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Abstract—Routers or nodes on the Internet sometimes apply
link-layer or IP-level compression on traffic flows with no
knowledge of the end-hosts. If the end-host applications are
aware of the compression already provided by an intermediary,
they can save time and resources by not applying compression
themselves. The benefits from these savings are even greater in
mobile applications.

We present a probing technique to detect the compression of
traffic flows by intermediaries. Our technique is non-intrusive
and robust to cross traffic. It is entirely end-to-end, requiring
neither changes to nor information from intermediate nodes.
We present two different but similar approaches based on how
cooperative the end-hosts are. OQur proposed technique only
uses packet inter-arrival times for detection. It does not require
synchronized clocks at the sender and receiver. Simulations
and Internet experiments were used to evaluate our approach.
Our findings demonstrate an accurate detection of compression
applied to traffic flows by intermediaries.

I. INTRODUCTION

On the Internet, every packet sent goes through numerous
routers or intermediaries until it gets to the intended receiver.
While routing the traffic, these intermediaries, are potentially
capable of making serious changes to what happens to a traffic
stream on the network. One class of intermediaries makes no
changes to the content of the traffic, giving the appearance
that nothing has been done to the stream other than routing
it to the destination. This transparency property may make
end-to-end detection of such intermediaries harder in most
cases. The class of such intermediaries is very broad (e.g.,
performance enhancing proxies, VPN gateways, Internet cen-
sors, and network dissuasion [29]), and some intermediaries
have been deployed worldwide for decades. Investigating the
detectability of such intermediaries leads to two questions:
(1) can the sender or receiver (or both if they cooperate)
determine that something of this kind has been done if they
pay attention, and/or (ii) is it possible for such an intermediary
to work by stealth and remain undetected? Another example
of these intermediaries is that of network compression which
happens at intermediate nodes, rather transparently to the end-
hosts. As an example of determining the detectability of third
party influences of this kind, in this paper we investigate the
feasibility of detecting network compression on the path.

One way to increase network throughput is to compress
data that is being transmitted. Network compression may
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happen at different network layers and in different forms:

Application layer. Compression at the application layer
is widely used, specially for applications that use highly
compressible data such as VoIP and video streaming. At
the application layer, both compression and decompression
happen at the end-hosts.

TCP/IP header. Often header compression is possible when
there is significant redundancy between header fields; within
the headers of a single packet, but in particular between
consecutive packets belonging to the same flow. This is
mainly achieved by first sending header field information
that is expected to remain static for most of the lifetime
of the packet flow. Since these methods are used to avoid
sending unchanged header fields for a network flow, no data
compression algorithm is actually applied here [6].

Early TCP/IP header compressions such as CTP [17] and
IPHC [11] were designed for slow serial links of 32 kbps or
less to produce a significant performance impact [8]. More
recent header compressions have since been developed, such
as ROHC [19].

IP payload. TPComp [33] is the de facto method in
this case. LZS [12], Deflate [27], and ITUT v.44 [5] are
the well-known compression algorithms that work with
I[PComp. IPComp is generally used with IPsec. IP payload
compression is something of a niche optimization. It is
necessary because IP-level security converts IP payloads to
random bitstreams, defeating commonly deployed link-layer
compression mechanisms that are faced with payloads
which have no redundant information that can be more
compactly represented. However, many IP payloads are
already compressed (images, audio, video, or zipped files
being FTPed), or are already encrypted above the IP layer
(e.g., SSL). These payloads will typically not compress
further, limiting the benefit of this optimization. In general,
application-level compression can often outperform IPComp
because of the opportunity to use compression dictionaries
based on knowledge of the specific data being compressed.
This makes the mechanism less useful, and hence reduces the
need for IPComp [9].

Link layer. Commonly used link compression schemes
include the Stacker [13] and the Predictor [31][8]. The



Stacker compression algorithm is based on the Lempel-Ziv
[12] compression algorithm. The Predictor compression
scheme works by predicting the next sequence of characters
in a data stream using an index to look up a sequence in
a compression dictionary. There is no information on how
widely link-layer compression is used in practice.

Except for application-layer compression, compression hap-
pens at intermediate nodes, often without the knowledge of
end-users. For example, in January 2013, a researcher discov-
ered that Nokia had been applying compression to its users’
data without their knowledge [3]. In this case, the intermediary
was surreptitiously decrypting and re-encrypting user packets
in order to effectively apply compression. Users surely would
have preferred to know that this was happening, both because
of the security risk and because it would render their own
application-level compression unnecessary.

However, performing compression and decompression re-
quires many resources at the intermediate nodes, and the
resulting overhead can overload the intermediary’s queue,
causing delay and packet losses. Further, not all commercial
routers come with compression capabilities [16]. Thus, some
intermediaries apply compression, some do not, and generally
they do not tell end-users whether they do. While managing
resources effectively at end-hosts is not as crucial as it is at
routers, it is still beneficial—particularly for mobile devices
where resources are limited. Wasting these resources on redun-
dant compression is undesirable. End-hosts can benefit from
recognizing when compression has already being applied on
a network connection.

Ideally, end-hosts and intermediaries should coordinate their
compression decision, but practical problems make that ideal
unlikely. Therefore, since the end-hosts have the greatest
interest in proper compression choices for their data, they
could detect if intermediate compression is present and adjust
their behavior accordingly. An end-to-end approach to detect
compression by intermediaries can help to save end-hosts’
resources by not compressing data when intermediaries are
already doing so.

This paper describes a method to allow end-to-end detection
of intermediary-provided link-layer or IP-level compression.
Such an end-to-end approach does not require any changes to
or cooperation from intermediary nodes, making its deploy-
ment and use much more practical. We propose two end-to-
end approaches based on a receiver’s cooperativeness in the
detection process. A cooperative receiver is willing to make
necessary changes on its machine or system to fully cooperate
with the sender in the detection process. A responsive receiver
only responds to the sender’s requests as long as they do not
require any changes on the receiver’s machine. For example,
our approach assumes that the receiver responds to the sender’s
ICMP requests. This paper deals with a single-sender/single-
receiver path of a communication network. Our approach is
resilient to cross traffic and other Internet variabilities, and is
non-intrusive, making it both practical and deployable. Also,
our proposed solution uses only regular unicast probes, and

thus it is applicable in today’s Internet.

Simulation and Internet experiments show that our approach
works. Our approach detects both software and hardware com-
pression. We use only the relative delays between arrival times
of our probing packets for detection, so clock synchronization
is unnecessary. The approach requires no special network
support. However, it is not designed to detect compressions
that are not based on entropy of data, such as dictionary-based
or TCP/IP packet header compression.

While IPComp is not widely used, there is no evidence
related to how commonly link-layer compression is deployed.
Knowing this is essential before performing further research
in this direction, which suggests an investigation of the preva-
lence of link-layer compression as a next step. We plan to use
our findings here in a longitudinal study of the prevalence of
this type of compression in the Internet.

End-to-end detection of compression by intermediaries is
also valuable for bandwidth availability and capacity estima-
tion. Bandwidth availability and path capacity are among the
most important characteristics of Internet paths. IP-level and
link-layer compression directly influence the estimation of
these path properties, since compression has a considerable
effect on the assessment of both capacity and bandwidth. Not
taking such effects into consideration will lead to bandwidth
or capacity under- or overestimation.

While investigating the detectability of link-layer compres-
sion is valuable by itself, we believe this work is the beginning
of a much broader area of research — that is, exploring
the detectability of the class of intermediaries that influences
traffic but leaves the packet payloads within the traffic stream
unchanged. This area, in turn, feeds into the highly important
research question of what, in general, can an end user know
about what happens to the packets he submits to the Internet.

The remainder of the paper is organized as follows: Section
II presents related work, followed by detection methodology in
Section III. Implementation, simulations, Internet evaluation,
and discussion are presented in Sections 1V, V, VI, and VII
respectively. Section VIII concludes the paper.

II. RELATED WORK

While the problem of detecting compression has not been
addressed in the literature in the past, the detection of
the presence of redundancy elimination (RE) on bandwidth-
constrained links has. RE-enabled routers identify, and then,
remove redundant packets (i.e., multiple copies of the same
packet) [4]. Han et al. [15] briefly outline an approach to
detecting RE-enabled routers on the path and leave elaboration
and implementation to future work. The detection of compres-
sion, however, is different from detecting RE-enabled routers
on the path, since the two third parties are looking to reduce
(or ideally eliminate) different kinds of redundancies.

Because of the nature of network compression effects on the
available bandwidth and the fact that our approach is inspired
by the algorithms used to estimate bandwidth, in this section
we present end-to-end techniques and tools for measurements
of the available bandwidth and capacity of a network path. The



problem of bandwidth estimation has been extensively studied
in the past. Many approaches are designed for cooperative end-
hosts, and some are designed to work with responsive hosts.

End-to-end active probing schemes for bandwidth estima-
tion are classified into three categories [30]: Packet Pair/Train
Dispersion (PPTD), Self-Loading Periodic Streams (SLoPS),
and Trains of Packet Pairs (TOPP). In this section we briefly
describe each of these techniques.

A. Packet Pair/Train Dispersion (PPTD)

The packet-pair technique was first introduced by Keshav
[20]. In this technique, the source sends multiple pairs of pack-
ets to the receiver. Each packet pair consists of two packets
of the same size sent back-to-back. Then, the dispersion of a
packet pair is used to measure the capacity of the path. The
dispersion of a packet pair, J;, at a particular link of the path,
is defined as the time distance between the last bit of each
packet. With the assumption of no cross traffic, d; is:

§; = max ((M,é) (D

where §;- is the the dispersion prior to the link C;, L is the
packet size, and dp = L/Cy.

Measuring the dispersion at the receiver, dg, is what is used
to estimate the path capacity, C' (H is the number of hops
between the end-hosts):
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Jain et al. [18] extended the packet-pair probing technique
to packet trains, where more than two packets are sent back-
to-back. The dispersion of a packet train at a link is defined
as the time between the last bits of the first and last packets
in the train.

PPTD probing techniques typically require cooperative end-
hosts. It is, however, possible to perform PPTD measurements
with only a responsive receiver. In that case, the receiver
is expected to, for instance, respond to ICMP messages.
However, the reverse path capacities and cross traffic may
affect the results.

B. Self-Loading Periodic Streams (SLoPS)

SLoPS is a another methodology for measuring end-to-end
available bandwidth. In this technique, the sender periodically
sends a number of equal-sized packets to the receiver at a
certain rate. This measurement methodology involves moni-
toring the arrival time variations of the probing packets. If the
sending rate is greater than the path’s available bandwidth, it
will overload the queue of the bottleneck, which results in an
increasing trend of one-way delay.

On the other hand, if the stream rate is lower than the
available bandwidth, the probing packets will go through the
path without overloading the queue: thus we do not expect to

see an increasing trend. In this approach, the sender, through
iterations, attempts to adjust the sending rate to get close to
the available bandwidth.

C. Trains of Packet Pairs (TOPP)

Unlike the Self-Loading Periodic Streams technique that
measures the end-to-end one-way delays of a packet train
arriving at the receiver, TOPP [25] increases the sending rate
(Rs) until a point where the sender is sending faster than the
path capacity (C). The receiver cannot receive faster than the
available bandwidth at the bottleneck (Rr < Rg), so further
increasing the sending rate above the available capacity means
that the packets will get queued at the intermediate routers. As
long as the sender is still sending within the path capacity, the
receiving rate is not more than the available capacity. Thus,
the ratio of sending rate to receiving rate is close to unity (i.e.,
Rr = Rg). Hence, TOPP estimates the available bandwidth
to be the maximum sending rate such that Rg ~ Rp. The
following equation is used to estimate the capacity C' from
the slope of Rs/Rg versus Rg:

Rs __Rs "
Rr Rs + Re

where Rc is the average cross traffic rate. TOPP is quite

similar to SLoPS. In fact, most of the differences between

the two methods are related to the statistical processing of the

measurements.

Table I summarizes some of the publicly available band-
width estimation tools and the methodology used in their
underlying estimation algorithm.

TABLE 1
END-TO-END BANDWIDTH ESTIMATION TOOLS

Tool Measurement Metric = Methodology
bing Path capacity PPTD
bprobe Path capacity PPTD
nettimer Path capacity PPTD
pathrate Path capacity PPTD
sprobe Path capacity TOPP
cprobe Available bandwdith PPTD
pipechar Available bandwdith PPTD
pathload Available bandwdith SLoPS
1GI Available bandwdith SLoPS
pathchirp  Available bandwdith SLoPS

III. DETECTION METHODOLOGY
A. Assumptions

In our approach to detecting compression on a path, we
assumed that the network consists of a series of store-and-
forward nodes; each of them is equipped with a FIFO queue
and has a constant service rate. We also assume that the
packet delay results from propagation delay, service time and
variable queuing delay. Lastly, our approach is based on the
assumption that, in the absence of compression, packets of the



same size are not treated differently based on the entropy of
their payload.

