Conductor: A Framework for Distributed Adaptation®

Mark Yarvis, Peter Reiher, and Gerald J. Popek*
Computer Science Department, University of California, Los Angeles
{yarvis, reiher, popek} @fmg.cs.ucla.edu

Abstract

Most network apgications provide poor service when the
network’s capalilities are below a minimum leve as
sumed by the devdoper. As a wider array of network
techndogies become avail able, users will be increasingly
frustrated with a lack of flexbility in such apgications.
The services provided by an gplication shoud be tun-
able to a levd appropriate for the capabiliti es and a&0-
ciated costs of the underlying retwork. Other researchers
have shown that proxy agents can tailor the comnunica-
tion patern of an application to the characteristics of a
network. Dynamic deployment of multiple adapting
agents at various points in a network can extend these
benefits. Condwctor demonstrates an appoach toward
seleding an gpropriate set of adaptive agents and a pan
for their deployment. Conductor further all ows arbitrary
adapations to be performed aong the data path withou
reducing the reliability of the overall system.

1. Introduction

An increasingly large percentage of applicaions are
network-based, providing a service to the user by com-
municating with one or more network servers. Applica
tion designers typicdly make assumptions about the
minimum level of service required from the network,
failing to consider mohile users and athers who encounter
varying degrees of connedivity.

Eadh link in a network may present a different level of
bandwidth, latency, jitter, reliability, and security. These
services are provided for some level of monetary cost and
power consumption. If an applicaion’s use of the network
is not curtailed when network charaderistics are unfavor-
able, it may either (1) provide littl e or no useful serviceto
the user, or (2) provide service d a st greaer than the
worth to the user. Rather than trying to achieve the same
level of service regardless of the properties of the net-
work, an application’s use of the network should be con-
trolled, resulting in a degraded level of service

* Thiswork was partially supported by the Defense Advanced Research
Projects Agency under contract DABT63-94-C-0080.

" Gerald Popek is also associated with PLATINUM technology, inc.

Degraded service may require a ompromise in timeli-
ness, quality, completeness or reliability of the user’'s
data. However, the gpropriate type and level of service
degradation may vary. For instance, consider the distill a
tion of a mlor map for quick download. A full-resolution
bladk-and-white map would still alow the user to read the
stred names. On the other hand, if golf courses were
marked in green, color may be more important than reso-
lution. Selection of an appropriate compromise must be
dynamic and controll able, depending on the user, the -
plicéion, and the task at hand.

A variety of adaptations are passble to achieve abal-
ance between cost and benefit for the user. Common
tedhniques include mmpresson, encryption, distill ation
(filtering), prioritization, pre-fetching, cading, or buff-
ering. In addition, spedfic properties of protocols can be
atered. For instance a data transfer that normally uses
small individually acknowledged messages could be
augmented to include adliding window or less frequent
adknowledgement.

Advances in retwork technologies only increase the
need for adaptation. Faster networks bring nrew, band-
width-hungry applications, but fast wires won't read
everywhere. Mobile users, in particular, are dways at a
disadvantage & wireless networks continue to be slower,
less ®cure, and more power-consumptive than wired
networks. As the gap widens between the best and worst
available mnnedivity, there is an increasing reed for ap-
plicaionsto adapt their services acordingly.

At the same time, networks are increasingly heteroge-
neous and complex. Tecdhniques for adaptation have typi-
cdly focused on the “last mile,” assuming that a singe
host conneds to a well-conneded network over a single
poa link [5, 6]. Successs in these systems have shown
that gracefully degraded services are desirable. But, con-
nedivity is beaoming more complex with increasing in-
stances of home computer networks, inter-building wire-
lesslinks, and wireless workgroups. Success requires a
more general solution for deploying adaptation.

Conductor is a pieceof middeware that al ows the op-
erating system to provide alaptation as a service to appli-
cdions. It includes aframework and a set of protocols for
deploying adaptor modules into a network. Conductor is
fully transparent to appli caions, all owing easy addition of

new applicaions and new network technologies. It in-
cludes a distributed planning algorithm to determine what
combination of adaptors is appropriate, and where they
should be deployed. Finaly, Conductor employs a
unique reliability mechanism that allows a data stream to
be abitrarily adapted at multiple points, without com-
promising reliabili ty.

2. Design Principles

The following design principles allow Conductor to
apply adaptation in a wide variety of circumstances.
While other adaptation systems adopt some of these prin-
ciples, Conductor is unique in that it adheres to all of the
principles.

* Arbitrary Adaptations. Adaptors may arbitrarily
change the data stream.

In particular, an adaptor may add, delete, or modify
portions of a data stream and may maintain state. This
property makes it difficult to deted or to recover from an
adaptor failure.

One propased approach provides resili ence to failures
only for additive adaptations [7]. For example, forward
error corredion codes might be added when alink is par-
ticularly unreliable. Since this adaptation is additive in
nature, adaptor failure only removes the possble benefit.
Conductor’s reliability mechanism removes this restric-
tion, allowing any type of adaptor to be deployed.

» Transparent: Applications should not be required to be
aware of or to control adaptation.

Adaptability could be built diredly into applications,
allowing applications to alter their behavior and interface
as well as their use of the network acerding to the avail-
able mnnedivity. Such applicaions can provide aapta-
tion-related control diredly to the user. However, build-
ing adaptabili ty diredly into applications limits the list of
tolerable network charaderistics to those anticipated by
the programmer.

Instead, Conductor provides application-transparent
adaptation by operating on applicaion-level protocols,
external to applicaions. Upon final delivery to a dient or
server, the data stream must conform to the expeded
protocol. Thisis not to say, however, that all adaptations
must be user-transparent. For example, the frame rate of
a video stream could be ait in half prior to transmisson,
and later recovered via frame duplication, without violat-
ing the protocol expeded by the gplicaion. Such an
adaptation poses no new application requirements. How-
ever, since the quality of the user experience is affeded,
the user must have mntrol over adaptation. Such control
can be provided external to the gplication.

Applicatiion transparency allows adaptation to be a-
plied to off-the-shelf applications and frees developers of
custom applications from the complexities of adaptation.
In addition, as new network technologies or user require-

ments develop, no applicaion changes are required. In
effect, transparency separates adaptation technology from
application technol ogy.

Although Conductor provides transparency, it can be-
come lesstransparent by adding an optional API through
which applications influence selection and operation of
adaptations. Use of this API alows applicaions to more
tightly integrate alaptation, allowing dired control of
adaptation and a greder ability to represent different
servicelevelsto the user.

» Composable: Adaptors dould be spedalized, con-
taining a single dgorithm or function, allowing for adap-
tor compaositi on.

The types of adaptations suggested in Sedion 1 are &s-
sentially orthogonal. By maintaining separation between
encryption and compresson algorithms, for example, we
allow easy deployment of new agorithms in combination
with existing adaptations and suppart for different combi-
nations of security and compression levels that might be
required.

In addition, it is important to separate protocol-spedfic
adaptations (e.g., MPEG frame droppng) from protocol-
independent adaptations (e.g., Lempel-Ziv compression).
Otherwise, the number of adaptors required would be
multi pli cative in the number of protocols and the number
of possble network conditions.

Becaise some alaptors may require apartial ordering
with others, modularized adaptors require caeful de-
ployment. For instance compression should normally
occur before encryption.

* Distributed: Adaptation is most effective if it can be
deployed into a network.

Figure 1: A sample network requiring
distributed adaptation.

Consider the network in Figure 1. Clients C;, C,, and
C; wish to perform database queries on server S. Assume
an ISDN link conneds nodes A and B. The dients could
employ pre-fetching to minimize latency in responses
from S. Since pre-fetching seeks to use spare bandwidth
on the channel between nodes A and B to fulfill a pre-
dicted future nedd, it can only be dfedively provided at
node A. Node C; cannot determine when to pre-fetch
becaise it cannot deted whether the ISDN link is free or
busy with an adual regquest from C,. Moreover, a result
from a pre-fetch may be of use to any of C;, C,, or Cs, SO
it should be cated at node A.

As another example, node A might be a cular phone
providing on-demand connedivity to nodes C,, C,, and C;
via apersonal-areanetwork [1]. The dients wish to fetch
Web pages and periodicdly request stock quotes over the
cdlular link. Since the cdlular link is expensive, when
the link is not already established for Web requests, the
user may wish to provide stock quotes from a cahe or
gueue these requests until several are pending. As before,
only node A can perform the desired adaptation.

These examples demonstrate caes in which adapta-
tions that might sometimes be performed on a dient must
instead occur on a node within the network. A server
may not be an optimal choice éther. Becaise aserver
may have many clients, it cannot be expeded to have the
resources to suppat a large number of adaptations. In
addition, a server may not wish to accept arbitrary code
(despite encapsulation) from any arbitrary host. Thus,
clients and servers may wish to offload adaptation to
more gpropriate nodes in the network.

e Multi-node: In some ases, multiple nodes may be
required for adaptation.

Consider again the network in Figure 1. Node A could
prioritize dient requests before transmission over the
cdlular link. Meanwhile, Web pages that are returned
may contain very large images, requiring a compression
adaptation at node B. Decompresson could occur at ei-
ther node A or at the requesting client. In either case,
multi ple nodes are required for this adaptation.

©y
c)

Figure 2: A sample network requiring
dynamic multi-node adaptation.

At the same time, the locaions at which adaptation is
required cannot be fixed. Consider another network,
shown in Figure 2, where the link from D to C also has
poa bandwidth. In this case, compresson would be best
applied at node D rather than node B, avoiding multiple
compression and deacompression operations. Thus, a set
of multiple, dynamicdly seleded nodes may be required
to provide the desired effed.

3. Conductor Design

Conductor allows a @nnedion-oriented channel be-
tween a dient and a server to be transparently adapted.
Adaptation takes placeby operating on the data and pro-
tocol in the stream. Application transparency is achieved
by ensuring that the data stream visible & either endpant
conforms to the protocol expeded by the gplication.

That is not to say, however, that the stream receved at
one endpaint will be identical to the stream transmitted
from the other endpaint. Adaptors are permitted to crede,
delete, modify, or delay any stream content, so long as the
appropriate protocol is presented to the goplication. User-
transparency is, therefore, not necessrily preserved and
depends on the alaptationsinvolved.

In addition, when a fundamental charaderistic of a
protocol is inappropriate for the network charaderistics,
an entirely new protocol can be aeaed. Pairs of adap-
tors are amployed to convert from the origina protocol to
the new protocol and bad, providing transparent protocol
conversion. Such conversions can be nested or combined
sequentially in constrained ways.

Adaptors can be fredy deployed on the endpant
nodes or on nodes in the network. Conductor is primarily
a runtime environment, present on network nodes, that
allows adaptive ayentsto be deployed along the data path.
Toward this goal, Conductor provides fadliti es for inter-
ception of connections, node axd network monitoring,
adaptation planning, reliability, and suppart for deploying
distributed adaptive agents.

Conductor alows adaptations to be performed on any
Conductor-enabled node on the path from the dient to the
server. The Conductor framework can be present on cli-
ent and server nodes, as well as other nodes within the
network. Conductor assumes that nodes supparting ad-
aptation are sprinkled throughout the network. Idedly,
Conductor would be deployed onto speda hardware
within routers, which frequently hold the most complete
information about network status. It is not necessary for
all routers to be Conductor-enabled, nor would all router
traffic be dfected by Conductor. Nodes other than
routers can also be Conductor-enabled. A Conductor-
enabled node must be willing to participate in planning
algorithms and can voluntee to adapt particular data
streams. NO minimum processng or storage require-
ments are asumed for Conductor nodes. Available re-
sources are taken into acount when determining where
adaptors $ould be deployed. It will be alvantageous for
administrators to place aditional computing and storage
resources at key Conductor nodes.

Conductor-enabled nodes will include an observation
component, using one of several existing technologies to
monitor the avail ability of locad node resources, such as
spare CPU cycles, and the mnditions and capabiliti es of
adjacent network links [2]. For ead Conductor-
controlled connedion, the data path will be divided into
severa sub-connedions, one between ead pair of nodes
adively adapting the data stream. Adaptors are then de-
ployed to ead of those nodes.

3.1. Adaptors

To allow adaptor modulesto be deployed dynamicdly,
they are written in Java. Each Conductor-enabled node

can store alaptor modules to be deployed along any data
stream that passes through that node.

Eadch adaptor has an input protocol and an output pro-
tocol, and performs sme function on a unidiredional
data stream. Adaptors can be deployed in pairs, one
adaptor converting from protocol A to protocol B, the
other converting back to protocol A. Adaptor pairs can
by lossless, delivering urchanged data & the output, or
lossy, delivering different data (but the same protocol).
Adaptors that input and output the same protocol can also
be deployed unpaired.

Each adaptor module includes «if-describing meta-
information which includes four components that insure
proper deployment. The first two components indicae
what protocol(s) the alaptor can operate on and the node
resources required by the alaptor (as measured by the
ohservation component).

The third component spedfies the gplicability of an
adaptor to the network. For ead link charaderistic
monitored by the observation component (e.g., band-
width, security level, jitter), an input level and output
function can be spedfied to describe the pre-conditions
and post-conditions for deploying that adaptor. For in-
stance, an encryptor might spedfy that it expeds a low
seaurity level at its input and that it provides a higher se-
curity level at its output. For paired adaptors, the final
output function is based on the initial input value. In this
case, a deayptor would return the security level to the
level measured at the input of the paired encryptor.

The final meta-descriptor component spedfies a set of
interoperabili ty parameters, which restrict adaptor combi-
nation. As before, these parameters pedfy an expeded
input level and an output function, indicaing pre and post
conditions. Two types of interoperability parameters are
allowed: standard and extended. Standard parameters
describe protocol-independent charaderistics of a data
stream and must be spedfied by al adaptors. For in-
stance a compression adaptor might require a cetain
amount of compressibility to be deployed and would re-
sult in aless compresshble output. An encryption adaptor
would have no compressbility requirement but would
crege anealy incompressble output. Such a spedfica-
tion restricts compression to occur before encryption.
Extended parameters are analogous, but are optional and
express protocol-dependent data daraderistics (e.g.,
frame rate). For most adaptors, compasition requires that
ead adaptor spedfies the accetable input levels for all
extended parameters produced by its neighbor. Protocol-
independent adaptors are an exception to thisrule.

3.2 Planning

When a new client-server connedion forms, Conduc-
tor will provide a ost-benefit compromise for the user by
seleding and deploying the most appropriate set of adap-
tors. Conductor-enabled nodes along the network path

between the dient and server form the planning pah.
These nodes are involved in planning adivities.

Planning could be acomplished by alowing ead
Conductor-enabled node to make alocdly optimal plan,
deploying adaptors to aleviate deficiencies in locd links.
This approac results in low planning latency, but can
produce a adaptation plan that is not globally optimal.
Remnsider the network in Figure 2. If the two dashed
li nes represent low bandwidth links, locd planning would
result in two pairs of compression and decompresson
adaptors, rather than a singe pair spanning both links.
Further gossiping between nodes could identify the re-
dundancy, and the four deployed adaptors could be re-
placal by two. However, since alaptor deployment (and
removal) is a hearyweight operation, it is preferable to
pay a higher up-front cost for aglobally optimized plan.

Becaise aaptors can cade data, optimistically gener-
ate data, or buffer data, some level of service may be pro-
vided despite a partition between a dient and server.
Therefore, we must not require global planning. Instea,
Conductor employs per-partition planning. Within ead
network partition, a partition-wide plan is generated.

For partition-wide planning, al relevant information is
gathered at a single node, a plan is generated and distrib-
uted to all nodes, adaptors are deployed, and data begins
to flow through the adapting nodes. If network conditions
deviate from the input spedficaion of any deployed
adaptor, replanning occurs, possbly resulting in replace-
ment or addition of adaptor modules.

Although information gathered during planning can be
potentially large, it is primarily connedion-independent
and somewhat static. In addition, since network routing
tends to follow regular patterns, planning paths will tend
to overlap. By cading the planning information receved
from ead node in the path, the need for transmisson, and
therefore the planning overhead, can be reduced.

The information gathered for planning includes a fixed
set of parameters for ead link and node, user require-
ments gedfied in terms of link parameters and data char-
aderistics (as described by adaptor interoperability pa-
rameters), and the meta-descriptor and locaion of all
avail able adaptor modules. Notice that the node resource
reguirements contained in ead adaptor’s meta-descriptor
congtrains the nodes on which it can be placed. Further,
an adaptor’'s interoperability parameters constrain the
combinations of adaptors that are permitted. Finaly, the
user requirements determine which adaptors would be
desirable and needed.

Becaise dl planning information is gathered at a sin-
gle node, a variety of plan formulation agorithms could
be plugged into the system. We could consider a greedy
algorithm that, with ead iteration, considers the largest
mismatch between link charaderistics and user require-
ments. The dgorithm would then seled an adaptor (or
pair) which alters the link charaderistic to most closely
match the user’s requirements. As the dgorithm pro-

cedls, it is constrained in rew seledions by the
interoperability parameters of previously selected adap-
tors. Clealy, such an algorithm would produce non-
optimal plans. An alternative dgorithm could build atree
of al such possble seledions and evaluate dl | eaf nodes
(plans) based on adaptor deployment costs, adaptation
overhead, and the degreeto which each plan matches the
user’s requirements. This algorithm could be expensive.
Currently, Conductor employs a simple and cheg pan-
ning algorithm, and we ae exploring other algorithms.

3.3 Reliability

A reliable data stream provides exadly-once delivery
semantics. Since alaptors can arbitrarily change data in
transit, data delivered may be abitrarily different from
data transmitted (at any two pdnts along the mnnection
path). It is difficult to define exadly-once semantics in
the presence of adaptation. |If an adaptor, proxy node, or
link were to fail, a comparison between data receved
downstream and data sent from upstream will not neces
sarily indicate an appropriate point of retransmission

Moreover, since aaptors may be paired and maintain
state, lossof one aaptor module may require the aldition
or deletion of other adaptor modules to restore symmetry
and corred composition. Without further suppart, adap-
tor losscould lead to data loss Conductor employs two
medhanisms to allow proper failure recovery: semantic
segmentation and protocol hierarchies.

Like many systems, Conductor uses ssgments as a unit
of retransmission. Typicdly, segments are necessarily
immutable in transit. Conductor extends this model, a-
lowing in-transit adaptation. A segment in Conductor
contains a semanticdly meaningful portion of data. For
example, in a video stream, a segment might contain a
single frame. An adaptor may choose to turn a mlor
frame into a bladk-and-white frame by modifying data in
a segment while preserving its emantic meaning. Since a
segment is the unit of retransmission, each frame will be
receved exadly once, in one format or the other.

Segmentation occurs dynamically, acording to the
properties of the data and the aaptations. Initialy, a data
stream is logicdly composed of single-byte segments. To
preserve the semantic retransmission property, an adaptor
is required to contain ead data stream modification
within a given segment. If a desired modificaion would
cross ggment boundaries, the alaptor first combines the
adjacent segments into a single segment. The new seg-
ment should represent all of the semantic meaning con-
tained in the original segments. The new segment is la
beled in a way that indicaes the cmmpaosition that oc-
curred. Failure recovery can be acomplished at the point
of failure by canceling any partially transmitted segment
and requesting retransmission to begin with that segment.
Any version of a segment or the compased segments can
be used for retransmission.

Although data loss is prevented using segmentation,
Conductor must also preserve aaptor pairing. Consider
the aaptor pairs in Figure 3. Adaptors BC and CB are
paired, converting protocol B to a new protocol C. If BC
fails, either it must be replacad, or CB must be removed.
Since some internal state may be lost with a failed adap-
tor, BC cannot, in general, be replacal. Instead, CB is
removed. In addition, after BC fails, any data gproac-
ing from CB cannot be mnverted bad to protocol B, so
retransmission occurs.

Protocol A

Protocol A v/Protocol A/B \
-t e
?

Protocol A/B/C

Figure 3: Protocol hierarchies.

When a fail ure occurs, Conductor must be ale to de-
termine which adaptors to remove. Since planning ac-
tivities can be locdized by network partitions, a given
node may not have global knowledge of deployed adap-
tors. Instead, Conductor associates a protocol hierarchy
with each link (see Figure 3), indicaing the hierarchy of
adaptations performed to adciieve the current protocol.
When alink, node, or adaptor fail ure occurs, the data path
isfirst spliced badk together. The new protocol hierarchy
for the link is determined by the greaest common ances-
try between the hierarchies upstream and downstream of
the failure. Adaptors on either side of the failure that do
not conform to this new protocol hierarchy are removed.
Notice that when adaptors are mmpased (as in Figure 3),
failure of an outer adaptor will require inner adaptors to
be removed as well, to preserve proper compaositi on.

4. Development Status

Conductor’s primary mechanisms and algorithms are
fully designed. Development of the Conductor runtime
environment for Linux is underway.

Currently, Conductor is able to intercept TCP connec-
tions, form a planning path among Conductor-enabled
nodes, perform simplified plan formulation, deploy sim-
ple aaptors along the data path, and adapt the data
stream. We ae epeding to complete a prototype, in-
cluding suppart for more sophisticated plan formulation
and reliabili ty, in 1999

5. Related Work

A variety of adaptive techniques have drealy been
explored in various systems. These systems can be
loosely divided into three céegories.

» Application-oriented. Some systems provide aset of
programming tools to aid applicaions in adapting to

changing retwork conditions. Odyssy [3] provides
feadbadk to the goplicaion about network conditions and
allows the gplicaion to request different levels of data
fidelity. The Rover Toolkit [4] allows applications to be
subdivided, pladng some functionality on either side of a
low-quality link. By allowing applicaions to be smarter
about network concerns, these systems alow user-
controll ed appli cation-spedfic tradeoffs to be made aout
network use. However, these systems require program-
mers to consider the variety of environments the gplica-
tion is likely to encounter and the types of service om-
promises users will accept.
e Proxy-oriented. The Daedalus Projed has had grea
successusing their Transformation, Aggregation, Caching
and Customizaion (TACC) architecture to construct
adaptive proxies[5]. Their TranScend proxy and the Top
Gun Wingman system have demonstrated, in red use, that
adaptation can provide users with a mst-to-quality com-
promise. TACC allows proxy services, composed of
worker modules, to execute on a wmpute duster. Co-
lumbia University researchers have constructed a general-
purpase proxy framework that allows dynamic loading of
adaptor modules to a proxy node, giving even geder
control to users [6]. Both of these systems focus on “last
mile” issues, adapting data & a well-conneded proxy
node before transmisson aaossa low-quality link. Asa
result, both systems are arrently limited to a single proxy
service per connedion and make no provisions for distri-
bution of adaptations or resistanceto proxy failure.
* Protocol-oriented. Several reseachers have focused
on adapting protocols to make alaptation a transparent
network function. Protocol Boosters [7] alow multiple
booster objeds to be mmpaosed together and dynamicdly
distributed along a data path, augmenting the transmission
protocol. Resilience to adaptor failure in this system is
only provided in the cae of additive operations, which
leave the initial data stream intad. Boosters of this type
are limited in the types of adaptations they can provide.
In adifferent approach, Transformer Tunrels [8] from the
Dataman projed provide per-link adaptation by allowing
pairs of nodesto creae alaptive tunnels. All data flowing
through a tunnel is smilarly adapted. Tunrels can, there-
fore, be aministratively deployed wherever low-quality
network elements exist. This approad, while extremely
efficient, provides very little flexibility and responsive-
ness to the requirements of individual users.

