Challenges in Distributed Adaptation

Mark Yarvis UCLA March 2, 2000

http://fmg-www.cs.ucla.edu/Conductor

Outline

- Intro to Adaptive Networking
- Distributed Adaptation
- Conductor Architecture
- Challenges

Intro to Adaptive Networking

- Applications: increasingly network dependent
 - Internet radio/movies, gaming, MS Office
 - Thin clients
 - Internet appliances
- Minimum level of service assumed

Intro to Adaptive Networking

- Networks: not always fast and free
 - Bandwidth, latency, jitter, security, \$\$, reliability
- Applications should provide gracefully degraded service
 - Research focus: last mile

Achieving Graceful Degradation

- Use different applications
 - PalmOS clipping applications
- Write adaptive applications
 - Odyssey [Nob97], Rover[Jos95]
 - RealPlayer
- Adapt protocols within the network

Other Forms of Adaptation

- Application layer
 - Distill, compress, encrypt, cache
- Network and transport layers
 - Link scheduling, prioritization, FEC
 - Snoop [Bal95]

State of the Art

- Daedalus [Fox98]
- Protocol Boosters [Mal97]
- Transformer Tunnels [Sud98]
- Focus:
 - Last mile
 - Independent adaptation

Beyond the "Last Mile"

- Leaf nodes become leaf networks
 - Home/office wired nets
 - Home/office wireless nets
 - Personal area nets
- User-to-user services
- Multi-hop networks
- Network/server congestion

Possible Approaches

- Solve end-to-end
- X
- Single proxy node
- Independent solutions
- Distributed adaptation
- <u>^</u>

Factors in Adaptor Placement

- Placement of adaptation is restricted by
 - Access to link status/control
 - Adaptation conflicts
 - Topology
 - Trust
 - Node resources
 - Load balancing

Conductor Design Goals

- Application-level, connection-oriented protocol adaptation
- · Support heterogeneous networks
- Application transparent
- Automatic, but user controllable
- Arbitrary adaptations
- Easy to deploy adaptations

Conductor Architecture

- Adaptation framework
 - Transparent interception and routing
 - Node/link status monitoring
 - Distributed planning and deployment
 - Adaptor runtime environment
- Adaptor modules
 - Operate on data stream
 - Frequently paired

Challenges in Distributed Adaptation

- Reliable Transmission
- Automated Planning
- Secure Adaptation

"A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable"

- Leslie Lamport, May 1987

Reliable Transmission

- Distribution introduces new points of failure
- End-to-end reliability typically assumes data immutability
 - Retransmission by byte or packet count
- · Adaptation modifies data in transit
 - Need a new unit of retransmission

Reliable Transmission

- Semantic Segmentation: a semantically meaningful unit of retransmission
 - Divide stream into semantic units
 - Dynamically, based on data type and adaptation
 - Preserve semantic meaning of each segment end-to-end
 - Maintained by segment combination
 - Allows adaptors to express recovery constraints

Reliable Transmission

- Rules of segmentation
 - Constrain each stream modification to one segment
 - Combine segments where necessary
 - Not reversible
 - New segment contains combined semantic meaning
 - Final delivery of complete segments only

Reliable Transmission

- Service guarantees:
 - Transaction-like adaptation (all or nothing)
 - Exactly-once delivery of some form of each semantic element
- Other reliability models are possible

Challenges in Distributed Adaptation

- ✓ Reliable Transmission
- Automated Planning
- Secure Adaptation

Automated Planning

- Distributed planning
- Distributed planning with incremental refinement
 - How constraining is the initial plan?
- · Centralized planning
 - Round trip for information gathering and plan distribution

Automated Planning

- Feasible plans may be hard to find
- Large search space
 - # of problems, # of adaptors, # of nodes
 - Adaptor ordering and composition
- Many constraints
 - Node resources and trust
 - Adaptor composition
- Limited time!

Challenges in Distributed Adaptation

- ✔ Reliable Transmission
- ✔ Automated Planning
- Secure Adaptation

Secure Adaptation

- Protect the infrastructure
 - The usual mobile code issues
 - Java is good enough
- Protect the data
 - Integrity and secrecy (when needed)
 - Allow adaptation, but only authorized adaptation

Secure Adaptation

- Mechanisms
 - Select trusted nodes
 - · Implicitly trust endpoints
 - Endpoints select other trusted nodes
 - Protect planning
 - Digitally sign planning messages
 - Protect data
 - Distribute session keys to trusted nodes

Secure Adaptation

- Complications
 - Connections span administrative domains
 - No ubiquitous public key architecture
 - Each connection may require a different level of trust
- Pluggable authentication mechanism
 - Requires secure agreement of mechanism

Secure Adaptation

- Authentication scheme proposed in plaintext and verified via signature
 - No node can change the authentication type without notice
- Public key encryption is used for session key distribution
- Additional mechanisms are needed to prevent replay

Challenges in Distributed Adaptation

- ✓ Reliable Transmission
- ✓ Automated Planning
- ✓ Secure Adaptation

Concluding Remarks

- Applications must be adaptive
- In heterogeneous networks applications benefit from distributed adaptation
- Key issues
 - Reliability, automatic planning, security
 - Automatic component composition
- Conductor, a prototype of proposed solutions

References

- [Bal95] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, "Improving TCP/IP Performance Over Wireless Networks," Proceedings of the 1th ACM International Conference on Mobile Computing and Networking (MobiCom '95), Nov. 1995.
- [Fox98] Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric Brewer. "Adapting to Network and Client Variations Using Infrastructural Prodies: Lessons and Perspectives." *EEE Personal Communications*, Setember 1998, 5(4):10-11.

 [Jos 95] A. Joseph, A. Aelespinasse, J. Tauben, D. Gifford, and F. Kaashoek, "Rover, A Tookkit for Mobile Information Access." *Proceedings of the 15th ACM Symposium on Operating Systems Principles*, December 1995.
- [Mail97] A. Mailet, J. Chung, and J. Smith, "Operating Systems Support for Protocol Boosters," HIPPARCH Workshop, June 1997.
- [Nob97] B. Noble, M. Saytana rayanan, D. Narayanan, J. Tilton, J. Flinn, and K. Walker, "Agile Application-Aware Adaptation for Mobility," Proceedings of the 16th ACM Symposium on Operating Systems Principles, October 1997.

References

- [Rei00] Peter Reiher, Richard Guy, Mark Yarvis, and Alexey Rudenko, "Automated Planning for Open Architectures," Short paper to be presented at *OPENARCH 2000*, Tel-Aviv, Isreal, March 2000.
- [Sud 98] P. Sudame and B. Badrinath, "Transformer Tunnels: A Framework for Providing Route-6 pecific Adaptations," *Proceedings of the Usenix Technical Conference*, June 1998.
- [Yar99a] Mark Yarvis, Peter Reiher, and Gerald J. Popek. "Conductor: A Framework for Distributed Adaptation." Proceedings of the 7th Workshop on Hot Topics in Operating Systems (Hot0 6 VII), Rio, AZ, March 1999.
- [Yar99b] Mark Yarvis, An-I. A. Wang, Alexey Rudenko, Peter Reiher, Gerald J. Popek "Conductor Distributed Adaptation for Complex Networks," UCLA Tech Report CSD-TR-990042
 - Mark Yarvis, Peter Reiher, and Gerald J. Popek. "A Reliability Model for Distributed Adaptation." Proceedings of the 3rd IEEE Conference on Openarchitectures and Network Programming (to appear). Tel: Aviv. Iereal. March 2000.