B. Approach Overview

To detect if compression is provided on the network we ex-
ploit the unique effects of compression on network flows. As-
suming the original packets were of the same size, compressed
low entropy data packets are expected to be considerably
smaller than compressed packets containing high entropy data,
which in turn leads to a shorter transmission delay. The added
processing delay (d¢) caused by compression/decompression
methods for low entropy packets is not greater than the high
entropy packets (d¢, < dc, where L: low entropy, H: high
entropy) [32]. Based on these facts, the sketch of our approach
is as follows:

Send a train of fixed-size packets back-to-back with pay-
loads consisting of only low entropy data. Then send a similar
train of packets, except these payloads contain high entropy
data instead. We then measure the arrival times of the first
and the last packet in the train, independently for low entropy
(tr, and ty,,, where IV is the number of packets in a single
train) and high entropy (tm, and g, ) packet trains. Since
the number of packets in the two trains is known and all of
the packets have the same uncompressed size, the following
inequality will hold if some kind of a network compression is
performed on the path:

AtLZtLN —tr, <AtH=tHN—tH1 5

The inequality (5) suggests that the total set of highly
compressible low entropy packets gets to the destination
faster than the set of less compressible high entropy packets.
Conversely, if the packets are not being compressed by any
intermediary, then the two sides of the inequality (5) should
be almost equal. This suggests that a threshold should be
specified to distinguish effects of compression from normal
Internet variabilities:

Atg — Aty > 1 (6)

The underlying rationale behind this approach is that be-
cause of the presence of compression and decompression, the
receiving party should sense a relatively higher bandwidth
when the train of low entropy data is sent, since the same
amount of data is received, but in shorter time.

IV. IMPLEMENTATION

We used UDP packets to generate our probe train. When the
receiver is cooperative, with the help of two TCP connections
before and after the probe UDP train, the sender is able to
send experiment parameters to the receiver, and the receiver
uses the second TCP connection to send the recorded arrival
times of the received packets to the sender for further analysis.

If the receiver does not cooperate, but is responsive, we
attached an ICMP ping request packet to the head and tail of
the UDP probing train. In this way, the sender performs the
detection by analyzing the difference between the arrival time

of the two ICMP ping reply packets, without relying on the
receiver to provide any measurement information.

Our techniques are not designed to handle receivers who
are neither cooperative nor responsive.

A. Content of packet’s payload

The payloads of the low entropy packets are filled with
0’s. The payloads of the high entropy packets are filled with
random bytes read from /dev/random, independently for
each new experiment.

B. Packet size

Dovrolis et al. [10] argued that a maximum transmission
unit (MTU) is not optimal for accurate bandwidth estimation.
However, we used large packet size probes (1100 bytes) since
the larger the packets, the more apparent are the effects of
compression, which in turn leads to a more accurate detection.
We emphasize that while our technique is based on measuring
the bandwidth, for detecting compression we do not need to
estimate the bandwidth accurately.

C. Inter-packet departure spacing

In our experiments we use an empirically set value of 100 p-
sec. In general, this number should not be too small to ensure
that our experiment does not result in queuing overflows in
the intermediate routers. Conversely, this value should not be
too large, since sending the packets at a slow rate removes the
aggregate effects of compression on the traffic flow.

D. Number of measurements

The presence of cross traffic, on average, differs at certain
times of the day and follows a particular pattern [34]. By
performing measurements throughout the day, we hope to
capture the effects of time-dependent cross traffic variation.
We ran each scenario at every hour throughout an entire day,
resulting in a total of 24 measurements.

E. Threshold

The selection of this value highly depends on the time
precision and resolution of the machine performing the mea-
surement time analysis. If the time precision on a typical
machine with a typical operating system is 10 ms [26], then
we believe any value at least an order of magnitude higher
(e.g. 100 ms) is a suitable selection for this parameter.

F. Number of packets

A careful selection of this number is vital, since a small
train may not be sufficient to introduce a noticeable gap of
aggregate compression, and on the other hand, a large number
of packets would make our approach highly intrusive. In the
next section, we show, through simulations, that this number
is positively correlated with the available bandwidth. In our
experiments we used 6000 packets for each train. Section VI.B
shows that this number is sufficient without being intrusive
(Section VILA).



V. SIMULATIONS

We simulated our approach using the ns-3 simulator [2]
under different network scenarios using the simple topology

depicted in Fig. 1.
‘ e Compression Link e Q
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Fig. 1.

Topology used for simulation

We used simulation to investigate how network character-
istics can influence our detection rate. Each of the following
subsections refer to a particular scenario. Within each subsec-
tion, we first describe the scenario setup, then finally present
the obtained results.

A. Scenario 1

In the first scenario we tested our approach using the
topology in Fig. 1 when the capacity of all three links are equal
(Fig. 2). As these results show, we can detect compression on
a 100 Kbps or 5 Mbps link with a 100 msec threshold and a
small to moderate number of packets.
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Fig. 2. Comparison of number of probe packets required for detection for
different bandwidths (in log-scale).

While the results verify our proposed approach, they show
that in our detection mechanism, as the path capacity gets
higher, more probe packets are required for the detection of
compression effects. With 100 Mbps links, we cannot detect
at a threshold of 100 msec even with 6000 packets. The trend
of the curve suggests we would need several thousand more
packets. This observation suggests that both the path capacity
and the available bandwidth of the path in question have direct
effects on the number of packets required for each measure-
ment. It also suggests that a relative orders-of-magnitude larger
number of probe packets is required for detection in high speed
networks (e.g., 1Gbps). However, this is not a major disad-
vantage for our approach, since compression on high-speed
networks is rarely deployed because the hardware required for
compression for high-speed networks is expensive. In addition,
the typical hardware compression components have proved to
be unable to compress/decompress fast enough for a high-
speed network, thus creating a bottleneck on that link.

B. Scenario 11

In this scenario we examined the relationship between how
effective the deployed compression is and the detection rate
of our detection scheme.! To carry out this simulation, we set
the link capacity of the first and last links to a fixed rate of
5Mbps. We then ran the simulation on numerous values for
the link capacity of the compression link, C = {1,4,5,6}
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Fig. 3. Comparison of scenarios based on how narrow the compression

bottleneck link is (in log-scale).

As the results show (Fig. 3), our detection works well only
when the compression link is indeed the bottleneck of the path.
There is a correlation between how narrow the compression
link is compared to the overall path capacity, and the number
of probe packets needed to detect compression. The narrower
the link, the smaller the number of the probe packets needed
for detection. In fact, sometimes an order-of-magnitude fewer
packets are needed, while maintaining approximately the same
detection accuracy.

This stems from the fact that the effects of compression are
more significant as the bottleneck becomes very narrow. On
the other hand, compression is ineffective when it is not on the
bottleneck. The result is that our detection method becomes
rather ineffective (6 Mbps case in Fig. 3). However, we know
that employing compression when it is not placed on the
bottleneck link is a poor practice. For this reason, we expect
that similar scenarios are relatively rare to find in practice, and
hence this makes handling such scenarios less important. To
summarize, simulation has confirmed that our approach detects
only effective compression.

VI. INTERNET EVALUATION

In this section, we present our Internet evaluation to confirm
that our method works on a real network. Here, we begin with
the experiment setup, and follow with a demonstration of the
results and an analysis.

A. Experiment Setup

To simulate the effects of link-layer, we used the Click
Modular Software Router [21]. The experiment environment
and topology setup is depicted in Fig. 4. The compression and
decompression components, as well as the receiver, were all

ICompression efficiency is determined by how much the packet size is
reduced by applying the compression algorithm [19].
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Fig. 4. Environment used in our experiments

located in UCLA. The senders are, however, remote PlanetLab
[1] nodes. We implemented LZCompressor and LZDecom-
pressor Click elements for our experiment.> Also, we reduced
the sending transmission rate from the compression element
to 1Mbps, making the compression link the narrow link of the
path. Note that to confirm that our compression link is indeed
the bottleneck, we used pathrate [10], a capacity estimation
tools that has been proven experimentally to work well with
PlanetLab nodes [22].

We could have placed both the sender and the receiver
remotely and simulated a single bottleneck link on the path
by routing the traffic stream through our local network. But
by using a remote sender and a local receiver, we simulate a
more common scenario, ensuring that the experiment matches
the no-valley property, which derives from the provider-to-
customer relationship and is the most commonly adopted
routing policy by ASes [14], [35].

B. Results

A set of ten geographically distributed PlanetLab nodes con-
nected via the open Internet were selected for our experiment
(Table IT). We define an experiment scenario uniquely as three
elements: (1) a remote PlanetLab node, (2) whether we applied
link-layer compression or not in the experiment, and (3)
whether the cooperative receiver approach or the responsive
receiver approach was used to detect compression in the
experiment. For every scenario, we performed 24 individual
experiments, within a span of 24 hours, running only one
experiment every hour.

Compression
10 4
No Compression

Number of measurements

[
0 2 4 6

AtH - AtL (S)

Fig. 5. Histogram of Aty — Aty for two sets of 24 measurements from a
PlanetLab node in Singapore (the gray region indicates the gap between the
means of the two distributions).

2Qur code and implemented ns—3 and Click elements are available
publicly on http://lasr.cs.ucla.edu/vahab/Taracom. The implementation details
are presented in our technical report [28].

To illustrate how the aggregate data looks, we depicted
the measurement histogram for one node when testing with
the cooperative receiver (Fig. 5). Looking at the histogram,
we observe that each set of data can be described by a
normal distribution. The noticeable gap between the two
distributions is an indication of the compression effects. Also,
another observation is that the measurements are slightly more
spread for compression than non-compression. As discussed
in Section IV, we use different sets of random bytes for
the payloads of high entropy probe packets used for each
experiment. This results in inconsistent compression ratios,
which we suspect are responsible for the wider spread of
timings when compression is applied.

Table II summarizes our results for all the experiment
scenarios we performed by illustrating the normal distribution
parameters in each scenario. The results confirm the existence
of a significant gap in the presence and absence of network
compression for all scenarios tested.

An observation from Table II is that the distributions for
the responsive approach scenarios are relatively more spread
compared to those of the cooperative approach. This is because
in the responsive receiver approach, the ICMP reply packets
travel the reverse path back to the sender, adding additional
variability to the delay observations. In addition, since the
effects of double compression are not very different than
effects from single compression, a different kind of obser-
vation from our results suggests that, except for our own
intermediary compression, there is no effective compression
provided between the end-hosts selected in our scenarios in
the duration of our experiment.
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Fig. 6. Comparison of the number of probe packets used for detection when
using only a single measurement from three geographically diverse distant
PlanetLab nodes.

Fig. 6 demonstrates the difference between the duration of
the packet trains between high and low entropy for three dif-
ferent nodes, when considering only their first measurements.
As can be seen, the plots are not as linear as those presented in
the simulations in Section V.A where the measurements were
performed in a clean and more controlled environment, yet
they follow a similar increasing trend.

VII. DISCUSSION
A. Desirable Characteristics

In general, for any end-to-end active network measurements
there is a set of desirable, and in some cases necessary,



Cooperative Receiver Responsive Receiver

Compression | No Compression Compression | No Compression

Aty — Aty Aty — At Aty — Atr, Aty — Aty
Location IP Address Est RTT o o I o o o o o
Singapore 203.30.39.238 201 5119 300 54 320 5010 430 78 450
California 128.111.52.59 5 5052 640 -42 290 4870 890 18 360
Brazil 200.17.202.195 188 5000 450 -46 130 5120 470 -35 620
Czech Republic  147.229.10.250 190 4389 440 -34 230 4102 830 25 1020
New Zealand 130.195.4.69 136 4632 530 79 410 5103 1050 -10 1205
Massachusetts 75.130.96.13 80 5388 410 13 230 5202 410 28 730
Canada 216.48.80.12 94 4624 440 161 700 4700 450 130 410
Sweden 192.16.125.11 185 1601 1220 115 390 2440 | 1300 150 1380
South Korea 143.248.55.128 173 4823 | 1140 155 550 4322 930 94 1100
Australia 130.194.252.8 188 4827 500 50 550 4730 780 -12 1240

TABLE II

SUMMARY OF THE RESULTS FROM THE INTERNET EXPERIMENTS (MSEC).

characteristics that should be satisfied.

1) Working with uncooperative intermediaries: Obtaining
any information directly from routers is usually impossible,
so end-to-end measurements should not rely on cooperation
from them.

2) Robust against cross traffic: Cross traffic is usually
present and can significantly affect the network measurements.
Hence, measurement mechanisms should be accurate even
in the presence of cross traffic. In addition, no assumption
should be made on the characteristics of the cross traffic when
considering its impact on the measurement.

