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Abstract—Under suboptimal network conditions, applications
must degrade gracefully in order to provide service that is valu-
able to users.  The research proposed in this paper will explore
the notion that distr ibuted adaptation—the coordination of sev-
eral different adaptations at var ious points in the network—is
beneficial in heterogeneous networks.  Existing technologies
tend to provide one adaptation to overcome a single network
deficiency, often focusing on the “ last mile”  of the network.
These solutions are insuff icient in the increasingly heterogene-
ous Internet.  This paper describes the challenges of distr ibuted
adaptation and proposes a research course to develop the tech-
nology that will allow applications to adapt to the networks of
the future.

1 Introduction

Advances in wired and wireless technologies
simultaneously increase the world’s interconnectivity and the
heterogeneity of computer networks.  The average bandwidth
between any two points in the Internet is going up, but the
range of experienced bandwidth is also increasing.  Applica-
tions that are unable to adapt to suboptimal network condi-
tions will become decreasingly useful, particularly to mobile
users.

One approach to handling this challenge is to add adaptive
technology to network nodes.  These nodes could provide
processing and/or storage capabiliti es and be allowed to
operate on higher protocol stack layers.  This idea is
controversial.  Historically, transport (and higher) protocol
layers have been provided at endpoints only.  Building
knowledge of higher layer protocols into routers has several
disadvantages, including performance and reliabilit y.  The
research proposed in this paper will not decisively resolve
this controversy.  Instead, it will  provide evidence in favor of
raising the level of services within the network from two per-
spectives.  First, this research will demonstrate several cases
in which awareness of application-level protocols at nodes
within the network can help applications adapt their services
when network conditions are suboptimal.  Second, it will
develop technologies that allow the network to provide adap-
tive services to applications in a sensible and reliable manner.

Successfully enabling distributed adaptation requires sev-
eral new technologies.  In the presence of adaptations that
may arbitrarily delete, add, or modify elements in the data
stream, the typical model of exactly-once delivery no longer
makes sense.  Instead, a new model for the reliable delivery
of adapted data must be developed.  Without protection, a
service for distributed adaptation would introduce new secu-
rity vulnerabiliti es to networks.  Yet, the user’s data and con-

trol over adaptation itself must be protected across adminis-
trative domains and without the presence of a ubiquitous in-
frastructure for authentication.   These challenges, and others,
will be met by this research.

To this end, we will construct an adaptation framework
called Conductor to explore the advantages of distributed
adaptation.  Conductor will provide an application-
transparent adaptation service within the network.  Adaptor
code modules, dynamically deployed as needed at Conductor-
enabled points within the network, will adapt data streams as
required.  Conductor will allow multiple adaptations to be
deployed in a coordinated manner, eff iciently adapting to the
characteristics of heterogeneous networks.  Conductor will
support arbitrary adaptations for application-level protocols
without compromising reliabilit y.  The techniques developed
for Conductor will enable applications to be adaptable in to-
morrow's heterogeneous networks.

Section 2 describes the need for gracefully degrading ap-
plications and some typical approaches to this problem.  Sec-
tion 3 describes a new approach to this problem and several
common cases in which this approach is superior.  Section 4
describes the challenges and requirements of successful dis-
tributed adaptation.  Section 5 describes the status of the
Conductor prototype and its key technologies.  The remaining
sections provide a schedule for completion of the research, a
basis on which its success will be measured, a discussion of
future work, and concluding remarks.

2 Adaptation

While new technologies are improving overall network ca-
pacity, the Internet is becoming increasingly heterogeneous.
A given link has particular levels of bandwidth, latency, jitter,
security, cost, and reliabilit y.  These characteristics may vary
by several orders of magnitude between different link tech-
nologies.  In addition, transient conditions, such as conges-
tion and noise, may alter a given link over time.  While LANs
may offer up to Gigabit bandwidths, significantly lower
bandwidth connections to the home will continue to be com-
mon.  Wireless users, who trade bandwidth, cost, security,
and reliabilit y for mobilit y, will probably never experience
network characteristics comparable to wired networks.

At the same time, applications are increasingly dependent
on network connectivity.  While in the past only a few spe-
cialized applications made use of network services, now
nearly all do.  Word processors, spreadsheets, tax preparation
software, audio/video players, and games provide added
value from the Internet.  Thin client software uses a network,



2

not for communication itself, but to reduce the storage re-
quirements of client hardware and to reduce system admini-
stration.  Internet appliances like the Kerbango Internet radio1

and the Aplio Internet telephone2 are available today.  Other
appliances like televisions and refrigerators may also lever-
age the Internet in the future.

Application designers cannot anticipate all possible net-
work conditions their code will encounter.  There are too
many possible combinations of link characteristics, and new
technologies continue to appear.  Thus, an application is typi-
cally designed to perform adequately when the network's
characteristics meet an assumed minimum.  When latency is
too high, bandwidth is too low, or too many packets are lost,
an application’s cost in time, security, or money may exceed
its value.

This cost/benefit imbalance is not uncommon: participate
in a video-conference over a modem, risk credit card theft
when an Internet vendor has neglected to provide a secure
web form, or play Backgammon at Yahoo when the server
latency is high.  Increasingly, heterogeneous networks require
an application’s behavior to be automatically adaptable,
gracefully degrading service to match the current network
capabil ities.

2.1 Graceful Degradation
When the network cannot support a high quality of service,

an application that degrades gracefully can provide a lower
quality of service rather than no useful service at all .   An
application’s use of the network can be adapted to the net-
work’s characteristics in many ways.  When bandwidth is an
issue, simple lossless compression may help.  In more ex-
treme cases, more drastic application-level solutions may be
useful.  For instance, on-demand distill ation (reduction of
color depth or resolution) of images can improve the per-
formance of a web browser with an acceptable loss of quality
[4].  Bandwidth use can also be prioritized, delaying some
transactions in favor of others, or eliminating them entirely
by using cached data.

Adaptations can handle other link deficiencies as well .
High network latency can be addressed by prefetching data
ahead of the user or application's actual need.  Selective ac-
knowledgements may be helpful when error rates are high.
For insecure links, an entire data stream can be encrypted, or
key elements can be obfuscated or filtered.

Application-specific adaptations can often be more effec-
tive than generic adaptors.  By allowing some data loss, an
adaptation that reduces color depth in an image, for example,
can reduce transmission cost significantly more than Lempel-
Zev compression.  Each possible adaptation represents a
different tradeoff for the user.  Different users and uses of an
application may require different notions of proper service
degradation.

                                                          
1 A product of Kerbango, Inc.  Available at http://www.kerbango.com.
2 A product of Aplio, Inc.  Available at http://www.aplioinc.com.

2.2 Network Heterogeneity and Distributed
Adaptation

Until recently, research in adaptive networking has pri-
marily focused on the "last mile" of the network, connectivity
to the home or mobile user.  It is increasingly common, how-
ever, to find deficient links throughout the network.  For in-
stance, homes that once had a single computer connected to
the network via a modem now have a LAN with multiple
computers and other devices.  Such a LAN is typically con-
nected to the Internet through a single access point, pushing
the deficient link one hop away from the client node.  Simi-
larly, in the future mobile users may carry multiple devices
that share a single wireless access point via a personal-area-
network.  Multi -hop wireless networks (like Metricom’s
Ricochet service [14]) also extend the “ last mile,”  introducing
a series of wireless links in the “ last mile.”

User-to-user services also increase network heterogeneity.
Services like IP telephony, instant messaging, multi -user
games, and home video-conferencing introduce a pattern of
direct communication between users in their homes. Rather
than one "last mile," each scenario contains two "last miles."

Finally, although typical commercial servers are well con-
nected, network and server congestion can decrease band-
width and increase latency.  Even the most robust and power-
ful servers have succumbed to distributed denial-of-service
attacks and "The Slashdot Effect." [1]

Because of heterogeneity in the network, providing adap-
tation at the endpoints of a connection, or at a proxy node, is
not always suff icient.  Various factors constrain the location
for proper adaptation.  Some adaptations need to be adjacent
to one particular problem link.  For instance, an adaptor that
drops video frames when a link is congested gains agilit y by
closely monitoring the conditions on that link.  Similarly, an
adaptor that deactivates a wireless receiver (to save power)
when no data is expected must be collocated with the hard-
ware it controls.  The presence of several dissimilar problem
links may also constrain the manner in which adaptations can
be deployed.  For instance, if prefetching is required to over-
come high latency near the server, and compression is re-
quired to overcome low bandwidth near the client, prefetch-
ing must not be performed from the client.  Finally, deploy-
ment of adaptations can be constrained by limited node re-
sources.  For instance, while end-to-end compression may
provide the most effective use of overall bandwidth, a server
may not have sufficient CPU cycles to provide such an adap-
tation to all clients with deficient links.  Other possible points
of adaptation can provide the needed load balancing.

As network heterogeneity becomes more common, more
sophisticated adaptation deployment will be required.  Het-
erogeneous networks frequently require multiple adaptations
to solve multiple simultaneous problems and may introduce
constraints on how those adaptations can be successfully de-
ployed.  Distributed adaptation allows both detection of end-
to-end network characteristics and the deployment of a coor-
dinated solution for multiple simultaneous problems.
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2.3 Approaches
There are at least three ways to make applications degrade

gracefully: employ situation-specific applications, build
adaptable applications, or provide an adaptive service within
the network.

2.3.1 Situation-Specific Applications

Users of substandard networks may choose applications
specially designed for their situation.  The PalmVII wireless
device, rather than using a general web browser, uses special
"clipping" applications [17] that provide a unique interface to
specific web pages.  Each web page accessible by this device
has a proxy server, a host on the wired network that filters
responses from the associated web server, and a specially
built application that interfaces with this proxy.  This solution
has obvious scaling problems.

As another example, many users who access the Internet
through a slow modem or wireless network use a text-based
browser rather than a graphical browser to avoid the delays of
downloading images.  Mobile users who split ti me between
wired and wireless access must manually switch between
interfaces depending on their network connectivity, or accept
imageless pages even when wired.

2.3.2 Adaptable Applications

Applications can automatically identify the characteristics
of the network and tailor their behavior accordingly.  A sim-
ple example is the RealPlayer [18], which can select a version
of a video or audio stream most appropriate for the
connectivity available to the client (as specified by the user).
Programming or OS support can aid in building adaptable
applications.

Both Rover [8] and Odyssey [16] provide tools that help
developers build applications that automatically adapt to
changing network conditions.  Odyssey provides a system-
level service that monitors network conditions, informing
applications of changes and helping them to adapt transmitted
data to prevaili ng conditions.  Odyssey pays particular atten-
tion to the issue of supporting multiple networking applica-
tions on a single mobile node simultaneously, and to the
value of cooperation between the application and the operat-
ing system.  Rover is an application development toolkit that
provides higher-level networking abstractions, simpli fying
the design of adaptable applications.   Rover’s communica-
tion abstraction reduces network traff ic by helping applica-
tions move data and code closer to where they are needed,
and provides infrastructure for operations while disconnected.

Researchers have also suggested methodologies for parti-
tioning an application to adapt its communication pattern to
network conditions.  When latency is high, a function that
aggregates many individual pieces of data should be placed
closer to the data source.  When connectivity is intermittent,
the required data and the functions that operate on that data
should be replicated near the data consumer.  Several parti-
tioning methodologies have been proposed [10] [26] for par-
titioning the communication functions from other application
functions.  Data and functions involved in communication

can then be dynamically migrated as required by network
conditions.

Application development tools like those described above
can help build adaptable applications without programmer
knowledge of networking details.  However, substantial effort
is required to design new applications or retrofit existing ap-
plications.  Also, these tools are designed primarily to deal
with communications between a single mobile client and a
fixed server across one bad link, not heterogeneous networks.

2.3.3 Adaptabilit y as a Network Service

A powerful way to allow applications to be more adaptable
is to alter their communication protocols and data from
within the network.  Special nodes within the network can
monitor and modify packets generated by applications as they
flow through the network.

The Snoop protocol [3] improves TCP performance over
wireless links by providing caching and quick retransmission
of packets from a gateway between the wired and wireless
networks.  An application-level analog of Snoop is the
Protocol Boosters [13] adaptation framework.  Protocol
Boosters allow pairs of adaptation modules to be transpar-
ently deployed, adding new features to existing protocols,
such as forward error correction. Generally, Protocol
Boosters are assumed to provide lossless adaptation, since the
system provides no support for ensuring reliable deliver if
some packets are dropped or permanently altered.  Protocol
Boosters are composable, but the system does not provide
support for determining if a given set of boosters will perform
well together.

Transformer Tunnels [23] use IP tunneling to alter the be-
havior of a protocol over a troublesome link.  Generally,
Transformer Tunnels are used to provide protocol-
independent adaptations, such as consolidation of packets,
scheduling of transmissions to preserve battery power, en-
cryption, lossless compression, and buffering. Transformer
tunnels are transparent to applications, but do not provide
support for composition of adaptations.

One of the most advanced proxy solutions is the Berkeley
proxy [5]. This system uses cluster computing technology to
provide a shared proxy service for a wide variety of PDAs.
The proxy can provide a variety of application-level adapta-
tions, including transformation (changing the data from one
format to another), aggregation (combining several pieces of
data into one), caching, and customization (typically con-
verting a data format for use by a particular PDA).  The Ber-
keley researchers have investigated methods of composing
adaptations on a single machine [7].  They have also exam-
ined how to use a clustered proxy service to provide highly
reliable, scalable services to a large number of customers.

Similar to the Berkeley proxy, the Mowgli WWW service
[11] improves WWW performance across low-bandwidth,
high-latency GSM channels by breaking the communication
channel into two segments at a proxy.  Between the proxy
and the server, standard TCP and HTTP are maintained.
Between the client node and the proxy, however, custom
protocols replace both TCP and HTTP.  By removing unnec-
essary protocol overheads, compressing and prioritizing data,
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and filtering unnecessary requests, Mowgli i s able to reduce
channel demand, smooth traff ic to improve utili zation, and
support disconnected operation.  While Mowgli provides a
useful service, it is not designed for the extensible addition of
new adaptations nor does it make any provisions for reliabil-
ity in the case of proxy failure.

Another proxy mechanism from researchers at Columbia
University [29] provides a general-purpose framework to
support mobile clients.   A proxy node is placed at the edge of
the wired network.  A mobile host can dynamically load, exe-
cute, and control adaptive “ filters”  on this proxy.  Filtering is
allowed at the application layer as well as lower protocol
layers.  While much more dynamic than other proxy solu-
tions, this system does not address issues of multiple coordi-
nated adaptations, reliabilit y, or security.

Active networks are an attempt to add generalized adapt-
abilit y into the network infrastructure [24] [27].  Potentially,
each packet would execute special code at each visited router
to determine its proper handling.  In some active network
models, packets can exercise only a small set of useful op-
tions.  In others, an arbitrary action is permitted within secu-
rity and resource limitations imposed by the network infra-
structure.  Active networks can provide very general adapta-
tion, but require substantial deployment costs.  Key design
issues remain unsolved, including security, cost, and proper
architectures.  Active network researchers are only beginning
to look at composabilit y of adaptations and reliabilit y.  In the
long term, active networks may provide a superior adaptation
infrastructure, but their success is not yet certain.

Research into adaptation within the network has shown
that worthwhile adaptation can be accomplished outside of
the application itself.  Further, the best results can often be
obtained by adapting application-level protocols, rather than
providing generic adaptations at the transport level.  Research
in this area, however, has focused on providing a single ad-
aptation for a single suboptimal li nk, usually the "last mile."

3 Distributed Adaptation

Applications communicating across heterogeneous net-
works, including the Internet, may require multiple coordi-
nated and potentially distributed adaptations.  This manner of
adaptation is not well supported by existing adaptation
frameworks.  We are developing an adaptation service called
Conductor to explore the challenges and rewards of distrib-
uted adaptation.

3.1 The Conductor Approach
Like several existing systems, Conductor provides an ad-

aptation service from within the network.  However, Con-
ductor allows adaptation to be distributed into the network
dynamically, applying several adaptations to a single connec-
tion at various points along that connection path.

Conductor is incrementally deployable.  It can be deployed
on a subset of nodes within the network, ideally clients,
servers, and gateways between networks of differing charac-
teristics.  The more Conductor-enabled nodes along the net-

work path between a client and server, the more effective
adaptation can be.

Conductor nodes support the deployment of adaptor code
modules, which implement particular adaptations.  These
adaptors operate on application-level protocols, arbitrarily
modifying the data stream.  Conductor ensures that the data
stream delivered to the destination application is in a usable
form, allowing application-transparent adaptation.  However,
the data delivered may be different than the data transmitted.
Conductor is application transparent, but not user transparent.
For instance, an adaptor may reduce the bandwidth require-
ment of a video transmission by dropping some frames, ef-
fectively reducing the frame rate.  If necessary, another
adaptor can restore the original frame rate before delivery by
duplicating frames, filli ng the gaps.  The application will ac-
cept the video stream without noticing any changes, but the
user will see a qualitative difference.

Conductor allows multiple adaptations to be dynamically
deployed throughout the network, where they are needed.
Conductor includes a planning infrastructure that selects the
appropriate adaptors for the given conditions.  The planning
process is user-controllable via a set of user preferences.

Conductor allows adaptation of reliable connection-
oriented streams.  Conductor includes a new model of reli-
abilit y that is compatible with adaptation, protecting applica-
tions from the failure of (potentially stateful) adaptors, Con-
ductor nodes, and links.

These faciliti es allow Conductor to provide a coordinated
and distributed set of adaptations to a data stream.  The
growing heterogeneity and complexity of networks require
such a distributed adaptation infrastructure.

3.2 Case Studies in Distributed Adaptation
Since suboptimal characteristics can be found at many dif-

ferent locations in a network, a given end-to-end connection
may contain several li nks that require adaptation.  The fol-
lowing subsections examine in more detail three cases in
which multiple adaptations may be required by one connec-
tion.

3.2.1 Secure Communication From a Home LAN

In the near future, the average home will li kely contain
several Internet-capable devices (multiple workstations, TV,
radio, refrigerator, etc), possibly connected by a wireless

Workstation

ServerDSL Router

DSL
Wireless LAN

Internet

ISP Proxy

iTV

iRadio

Workstation

Figure 1: A home network supporting multiple Internet clients.
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LAN for internal communication and a DSL router providing
Internet access for all  devices on the LAN (Figure 1).

If a user of one of the workstations accessed his bank bal-
ance, the network would present several concerns.  First, the
Internet and perhaps also the wireless LAN are insecure.
Second, the DSL line might not provide suff icient bandwidth,
particularly since several devices are sharing it.  Adaptation
can be employed to overcome these problems. Several points
of adaptation may be useful in this situation: the client, the
server, the DSL router, and a "proxy" node provided by the
ISP.

Using secure sockets for end-to-end encryption of the data
would  typically solve the security problem.  In this case,
however, since the bandwidth of the DSL link is also an is-
sue, a different solution is required.

To improve the performance of web fetches (several of
which typically occur at once), the client may wish to priori-
tize data transfer across the DSL link.  Priority might be es-
tablished by size, allowing smaller images and text pages to
be received first and preventing slowdowns caused by large
software and document downloads.  Or priority might be es-
tablished by type; text data might have priority over images.
Such prioritization requires access to the data, but end-to-end
encryption makes stream access problematic.

To apply the shortest-job-first algorithm to the banking ex-
ample, the adaptation would need to be deployed immedi-
ately prior to the DSL link, allowing HTTP sessions with
various servers to be prioritized together.  However, all of the
data from the bank's web page are likely to be encrypted
(both text and images) to reduce the chance of sensitive in-
formation being transmitted in the clear.  Since this adapta-
tion requires access to the data stream, it cannot be performed
on encrypted data.

Two solutions are possible.  An end-to-end encryption ad-
aptation that tags each session with its length could replace a
generic encryption adaptor.  Or encryption could be per-
formed twice, once server-to-proxy and again proxy-to-client,
with prioritization based on the temporarily unencrypted data
in between.  In each solution, available bandwidth has
changed the manner in which encryption should be applied.

Encryption interferes with many other desirable adapta-
tions as well .  For example, a user participating in a video-
conference may want it encrypted for privacy.  If the DSL
channel is barely suff icient to support this traff ic, the user
may be willi ng to drop some frames when other traffic is pre-
sent.  Doing so requires either individual encryption of each
frame, or that the stream be decrypted before the adaptation
and reencrypted after.  Again, the choice of one adaptation is
altered by the presence of another.

3.2.2 A Multimedia Session Between Wireless Users

Mobile users frequently have very low-quality “ last mile”
links.  As mobile network access gains popularity, it will be
more common for mobile users to communicate directly with
other mobile users.  For instance, a mobile-to-mobile video-
conference has two low-quality “ last mile”  links.

Consider two mobile users, both connected via WaveLAN
packet radios which provide around 6 Mb/s of bandwidth

(Figure 2).  The wireless link has insufficient bandwidth to
carry the video transmission.  To decrease the capacity re-
quirements, the data could be compressed before transmission
over the WaveLAN links (at Client 1 and Proxy 2) and de-
compressed upon receipt (at Proxy 1 and Client 2).  Since
repeated compression and decompression is ineff icient, it is
better to adapt from end to end, compressing once at Client 1
and decompressing at Client 2.

If Client 2 is, instead, connected via a Metricom Ricochet
2 wireless modem, with 128 Kb/s bandwidth, compression is
insuff icient (Figure 3).  Instead, a significant number of
frames must be dropped, preferably at Client 1.  The resulting
stream will be small enough to allow transmission over both
links without requiring further compression.

The correct adaptation changes again if, in place of the
video-conference, a video clip were transmitted.  Perhaps a
cache is present somewhere in the Internet  that would service
other clients’  requests for the same video clip without re-
quiring further data transmission over Client 1's WaveLAN
network.  If the previous adaptation scheme were used, the
cache would receive a reduced-fidelity version of the  video,
which might not meet the needs of other clients.  In this case,
it may be preferable to perform lossless compression between
Client 1 and Proxy 1 and drop frames at Proxy 2, delivering
the full fidelity data stream to the cache.

3.2.3 Database Access From the Field

An archaeologist has built an image database of artifacts,
stored on high-powered servers.  He can take a picture of a
new artifact with a digital camera attached to his computer
and use it to query the database for similar items.  This sys-
tem works well i n the off ice environment.

The archeologist, like many of his colleagues, is interested
in using wireless technologies in the field [2].  Using a PDA
with a digital camera, a local area wireless network, and a

Client 2 Client 1Proxy 1Proxy 2

Internet
WaveLAN

6 Mb/s
WaveLAN

6 Mb/s

Compress

Figure 2: Two mobile users with WaveLAN connectivity.

Client 2 Client 1Proxy 1Proxy 2

InternetRicochet
128Kb/s

WaveLan
6Mb/s

Drop
Frames

Figure 3: One mobile connected by WaveLAN and one connected by
Ricochet.
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modem link from the base camp to the Internet, a field re-
searcher can gain access to the same databases available in
the lab.  The archeologist could generate queries on the PDA,
which would traverse the wireless network and modem line
to the server.  Unfortunately, this setup won’ t work as well as
in the off ice environment.  The large queries and responses
transmit slowly over the modem.  While waiting for the re-
sponse to be delivered, the PDA is wasting battery power,
particularly to maintain the (potentially unused) wireless link.

Two adaptations are possible to help this situation.  First,
the data transmitted over the modem  can be compressed,
reducing transmission time.  Doing so requires adaptation at a
point on either side of the modem link.  To reduce power
consumption on the PDA, the base-station should be one of
these points.  The other point could be either the server across
the Internet or a proxy at the ISP.

Another useful adaptation would be to schedule the use of
the wireless link.  When a query is generated, the base-station
can guess the response time of the server based on the his-
torical response time of similar queries.  The base-station can
instruct the PDA to shut down its wireless adaptor for that
period.  Meanwhile, the query is transmitted and the response
is received.  If the response comes back earlier than pre-
dicted, it can be buffered at the base station until the agreed-
upon period of silence expires.  Then the PDA will reactivate
its wireless link and await a response from the server.  Note
that part of this adaptation must occur on the PDA and part
must occur on the base-station, to be as close to the PDA as
possible.  Thus, at least three adaptation points are required
(Figure 4).

The archeologist may also wish to protect his research
from competitors, so encryption may be required for trans-
mission over the Internet.  Encryption could be deployed
between the base-station (or a proxy at the ISP) and the
server.  If encryption were performed end-to-end instead, it
makes the other adaptations difficult.  The scheduler may not
be able to discern the start and end of each query and re-
sponse.  The compressor will be unable to compress the now
randomized data stream.

This scenario is not unique to the field of archeology.
Other professionals, such as firefighters, architects, and
salesmen, frequently work at off-site locations and require
mobile data access.  When connectivity is available at all ,
such users commonly face dynamic and heterogeneous net-
work conditions.

3.3 Advantages of Distributed Adaptation
Heterogeneous network environments, like those explored

in the previous section, require more complex support for
graceful degradation.  Under many circumstances, an adapta-
tion service must provide coordination among multiple points
of adaptation within the network to be successful.

If adaptation were only necessary at the endpoints, there
would be no need to add complexity to the network.  In the
example of secure web browsing, however, prioritization of
web traff ic must occur at the point immediately prior to the
slow link.  Otherwise, data flowing from different servers
cannot be prioritized together.  Similarly, in the archeology
example, part of the link scheduling adaptation must be pres-
ent at the base-station, immediately prior to the wireless link,
to cache query responses when the wireless link is inactive.
If this function were instead deployed on the server, the
wireless link would have to be active during data transmis-
sion across the modem, allowing no power savings.

In addition, heterogeneous networks sometimes require
multiple adaptations.  Care must be taken to coordinate
multiple adaptations into an integrated solution.  In the exam-
ple of secure web browsing, the desire to adapt to the low-
bandwidth link changed the proper choice of encryption
deployment.  Had security been deployed end-to-end, the
desired bandwidth-saving adaptation would not have been
possible.  On the other hand, while link-by-link encryption
would always allow other adaptations to be deployed, this
solution is less eff icient and requires trust in all i ntermediate
nodes.  Similarly, in the example of multimedia for mobile
users, if the two wireless links were considered independ-
ently, redundant effort would be spent on lossless compres-
sion and decompression.  If  filtering is required by one link,
compression and decompression for another link is pure
overhead.

Although distributed problems within the network could be
addressed by deploying multiple instances of the Berkeley
proxy, Protocol Boosters, or Transformer Tunnel systems, the
resulting adaptations would be entirely independent.  As pre-
viously discussed, independently chosen adaptations can con-
flict, making some adaptations impossible or redundant.
Even active networks, which allow nearly arbitrary action to
be taken at each point within the network, have no inherent
abilit y to coordinate actions that might be performed at each
node.

3.4 Potential Pitfalls of Distributed Adaptation
The advantages of distributed adaptation do not come

without cost. Historically, packet processing at network
routers has been limited to network-level protocols.   Usually,
higher-level functionality is best provided as close to the ap-
plication end-points as possible [21].  While proxy nodes
with visibilit y into higher-level protocols have been proposed
both for adaptive purposes [4] and in firewalls for security,
they are not the norm.  The previous examples have shown
that access to and adaptation of application-level protocols
within the network has advantages, but such a service impacts
packet overhead, reliabilit y, and transparency.

InternetWireless
LAN

Modem

Wireless
PDA

ServerISPBase
Station

Schedule Compress

Figure 4: Two disjoint adaptations deployed for one data stream.



7

Building application-level adaptation into network nodes
increases packet processing costs.  However, adaptation is not
required at all network nodes, nor by all packets.  For packets
requiring adaptation, the processing costs are offset by the
benefits obtained.  For instance, the time it takes to reduce the
color depth of a video frame is made up for in its transmis-
sion cost.  Since processing speed is increasing faster than
network speed, the set of feasible adaptations is growing.

Adaptation causes the network to cease to be a transparent
transmission channel.  Unaware adaptation might not always
be appropriate.  In the Conductor model, the user is in control
of adaptation.  If adaptation affects application behavior
unacceptably, a different adaptation can be used.

Finally, deployment into the established Internet can be a
major impediment for any new network technology.  The
Conductor model does not require total network deployment.
Instead, Conductor can be incrementally deployed onto nodes
that provide the most benefit, primarily those adjacent to de-
ficient links.  The additional resources required by adaptation
(notably processing and storage) can be deployed as needed
to serve the user community.  The more resources that are
present, the greater the service provided.  Conductor-enabled
nodes might be provided by an organization’s network infra-
structure, by an ISP (for use by subscribers), or by a third
party on a fee-for-service basis [19].

4 Challenges in Distributed Adaptation

Our goal is to build an adaptation service that helps appli-
cations deal with heterogeneous network conditions by sup-
porting distributed adaptation.  The service should also be
application transparent, supporting both legacy and new ap-
plications without requiring a sophisticated understanding of
the network.  Finally, the system should allow an extensible
set of arbitrary adaptations to be employed.

The adaptation service will support reliable, stream-
oriented communications, which account for a large portion
of common network protocols.

To succeed, such a system will require the following capa-
biliti es: the abilit y to obtain sustained access to target data
streams at the points in the network where adaptation is re-
quired, the abilit y to select and deploy a set of adaptors ap-
propriate to prevaili ng network conditions, and the abilit y to
protect itself from component failures and influence from
unauthorized users.

4.1 Stream Handling
Before any adaptation can occur, an adaptation service

must be able to identify data streams that are candidates for
adaptation.  The adaptation service must determine which
protocols and data types are being used by a particular con-
nection.  Stream identification is possible via the same
mechanisms that allow clients and servers to communicate
without any prior arrangement: well known-port numbers,
protocol identifiers, and magic numbers.  Many clients con-
tact a remote service using a well -known port number.  The
protocol for such a service is known in advance.  If a well -

known port is not used, or if multiple versions of a protocol
exist, the desired protocol will t ypically be identified or ne-
gotiated in an initial handshake between the client and server.

For example, the HTTP protocol is typically, but not al-
ways, located on well -known port 80.  In either case, the first
line of communication from the server to the client contains a
string identifying the exact version of HTTP that is sup-
ported.

Some application-level protocols (e.g., HTTP, SMTP,
FTP) act as transports for a variety of data types. Frequently,
the type of the data being transported is identified by the
transport (e.g., HTTP’s Content-Type header).  Even when
the data type is not explicitly identified by the transport, most
file formats include a magic number in the first few bytes that
forms a unique identifier for that file type.  For instance,
GIF89a files begin with the unsurprising string “GIF89a.”

If the adaptation service determines that it can handle a
particular data connection, it must identify adaptation-
enabled nodes between the client and the server at which ad-
aptation might occur.  Perhaps it is best to identify adapta-
tion-enabled nodes along the default routing path (usually the
shortest path).  On the other hand, other paths may provide
more desirable network characteristics or more nodes capable
of providing adaptation.

Finally, to deploy adaptation into the network, it must be
possible to sustain access to the data stream at the desired
points of adaptation.  If an adaptation is deployed, but not all
of the data flows through that node, the results will be unpre-
dictable.  Some mechanism is needed to force the data stream
to follow the selected path.

4.2 Planning
For each connection that may need adaptation, a distrib-

uted adaptation service must determine which, if any, adap-
tors are required and where they should be deployed.  Plan-
ning should be automatic, requiring as littl e participation
from the user and the application as possible.  Both the user
and the application writer typically lack the networking ex-
pertise and forethought required to understand either the
characteristics and requirements of the network or the capa-
bilit y and interoperabilit y of available adaptors.

There are several inputs to the planning process: user pref-
erences, node resources, and link characteristics.  User pref-
erences describe the resources (time, money, battery power,
etc.) and the qualiti es of the data most important to the user’s
current task.  For instance when downloading a map over a
limited bandwidth link, an impatient user may prefer a high-
resolution black-and-white image, allowing street names to
be read, or he may prefer a low-resolution full -color image,
allowing the golf courses to be easily located.  Node re-
sources include the set of available adaptors and the resources
available to those adaptors such as CPU cycles and storage
space.  Nodes may also wish to express security constraints
that would prevent them from executing particular adaptors.
Link characteristics include bandwidth, latency, security
level, jitter, and reliabilit y.
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Determining the inputs to planning requires some facilit y
for environmental monitoring at each node.  Current, as well
as historical, conditions may be of interest to the planning
process.  The adaptation service must be able to query the
environmental monitor at planning time and also be notified
when drastic changes occur.

The speed of planning and the quality of the resulting plan
are key design factors.  Planning should occur quickly, so the
adaptors can be selected and deployed before data flows.  If
data flows before adaptors are deployed, resources could be
wasted on low-priority data, or sensitive data could be trans-
mitted unprotected over insecure links.  This argument tends
to favor decentralized planning, in which each node locally
selects and deploys the adaptors it believes to be necessary.
Recall however, from the examples in Section 3.2, that the
right choice of adaptation for one link may be influenced by
other links, and other adaptors desired for the connection.  A
global view, and therefore inter-node communication, is re-
quired to make the correct global decisions.  Due to the po-
tential presence of low-quality links, the communication cost
of obtaining a global view should be minimized.

At the same time, since mistakes in planning are expen-
sive, a quality plan must be produced.  The desire for plan
quality must be balanced against the amount of startup la-
tency that is tolerable by the user.

4.3 Reliability
A distributed adaptation service should not reduce the reli-

abilit y of a data connection.  In particular, connection failure
should be prevented in the face of node, link, and adaptor
failure.  Typically, reliabilit y is provided on an end-to-end
basis and the reliabilit y of a given connection does not de-
pend on any particular nodes within the network.  This reli-
abilit y model is insuff icient to support distributed adaptation.
First, distributed adaptation introduces unique and potentially
stateful nodes in the middle of the network upon which a
connection may depend.  Second, adaptation may modify the
data stream in transit, potentially confusing an end-to-end
reliabilit y service.  Third, this reliabilit y model offers no
protection against changes in adaptation, particularly unex-
pected changes, which must not result in the delivery of un-
intelli gible data to the user.  Distributed adaptation requires a
new model for reliabilit y.

Three approaches to reliabilit y have been incorporated into
previous adaptive services.  The first approach is to restrict
the types of operations that can be performed on the data
stream.  Both Snoop and Protocol Boosters take this ap-
proach.  Snoop’s actions are designed not to violate TCP se-
mantics, while Protocol Boosters allows only additive opera-
tions, transmitting the additional information independently
from TCP streams.  In either case, failure of an adaptation
only reduces or removes the benefit of adaptation.  If arbi-
trary adaptations are to be supported, however, a different
approach is required.

A second approach is to increase the reliabilit y of adapting
nodes.  The Berkeley Proxy allows arbitrary adaptations by
splitti ng the TCP channel into two, from the server to a proxy

and from the proxy to the client.  While arbitrary adaptations
are possible without confusing the reliable transport, failure
of the proxy node will result in failure of the connection.
This potential for failure is mitigated through the use of re-
dundant hardware and software.  While this approach is ade-
quate for a single proxy situated near the last mile, deploying
redundant hardware throughout the network is not feasible.
In addition, this approach does not address the possibilit y of
software failures in adaptation modules.

A third approach is to bypass the end-to-end reliabilit y
mechanism (using split -TCP or by adapting TCP itself [9])
and accept some failures.  This approach is particularly ap-
pealing when only one path exists from the client to the rest
of the network, as is commonly the case for last-mile adapta-
tion.  If the point of adaptation is along this path, then failure
of an adapting node will  also cause packet forwarding to
cease.  Since some degree of failure would occur anyway, the
presence of adaptation does not decrease the level of reliabil-
ity.  However, this argument does not address the issue of
adaptor failure or more transient node failures.  In addition,
when adaptation is distributed, alternative routes may very
well exist, allowing data transmission to continue despite
node failures.

When an adaptor fails, the reliabilit y mechanism must en-
sure that the semantics of the data stream are not violated.
For instance, if an adaptor is saving bandwidth by dropping
every other frame in a video stream, each frame must either
be dropped or delivered.  If an adaptor fails in the middle of a
frame, it should not be the case that half of the frame is deliv-
ered to the application.

Arbitrary distributed adaptation requires a new model for
reliabilit y.  In particular, the reliabilit y mechanism must be
aware that adaptation is occurring.  Since arbitrary adaptation
has the potential to delete, add, or modify the data stream, the
typical notion of exactly-once delivery of data is no longer
correct.  A new model is required in which intentional data
loss (e.g., the non-delivery of a video frame that has been
dropped by an adaptor) is not considered to be a failure.

Where possible, implementation of the reliabilit y model
should leverage existing technology.  A service that exists
above or below an existing reliable transport, like TCP, is
preferred to building a new transport.

4.4 Security
While a distributed adaptation service aids users in adapt-

ing a data stream to meet their needs, this same mechanism
might be exploited by an attacker.  An unauthorized user
might subvert the planning facilit y, causing it to direct data to
flow through a convenient node for interception.  Or, the at-
tacker might instruct the planner to deploy adaptations that
lower the quality of server, when no adaptation is actually
needed.  The planning process must therefore be protected
from untrusted entities.

In addition, when insecure links are present, the secrecy
and integrity of the application data stream may require pro-
tection.  Encryption adaptations can be employed where
needed, but support is required to determine when and where
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encryption is needed and to aid in key distribution.  Clear text
and encryption keys should only be available to trusted
nodes.

Implicit trust can be given to the end nodes of any connec-
tion, since they already have full access to the data stream.
One of these nodes should control the planning process.
Moreover, any input to the planning process provided by par-
ticipating nodes must be authenticated.  If all i nputs to the
planning process are digitally signed, then the planner need
only determine which inputs are authentic and which nodes
are trusted.  The results of planning must also be protected in
a manner similar to the planning information, signed by the
planner and authenticated by each receiving node.

Unfortunately, there is no widely accepted authentication
mechanism in the Internet.  Even if there were, such a
mechanism would not be strong enough for all applications.
The adaptation service should, therefore, allow for secure
agreement upon what authentication mechanism to use.

Finally, if dynamic deployment of adaptors is permitted,
the adaptation service must ensure that (1) the executed code
modules are exactly those specified in the plan and (2) the
host node is protected from the actions of malicious or buggy
code.  Protection of the local node should also include en-
forcement of any local resource constraints (e.g., CPU cycles,
storage) imposed by the node during the planning process.

5 Conductor: Proof of Concept

The Conductor adaptation service has been constructed to
demonstrate the advantages and feasibilit y of distributed ad-
aptation.  While not yet fully functional, Conductor includes
basic faciliti es for stream interception and routing, formula-
tion of plans, deployment of adaptors, security, and reliabil-
ity.  Using the existing prototype, several useful adaptations
have been constructed and deployed, including image com-
pression and distill ation, encryption, and web download pri-
oritization.  The following sections describe Conductor’s
current and future capabiliti es and how it addresses the chal-
lenges of distributed adaptation.

5.1 Conductor Architecture
Conductor is composed of two main elements: adaptors

and the framework for deploying those adaptors (Figure 5).
Conductor adaptors are self-contained pieces of Java code.

Many adaptors are type-specific, expecting a specific proto-

col or data type.  Most adaptors are paired.  A pair of adap-
tors typically converts from an input protocol to a protocol
better suited for transmission over a network with particular
characteristics, and back to the original protocol.  Adaptors
can arbitrarily modify the data stream, allowing any desired
type of adaptation.  Adaptors can be lossy; the data delivered
to the application may be different from the data transmitted.

New adaptors can be developed and added to the available
suite as new protocols, new network technologies, and new
user requirements are developed.  Adaptors are dynamically
deployed for new connections, as the need arises, limited
only by the availabilit y of node resources.  Adaptors can be
composed and combined sequentially with other adaptors.
The abilit y to combine adaptors is limited only by the input
and output protocols expected by each adaptor.  Adaptors are
self-descriptive, specifying the required input protocol, the
resulting output protocol, and the resources required from the
node.

The Conductor runtime framework is primarily a Java pro-
gram running in user space that provides a runtime environ-
ment for adaptors (Figure 6).  This runtime environment
intercepts connections from application clients to application
servers, forming a data path through Conductor-enabled
nodes between the client and server, and deploying adaptors
at appropriate nodes along that path.

Each Conductor node includes a planning element that
participates in a distributed planning algorithm.  The planning
architecture is discussed in more detail i n Section 5.3.  The
planning process directs each node to deploy an adaptor
along a particular data connection.  The Conductor node im-
plements an API for adaptors, which gives the required re-
sources to each adaptor and allows it access to the data
stream.  The adaptor API is described in Section 5.5.  Each
Conductor node is equipped to handle failures along the data
path, as described in Section 5.4.

5.2 Stream Interception and Handling
Before Conductor can adapt a data stream, it must inter-

cept that stream and determine if it is a type that Conductor
can adapt.  If so, Conductor must find Conductor-enabled
nodes between the client and the server, and provide each
with access to the data stream.
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Application

Adaptor
Pair

Conductor
Framework

Figure 5: Conductor intercepts client-server communication channels and
deploys distributed adaptors.
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Figure 6: Architecture of a Conductor-enabled node.
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When an application starts a new data connection on a
Conductor node, Conductor’s interception layer traps the
opening of the socket, connecting it to Conductor instead of
the opposite endpoint.  In the Linux environment, the inter-
ception layer consists of a small kernel modification that
traps connections destined for a particular remote port num-
ber.  In some systems, existing extensibilit y mechanisms
allow trapping of data flows without kernel modifications
[12].  If the client node is not Conductor-enabled, Conductor
could also trap connections from a node within the network
using Linux’s transparent proxy facilit y [25].  Currently, in-
terception is based entirely on remote port number.

Once intercepted, Conductor can identify (from the inter-
ception layer or transparent proxy facilit y) the connection’s
original destination.  The intercepting node must identify
other Conductor-enabled nodes along the path from the client
to the server.  Currently, Conductor-enabled nodes are identi-
fied by sending probe packets toward the server, which fol-
low the typical network route.  Conductor-enabled nodes
along this route are able to capture this packet and participate
in planning for this connection.  Once the last node is identi-
fied, a connection is created to the intended server, and plan-
ning for adaptation occurs.  The planning process will select a
set of adaptation nodes and a set of adaptors to deploy.  Be-
fore data flows, TCP connections are created between adja-
cent pairs of Conductor nodes at which adaptation is desired.
The result is an end-to-end path made up of multiple spli t-
TCP connections.

5.3 Automated Planning
Conductor includes a planning facilit y to automatically

select an appropriate set of adaptors and decide where to de-
ploy them.  Planning occurs on a per-connection basis.  The
planning process consists of three main elements: information
gathering, plan formulation, and adaptor deployment.

Much information must be obtained from the nodes
between the client and server to formulate a useful plan.
Conductor provides a pluggable architecture for monitoring
local node and link conditions.  Currently, Conductor uses a
very simple mechanism for measuring node resources and
link characteristics.  Eventually, Conductor could leverage
more sophisticated technologies developed by other research-
ers [22].

Conductor balances the need for a global view with the de-
sire for quick planning by employing a single-round-trip cen-
tralized planning architecture.  When planning begins, all
nodes along the data path forward their local planning infor-
mation to a single planner node (Figure 7).  Currently, this
node is the Conductor node closest to the server.  The planner
node uses this information to formulate a plan.  Once formu-
lated, the plan must be delivered to all nodes, allowing adap-
tors to be deployed.  The plan is transmitted from the planner
node toward the client endpoint, passing through each Con-
ductor-enabled node along the way.  Once the adaptors are
deployed on a given node, data may flow in that direction.
As a result, once the plan reaches the client node (assuming it
is Conductor-enabled), the first bytes of application data from
the server will reach the client.  The plan will now flow in the
reverse direction, deploying adaptors for the other direction
of f low.  Once the plan reaches the server node, the first bytes
of application data from the client will  reach the server.
Thus, one extra round trip has been added before application
data begins to flow in both directions.

Conductor requires an automated plan formulation service
to generate a correct plan from the information gathered.  In
addition to link characteristics, this service must consider
available node resources, the capabiliti es of available adap-
tors, and adaptor compatibilit y in order to generate an appro-
priate plan.  One possible algorithm would treat the set of
possible plans as a search space, applying constraints and an
evaluation function to find the best feasible plan.  Alternately,
a set of predetermined templates could be tested against the
current node and link conditions to establish a match.
Conductor’s centralized information-gathering infrastructure
allows practically any algorithm to be plugged in.  Unfortu-
nately, the number of nodes, possible link characteristics, and
number of adaptors lead to a very large search space.
Constraints on adaptor combination and nodes that can host
them cause the complexity of the problem to grow quickly.
Finding an appropriate set of adaptors within an acceptable
time is a great challenge [20].  For the purposes of this re-
search, an algorithm that generates acceptable plans for the
small variety of cases in our limited deployment environment
will be suff icient.

Planning occurs at connection start-up time based on the
current network conditions.  Since network conditions can be
dynamic, replanning may also be necessary.  Due to the mod-
erate cost of altering the set of deployed adaptors, Conductor
is primarily interested in failures and extreme variations in
available resources.  Adapting to minor variations in band-
width, delay, etc., is the job of the individual adaptors.  If ,
however, the variations are too large for the adaptors to han-
dle, or there is an actual failure, one Conductor node will
signal to the others, initiating a distributed reevaluation of the
deployed adaptors.  Conductor may try to find a new data
path or alter the set of deployed adaptors on the old path.

Conductor’s information-gathering protocol is fully func-
tional; however, the plan formulation faciliti es are somewhat
primitive.  Additional research is required to obtain an appro-
priate algorithm for automatic planning.

Formulate
Plan

Node 1 Node 2 Node 3 Node 4

Upstream data
flow begins

Downstream
data flow begins

Node 1 Info
Nodes 1,2 Info

Nodes 1,2,3 Info

Plan
Plan

Plan

Plan
Plan
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Figure 7: Conductor’s planning protocol in action.
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5.4 Reliability
TCP guarantees exactly-once, in-order delivery of a byte-

stream, a convenient model for application writers.  However,
this model is incompatible with adaptation.  Adaptation seeks
to deliver some version of the transmitted data that is cost-
effective, so the bytes delivered may bear no resemblance to
the bytes transmitted.  Conductor requires a new model of
reliabilit y that instead provides exactly-once, in-order deliv-
ery of adapted data.

5.4.1 Redefining Reliabilit y

Most reliabilit y models assume that data is immutable
during transmission.  Each byte transmitted travels through
the network and is received, unchanged, at the destination.
The measure of reliabilit y in such a system is exactly-once,
in-order delivery of bytes.  This type of reliabilit y can be
guaranteed by the endpoints, the failure of which will cause
the connection to fail .

Adaptation violates this model’s implicit assumption of
data immutabilit y.  When a failure occurs, the system must
ensure that the resulting data stream conforms to the adapted
protocol expected by the application.  Maintaining data integ-
rity is not simple, however.  An adaptor may fail  at a point in
its output stream that is inappropriate for switching back to
the original stream. For instance, consider an adaptor that
adds a lowsrc attribute to an image tag in an HTML data
stream (Figure 8).  If a failure occurs in the middle of the tag,
a byte-count retransmission scheme will not necessarily re-
transmit from the beginning of the tag. The resulting stream
may be neither the adapted data nor the original data, and
may not even be syntactically correct.

Even if an adaptor fails at an appropriate point in the
stream, it is still diff icult to effect retransmission of lost data.
For instance, if an adaptor converts color video frames into
black-and-white, the adapted frames will consist of a much
shorter byte stream.  If a failure occurs immediately after the
last byte of frame 100, a simple byte-count retransmission
scheme might begin retransmission after frame 50, duplicat-
ing data the user has already received.  The information that
correlates the data received downstream with the data trans-
mitted is crucial to determining an appropriate point of re-
transmission. If this information is lost with the adaptor,
transmission cannot continue.

We propose that in the face of adaptation, a reliable system
should preserve two properties of a data stream:

1. Each semantically meaningful element in the trans-
mitted data stream is delivered exactly once and in or-
der.

2. Delivered data conforms to the expected protocol.
The first property requires that before adaptation can oc-

cur, the data stream must be carved up into segments that are
semantically meaningful within the protocol being transmit-
ted.  For instance, a video stream might be broken into
frames, while an HTML stream may be divided into tags and
text.  Each segment must be delivered exactly once, in some
form.  The data may be original, or adapted, or deleted en-
tirely, but some acceptable representation of the segment
must arrive exactly once, and in order.

The second property restricts the content of the segments
at the time of f inal delivery.  If halving the frame rate is
within the constraints of the protocol expected by the appli-
cation, then delivering empty segments in the place of every
other frame might be acceptable.  Segments must be chosen
so that the failure of any adaptor will not result in delivery of
data that confuses the destination application.  These proper-
ties ensure that some viable version of the data produced at
the source will arrive at the destination.

5.4.2 Attaining Reliabilit y

Conductor uses a TCP connection between adjacent Con-
ductor nodes along the data path, providing reliable delivery
between adaptor modules on different nodes.  Since adapta-
tions occur only at Conductor nodes, TCP’s model works
well between them.  Unless an adaptor, a link, or a node fails,
end-to-end transmission of adapted data proceeds reliably and
in order.  If one of these events occurs, Conductor provides a
data recovery mechanism to protect against data loss.  Once
the data path is restored, Conductor must determine which
data has already been received downstream and request re-
transmission from this point.  As previously described, this
mechanism must be compatible with adaptation, providing
exactly-once delivery of semantic meaning.

5.4.3 Semantic Segmentation

A central and unique contribution of this research is the
notion of semantic segmentation, which allows data recovery
despite the presence of adaptation.  A semantic segment is the
unit of retransmission for data recovery.  Semantic segments
also preserve the correspondence between an adaptor’s input
and output data streams.  Adaptors, which have an under-
standing of the format of the data stream and the operations
they will perform on that stream, have the responsibilit y for
maintaining appropriate segmentation.

The initial data stream consists of bytes being transmitted
by the application and intercepted by a Conductor module on
the source node.  Conductor considers these bytes to be logi-
cally segmented into one-byte segments, which are numbered
sequentially.  It is not necessary, at this stage, to track seg-
ment boundaries or segment numbers.  For eff iciency, the
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from byte 9
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Figure 8: Failure recovery using a byte-count – (a) data arrives at adap-
tor, (b) failure and retransmission occur, (c) retransmission produces an
undesirable result.
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bytes can be transmitted with very littl e overhead; simply
counting the bytes can identify individual one-byte segments.

Adaptors form larger segments by combining smaller seg-
ments.  When segments are combined, the new segment re-
ceives the segment ID of the last combined segment.  When
operating on the data stream, adaptors must perform segment
combination in two situations:

1. When modifying a semantic element in the data stream
that crosses a segment boundary

2. When adaptor failure between segments could other-
wise violate the expected protocol

Consider the example of an adaptor that compresses video
frames.  Before each frame can be compressed, the segments
making up that frame would be combined into one segment.
If , hypothetically, the stream consisted of 100-byte frames,
each frame would initially be represented in the stream as 100
1-byte segments.  Before reducing each frame to 50 bytes, the
adaptor would combine the 1-byte segments for a given
frame into a single segment.  The first 100-byte frame would
be in segment 100, and the second would be in segment 200.
Each segment would then be adapted, producing a 50-byte
segment numbered 100 and another numbered 200.  The re-
sulting 50-byte segments contain the same semantic content
as the 100-byte segments and the 100 1-byte segments; only
the format has changed.

Subsequent adaptors may cause further segment combina-
tion, and segments may grow to arbitrary length.  Once com-
bined, segments can never be taken apart. At the destination
node, the Conductor module simply removes any segment
markers and delivers the resulting data to the application
(with one restriction, given below).

5.4.4 The Recovery Protocol

Conductor uses the semantic segment as the unit of re-
transmission.  To allow retransmission, data transmitted from
each endpoint is cached at the Conductor node closest to the
source.  If the source node is Conductor-enabled, we depend
on it not to fail , just as TCP does.  To improve the speed of
recovery, caching can also be added at other points along the
data stream.

Recovery is initiated downstream of the failure.  Any seg-
ment that has been partially received is cancelled and dis-
carded.  Note that if the application is unaware of the adapta-
tion system, the possibilit y of cancellation of partial segments
requires that the adaptation system not deliver any segment to
the application until that segment is complete.   Once cancel-
lation is complete, the ID of the previous completely received
segment will be known.

A retransmission request containing the ID of the last seg-
ment received travels upstream until it can be serviced, either
by a cache or by an adaptor (perhaps from an internal cache).
Nodes that cannot satisfy the retransmission request will for-
ward the request upstream and discard any subsequent seg-
ments until retransmission begins, preserving in-order deliv-
ery.  The mandatory cache at the source node provides a fall-
back source if retransmission does not occur prior to this
point.  Once a source for the requested segment is found,
transmission begins with that segment and proceeds in-order

with the following segments.  Note that the possibilit y of re-
transmission requires adaptors to accept a rollback to a previ-
ous point in the data stream, or fail .  Since semantic segmen-
tation ensures semantic equivalency of data, retransmission
can occur with any version of the desired segment, including
the original segment.  The data can then be re-adapted in the
same way, or perhaps differently.

Continuing the video example from the previous section,
consider the case where the first frame (in segment 100) and
part of the second frame (in segment 200) were received at a
point immediately downstream from the decompression
adaptor (Figure 9).  If both the compression and decompres-
sion adaptors fail , Conductor would discard the part of seg-
ment 200 that was partially received downstream and request
retransmission starting at segment 101.  Retransmission
would thus begin with the second frame, as desired.  If only
one of the two adaptors fail , Conductor would automatically
remove the other to preserve adaptation symmetry.

The above recovery scheme provides failure-based recov-
ery.  Since a retransmission request occurs when there is a
failure and indicates exactly which data must be retransmit-
ted, acknowledgements (beyond what is already provided by
TCP in the underlying connection) are not required.  How-
ever, to limit cache growth and allow adaptors to free any
accumulated internal state, the destination node generates
acknowledgements whenever a segment is completely re-
ceived.  Acknowledgements are cumulative, allowing all
composed segments to be acknowledged when a segment is
finally received at the destination.

More details of Conductor’s reliabilit y mechanisms, in-
cluding the abilit y to restore proper pairing of adaptors after a
failure, are available in [28].

5.4.5 Implementation Status

Conductor’s reliabilit y mechanism is partially imple-
mented.  Conductor is able to create and properly maintain
semantic segments.  Data is cached at the end nodes should
retransmission be required.  Implementation of the recovery
protocol and an API for requesting adaptor rollback is in pro-
gress.
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Figure 9: Recovery from the failure of an adaptor that compresses
frames in a video stream.



13

5.5 Adaptor API
An adaptor operates on one direction of data flow.  Each

adaptor has its own thread of execution, a window into the
data stream, and access to an inter-adaptor communication
facilit y.

Each adaptor has exclusive access to a portion of the data
stream defined by a window.  Access to portions of the
stream outside the window is prohibited.  An adaptor can
read new data into the window using an expand() opera-
tion.  The expand() operation blocks until the requested
data is available.  An adaptor can write data out of the win-
dow using the contract() operation.  Thus, the adaptor
controls the flow of data by moving the window boundaries
along the data stream.

An adaptor is also able to view and modify the data stream
by other window operations.  These operations implement
and help enforce semantic segmentation.  An adaptor can
freely read the bytes within the window.  Segmentation will
not be affected.  To modify the data stream, an adaptor can
use the replace() operation, which replaces a portion of
the data in the window with a new set of bytes.  The data be-
ing replaced may belong to several adjacent segments, which
will  be automatically combined into one segment and labeled
appropriately.  Once contained within a single segment, the
old data can be removed and replaced with the new data.

Notice that the adaptor API controls segmentation of the
data stream.  Therefore, while a malfunctioning adaptor can
provide incorrect data to the user, it cannot violate the rules
of segmentation.  However, an adaptor must still ensure that
segments are semantically meaningful and delineate appro-
priate places for adaptation to cease, or a failure may result in
a meaningless data stream.

Finally, adaptors have access to two inter-adaptor commu-
nication faciliti es, one for communication between adaptors
operating on the same stream, the other for communication
between any adaptors on the same node.  These faciliti es al-
low an adaptor to store any object, tagged with an identifier.
Another adaptor can then obtain that object using the given
identifier.  Synchronization is provided, allowing an adaptor
to block until a desired object is present.  Adaptors should
treat this cache as soft-state that may be purged if the cache
becomes full .

5.6 Security
Conductor provides an extensible architecture for securing

both the planning process and the user’s data.  The planning
process is protected using a “security box.”  All planning-
related messages sent and received by a Conductor node must
pass through the security box.  Many security box imple-
mentations are possible, each providing a particular level of
message authentication, protection from replay, and possibly
secrecy.  The level of protection provided depends entirely on
the particular security box implementation.

We have constructed security boxes that use public key
encryption to digitally sign and authenticate each message.
One such security box assumes the presence of a hierarchy of
certificate servers, allowing any node to provide a certifiable

copy of its public key to any other node.  A different security
box assumes no such hierarchy exists and attempts to form a
“chain of trust”  from which a certified copy of a node’s pub-
lic key can be obtained.  Other boxes could be constructed
based on entirely different authentication mechanisms, such
as Kerberos [15].  A security box that provides no security at
all has also been implemented.

Since there is no ubiquitous authentication mechanism and
because each connection may require a different level of
protection, Conductor simultaneously supports many differ-
ent security box implementations.  For a given connection,
the client node selects the desired security box and each Con-
ductor node will use that scheme for all planning messages
(or not participate).

Conductor provides a secure mechanism that uses the se-
lected security box itself to ensure that every node has used
the same security box throughout the planning process.
When planning begins, a message indicating the selected se-
curity scheme is sent unprotected from the client node along
the path (through all participating nodes) to the server node
(Figure 10).  The planner uses this scheme to authenticate
messages from all nodes, discarding any information that
cannot be authenticated.  Once the plan has been generated, it
is delivered, along with an indication of the security scheme
used, to each node for execution.  Both the plan and the secu-
rity scheme identifier are protected by the security scheme.
Each node can therefore securely determine what mechanism
the planner used and ensure that the expected scheme was
used.  If a node is tricked by an attacker into using a different
security scheme, that node will not be trusted by the planner.
If the planner is tricked into using a different security mecha-
nism, the client node will notice that the requested security
mechanism was not used.  Additional mechanisms are also
provided to protect against replay attacks.

Conductor is also able to deploy encryption adaptors
whenever the secrecy or integrity of the data stream must be
protected.  The planner itself is responsible for deciding
where any encryption and matching decryption adaptors are
required.  Successful deployment of these adaptors, however,
typically requires some form of key distribution to establish a
shared secret.  Keys can be generated on the planning node,
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Figure 10: The secured planning process.  Messages are signed with a
dynamically determined authentication scheme.
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which is automatically trusted, but must be securely distrib-
uted to the nodes performing encryption and decryption.
Typically the security box can aid in key distribution using
the same mechanism used for authentication.  For instance, if
public key cryptography was used for authentication, the
public key for the target node can be used to encrypt the key,
ensuring that only that node can obtain the key.  A separate
copy of the key is encrypted for each node that requires it.

Conductor will not directly address the issues of security
for mobile code.  The currently accepted solutions to these
problems, digitally signed code and sandboxed execution,
could be employed and are available in the Java security
model [6].

6 Measurement of Success

To be successful, Conductor must (1) provide effective ad-
aptation in the face of deficient networks, (2) introduce littl e
or no overhead when network conditions are good, (3) pro-
vide adequate services in support of transparent, distributed
adaptation, and (4) demonstrate overall usabilit y.

Conductor's abilit y to provide effective adaptation will be
demonstrated by constructing several of the examples of het-
erogeneous networks requiring distributed adaptation de-
scribed in Section 3.2.  Various user-visible performance
characteristics will be measured in trials with and without
Conductor-enabled adaptation.  These experiments will de-
termine the level of end-user benefit gained by using Con-
ductor.

While Conductor overheads will already be factored into
the above experiment (reducing the measured benefit), Con-
ductor must also have an acceptable level of overhead when
adequate network capabiliti es exist and no adaptations are
required.  Conductor's impact on network protocols when no
adaptation is required will be measured.  In addition, the
minimum overhead of introducing additional Conductor-
enabled nodes and additional adaptors will also be measured.

Conductor provides dynamic planning and reliabilit y fa-
ciliti es that allow it to cope with changing network condi-
tions.  We will show through demonstration that Conductor
can (1) dynamically select an appropriate set of adaptors un-
der a variety of network conditions, (2) cope with a drastic
change in network conditions by performing reselection and
redeployment of adaptors in the middle of a network connec-
tion, and (3) provide resili ence to component failure by re-
covering from the loss of a node providing adaptation.

The overall usabilit y of Conductor will be demonstrated
through deployment in an off ice environment.  We will con-
struct an environment that requires distributed adaptation and
use it on an everyday basis.  By developing and deploying a
variety of useful adaptations in this environment, all of Con-
ductor's capabiliti es will be exercised.  Successful office use
will demonstrate that Conductor possesses the core set of
capabiliti es required for distributed adaptation

7 Completion Schedule

A great deal of Conductor has already been developed, and
it is nearly ready for initial off ice deployment.  The remain-
ing work is expected to proceed according to the schedule in
Figure 11.

Once initially deployed in a limited capacity, work will
continue on increasing Conductor’s capabiliti es.  A suite of
new adaptors is needed to make use of Conductor by office
members more compelli ng. A more sophisticated planning
capabilit y is needed to generate plans dynamically based on a
user's current connectivity characteristics, rather than using
statically defined plans. Finally, implementation of the recov-
ery algorithm must be completed.

Once the bulk of development is done, a demonstration of
Conductor's abilit y to deploy adaptations dynamically, adjust
as conditions change, and recover from component failure
will be developed.  Finally measurements of Conductor's
abilit y to improve user-perceived performance and Conduc-
tor's overheads will be measured.  After the research phase is
completed, a dissertation will be written to report on Con-
ductor's technologies and the results of the above experiments
and experiences.

8 Future Work

While we plan to construct a planning algorithm that can
automatically select an appropriate set of adaptors for various
conditions that can occur in our test environment, the more
general planning problem is much harder to solve [20].  Ad-
ditional research is needed to find a planning algorithm that
can search the very large planning space without an excessive
increase in startup latency.

Conductor permits user-input into the planning process to
help determine which adaptors to select based on which data
characteristics are most important to the current user task.
Conductor’s current user control interface is limited, and hu-
man factors are important in this case.  A richer interface is
not necessarily a better one: the impact of dropping B-frames
in a video transmission is probably littl e known to the aver-

Sep

Oct

Nov

Dec

Jan

Feb

Mar

Apr

May

2
0

0
0

2
0

0
1

Initial Off ice Deployment

Development:

Dynamic Demo

Measurements

Dissertation

» Adaptor suite

» Dynamic planning

» Recovery protocol

Figure 11: Completion schedule.



15

age user.  An effective user interface for control over adapta-
tion is an open issue.  At the same time, although Conductor
is designed to transparently select appropriate adaptations to
improve the behavior of an application, knowledgeable pro-
grams could probably give Conductor better advice than its
planner could deduce on its own.  A “Conductor-aware” ap-
plication interface is needed to allow a more seamless inter-
face to the user.

In general, determining whether two adaptors are compati-
ble is hard.  A given adaptor may unknowingly perform op-
erations that render another adaptor ineffective.  The problem
can be lessened by limiting the possible set of adaptors or
what adaptors can do, but ideally possibiliti es of improving
data flows should not be discarded because they may have
unforeseen side effects.  We are investigating methods of
allowing rich adaptors that can be properly and automatically
combined.

Conductor allows individual nodes to allocate a limited
portion of their local resources to a given connection.  In gen-
eral, greater control of resource allocation may be desirable.
For instance, we may want to limit the total resources con-
sumed by a given connection across all nodes.  Or we may
want to limit the amount of network resources available to a
given user across all connections.  Achieving these goals is
diff icult due to the potential overheads of distributed load
balancing and user authentication and tracking.  These issues
are important in the context of active networks, and research
into accounting for many small , distributed costs is ongoing.
In the future, it should be possible to leverage these results
and provide similar faciliti es in Conductor.

9 Conclusions

The availabilit y of new network technologies will almost
certainly increase the heterogeneity of networks over the
coming years.  To provide useful service in this environment,
applications will have to allow their services to degrade
gracefully with prevaili ng network conditions.  Distributed
adaptation can play an important role in enabling graceful
degradation of applications in heterogeneous environments.
Conductor provides an important step in this direction by
exploring the technologies required for success.

When complete, Conductor will provide a technological
step forward in several respects.  Conductor will be the first
design and the first implementation of a transparent distrib-
uted adaptation service.  Conductor will i nclude all of the
necessary services to coordinate the resources of points of
adaptation throughout the network.  Conductor will introduce
a unique model for reliable delivery, enabled by semantic
segmentation, that can accommodate the presence of adapta-
tion.  Finally, Conductor will include a new mechanism for
ensuring trusted coordination between a disjoint set of nodes.
These unique features will allow the introduction of distrib-
uted adaptation as a reliable and secure network service.
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