
CS 70 FALL 2007 — DISCUSSION #2

ASSANE GUEYE, LUQMAN HODGKINSON, AND VAHAB POURNAGHSHBAND

1. Administrivia

(1) Course Information
• Reminder: The second homework is due September 13th at 5pm in 283

Soda Hall
• Mark your calendar:

First Midterm: Wednesday 10/3, 6-8pm, in 10 Evans
Second Midterm: Thursday 11/15, 7-9pm, in 10 Evans

(2) Discussion Information
• The first homework is graded and will be distributed in section.
• Section 105 (5-6pm) is very undersubscribed, so if you are in sections

101, 102, or 104, you are encouraged to switch to section 105 if your
schedule permits.

2. Algebraic Inductions

Let’s try some practice induction problems that look like those covered in lecture
this week.

Exercise 1. Prove that 12 + 32 + ... + (2n + 1)2 = (n + 1)(2n + 1)(2n + 3)/3. �

Exercise 2. (i) A geometric series is an infinite sum of the form 1+x+x2+x3+
x4 + . . . for some real x. Prove that the series’ partial sum 1+x+x2 + . . .+xn

equals x
n+1

−1
x−1

. Many times a guess is good and then you can use induction
to actually prove it.

(ii) An arithmetic series is a series of the form
∑

∞

i=1 ak where ak+1 = ak + d
for each positive integer k and a1, d ∈ R are picked arbitrarily. Find the
closed-form partial sum of this series and prove your result by induction.

�

Exercise 3. Prove:
∏n

i=2(1 − 1
i
) = 1

n
(∀n ∈ N). �

3. Strong Induction: Sums of Fibonacci & Recursion

Many of you may have heard of the Fibonacci sequence. We define F1 = 1, F2 =
1, and then define the rest of the sequence recursively: for k ≥ 3, Fk = Fk−1+Fk−2.
So the sequence ends up looking like:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

While not all positive integers are Fibonacci (e.g. 4), surprisingly we can express
any positive integer as the sum of distinct terms in the Fibonacci sequence.
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Theorem 1. Every positive integer n can be expressed as the sum of distinct terms

in the Fibonacci sequence.

Exercise 4. Prove Theorem 1. �

Exercise 5. Let the sequence a0, a1, a2, . . . be defined by the recurrence relation
an = 2an−1 − an−2 for n ≥ 2 and a0 = 1, a1 = 2.
Prove: an ≤ n + 2 for all n ≥ 0. �

Exercise 6. Stirling numbers

The Stirling number of the second kind, S(n, k), n, k ∈ N is defined as the
partition of {1, 2, . . . , n} into exactly k non-empty subsets with the convention
S(0, 0) = 1 and S(n, 0) = 0 for all n > 0.

(1) Compute S(n, k) for k > n, S(n, n) for all n, S(n, 1) for all n.
(2) Argue that S(n, n − 1) =

(

n

2

)

, and S(n, 2) = 2n−1 − 1.
(3) Show that the Stirling number satisfy the recurrence equation S(n, k) =

S(n − 1, k − 1) + kS(n − 1, k).
(4) Show that for all integer n and for all real number x

xn =
∑

k

S(n, k)xk

where xk is defined such that xk+1 = xk+1(x − k).
Hint: note that xxk+1 = xk+1 + kxk.

�


