
Conductor: A Framework for Distributed Adaptation
� �

Mark Yarvis, Peter Reiher, and Gerald J. Popek
�

Computer Science Department, University of Cali fornia, Los Angeles
{ yarvis, reiher, popek} @fmg.cs.ucla.edu

Abstract
� � � �

Most network applications provide poor service when the
network’s capabiliti es are below a minimum level as-
sumed by the developer. As a wider array of network
technologies become available, users will be increasingly
frustrated with a lack of flexibilit y in such applications.
The services provided by an application should be tun-
able to a level appropriate for the capabiliti es and asso-
ciated costs of the underlying network. Other researchers
have shown that proxy agents can tailor the communica-
tion pattern of an application to the characteristics of a
network. Dynamic deployment of multiple adapting
agents at various points in a network can extend these
benefits. Conductor demonstrates an approach toward
selecting an appropriate set of adaptive agents and a plan
for their deployment. Conductor further allows arbitrary
adaptations to be performed along the data path without
reducing the reliabilit y of the overall system.

1. Introduction

An increasingly large percentage of applications are
network-based, providing a service to the user by com-
municating with one or more network servers. Applica-
tion designers typically make assumptions about the
minimum level of service required from the network,
fail ing to consider mobile users and others who encounter
varying degrees of connectivity.

Each link in a network may present a different level of
bandwidth, latency, jitter, reliabili ty, and security. These
services are provided for some level of monetary cost and
power consumption. If an application’s use of the network
is not curtailed when network characteristics are unfavor-
able, it may either (1) provide littl e or no useful service to
the user, or (2) provide service at a cost greater than the
worth to the user. Rather than trying to achieve the same
level of service regardless of the properties of the net-
work, an application’s use of the network should be con-
trolled, resulting in a degraded level of service.
 �

 This work was partially supported by the Defense Advanced Research
Projects Agency under contract DABT63-94-C-0080.

�

 Gerald Popek is also associated with PLATINUM technology, inc.

Degraded service may require a compromise in timeli-
ness, quali ty, completeness, or reliabili ty of the user’s
data. However, the appropriate type and level of service
degradation may vary. For instance, consider the distill a-
tion of a color map for quick download. A full-resolution
black-and-white map would still allow the user to read the
street names. On the other hand, if golf courses were
marked in green, color may be more important than reso-
lution. Selection of an appropriate compromise must be
dynamic and controllable, depending on the user, the ap-
plication, and the task at hand.

A variety of adaptations are possible to achieve a bal-
ance between cost and benefit for the user. Common
techniques include compression, encryption, distill ation
(filtering), prioritization, pre-fetching, caching, or buff-
ering. In addition, specific properties of protocols can be
altered. For instance, a data transfer that normally uses
small individuall y acknowledged messages could be
augmented to include a sliding window or less frequent
acknowledgement.

Advances in network technologies only increase the
need for adaptation. Faster networks bring new, band-
width-hungry applications, but fast wires won’ t reach
everywhere. Mobile users, in particular, are always at a
disadvantage as wireless networks continue to be slower,
less secure, and more power-consumptive than wired
networks. As the gap widens between the best and worst
available connectivity, there is an increasing need for ap-
plications to adapt their services accordingly.

At the same time, networks are increasingly heteroge-
neous and complex. Techniques for adaptation have typi-
cally focused on the “ last mile,” assuming that a single
host connects to a well-connected network over a single
poor link [5, 6]. Successes in these systems have shown
that gracefully degraded services are desirable. But, con-
nectivity is becoming more complex with increasing in-
stances of home computer networks, inter-building wire-
less links, and wireless workgroups. Success requires a
more general solution for deploying adaptation.

Conductor is a piece of middleware that allows the op-
erating system to provide adaptation as a service to appli-
cations. It includes a framework and a set of protocols for
deploying adaptor modules into a network. Conductor is
fully transparent to applications, allowing easy addition of

new applications and new network technologies. It in-
cludes a distributed planning algorithm to determine what
combination of adaptors is appropriate, and where they
should be deployed. Finally, Conductor employs a
unique reliabili ty mechanism that allows a data stream to
be arbitrarily adapted at multiple points, without com-
promising reliabili ty.

2. Design Principles

The following design principles allow Conductor to
apply adaptation in a wide variety of circumstances.
While other adaptation systems adopt some of these prin-
ciples, Conductor is unique in that it adheres to all of the
principles.
• Arbitrary Adaptations: Adaptors may arbitrarily
change the data stream.

In particular, an adaptor may add, delete, or modify
portions of a data stream and may maintain state. This
property makes it difficult to detect or to recover from an
adaptor failure.

One proposed approach provides resili ence to failures
only for additive adaptations [7]. For example, forward
error correction codes might be added when a link is par-
ticularly unreliable. Since this adaptation is additive in
nature, adaptor failure only removes the possible benefit.
Conductor’s reliabili ty mechanism removes this restric-
tion, allowing any type of adaptor to be deployed.
• Transparent: Applications should not be required to be
aware of or to control adaptation.

Adaptabili ty could be built directly into applications,
allowing applications to alter their behavior and interface
as well as their use of the network according to the avail-
able connectivity. Such applications can provide adapta-
tion-related control directly to the user. However, build-
ing adaptabili ty directly into applications limits the list of
tolerable network characteristics to those anticipated by
the programmer.

Instead, Conductor provides application-transparent
adaptation by operating on application-level protocols,
external to applications. Upon final delivery to a client or
server, the data stream must conform to the expected
protocol. This is not to say, however, that all adaptations
must be user-transparent. For example, the frame rate of
a video stream could be cut in half prior to transmission,
and later recovered via frame duplication, without violat-
ing the protocol expected by the application. Such an
adaptation poses no new application requirements. How-
ever, since the quality of the user experience is affected,
the user must have control over adaptation. Such control
can be provided external to the application.

Application transparency allows adaptation to be ap-
plied to off- the-shelf applications and frees developers of
custom applications from the complexities of adaptation.
In addition, as new network technologies or user require-

ments develop, no application changes are required. In
effect, transparency separates adaptation technology from
application technology.

Although Conductor provides transparency, it can be-
come less transparent by adding an optional API through
which applications influence selection and operation of
adaptations. Use of this API allows applications to more
tightly integrate adaptation, allowing direct control of
adaptation and a greater abilit y to represent different
service levels to the user.
• Composable: Adaptors should be specialized, con-
taining a single algorithm or function, allowing for adap-
tor composition.

The types of adaptations suggested in Section 1 are es-
sentially orthogonal. By maintaining separation between
encryption and compression algorithms, for example, we
allow easy deployment of new algorithms in combination
with existing adaptations and support for different combi-
nations of security and compression levels that might be
required.

In addition, it is important to separate protocol-specific
adaptations (e.g., MPEG frame dropping) from protocol-
independent adaptations (e.g., Lempel-Ziv compression).
Otherwise, the number of adaptors required would be
multiplicative in the number of protocols and the number
of possible network conditions.

Because some adaptors may require a partial ordering
with others, modularized adaptors require careful de-
ployment. For instance, compression should normally
occur before encryption.
• Distributed: Adaptation is most effective if it can be
deployed into a network.

Consider the network in Figure 1. Clients C1, C2, and
C3 wish to perform database queries on server S. Assume
an ISDN link connects nodes A and B. The clients could
employ pre-fetching to minimize latency in responses
from S. Since pre-fetching seeks to use spare bandwidth
on the channel between nodes A and B to fulfill a pre-
dicted future need, it can only be effectively provided at
node A. Node C1 cannot determine when to pre-fetch
because it cannot detect whether the ISDN link is free, or
busy with an actual request from C2. Moreover, a result
from a pre-fetch may be of use to any of C1, C2, or C3, so
it should be cached at node A.

SB

C1

C2

C3

A

Figure 1: A sample network requiring
distributed adaptation.

As another example, node A might be a cellular phone
providing on-demand connectivity to nodes C1, C2, and C3

via a personal-area network [1]. The clients wish to fetch
Web pages and periodically request stock quotes over the
cellular link. Since the cellular link is expensive, when
the link is not already established for Web requests, the
user may wish to provide stock quotes from a cache or
queue these requests until several are pending. As before,
only node A can perform the desired adaptation.

These examples demonstrate cases in which adapta-
tions that might sometimes be performed on a client must
instead occur on a node within the network. A server
may not be an optimal choice either. Because a server
may have many clients, it cannot be expected to have the
resources to support a large number of adaptations. In
addition, a server may not wish to accept arbitrary code
(despite encapsulation) from any arbitrary host. Thus,
clients and servers may wish to offload adaptation to
more appropriate nodes in the network.
• Multi-node: In some cases, multiple nodes may be
required for adaptation.

Consider again the network in Figure 1. Node A could
prioritize client requests before transmission over the
cellular link. Meanwhile, Web pages that are returned
may contain very large images, requiring a compression
adaptation at node B. Decompression could occur at ei-
ther node A or at the requesting client. In either case,
multiple nodes are required for this adaptation.

At the same time, the locations at which adaptation is
required cannot be fixed. Consider another network,
shown in Figure 2, where the link from D to C also has
poor bandwidth. In this case, compression would be best
applied at node D rather than node B, avoiding multiple
compression and decompression operations. Thus, a set
of multiple, dynamically selected nodes may be required
to provide the desired effect.

3. Conductor Design

Conductor allows a connection-oriented channel be-
tween a client and a server to be transparently adapted.
Adaptation takes place by operating on the data and pro-
tocol in the stream. Application transparency is achieved
by ensuring that the data stream visible at either endpoint
conforms to the protocol expected by the application.

That is not to say, however, that the stream received at
one endpoint will be identical to the stream transmitted
from the other endpoint. Adaptors are permitted to create,
delete, modify, or delay any stream content, so long as the
appropriate protocol is presented to the application. User-
transparency is, therefore, not necessarily preserved and
depends on the adaptations involved.

In addition, when a fundamental characteristic of a
protocol is inappropriate for the network characteristics,
an entirely new protocol can be created. Pairs of adap-
tors are employed to convert from the original protocol to
the new protocol and back, providing transparent protocol
conversion. Such conversions can be nested or combined
sequentially in constrained ways.

Adaptors can be freely deployed on the endpoint
nodes or on nodes in the network. Conductor is primarily
a runtime environment, present on network nodes, that
allows adaptive agents to be deployed along the data path.
Toward this goal, Conductor provides faciliti es for inter-
ception of connections, node and network monitoring,
adaptation planning, reliabilit y, and support for deploying
distributed adaptive agents.

Conductor allows adaptations to be performed on any
Conductor-enabled node on the path from the client to the
server. The Conductor framework can be present on cli-
ent and server nodes, as well as other nodes within the
network. Conductor assumes that nodes supporting ad-
aptation are sprinkled throughout the network. Ideally,
Conductor would be deployed onto special hardware
within routers, which frequently hold the most complete
information about network status. It is not necessary for
all routers to be Conductor-enabled, nor would all router
traffic be affected by Conductor. Nodes other than
routers can also be Conductor-enabled. A Conductor-
enabled node must be will ing to participate in planning
algorithms and can volunteer to adapt particular data
streams. No minimum processing or storage require-
ments are assumed for Conductor nodes. Available re-
sources are taken into account when determining where
adaptors should be deployed. It will be advantageous for
administrators to place additional computing and storage
resources at key Conductor nodes.

Conductor-enabled nodes will include an observation
component, using one of several existing technologies to
monitor the availabil ity of local node resources, such as
spare CPU cycles, and the conditions and capabiliti es of
adjacent network links [2]. For each Conductor-
controlled connection, the data path will be divided into
several sub-connections, one between each pair of nodes
actively adapting the data stream. Adaptors are then de-
ployed to each of those nodes.

3.1. Adaptors

To allow adaptor modules to be deployed dynamically,
they are written in Java. Each Conductor-enabled node

SB

C1

C2

C3

A DC

Figure 2: A sample network requiring
dynamic multi-node adaptation.

can store adaptor modules to be deployed along any data
stream that passes through that node.

Each adaptor has an input protocol and an output pro-
tocol, and performs some function on a unidirectional
data stream. Adaptors can be deployed in pairs, one
adaptor converting from protocol A to protocol B, the
other converting back to protocol A. Adaptor pairs can
by loss-less, delivering unchanged data at the output, or
lossy, delivering different data (but the same protocol).
Adaptors that input and output the same protocol can also
be deployed unpaired.

Each adaptor module includes self-describing meta-
information which includes four components that insure
proper deployment. The first two components indicate
what protocol(s) the adaptor can operate on and the node
resources required by the adaptor (as measured by the
observation component).

The third component specifies the applicabili ty of an
adaptor to the network. For each link characteristic
monitored by the observation component (e.g., band-
width, security level, jitter), an input level and output
function can be specified to describe the pre-conditions
and post-conditions for deploying that adaptor. For in-
stance, an encryptor might specify that it expects a low
security level at its input and that it provides a higher se-
curity level at its output. For paired adaptors, the final
output function is based on the initial input value. In this
case, a decryptor would return the security level to the
level measured at the input of the paired encryptor.

The final meta-descriptor component specifies a set of
interoperabili ty parameters, which restrict adaptor combi-
nation. As before, these parameters specify an expected
input level and an output function, indicating pre and post
conditions. Two types of interoperabili ty parameters are
allowed: standard and extended. Standard parameters
describe protocol-independent characteristics of a data
stream and must be specified by all adaptors. For in-
stance, a compression adaptor might require a certain
amount of compressibili ty to be deployed and would re-
sult in a less compressible output. An encryption adaptor
would have no compressibility requirement but would
create a nearly incompressible output. Such a specifica-
tion restricts compression to occur before encryption.
Extended parameters are analogous, but are optional and
express protocol-dependent data characteristics (e.g.,
frame rate). For most adaptors, composition requires that
each adaptor specifies the acceptable input levels for all
extended parameters produced by its neighbor. Protocol-
independent adaptors are an exception to this rule.

3.2 Planning

When a new client-server connection forms, Conduc-
tor will provide a cost-benefit compromise for the user by
selecting and deploying the most appropriate set of adap-
tors. Conductor-enabled nodes along the network path

between the client and server form the planning path.
These nodes are involved in planning activities.

Planning could be accomplished by allowing each
Conductor-enabled node to make a locally optimal plan,
deploying adaptors to alleviate deficiencies in local li nks.
This approach results in low planning latency, but can
produce an adaptation plan that is not globally optimal.
Reconsider the network in Figure 2. If the two dashed
lines represent low bandwidth links, local planning would
result in two pairs of compression and decompression
adaptors, rather than a single pair spanning both links.
Further gossiping between nodes could identify the re-
dundancy, and the four deployed adaptors could be re-
placed by two. However, since adaptor deployment (and
removal) is a heavyweight operation, it is preferable to
pay a higher up-front cost for a globally optimized plan.

Because adaptors can cache data, optimistically gener-
ate data, or buffer data, some level of service may be pro-
vided despite a partition between a client and server.
Therefore, we must not require global planning. Instead,
Conductor employs per-partition planning. Within each
network partition, a partition-wide plan is generated.

For partition-wide planning, all relevant information is
gathered at a single node, a plan is generated and distrib-
uted to all nodes, adaptors are deployed, and data begins
to flow through the adapting nodes. If network conditions
deviate from the input specification of any deployed
adaptor, replanning occurs, possibly resulting in replace-
ment or addition of adaptor modules.

Although information gathered during planning can be
potentially large, it is primarily connection-independent
and somewhat static. In addition, since network routing
tends to follow regular patterns, planning paths will t end
to overlap. By caching the planning information received
from each node in the path, the need for transmission, and
therefore the planning overhead, can be reduced.

The information gathered for planning includes a fixed
set of parameters for each link and node, user require-
ments specified in terms of link parameters and data char-
acteristics (as described by adaptor interoperabilit y pa-
rameters), and the meta-descriptor and location of all
available adaptor modules. Notice that the node resource
requirements contained in each adaptor’s meta-descriptor
constrains the nodes on which it can be placed. Further,
an adaptor’s interoperabili ty parameters constrain the
combinations of adaptors that are permitted. Finally, the
user requirements determine which adaptors would be
desirable and needed.

Because all planning information is gathered at a sin-
gle node, a variety of plan formulation algorithms could
be plugged into the system. We could consider a greedy
algorithm that, with each iteration, considers the largest
mismatch between link characteristics and user require-
ments. The algorithm would then select an adaptor (or
pair) which alters the link characteristic to most closely
match the user’s requirements. As the algorithm pro-

ceeds, it is constrained in new selections by the
interoperabili ty parameters of previously selected adap-
tors. Clearly, such an algorithm would produce non-
optimal plans. An alternative algorithm could build a tree
of all such possible selections and evaluate all l eaf nodes
(plans) based on adaptor deployment costs, adaptation
overhead, and the degree to which each plan matches the
user’s requirements. This algorithm could be expensive.
Currently, Conductor employs a simple and cheap plan-
ning algorithm, and we are exploring other algorithms.

3.3 Reliability

A reliable data stream provides exactly-once delivery
semantics. Since adaptors can arbitrarily change data in
transit, data delivered may be arbitrarily different from
data transmitted (at any two points along the connection
path). It is diff icult to define exactly-once semantics in
the presence of adaptation. If an adaptor, proxy node, or
link were to fail , a comparison between data received
downstream and data sent from upstream will not neces-
sarily indicate an appropriate point of retransmission

Moreover, since adaptors may be paired and maintain
state, loss of one adaptor module may require the addition
or deletion of other adaptor modules to restore symmetry
and correct composition. Without further support, adap-
tor loss could lead to data loss. Conductor employs two
mechanisms to allow proper failure recovery: semantic
segmentation and protocol hierarchies.

Like many systems, Conductor uses segments as a unit
of retransmission. Typically, segments are necessarily
immutable in transit. Conductor extends this model, al-
lowing in-transit adaptation. A segment in Conductor
contains a semantically meaningful portion of data. For
example, in a video stream, a segment might contain a
single frame. An adaptor may choose to turn a color
frame into a black-and-white frame by modifying data in
a segment while preserving its semantic meaning. Since a
segment is the unit of retransmission, each frame will be
received exactly once, in one format or the other.

Segmentation occurs dynamically, according to the
properties of the data and the adaptations. Initially, a data
stream is logically composed of single-byte segments. To
preserve the semantic retransmission property, an adaptor
is required to contain each data stream modification
within a given segment. If a desired modification would
cross segment boundaries, the adaptor first combines the
adjacent segments into a single segment. The new seg-
ment should represent all of the semantic meaning con-
tained in the original segments. The new segment is la-
beled in a way that indicates the composition that oc-
curred. Failure recovery can be accomplished at the point
of failure by canceling any partially transmitted segment
and requesting retransmission to begin with that segment.
Any version of a segment or the composed segments can
be used for retransmission.

Although data loss is prevented using segmentation,
Conductor must also preserve adaptor pairing. Consider
the adaptor pairs in Figure 3. Adaptors BC and CB are
paired, converting protocol B to a new protocol C. If BC
fails, either it must be replaced, or CB must be removed.
Since some internal state may be lost with a failed adap-
tor, BC cannot, in general, be replaced. Instead, CB is
removed. In addition, after BC fails, any data approach-
ing from CB cannot be converted back to protocol B, so
retransmission occurs.

When a failure occurs, Conductor must be able to de-
termine which adaptors to remove. Since planning ac-
tivities can be localized by network partitions, a given
node may not have global knowledge of deployed adap-
tors. Instead, Conductor associates a protocol hierarchy
with each link (see Figure 3), indicating the hierarchy of
adaptations performed to achieve the current protocol.
When a link, node, or adaptor failure occurs, the data path
is first spliced back together. The new protocol hierarchy
for the link is determined by the greatest common ances-
try between the hierarchies upstream and downstream of
the failure. Adaptors on either side of the failure that do
not conform to this new protocol hierarchy are removed.
Notice that when adaptors are composed (as in Figure 3),
failure of an outer adaptor will require inner adaptors to
be removed as well, to preserve proper composition.

4. Development Status

Conductor’s primary mechanisms and algorithms are
fully designed. Development of the Conductor runtime
environment for Linux is underway.

Currently, Conductor is able to intercept TCP connec-
tions, form a planning path among Conductor-enabled
nodes, perform simpli fied plan formulation, deploy sim-
ple adaptors along the data path, and adapt the data
stream. We are expecting to complete a prototype, in-
cluding support for more sophisticated plan formulation
and reliabili ty, in 1999.

5. Related Work

A variety of adaptive techniques have already been
explored in various systems. These systems can be
loosely divided into three categories.
• Application-oriented. Some systems provide a set of
programming tools to aid applications in adapting to

AB BABC CB

Protocol A Protocol A/B Protocol A

Protocol A/B/C

Figure 3: Protocol hierarchies.

changing network conditions. Odyssey [3] provides
feedback to the application about network conditions and
allows the application to request different levels of data
fideli ty. The Rover Toolkit [4] allows applications to be
subdivided, placing some functionali ty on either side of a
low-quality link. By allowing applications to be smarter
about network concerns, these systems allow user-
controlled application-specific tradeoffs to be made about
network use. However, these systems require program-
mers to consider the variety of environments the applica-
tion is likely to encounter and the types of service com-
promises users will accept.
• Proxy-oriented. The Daedalus Project has had great
success using their Transformation, Aggregation, Caching
and Customization (TACC) architecture to construct
adaptive proxies [5]. Their TranScend proxy and the Top
Gun Wingman system have demonstrated, in real use, that
adaptation can provide users with a cost-to-quali ty com-
promise. TACC allows proxy services, composed of
worker modules, to execute on a compute cluster. Co-
lumbia University researchers have constructed a general-
purpose proxy framework that allows dynamic loading of
adaptor modules to a proxy node, giving even greater
control to users [6]. Both of these systems focus on “ last
mile” issues, adapting data at a well-connected proxy
node before transmission across a low-quali ty link. As a
result, both systems are currently limited to a single proxy
service per connection and make no provisions for distri-
bution of adaptations or resistance to proxy failure.
• Protocol-oriented. Several researchers have focused
on adapting protocols to make adaptation a transparent
network function. Protocol Boosters [7] allow multiple
booster objects to be composed together and dynamically
distributed along a data path, augmenting the transmission
protocol. Resili ence to adaptor failure in this system is
only provided in the case of additive operations, which
leave the initial data stream intact. Boosters of this type
are limited in the types of adaptations they can provide.
In a different approach, Transformer Tunnels [8] from the
Dataman project provide per-link adaptation by allowing
pairs of nodes to create adaptive tunnels. All data flowing
through a tunnel is similarly adapted. Tunnels can, there-
fore, be administratively deployed wherever low-quali ty
network elements exist. This approach, while extremely
efficient, provides very little flexibil ity and responsive-
ness to the requirements of individual users.

Conductor has benefited from the lessons of these
systems and combines many of their best properties.

Emerging research in active networking [9] may pro-
vide a future direction for Conductor. Active networks
allow programs to be attached to individual packets or to
be deployed into network switches. Although active net-
work code is frequently lighter in weight than the typical
adaptation envisioned for Conductor, techniques devel-
oped for Conductor may prove useful for active networks.

6. Conclusions

In the future, networks will require flexible adaptation
technology, allowing applications to gracefully degrade
their services. Conductor allows an operating system to
provide protocol adaptation as a transparent service.
Conductor provides a general mechanism to select and
dynamically deploy combinations of adaptive agents to
multiple points in a network. In addition, Conductor
maintains resilience to failure while allowing arbitrary
adaptations. These properties are crucial to providing the
exact cost-benefit balance desired by each user in a com-
plex network.

7. References

[1] Jaap Haartsen, Mahamoud Naghshineh, Joh Inouye, Oalf J.
Joeressen, and Warren Allen, “Bluetooth: Vision, Goals, and
Architecture,” Mobile Computing and Communications Review,
Oct. 1998, 2(4):38-45.

[2] Pradeep Sudame and B.R. Badrinath, “On Providing
Support for Protocol Adaptation in Mobile Wireless Networks,”
Rutgers University, Department of Computer Science Technical
Report, DCS-TR-333, July 1997.

[3] B. Noble and M. Satyanarayanan, “Agile Application-
Aware Adaptation for Mobilit y,” Proceedings of the 16th ACM
Symposium on Operating Systems Principles, St. Malo, France,
Oct. 1997.

[4] Anthony D. Joseph, Joshua A. Tauber, and M. Frans
Kaashock, “Building Reliable Mobile-Aware Applications
Using the Rover Toolkit,” in Proceedings of the Second ACM
International Conference on Mobile Computing and Networking
(MobiCom ’96), Nov. 1996.

[5] Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric
Brewer, “Adapting to Network and Client Variations Using
Infrastructrual Proxies: Lessons and Perspectives,” IEEE
Personal Communications, Sept. 1998, 5(4):10-19.

[6] Bruce Zenel and Dan Duchamp, “A General Purpose Proxy
Filtering Mechanism Applied to the Mobile Environment,”
Proceedings of the Thrid Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MOBICOM
’97), Oct. 1997, pp. 248-259.

[7] D.C. Feldmeier, A.J. McAuley, J.M. Smith, D. Bakin, W.S.
Marcus, T. Raleigh, “Protocol Boosters,” IEEE JSAC, Special
Issue on Protocol Architectures for the 21st Centruy, Apr. 1998,
16(3):437-444.

[8] Pradeep Sudame and B.R. Badrinath, “Transformer Tunnels:
A Framework for Providing Route Specific Adaptations,”
Proceedings of the 1998 USENIX Annual Technical Conference,
New Orleans, Louisiana, June 1998.

[9] David L. Tennenhouse, Jonathan M. Smith, W. David
Sincoskie, David J. Wetherall , and Gary J. Minden, “A Survey
of Active Network Research,” IEEE Communications
Magazine, Jan. 1997, 35(1):80-86.

