
CS 70 SPRING 2007 — DISCUSSION #2

VAHAB POURNAGHSHBAND

1. Administrivia

(1) Course Information
• Reminder: The first homework is due January 30st at 3pm in 283 Soda

Hall
(2) Discussion Information

• If you have a clash, it is OK to attend a section different to your
enrolled/wait-listed one. Just be sure to show up so that we can ‘as-
sign’ you somewhere based on the roles taken in sections in the first
few weeks.

2. Algebraic Inductions

Let’s try some practice induction problems that look like those covered in lecture
this week.

Exercise 1. Prove that 12 + 32 + ... + (2n + 1)2 = (n + 1)(2n + 1)(2n + 3)/3. �

Exercise 2. (i) A geometric series is an infinite sum of the form 1+x+x2+x3+
x4 + . . . for some real x. Prove that the series’ partial sum 1+x+x2 + . . .+xn

equals xn+1
−1

x−1
. Many times a guess is good and then you can use induction

to actually prove it.
(ii) An arithmetic series is a series of the form

∑
∞

i=1
ak where ak+1 = ak + d

for each positive integer k and a1, d ∈ R are picked arbitrarily. Find the
closed-form partial sum of this series and prove your result by induction.

�

3. Strong Induction: Sums of Fibonacci & Prime Numbers

Many of you may have heard of the Fibonacci sequence. We define F1 = 1, F2 =
1, and then define the rest of the sequence recursively: for k ≥ 3, Fk = Fk−1+Fk−2.
So the sequence ends up looking like:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

While not all positive integers are Fibonacci (e.g. 4), surprisingly we can express
any positive integer as the sum of distinct terms in the Fibonacci sequence.

Theorem 1. Every positive integer n can be expressed as the sum of distinct terms

in the Fibonacci sequence.
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Proof. Let P (n) be the statement that n can be expressed as the sum of distinct
terms in the Fibonacci sequence. We begin with the base case n = 1. Since 1 is a
term in the Fibonacci sequence (namely F1), then P (1) is true.

Now we proceed to the inductive step. We wish to show that P (1)∧P (2)∧ · · · ∧
P (n) =⇒ P (n + 1). So assume that P (1), P (2), . . . , P (n) hold. Now we consider
n + 1. There are two cases:

(1) n + 1 is itself a Fibonacci number.
(2) n + 1 is not a Fibonacci number.

If the former holds, then we’re done. If the latter holds, then there must exist some
positive integer k such that

Fk < n + 1 < Fk+1.

Since Fk < n+1, we may decompose n+1 into Fk +(n+1−Fk). But by definition,
(n + 1−Fk) < n + 1 so by the inductive hypothesis we know that P (n + 1−Fk) is
true, hence it may be expressed as such:

n + 1 − Fk = Fi1 + Fi2 + · · · + Fim

where the subscripts are distinct.

Lemma 1.1. Fk, Fi1 , Fi2 , · · · , Fim
are distinct.

Proof.

(1) Fi1 , Fi2 , · · · , Fim
are distinct by the inductive hypothesis (i.e. P (n+1−Fk)

is true).
(2) Fk 6∈ {Fi1 , Fi2 , · · · , Fim

}
Proof by contradiction: Let s = n + 1 − Fk, so n + 1 = s + Fk where s =
Fi1 +Fi2 +· · ·+Fim

. We know Fk−1+Fk = Fk+1 and Fk−1 < Fk < Fk+1 for
k > 2; hence, Fk+Fk = 2Fk > Fk+1. Now assume Fk ∈ {Fi1 , Fi2 , · · · , Fim

};
therefore, n + 1 = 2Fk +

∑
Fj which implies Fk < n + 1 < Fk+1 < 2Fk <

n + 1 and that is a contradition.

Therefore we have

n + 1 = Fk + Fi1 + Fi2 + · · · + Fim

and P (n + 1) holds. Thus by strong induction, P (n) holds for all n ≥ 1.
�

Similarly one might attempt to prove the analogous result with primes (repeats
allowed).

Exercise 3. Prove that all integers greater than one can be expressed as the
product of primes. �


