A Reliability Model for Distributed Adaptation

Mark Yarus, Peter Reiher, and Gerald J. Popek
UCLA
OpenARCH 2000
http://fmg-www.cs.ucla.edu/Conductor

Introduction

- Open architectures allow graceful degradation of applications
- Adaptation requires a new model of reliability
 - Semantic Segmentation
- Prototype implementation in Conductor adaptation framework

Motivation

- Multi-point adaptation
 - Multiple problems can require multiple solutions
 - Adaptation location is not always flexible
- Protect end-to-end connection from failure
- Allow adaptations that alter data

Motivation

- Other approaches
 - Restrict the set of adaptations
 - Protocol Boosters, SNOOP
 - Assume reliability of adapting nodes
 - WTCP, MONGL
 - Provide a robust architecture
 - TACC

Motivation

- Other approaches
 - Restrict the set of adaptations
 - Protocol Boosters, SNOOP
 - Assume reliability of adapting nodes
 - WTCP, MONGL
 - Provide a robust architecture
 - TACC

Reliability Infrastructure

- Provide adaptation for applications that expect reliable delivery
 - TCP, exactly once delivery
- End-to-end connection built using multi-split-TCP
 - Reliability between points of adaptation
 - Leverage existing technology
 - Adaptation at each node independent of TCP
- Must still address split-TCP issues
Outstanding Issues

- Failure detection and recovery
- Reliability vs. Adaptation

Failure Detection and Recovery

- Possible failures: adaptors, nodes, links
- Node and link failures detected as TCP connection failures
- Failure modes
 - Potential data loss
 - Partial adaptation of data
 - Lost adaptor state
 - Adaptor consistency

Adaptation vs. Reliability

- Adaptation violates end-to-end reliability semantics
- End-to-end reliability typically assumes data immutability
 - Retransmission by byte or packet count
- Adaptation modifies data in transit
 - Need a new unit of retransmission
Solution Components
- Semantic Segmentation
- Adaptor consistency maintenance

Semantic Segmentation
- Semantic Segmentation a semantically meaningful unit of retransmission
 - Divide stream into semantic units
 - Dynamically and automatically, by adaptors
 - Preserve semantic meaning of each segment end-to-end
 - Maintained by segment combination
 - Allows adaptors to express recovery constraints
Rules of Segmentation

- Start with one byte segments
- Constrain each stream modification to one segment
- Combine segments where necessary
 - Not reversible
 - New segment contains combined semantic meaning
- Final delivery of complete segments only

Benefits of Segmentation

- Service guarantees:
 - Transaction-like adaptation (all or nothing)
 - Exactly-once delivery of an acceptable form of each semantic element
- Other reliability models are possible
Adaptor Consistency

- Adaptor state not saved across failure
 - Ex: decompression dictionary, decryption key
 - Replacement adaptors will be out of sync
- Recovery
 - Locate/remove partners of failed adaptors
 - Remove adaptors that depended on the presence of a failed partner
 - Optionally re-deploy failed and removed adaptors

Conductor Design Goals

- Application-level, connection-oriented protocol adaptation
- Support heterogeneous networks
- Application transparent
- Automatic, but user controllable
- Arbitrary adaptations
- Easy-to-deploy adaptations
- Reliable

A Conductor-Enabled Node

Concluding Remarks

- Many open architectures allow distributed adaptation
- Adaptation need not and should not reduce the reliability of the system
 - Requires a new reliability model
- Conductor is a prototype of the proposed solution