
The Adaptation Framework

• The framework provides
• The adaptor runtime environment
• Caching of data and adaptor modules

• Installed on each endpoint and proxy
• The framework participates in

• Route selection
• Distributed planning (adaptation

selection)
• Distributed failure recovery

Splitting the Connection

• The connection is intercepted and routed
through proxy nodes

• Advantages
• Control over data routing
• Allows arbitrary changes to data

• Disadvantages
• Must be responsible for routing
• Decreases reliability

Adaptor Modules Combining Adaptor Modules

Single
Adaptor

Adaptor
Pair

Nested
Adaptor
Pair

Proxy Host

Caching Adaptation

Adaptation
Framework

Perform adaptations on data streams:
• Stream oriented data conversion
• An adaptor alters a unidirectional byte-stream
• Convert input protocol to output protocol

• Arbitrary stream modifications are allowed
• Distributed adaptor modules throughout connection
as needed

Adaptors can be paired for transparent adaptation
• The adapted stream is better suited for transmission

• The original protocol is regenerated for transparency
• Adaptations can be lossy

Other configurations are allowed
• Single adaptor, caching adaptation, protocol
conversion

Why does adaptation make reliability difficult?
Additional points of failure:

• Proxy failure leads to connection failure
• Reliable links only provide failure detection

Adaptation breaks usual reliability assumption:
• Data transmitted � data received!!!
• Retransmission required adaptor state

Adaptors are combined in an inter-dependent manner

Reliability requirements:
• Must be independent of data attributes (e.g., length)

segmentation

• Can’t require proxy health
end-to-end segment recovery

• Must preserve adaptor pairing and consistent data typing
adaptation recovery algorithm

Segmentation

Consider an adaptor that abbreviates words in a
sentence.

• The output stream is shorter than the input stream
• If a failure occurs, what data must be retransmitted?

f o u r o u t d o c t o r so f f i v e
1 3 5 7 9 11 13 15 17 19 21 23

2 4 6 8 10 12 14 16 18 20 22 24

s u r v e y e d
26 28 30 32

27 29 31 33
4 / 5 d r s

1-17

18-25

4 / 5 d r s
1 3 5 7

2 4 6 8

s u r v e y e d
26 28 30 32

27 29 31 33

We must segment data to preserve “equivalence”
between input and output streams:

• Preserves the notion of what data has been delivered

Segment Recovery
Segment Creation

• Initially, the stream contains one-byte segments

• Adaptors combine segments whenever cross-
segment modifications are made

• Segments grow, but do no shrink

Caching
• All segments must be cached at the source

• Additional caches may be used along the stream
(perhaps at host entry points)

• Acknowledgements are provided

Recovery
• Each framework keeps track of segments that

have been seen, but not acknowledged.

• When a failure occurs, frameworks on either side
of the failure compare lists, and request
retransmission of outstanding segments

• Retransmission occurs from the closest cache

• Retransmitted segments can be freely re-adapted

Adaptation Recovery
Adaptors are interdependent

• Pairs of adaptors must fail in pairs

• Failure of an adaptor pair will change the input
type to sub-adaptors

Recovery modes
• When a single adaptor fails, consistency can be

maintained by
• removing dependent adaptors, or
• replacing the failed adaptor

• Since adaptors have state, it is easier to destroy
than create

Recovery algorithm
• Need: recovery without global knowledge

• At each point in the stream, keep track of the
“hierarchy” of adaptations present.

• When failure occurs, adjacent frameworks
compare “hierarchies”

• The “least common adaptations” between
hierarchies remains, all others are removed.

• Information gathering is costly
• Particularly when bandwidth and

latency are already an issue
• These costs reduce potential gain

• Exploit properties of node
status:

• Changes infrequently
• Independent of individual

connections

• Exploit properties of
connections:

• Routing paths frequently overlap
• The same proxy nodes are

frequently adjacent

Issues:

• Local planning cannot
always be correct

• Changing adaptations is
expensive

Use global planning

• But, partitions are likely
Use partition-wide planning

1 Mb 10 Mb 1 Mb

How can this node know to
prefer end-to-end adaptation?

1

2

3

5

Planning Algorithm:

1

2

3

4

5

A node identifies a significant change
in local state

• E.g, link capacity, local load

A request for planning is forwarded
toward one endpoint

• Identifies partitions
• Coalesces multiple requests

Each node sends local status info
toward other endpoint

• Neighbor-to-neighbor transmission
identifies partitions

• Algorithm begins here for new connections

4
Information from all nodes is used
to generate a new plan

Plan is distributed to all nodes
• Adaptation changes can be treated as failures

Amortize cost of
information gathering
across many connections

Information Gathering Algorithm:

Each node has
• An ID
• Local status
• A local status version number
• A status cache

To form new connection A-C-D-E,
D must transmit A’s status to E

Two connections: A-C-D-F and B-C-D-E

A

B

C D

E

F
A-8, B-5 A-8, B-5,

C-12

B-5,C-12,
D-4

A-8,C-12,
D-4

5

8

12 4

6

3

Node ID

Status Version Status Cache

A node caches
• Status of other nodes along

each connection
• The list of nodes to which

each status has already been
forwarded

During information gathering
• Only forward status of a node if

• Its status has not previously
been forwarded

• Its status version has
changed

A wide variety of connectivity options are available, particularly for mobile users.
• Each has different levels of service

• bandwidth, latency
• security, real-time guarantees
• reliability, cost

• Mobile users may experience frequent service changes

Common choices:
• QoS: Application reserves required resources
prior to communication

• Adaptation: Either reduce application
requirements or improve network capabilities

Application transparency
• Don’t require application code to be modified
• Use protocol level adaptation

Graceful degradation of applications
• Adapt protocols in a manner that allows a degraded

level of application service

Support wide network heterogeneity
• Expect varying characteristics from end to end
• Framework approach allows multi-point deployment

Support for unique user requirements
• Different user requirements lead to different forms of

adaptation
• Use of agents allows custom adaptor design

Dynamic deployment
• Don’t require prior coordination or registration

There are five basic types of adaptation:
• data distillation: e.g., image color or resolution reduction

• pre-fetching: e.g., web-page fetch prediction

• caching: e.g., dynamic ftp mirroring

• prioritization: e.g., ordered reconciliation in file replication

• protocol conversion: allows instant protocol upgrade

Other examples:
• Server-specified web customization/distillation
• Content-specific data compression
• Real-time user customized e-mail filtering
• Text access to a video conference
• Electronic whiteboards with reduced consistency
• Bulletin-board style (zero coordination) file
transfer

The Problem:

Approach: Examples:

However, network applications typically
expect a certain level of service and do not
degrade gracefully!!!

Need to bridge gap between
• Application requirements and network capabilities
• Transmission cost and user benefit

Adaptation is preferred when
• The network is severely deficient
• The user can accept degraded service
• Application transparency is desired
• Network capabilities could be bolstered

via software

Points of adaptation

Adapted
Data-path

Un-adapted
Data-path

Typical use of adaptation: last mile
• Adaptation occurs around a single “bad” link
• Proxy deployed at entry to “good” network
• Transparency requires two points of adaptation, but one

can be on client host

Single proxy is sufficient
(for this architecture, however ...)

• Consider a connection which crosses two low
bandwidth links.

• We could deploy compression across each link,
but we prefer end-to-end adaptation.

• In this case, end-to-end adaptation leads to
• Greater efficiency
• Better results (consider lossycompression)

• However, end-to-end adaptation fails the
following considerations

• Security constraints
• Responsiveness
• Load balancing

More complex architectures require more flexibility:

Consider a connection with conflicting
attributes:

• Low bandwidth (modem): Use compression or filter
• High latency (satellite): Use pre-fetching

These adaptations cannot be combined
end-to-end.

Requires at least three points of
adaptation.

50Mb 10Mb 1Mb

10M
b

50
M

b

For even more complex architectures,
many more points of adaptation may be
required:

