Rumor has its intellectual roots in the Ficus replicated �le system ���� which
was an in�kernel� SunOS ������based implementation of an optimistic� peer�to�
peer replication system that used immediate propagation with reconciliation as
a fall�back� Rumor borrows much of the internal consistency policies and algo�
rithms from Ficus� Both systems allow updates whenever any replica is available�
The reconciliation algorithms of both systems reliably detect concurrent �le sys�
tem updates and automatically handle concurrent updates to directory replicas�
Both Rumor and Ficus permit users to write tools to automatically reconcile
concurrent �le updates for other kinds of �les �
���



�

Rumor operates entirely at the application level� Rumor requires no kernel
modi�cations or dynamically loadable libraries� Installation is accomplished en�
tirely without super�user �root� privileges� allowing anyone to install or upgrade
Rumor� The bene�ts of this application�level implementation include being eas�
ily portable across di�erent systems and platforms� free distribution of Rumor
source code with no license restrictions� and no Rumor performance overhead
during the normal operation of the host machine� Nothing is installed in the
critical path of the user�s operations� so Rumor users pay no performance cost
except when they choose to reconcile�

Rumor is purely optimistic� and uses peer replication� While Rumor�s peer
replication mechanically permits any replica to reconcile with any other replica�
mechanisms exist to e�ectively constrain the patterns of reconciliation� Thus�
Rumor can emulate a client�server system or any other constrained topology of
update propagation suitable for particular situations� Rumor maintains consis�
tency purely by a periodic process called reconciliation� Rumor does not attempt
instant update propagation� Periodic reconciliation makes the problems of tem�
porary network and machine failures easier to solve� as reconciliation guarantees
to maintain consistency when communication can be restored� Additionally� mul�
tiple updates to a single �le can often be batched and transmitted as one update�
with the usual batching performance improvement� Furthermore� the costs of
communicating with other replicas are amortized� since updates to multiple �les
are handled in a single reconciliation�

Rumor operates on �le sets known as volumes� A volume is a continuous
portion of the �le system tree� larger than a directory but smaller than a �le
system� For example� a user�s mail directory might constitute a volume� Volumes
have been used in many systems because they o�er several key bene�ts� They
take advantage of locality for performance by grouping logically connected �les
into a single physical location� Performance�intensive tasks are initiated once for
the volume entity� instead of once per volume member� Volumes provide natural
�rewalls that prevent the propagation of errors and help establish fundamen�
tal security barriers� Volumes also assist in naming� by allowing a collection of
logically connected �les to be identi�ed and acted upon with a single name�

Reconciliation operates at the volume granularity� At reconciliation time�
replicas synchronize a single volume� When machines store multiple volumes�
reconciliation periodically executes separately on each volume�The reconciliation
interval controls the balance point between consistency and system load� Users
are free to customize or add intelligence such as load�threshold values to the
reconciliation interval�

A disadvantage of pure volume replication is that entire volumes must be
stored at each replica and reconciled as a whole� This is a signi�cant disadvan�
tage for a mobile computing system� where disk space available for storage may
be limited� and small quantities of bandwidth suitable for propagating only very
important updates might be available� Rumor overcomes this problem by selec�

tive replication �
�� and a per��le reconciliation mechanism� Selective replication
allows particular replicas to store only portions of a volume� while still guar�



�

anteeing correct operation� Per��le reconciliation permits individual �les to be
reconciled� rather than the entire volume� at much lower costs�

Reconciliation operates between a pair of communicating replicas in a one�
way� pull�oriented fashion� A one�way mode is more general than a two�way
model� and lends support for inherently uni�directional forms of communication�
such as �oppy�disk transfer� At reconciliation time� the target replica selects a
source replica with which to reconcile� selection is based on a number of criteria�
described below� Once a source replica has been identi�ed and contacted� rec�
onciliation ensures that the target learns all information known by the source�
This information includes gossip
 the source replica transfers not only its local
updates� but also all updates it has learned of from previous reconciliations with
other replicas� For instance� two machines that rarely or never directly commu�
nicate can still share data if a mutually�accessible third machine gossips on the
others� behalf�

Reconciliation involves only pairs of replicas� rather than all replicas� because
there is no guarantee that more than two will ever be simultaneously available�
For example� mobile computers operating in a portable workgroupmodemay only
be connected to a single other computer� Additionally� operating in a point�
to�point mode� with an underlying gossip�based transfer mechanism� allows a
more �exible and dynamically changeable network con�guration in terms of the
machines� accessibility from each other� Broadcast or multicast reconciliation will
often save signi�cant amounts of bandwidth� but they are not yet implemented
in Rumor�

Reconciliation is responsible for maintaining data consistency on all user�
nameable �les� Rumor uses Parker�s version vectors ��� to detect updates and
update�update con�icts �concurrent updates�� A version vector is a dynamic
vector of counters� with one counter per replica� Each counter i tracks the total
number of known updates generated by replica i� Each replica independently
maintains its own version vector for each replicated �le� by comparing two version
vectors� the update histories of the corresponding �le replicas can be compared�

The particular choices of communication partners between sites forms the
reconciliation topology� While the reconciliation algorithms are topology inde�
pendent� the actual topology can a�ect both the number of messages exchanged
between all replicas and the time required to reach consistency� Rumor utilizes
an adaptive ring between all volume replicas� which recon�gures itself in response
to current replica availability and provides that reconciliation occurs with the
next accessible ring member� In the extreme� if only two replicas are in com�
munication� the adaptive nature of the ring allows them to reconcile with each
other� The adaptive ring requires only a linear complexity in the number of vol�
ume replicas to propagate information to everyone� and additionally is robust to
network failures and recon�gurations� Due to its adaptive nature� the ring does
not require point�to�point links interconnecting all members� and thus allows
sharing to occur between rarely or never�communicating participants by relying
on third�party replicas to gossip on their behalf� However� the ring does not scale
well in number of replicas�



�

Rumor is designed to handle arbitrary numbers of replicas and correctly man�
age data consistency between all of them� Performance� rather than correctness�
dictates replication factor scaling for Rumor� Rumor scales gracefully to approx�
imately �� replicas of any given volume� An extension to Rumor� called Roam�
allows an order of magnitude better scaling �

��

Replicated systems face special problems when handling deallocation of sys�
tem resources �such as disk space� held by unnamed �le system objects� This
deallocation process is called garbage collection� In a centralized system� garbage
collection is relatively simple� Whenever the last name for a �le is deleted� all of
the �le�s resources can be reclaimed� Garbage collection is harder in a distributed�
replicated environment due to dynamic naming�Dynamic naming allows users to
generate new names for existing �les� since a �le should not be removed until all
names have been removed� including new names at remote replicas� local removal
of the last name may not indicate that the resources should be reclaimed� Rumor
uses a fully distributed� two�phase� coordinator�free algorithm to ensure that all
replicas learn of the garbage collection process and eventually complete it� even
though any given set of participants may never be simultaneously present� Ru�
mor enforces the Ficus no lost updates semantics ���� which guarantees that the
most recent data version will be preserved so long as the �le is globally accessible�

��� Rumor architecture

Rumor needs to manage attributes above and beyond the standard �le system
attributes� such as version vectors� All replication state is maintained by Rumor
in a lookaside database hidden within the volume� Currently� Rumor uses a
specially formatted �le for this database� but it could use any general database
facility that supports transactions� which are required to recover from failures
and unexpected terminations during execution�

The attribute database is not updated at �le modi�cation time� since Ru�
mor contains no kernel code and does not trap updates� Instead� updates are
detected at reconciliation time� By comparing �le modi�cation times� and oc�
casionally resorting to checksum comparisons� Rumor is guaranteed to detect
all �le updates� In the case of directories� a list of directory entries is utilized
instead of a checksum� in general� checksum comparisons are rare and only re�
quired in special circumstances involving explicit manipulation of timestamps or
updates that occur during reconciliations� Because the attribute database is only
periodically updated� transient �les created and removed between reconciliation
executions are never even noticed by Rumor� Such temporary �les are by de�ni�
tion unimportant� and periodic database updates saves the user the expense of
replicating such �les�

Reconciliation can be separated into three distinct phases
 scan� remote�

contacting� and recon� Figure 
 shows data and control �ows during reconcil�
iation� The scan phase is responsible for determining the set of �les in the vol�
ume� including detecting new �les� updating the attributes of existing �les� and
noticing the removal of previously managed �les� The remote�contacting phase
�nds a remote replica� informs it of the reconciliation� and performs a scan



�

Fig� �� Overall Rumor architecture� indicating control and data �ow�

at that remote replica� The recon phase takes the list of local �le attributes
and the list of remote �le attributes received from a remote replica during the
remote�contacting phase and compares the two� taking the appropriate action
�e�g�� update the local replica� as determined by a comparison of the two sets of
attributes�

The scan phase reads the previous set of �le attributes from the database and
recursively traverses the volume� detecting new �les and modifying the attributes
for previously known �les if they have been updated� Updates are detected by
examining modi�cation timestamps and occasionally checksums� or a list of di�
rectory entries for directories� If an update has occurred� Rumor increments the
version vector� obtains a new checksum� and updates the remaining attributes�
The scan phase detects �les that have been removed by the user by comparing
the output traversal with the list of �les from the previous scan� stored in the
attribute database� When the scan phase completes� Rumor writes the new list
of �les and attributes into the lookaside database and provides them to the recon
phase for processing�

The remote�contacting phase locates a remote replica of the volume accord�
ing to the reconciliation topology and obtains a list of that replica�s �les and
attributes� The remote site generates its list of �les and attributes simply by
initiating a scan phase on its volume� File data is not transferred during this
phase� unless reconciliation is using a uni�directional transport mechanism� such
as �oppy disks� In this case� data must be sent by the remote site because there
will be no further communications�

The recon phase performs the majority of the reconciliation work� Given the
two lists of �les and attributes� one local and one remote� �le versions are com�
pared and reconciliation actions are taken when appropriate� The comparison
can yield four di�erent results


� The local version dominates �is more recent than� the remote version� no
action need be taken� because the remote site will obtain the new version
when it initiates a reconciliation�






� The remote version dominates� a request for �le data is made of the remote
site�

� The two versions are equivalent� no action need be taken�

� The two versions con�ict �they each received concurrent updates�� con�ict�
resolving and processing actions are taken� Often the con�ict can be auto�
matically resolved �
��� but when it cannot� the user is noti�ed of the con�ict
by email along with instructions on how to resolve it�

The recon phase also detects new �les and deletions of old �les� Data is requested
for the new �les� and they are created locally� File removals are processed by
removing the appropriate local object and participating in the garbage collection
algorithm�

Data requests are serviced by an asynchronous server at the remote site� Data
requests are generated by the recon phase and are asynchronously processed by
the remote server� which returns �le data via the transport mechanism� Per�
forming the data request and transfer asynchronously allows the recon phase to
perform useful work during what would otherwise be wasted time waiting on
network transmissions�

Rumor interacts with the speci�c data transport mechanism with very sim�
ple operations� Currently supported transport mechanisms include NFS� rshell�
email� and �oppy�disks�

The asynchronous data server receives data requests and processes them by
performing a limited rescan of the �le to ensure that the attributes to be sent
with the �le data are up to date� File updates could have been generated between
the time that the list of �les was sent and the data request was received� and
Rumor does not trap such updates� Unless Rumor checks the attributes again
before sending the data� updates might not be propagated correctly in some
complex cases� Any new attributes are both written into the attribute database
and shipped to the recon phase on the other machine� Similarly� before installing
updates on the machine pulling the updates� Rumor must check the attributes
of the �le to ensure that simultaneous user activities have not updated them�
Otherwise� Rumor would not always propagate data properly and might miss
con�icting updates�

Rumor contains a selective replication facility that allows users to specify
which �les in a volume should be stored in a particular replica� Reconciliation
does not transport updates to �les that are not stored at the pulling site� How�
ever� such �les are scanned locally during each reconciliation� allowing the local
attribute database to be updated�

Reconciling an entire volume may be very costly when bandwidth is limited�
Rumor permits users to specify individual �les to be reconciled� giving the user
more control over the costs paid to maintain �le synchronization� This option
limits the costs of reconciliation to the costs of shipping metadata related to the
particular �le and� if necessary� the �le�s contents� Basically� single��le reconcili�
ation applies the Rumor reconciliation mechanism to one �le instead of an entire
volume�



�

Rumor itself provides no data transmission security� nor does it enforce poli�
cies on who may replicate particular �les� The Tru�es system �
�� works with
Rumor to provide those protections� Rumor provides the mechanism for portable
computer users to store local replicas of �les� but does not help them decide which
�les should be replicated� The Seer system ��� provides automatic �le hoarding
for this purpose� using Rumor as a replication mechanism to enforce Seer�s de�
cisions about which �les to hoard� Better secondary storage space management
is a growing requirement for portable computers�

� Performance

Determining the overall performance of an optimistically replicated system is
not easy ���� In particular� determining the degree to which the system achieves
the same semantics as a single�copy �le system can be very di	cult� The best
available data of this kind comes from �
�� and �
���While not directly measuring
Rumor� this data is suggestive of this aspect of Rumor�s performance�

Space permits only limited discussion of Rumor performance� but we include
data on two of the most importantmetrics
 the run time to perform reconciliation
on realistically large volumes and the disk storage overheads required to support
Rumor� Rumor�s design is such that both time and space overheads are more
visible with larger numbers of smaller �les� and so the data reported here focus
on that portion of the exploration space�

We ran experiments on reconciling updates to a large volume replicated on
two machines� The machines were Dell Latitude portable computers running ���
processors at 
�� MHz� with �� Mbytes of main memory� The communications
media was a dedicated Ethernet running no other tra	c� The test volume used
� Mbytes of disk space to store 
��� �les� the median �le size was � Kbytes� and
the maximum �le size was 

� Kbytes�

In the experiments� various percentages of �les in the volume were updated
on one replica� and the other replica invoked reconciliation to pull the updated
versions across� Figure � shows the resulting elapsed time to perform these rec�
onciliations� These measurements represent �ve runs at each graphed point� with
��� con�dence intervals displayed�

Reconciling a large volume with no updates thus took around � 
�� minutes�
Reconciling the same volume with 
�� of its �les �by number� not by size of data�
updated took a little less than � minutes� As Figure � shows� the increase in run
time is close to linear� Running a minimal recursively executed command that
only printed �le names on the same volume took ��� seconds� The reconciliation
times shown here are reasonable for periodic reconnections� such as via modem�
but ideally they should be shorter�

The disk overhead to store Rumor attributes and other necessary information
was ���� at each replica�

Figure � shows the number of bytes transported across the wire to perform
the reconciliations� These �gures include both the actual changed user data and
Rumor�s exchange of �le lists� as well as any other communications overheads



��

Fig� �� Rumor Reconciliation Times

Fig� �� Data Transferred During Reconciliation



��

added by Rumor� The maximum amount of data transferred was 
�� Mbytes�
Given the times required to perform reconciliation� even a modem could handle
the data transfer rate required by Rumor without further slowing down the
process�

Rumor has not been fully optimized for either space or time� The overheads
reported here could be improved signi�cantly with more optimization�

� Related Work

There are many replicated �le systems and database systems� Rumor�s ancestor
Ficus ���� which in turn was strongly in�uenced by Locus ���� shares many of
the same goals as Rumor� but did not address mobility concerns� CMU�s Coda
�
�� is an optimistic� client�server replication system targeted at mobility� The
optimistic Bayou �
�� system from Xerox PARC provides peer replication� but
requires application�aware con�ict detection and resolution� and does not yet
provide selective replication� Mitsubishi�s reconcile ��� facility was designed to
support multiplatform �DOS and Unix� replicated directories� but is not cur�
rently available�

A number of commercial �lesystem and database products support opti�
mistic replication to varying degrees� Novell Replication Services ��� supports
reconciliation�based� optimistic �le replication with selective replication� Sybase�s
Replication Server �
�� supports optimistic database replication� but the support�
ing documentation discourages such usage� Similarly� Oracle�s Oracle� relational
database product allows optimistic updates� and provides semantic tools to help
designers avoid con�icting updates wherever possible �
��

� Summary

The combination of principles embedded in the design and implementation of
Rumor is essential to e�ective mobile data access in the emerging computing
and communications environment of the �
st century� Optimistic� peer�to�peer�
reconciliation�based data replication techniques are well�suited to meet the chal�
lenges that lie ahead�

Rumor is a working system� implemented in an object�oriented style largely
using C�� �with support code in Perl�� A beta version of Rumor for Linux and
FreeBSD is available at http
���cus�www�cs�ucla�edu�rumor�

References

�� Alan R� Downing� Con�ict resolution in symmetric replication� In Proceedings of

the European Oracle User Group Conference� �����
�� Richard G� Guy� John S� Heidemann� Wai Mak� Thomas W� Page� Jr�� Gerald J�

Popek� and Dieter Rothmeier� Implementation of the Ficus replicated 
le sys�
tem� In USENIX Conference Proceedings� pages ������ Anaheim� CA� June �����
USENIX�



��

�� John H� Howard� Using reconciliation to share 
les between occasionally connected
computers� In Proceedings of the Fourth Workshop on Workstation Operating Sys�

tems� pages ������ Napa� California� October ����� IEEE�
�� Geo�rey H� Kuenning� Rajive Bagrodia� Richard G� Guy� Gerald J� Popek� Peter

Reiher� and An�I Wang� Measuring the quality of service of optimistic replication�
In Proceedings of the ECOOP Workshop on Mobility and Replication� Brussels�
Belgium� July ���
�

�� Geo�rey H� Kuenning and Gerald J� Popek� Automated hoarding for mobile com�
puters� In Proceedings of the ��th Symposium on Operating Systems Principles�
pages �������� St� Malo� France� October ����� ACM�

�� Novell� Inc� Novell Replication Services white paper� unpublished�
http���www�novell�com�whitepapers�nrs� �����

�� Thomas W� Page� Jr�� Richard G� Guy� John S� Heidemann� David H� Ratner�
Peter L� Reiher� Ashvin Goel� Geo�rey H� Kuenning� and Gerald J� Popek� Per�
spectives on optimistically replicated� peer�to�peer 
ling� Software�Practice and

Experience� �����	� December �����

� D� Stott Parker� Jr�� Gerald Popek� Gerard Rudisin� Allen Stoughton� Bruce J�

Walker� Evelyn Walton� Johanna M� Chow� David Edwards� Stephen Kiser� and
Charles Kline� Detection of mutual inconsistency in distributed systems� IEEE

Transactions on Software Engineering� ���	��������� May ��
��
�� Gerald J� Popek and Bruce J� Walker� The Locus Distributed System Architecture�

The MIT Press� ��
��
��� David H� Ratner� Selective replication� Fine�grain control of replicated 
les� Tech�

nical Report CSD�������� University of California� Los Angeles� March ����� Mas�
ter�s thesis�

��� David Howard Ratner� Roam� A Scalable Replication System for Mobile and Dis�

tributed Computing� PhD thesis� University of California� Los Angeles� Los Angeles�
CA� January ���
� Also available as UCLA CSD Technical Report UCLA�CSD�
�������

��� P� Reiher� T� Page� S� Crocker� J� Cook� and G� Popek� Tru�es�a secure service for
widespread 
le sharing� In Proceedings of the The Privacy and Security Research

Group Workshop on Network and Distributed System Security� February �����
��� Peter Reiher� John S� Heidemann� David Ratner� Gregory Skinner� and Gerald J�

Popek� Resolving 
le con�icts in the Ficus 
le system� In USENIX Conference

Proceedings� pages �
������ Boston� MA� June ����� USENIX�
��� Mahadev Satyanarayanan� James J� Kistler� Puneet Kumar� Maria E� Okasaki�

Ellen H� Siegel� and David C� Steere� Coda� A highly available 
le system for a dis�
tributed workstation environment� IEEE Transactions on Computers� ����	�����
���� April �����

��� Sybase� Inc� Sybase SQL Anywhere and Replication Server�
The enterprise wide replication solution� White paper�
http���www�sybase�com�
��products�system���repserv�html� ���
�

��� Douglas B� Terry� Marvin M� Theimer� Karin Petersen� Alan J� Demers� Mike J�
Spreitzer� and Carl H� Hauser� Managing update con�icts in Bayou� a weakly
connected replicated storage system� In Proceedings of the ��th Symposium on

Operating Systems Principles� pages �����
�� Copper Mountain Resort� Colorado�
December ����� ACM�

��� An�I A� Wang� Peter L� Reiher� and Rajive Bagrodia� A simulation framework for
evaluating replicated 
ling environments� Technical Report CSD������
� Univer�
sity of California� Los Angeles� June �����


