Challenges in Distributed Adaptation

Mark Yarvis
UCLA
March 2, 2000

http://fmg-www.cs.ucla.edu/Conductor
Outline

- Intro to Adaptive Networking
- Distributed Adaptation
- Conductor Architecture
- Challenges
Intro to Adaptive Networking

- Applications: increasingly network dependent
 - Internet radio/movies, gaming, MS Office
 - Thin clients
 - Internet appliances
- Minimum level of service assumed
Intro to Adaptive Networking

- Networks: not always fast and free
 - Bandwidth, latency, jitter, security, $$, reliability

- Applications should provide gracefully degraded service
 - Research focus: last mile
Achieving Graceful Degradation

• Use different applications
 – PalmOS clipping applications
• Write adaptive applications
 – Odyssey [Nob97], Rover[Jos95]
 – RealPlayer
• Adapt protocols within the network
Distilling the Web

Trade: Quality for transfer time
Link Scheduling

Trade: Latency for battery power
Other Forms of Adaptation

- Application layer
 - Distill, compress, encrypt, cache
- Network and transport layers
 - Link scheduling, prioritization, FEC
 - Snoop [Bal95]
State of the Art

- Daedalus [Fox98]
- Protocol Boosters [Mal97]
- Transformer Tunnels [Sud98]
- Focus:
 - Last mile
 - Independent adaptation
Beyond the "Last Mile"

• Leaf nodes become leaf networks
 – Home/office wired nets
 – Home/office wireless nets
 – Personal area nets
• User-to-user services
• Multi-hop networks
• Network/server congestion
Possible Approaches

- Solve end-to-end
- Single proxy node
- Independent solutions
- Distributed adaptation

- ✔
- ✗
- ✗
- ✔
Factors in Adaptor Placement

- Placement of adaptation is restricted by
 - Access to link status/control
 - Adaptation conflicts
 - Topology
 - Trust
 - Node resources
 - Load balancing
Conductor Design Goals

- Application-level, connection-oriented protocol adaptation
- Support heterogeneous networks
- Application transparent
- Automatic, but user controllable
- Arbitrary adaptations
- Easy to deploy adaptations
Conductor Architecture

• Adaptation framework
 – Transparent interception and routing
 – Node/link status monitoring
 – Distributed planning and deployment
 – Adaptor runtime environment

• Adaptor modules
 – Operate on data stream
 – Frequently paired
A Conductor-Enabled Node
Challenges in Distributed Adaptation

- Reliable Transmission
- Automated Planning
- Secure Adaptation
“A distributed system is one in which the failure of a computer you didn’t even know existed can render your own computer unusable”

— Leslie Lamport, May 1987
Reliable Transmission

- Distribution introduces new points of failure
- End-to-end reliability typically assumes data immutability
 - Retransmission by byte or packet count
- Adaptation modifies data in transit
 - Need a new unit of retransmission
 Retransmit at byte 9
- Allows adaptors to express recovery
 • Maintained by segment combination
 end-to-end

- Preserve semantic meaning of each segment
 • Dynamically, based on data type and adaptation

- Divide stream into semantic units

- Meaningful unit of retransmission: a semantically

Reliable Transmission
Reliable Transmission

• Rules of segmentation
 – Constrain each stream modification to one segment
 – Combine segments where necessary
 • Not reversible
 • New segment contains combined semantic meaning
 – Final delivery of complete segments only
Reliable Transmission

- Service guarantees:
 - Transaction-like adaptation (all or nothing)
 - Exactly-once delivery of some form of each semantic element

- Other reliability models are possible
Challenges in Distributed Adaptation

- Reliable Transmission
- Automated Planning
- Secure Adaptation
Automated Planning

- **Goal:**
 - Select *which* adaptors and *where* to put them

- **Based on:**
 - Link characteristics
 - Node resources
 - Available adaptors
Automated Planning

- Distributed planning
 - fast
 - non-optimal results
Automated Planning

- Distributed planning
- Distributed planning with incremental refinement
 - How constraining is the initial plan?
- Centralized planning
 - Round trip for information gathering and plan distribution
Automated Planning

Node 1

Node 2
Plan

Node 3
Plan

1 2 3

Plan

Plan
Automated Planning
Automated Planning

• Feasible plans may be hard to find
• Large search space
 – # of problems, # of adaptors, # of nodes
 – Adaptor ordering and composition
• Many constraints
 – Node resources and trust
 – Adaptor composition
• Limited time!
Challenges in Distributed Adaptation

✔ Reliable Transmission
✔ Automated Planning
• Secure Adaptation
Secure Adaptation

- Protect the infrastructure
 - The usual mobile code issues
 - Java is good enough

- Protect the data
 - Integrity and secrecy (when needed)
 - Allow adaptation, but only authorized adaptation
Secure Adaptation

• Mechanisms
 – Select trusted nodes
 • Implicitly trust endpoints
 • Endpoints select other trusted nodes
 – Protect planning
 • Digitally sign planning messages
 – Protect data
 • Distribute session keys to trusted nodes
Secure Adaptation

- Need a verified public key for each node
Secure Adaptation

- Complications
 - Connections span administrative domains
 - No ubiquitous public key architecture
 - Each connection may require a different level of trust

- Pluggable authentication mechanism
 - Requires secure agreement of mechanism
Secure Adaptation
Secure Adaptation

- Authentication scheme proposed in plaintext and verified via signature
 - No node can change the authentication type without notice
- Public key encryption is used for session key distribution
- Additional mechanisms are needed to prevent replay
Challenges in Distributed Adaptation

- Reliable Transmission
- Automated Planning
- Secure Adaptation
Concluding Remarks

- Applications must be adaptive
- In heterogeneous networks applications benefit from distributed adaptation
- Key issues
 - Reliability, automatic planning, security
 - Automatic component composition
- Conductor, a prototype of proposed solutions
References

References

