A Reliability Model for Distributed Adaptation

Mark Yarvis, Peter Reiher, and Gerald J. Popek

UCLA

OpenARCH 2000

http://fmg-www.cs.ucla.edu/Conductor
Introduction

- Open architectures allow graceful degradation of applications
- Adaptation requires a new model of reliability
 - Semantic Segmentation
- Prototype implementation in Conductor adaptation framework
Motivation

- Multi-point adaptation
 - Multiple problems can require multiple solutions
 - Adaptation location is not always flexible
- Protect end-to-end connection from failure
- Allow adaptations that alter data
Motivation

- Other approaches
 - Restrict the set of adaptations
 - Protocol Boosters, SNOOP
 - Assume reliability of adapting nodes
 - WTCP, MOWGLI
 - Provide a robust architecture
 - TACC
Reliability Infrastructure

• Provide adaptation for applications that expect reliable delivery
 – TCP, exactly once delivery

• End-to-end connection built using multi-split-TCP
 – Reliability between points of adaptation
 – Leverage existing technology
 – Adaptation at each node independent of TCP

• Must still address split-TCP issues
Outstanding Issues

• Failure detection and recovery
• Reliability vs. Adaptation
Failure Detection and Recovery

- Possible failures: adaptors, nodes, links
- Node and link failures detected as TCP connection failures
- Failure modes
 - Potential data loss
 - Partial adaptation of data
 - Lost adaptor state
 - Adaptor consistency
Adaptation vs. Reliability

- Adaptation violates end-to-end reliability semantics
- End-to-end reliability typically assumes data immutability
 - Retransmission by byte or packet count
- Adaptation modifies data in transit
 - Need a new unit of retransmission

WWW Server

WWW Client

WWW Server

WWW Client

Retransmit at byte 9
Solution Components

- Semantic Segmentation
- Adaptor consistency maintenance
Semantic Segmentation

- *Semantic Segmentation*: a semantically meaningful unit of retransmission
 - Divide stream into semantic units
 - Dynamically and automatically, by adaptors
 - Preserve semantic meaning of each segment end-to-end
 - Maintained by segment combination
 - Allows adaptors to express recovery constraints
Rules of Segmentation

• Start with one byte segments
• Constrain each stream modification to one segment
• Combine segments where necessary
 – Not reversible
 – New segment contains combined semantic meaning
• Final delivery of complete segments only
Benefits of Segmentation

• Service guarantees:
 - Transaction-like adaptation (all or nothing)
 - Exactly-once delivery of an acceptable form of each semantic element

• Other reliability models are possible
Adaptor Consistency
Adaptor Consistency

• Adaptor state not saved across failure
 – Ex: decompression dictionary, decryption key
 – Replacement adaptors will be out of sync

• Recovery
 – Locate/remove partners of failed adaptors
 – Remove adaptors that depended on the presence of a failed partner
 – Optionally re-deploy failed and removed adaptors
Conductor Design Goals

- Application-level, connection-oriented protocol adaptation
- Support heterogeneous networks
- Application transparent
- Automatic, but user controllable
- Arbitrary adaptations
- Easy-to-deploy adaptations
- Reliable
A Conductor-Enabled Node
Concluding Remarks

• Many open architectures allow distributed adaptation

• Adaptation need not and should not reduce the reliability of the system
 – Requires a new reliability model

• Conductor is a prototype of the proposed solution