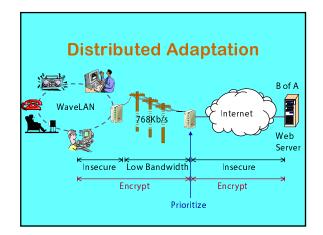
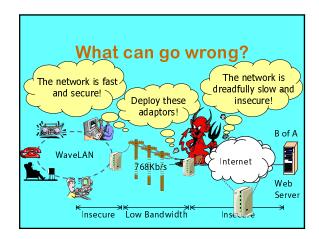

Securing Distributed Adaptation Jun Li, Mark Yarvis, and Peter Reiher


Jun Li, Mark Yarvis, and Peter Reihel University of California, Los Angeles {lijun, yarvis, reiher}@cs.ucla.edu

Presentation by: Mark Yarvis

Distributed Adaptation Solution Internet Web Server Low Bandwidth Prioritize stream access! Shortest job first? Text before images?

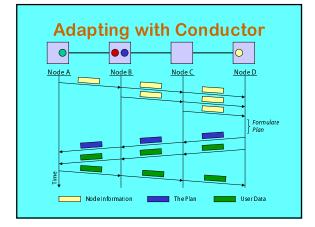


Characteristics of Conductor

- Wide variety of possible adaptations
 - Compress, encrypt, prefetch
 - Distill a video stream to black-and-white
 - Remove and store e-mail attachments
 - Power down wireless interface during predicted query response latency
- Distributed planning architecture
 - Efficiently address end-to-end network conditions
 - Prevent adaptation conflicts
 - Security is needed to ensure adaptation is exactly as desired

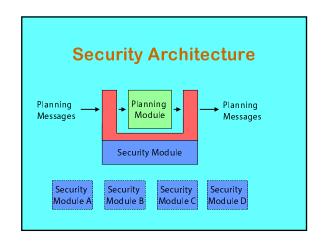
What should be protected?

- Protect the secrecy and integrity of the user data
 - But, still allow adaptation
- Protect the nodes from misbehaving adaptors
 - Leverage existing research
- Protect the user from misbehaving nodes
 - Allow only desired adaptations

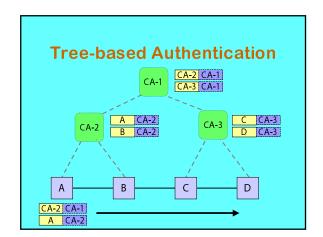


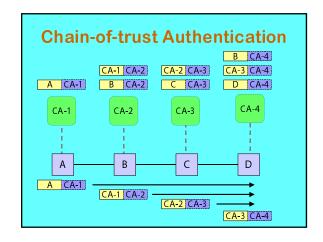
What nodes can we trust?

- Various levels of trust possible
 - See or modify plain text
 - See or modify encrypted text
 - None
- Implicitly trust endpoints (typically)
- Trusting other nodes
 - Requires some type of authentication
 - Static list, dynamic trust model

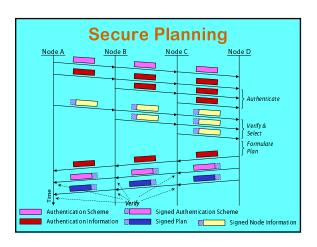

Complications of Distributed Adaptation

- · Users require different levels of security
- · Adaptation may span administrative domains
 - No ubiquitous authentication infrastructure
 - Many choices; how do we agree securely?
- Must allow *limited* stream access within the network
 - Only desired adaptations
 - Typically restricted to trusted nodes




Security in Conductor

- Determine which nodes to trust
 - Select an authentication mechanism
 - Authenticate each node to the planner
 - Authenticate the planner to each node
- Protect planning from untrusted nodes
- · Adapt plaintext only at trusted nodes
- · Encrypt user data between trusted nodes


Authentication • Goals: - Verifiable node identity - Digital signature capability • Plug-in modules provide various authentication schemes - Null - Public-key based: tree, chain of trust - Kerberos based

Selecting an Authentication Scheme

- The client node selects the desired scheme
- Conductor must ensure that all nodes use the desired scheme
 - No external mechanism available
 - Nodes must not be fooled into using null security
 - Not sufficient for the client to sign its request

Secure Planning

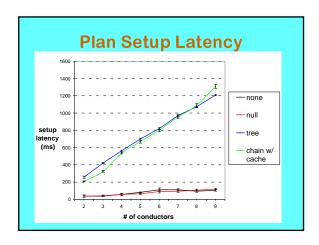
- Protocol features
 - Ensures trusted nodes (and their planning information) can be identified
 - Ensures the specified authentication scheme was used by the planner
 - Ensures an authentic plan is distributed
 - Self selecting and self enforcing
- A random session id is used to prevent replay attacks
- Still required: protection for the user data ...

Virtual Link Encryption

- Allow plaintext adaptation <u>only</u> at trusted nodes
- Encrypt between points of adaptation
 - Use encryption adaptors
- Requires:
 - Selection of trusted nodes
 - Encryption adaptor selection and deployment
 - Secure key distribution

Secure Key Distribution

- Each deployed encryption adaptor requires a particular type of key
- Several keys may be required per session
 - Typically one of each type
- The planner uses adaptor code to generate a set of keys
- Each key is encrypted and signed for each recipient node
 - Use public/private key or shared secret from authentication


Secure Key Distribution DES AES DES AES DES C D AES C D AES C D AES B D AES B D DES A D


Implementation

- Fully integrated into Conductor
- · Security modules
 - Null
 - RSA/SHA-1: static, tree, chain-of-trust
- Encryption/decryption adaptors
 - DES
- Environment
 - Cryptix, Java, Linux

The Cost of Secure Planning

- Increased setup latency
- Increased bandwidth use
- Compare Conductor in four cases:
 - No security
 - Null authentication
 - Tree-based authentication
 - Tree height = 3
 - Chain-of-trust authentication
 - With maximum chain length

Conclusion

- Adaptation is a powerful capability that introduces new avenues of attack
- Open architectures require comprehensive security
 - Protect the user data
 - Protect the node from malicious users
 - Protect the user from malicious nodes
- Conductor provides a flexible security mechanism for distributed adaptation