Conductor has benefited from the lesons of these
systems and combines many of their best properties.

Emerging reseach in active networking [9] may pro-
vide afuture diredion for Conductor. Active networks
allow programs to be atached to individual padets or to
be deployed into network switches. Although adive net-
work code is frequently lighter in weight than the typicd
adaptation envisioned for Conductor, techniques devel-
oped for Conductor may prove useful for adive networks.

6. Conclusions

In the future, networks will require flexible adaptation
technology, allowing applications to gracdully degrade
their services. Conductor allows an operating system to
provide protocol adaptation as a transparent service
Conductor provides a general mechanism to seled and
dynamicdly deploy combinations of adaptive aents to
multiple points in a network. In addition, Conductor
maintains resilience to failure while dlowing arbitrary
adaptations. These properties are aucial to providing the
exad cost-benefit balance desired by ead user in a om-
plex network.

7. References

[1] Jagp Haatsen, Mahamoud Naghshineh, Joh Inouye, Oalf J.
Joeresen, and Warren Allen, “Bluetooth: Vision, Goals, and
Architedure,” Mobhile Computing and Comnrunications Review,
Oct. 1998, 2(4):38-45.

[2] Pradegp Sudame ad B.R. Badrinath, “On Providing
Support for Protocol Adaptation in Mobile Wireless Networks,”
Rutgers University, Department of Computer Science Technicd
Report, DCS-TR-333, July 1997.

[3] B. Noble and M. Satyanarayanan, “Agile Applicaion
Aware Adaptation for Mobility,” Proceelings of the 16" ACM
Symposium on Operating Systems Principles, St. Malo, France,
Oct. 1997.

[4] Anthory D. Joseph, Joshua A. Tauber, and M. Frans
Kasshock, “Building Reliable Mobhile-Aware Applicaions
Using the Rover Todlkit,” in Procealings of the Second ACM
International Conference on Mobile Computing and Networking
(MobiCom'96), Nov. 1996.

[5] Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric
Brewer, “Adapting to Network and Client Variations Using
Infrastructrual Proxies: Lessoons and Perspedives,” |EEE
Persond Comrrunications, Sept. 1998, 5(4):10-19.

[6] Bruce Zend and Dan Duchamp, “A Genera Purpose Proxy
Filtering Medhanism Applied to the Mobile Environment,”
Procealings of the Thrid Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MOBICOM
'97), Oct. 1997, pp. 248-259.

[7] D.C. Feldmeier, A.J. McAuley, JM. Smith, D. Bakin, W.S.
Marcus, T. Raeigh, “Protocol Boosters,” |IEEE JSAC, Spedal
Isaie on Protocol Architedures for the 21% Centruy, Apr. 1998,
16(3):437-444.

[8] Pradeg Sudame and B.R. Badrinath, “Transformer Tunrels:
A Framework for Providing Route Spedfic Adaptations,”
Procealings of the 1998 USENIX Annual Technical Conference,
New Orleans, Louisiana, June 1998.

[9] David L. Tennenhouse, Jonathan M. Smith, W. David
Sincoskie, David J. Wetherall, and Gary J. Minden, “A Survey
of Active Network Reseach,” IEEE Comnunications
Magazine, Jan. 1997, 35(1):80-86.