We ran our experiment for a span of 24 hours and from
different parts of the world. While we cannot truly confirm
that during our measurements the network path experienced
high volumes of cross traffic and congestion, the experiments
were performed in realistic scenarios, accurately discovering
the effects of compression in all of the scenarios. Normally
(unless there is an ongoing long-term DDoS attack), cross
traffic and high levels of congestion on a particular path persist
for only a limited amount of time [24].

3) Non-intrusive: Any detection approach using network
measurements should not significantly affect the traffic in the
path or the throughput of the other connections. If some active
probing is necessary, it should be minimized. Also, a non-
intrusive network measurement technique should not affect the
actual property being measured. Our experiment consists of
two sets of 6000 packets of 1100 bytes each; the sets are sent
one minute apart. Each set adds up to a total size of 6.6 MB,
which is equivalent to the size of a typical high-quality MP3
song [7].

4) Short measurement time: Short measurement time is
desirable, but not always required. For instance, it is required
for available bandwidth measurements because the average
available bandwidth can change over time; therefore, it is
important to measure it quickly. On the other hand, IP-level
or link-layer compression on the path is likely to persist for a
longer period, so a quick measurement is less vital.

5) Minimal performance overhead: Minimal overhead en-
sures that the measurement can be performed on typical
machines with typical resources, and also that it does not
interfere with other processes running on those machines.

B. Timestamp Precision and Resolution Effects on Detection
Quality

End-hosts that perform Internet measurements can introduce
delays and bottlenecks that are due to hardware or operating
system effects and have nothing to do with the network
behavior they are measuring. This problem is particularly
acute when the timestamping of network events occurs at the
application level.

Clearly the more accurately we can measure the time, the
better the outcome of the detection process. This is also true
as the end-hosts use more accurate time resolution. However,
in devising our technique and in the implementation of our
experiments, we intentionally used only standard hardware
and software. For instance, we avoided using any special
hardware components for precise timestamping of packet
arrivals, capturing packets at the kernel level, or packet sniffing
applications such as libpcap [23]. This was done to ensure
that our detection technique works for typical end-hosts with
typical machines and resources. Our results confirmed this.

VIII. CONCLUDING REMARKS

In this paper we examined the feasibility of detecting
whether intermediaries have performed compression on the
path. We presented an end-to-end packet-train-like approach
that works in both cooperative and responsive environments.
Our Internet experiments confirmed our detection approach.
While this work constitutes a significance advance, we believe
that this is just the beginning of further research in this
direction.

Currently, there is no information about how commonly
link-layer compression is deployed. This suggests that the next
step will be an investigation of the prevalence of link-layer
compression. We believe this realization is important before
proceeding with further research in this direction. We plan
to examine the prevalence of link-layer compression in the
Internet, using our findings presented in this paper. Based on
these results, we will be able to take further steps to complete
this research.

For practical purposes, a desirable tool should be able to
do the detection with just a few measurements—and ideally,



with only one. A lightweight probing technique could even be
more attractive and useful, particularly for mobile applications
where resources are limited. But, a tool that only takes one
or a few measurements should respond to variability well,
as it then requires dealing with clock skew and time preci-
sion, context-switching effects, congestion, etc. Besides, an
automated method for assessing suitable values for detection
process parameters based on the network environment is also
beneficial for any automated network tool.

The existing bandwidth and capacity estimation techniques
do not take into consideration the presence of compression.
Another significant focus of future work would be to test and
observe how accurately the current tools respond, and how
they should be adjusted, in the presence of compression on
the path.

An area that makes our approach particularly attractive is the
mobile environment, since mobile devices typically have con-
siderably lower available bandwidth. We will test our approach
in a mobile environment where some of its characteristics are
different from the wired Internet results reported here. For
example, we will experiment with considerably higher loss
rates. We will expand our approach so that it also works in
this type of environment.

Finally, as suggested in the introduction, detecting compres-
sion is one important element of the more general problem of
detecting all third-party influences on packets submitted to the
Internet. Currently, users can learn very little about the fate of
their traffic once it is sent. Ideally, for many good reasons, they
should be able to know more. From a pure research point of
view, it would be valuable to better understand what is possible
to know about traffic handling on the Internet, and what can
be done to acquire this knowledge. This work represents a step
in improving that knowledge.
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