
CS 70 FALL 2007 — DISCUSSION #2

ASSANE GUEYE, LUQMAN HODGKINSON, AND VAHAB POURNAGHSHBAND

1. Administrivia

(1) Course Information
• Reminder: The second homework is due September 13th at 5pm in 283

Soda Hall
• Mark your calendar:

First Midterm: Wednesday 10/3, 6-8pm, in 10 Evans
Second Midterm: Thursday 11/15, 7-9pm, in 10 Evans

(2) Discussion Information
• The first homework is graded and will be distributed in section.
• Section 105 (5-6pm) is very undersubscribed, so if you are in sections

101, 102, or 104, you are encouraged to switch to section 105 if your
schedule permits.

2. Algebraic Inductions

Let’s try some practice induction problems that look like those covered in lecture
this week.

Exercise 1. Prove that 12 + 32 + ... + (2n + 1)2 = (n + 1)(2n + 1)(2n + 3)/3. �

Exercise 2. (i) A geometric series is an infinite sum of the form 1+x+x2+x3+
x4 + . . . for some real x. Prove that the series’ partial sum 1+x+x2 + . . .+xn

equals xn+1
−1

x−1
. Many times a guess is good and then you can use induction

to actually prove it.
(ii) An arithmetic series is a series of the form

∑

∞

i=1 ak where ak+1 = ak + d
for each positive integer k and a1, d ∈ R are picked arbitrarily. Find the
closed-form partial sum of this series and prove your result by induction.

�

Exercise 3. Prove:
∏n

i=2(1 − 1
i
) = 1

n
(∀n ∈ N). �

3. Strong Induction: Sums of Fibonacci & Recursion

Many of you may have heard of the Fibonacci sequence. We define F1 = 1, F2 =
1, and then define the rest of the sequence recursively: for k ≥ 3, Fk = Fk−1+Fk−2.
So the sequence ends up looking like:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

While not all positive integers are Fibonacci (e.g. 4), surprisingly we can express
any positive integer as the sum of distinct terms in the Fibonacci sequence.
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Theorem 1. Every positive integer n can be expressed as the sum of distinct terms

in the Fibonacci sequence.

Exercise 4. Prove Theorem 1. �

Proof. Let P (n) be the statement that n can be expressed as the sum of distinct
terms in the Fibonacci sequence. We begin with the base case n = 1. Since 1 is a
term in the Fibonacci sequence (namely F1), then P (1) is true.

Now we proceed to the inductive step. We wish to show that P (1)∧P (2)∧ · · · ∧
P (n) =⇒ P (n + 1). So assume that P (1), P (2), . . . , P (n) hold. Now we consider
n + 1. There are two cases:

(1) n + 1 is itself a Fibonacci number.
(2) n + 1 is not a Fibonacci number.

If the former holds, then we’re done. If the latter holds, then there must exist some
positive integer k such that

Fk < n + 1 < Fk+1.

Since Fk < n+1, we may decompose n+1 into Fk +(n+1−Fk). But by definition,
(n + 1−Fk) < n + 1 so by the inductive hypothesis we know that P (n + 1−Fk) is
true, hence it may be expressed as such:

n + 1 − Fk = Fi1 + Fi2 + · · · + Fim

where the subscripts are distinct.

Lemma 1.1. Fk, Fi1 , Fi2 , · · · , Fim
are distinct.

Proof.

(1) Fi1 , Fi2 , · · · , Fim
are distinct by the inductive hypothesis (i.e. P (n+1−Fk)

is true).
(2) Fk 6∈ {Fi1 , Fi2 , · · · , Fim

}
Proof by contradiction: Let s = n + 1 − Fk, so n + 1 = s + Fk where s =
Fi1 +Fi2 +· · ·+Fim

. We know Fk−1+Fk = Fk+1 and Fk−1 < Fk < Fk+1 for
k > 2; hence, Fk+Fk = 2Fk > Fk+1. Now assume Fk ∈ {Fi1 , Fi2 , · · · , Fim

};
therefore, n + 1 = 2Fk +

∑

Fj which implies Fk < n + 1 < Fk+1 < 2Fk <
n + 1 and that is a contradition.

Therefore we have

n + 1 = Fk + Fi1 + Fi2 + · · · + Fim

and P (n + 1) holds. Thus by strong induction, P (n) holds for all n ≥ 1.
�

Exercise 5. Let the sequence a0, a1, a2, . . . be defined by the recurrence relation
an = 2an−1 − an−2 for n ≥ 2 and a0 = 1, a1 = 2.
Prove: an ≤ n + 2 for all n ≥ 0. �

Proof. We prove the stronger claim that an = n + 1. Let P (n) = “an = n + 1.”
Then we claim that ∀n ∈ N. P (n).
Proof by strong induction:

• Base cases: P (0) and P (1) are trivially true.
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• Inductive step: We need to show that P (n) =⇒ P (n + 1) holds for all
n ≥ 2.
We have

an+1 = 2an − an−1(by definition)

= 2(n + 1) − n(by the inductive hypothesis)

= n + 2.(by the distributive property, and simplification)

Thus ∀n ∈ N. an = n + 1.
Now since an = n + 1 and n + 1 ≤ n + 2, an ≤ n + 2 by substitution. Hence, the
original claim is true as well.

Notice how strengthening the claim actually made it easier to prove the theorem.
Here is a case where it is easier to prove more than to prove less. This happens not
infrequently with induction proofs, and it is a trick worth knowing about. �

Exercise 6. Stirling numbers

The Stirling number of the second kind, S(n, k), n, k ∈ N is defined as the
partition of {1, 2, . . . , n} into exactly k non-empty subsets with the convention
S(0, 0) = 1 and S(n, 0) = 0 for all n > 0.

(1) Compute S(n, k) for k > n, S(n, n) for all n, S(n, 1) for all n.
(2) Argue that S(n, n − 1) =

(

n

2

)

, and S(n, 2) = 2n−1 − 1.
(3) Show that the Stirling number satisfy the recurrence equation S(n, k) =

S(n − 1, k − 1) + kS(n − 1, k).
(4) Show that for all integer n and for all real number x

xn =
∑

k

S(n, k)xk

where xk is defined such that xk+1 = xk+1(x − k).
Hint: note that xxk+1 = xk+1 + kxk.

�


