Conductor: Distributed Adaptation for Heterogeneous Networks

Mark Yarvis yarvis@cs.ucla.edu

http://fmg.cs.ucla.edu/Conductor

November 8, 2001

Introduction

- Problem: Application behave poorly in highly variable and heterogeneous environments
- Goal: Help applications provide the best possible service to the user given current network conditions
- Approach: Conductor provides coordinated and distributed adaptation of application-level protocols as a transparent middleware service

Introduction — Conductor — Selected Details — Results

. .

The Need for Adaptability

- Networks can be highly variable
 - Bandwidth, latency, jitter, \$\$, security, reliability
- Applications frequently assume a minimum level of network service
 - Cost vs. benefit imbalance
- Applications should provide a level of service that the network can support

Introduction — Conductor — Selected Details — Results

Enabling Adaptability

- Adapt application-layer protocols from within the network
 - Compress, encrypt, prefetch
 - Distill a video stream to black-and-white
 - Prioritize interactive browsing over software downloads
 - Remove advertisements from web pages
 - Power down wireless interface during predicted query response latency

Trend: Network
Heterogeneity

Internet

Adapt here

| Selected Details - Results | Selected Details - Results | Selected Details | Selected Detail

Distributed Adaptation Goal: Help applications provide the best possible service to the user given current network conditions Required: Multiple adaptations Distributed within the network Coordinated

Deployment Constraints Limited node resources Load balancing, palmtops Location, location Proximity means agility Hardware access Leveraging topology Conflicting adaptations Introduction — Conductor — Selected Details — Results

Adaptation in Heterogeneous Networks • Must consider end-to-end network characteristics - Multiple constrained links - Multiple types of constraints - Conditions difficult to predict • Many possible adaptations • Multiple points of adaptation • Coordination required!

Conductor: Architecture Overview ...

- Our Approach
- · Conductor's Architecture
- · Stream Management
- Adaptor Selection
- Security
- Reliability
- · Adaptation-aware API

Introduction — Conductor — Selected Details — Results

The Conductor Approach

- Arbitrary (and potentially lossy) adaptation of application-level protocols
 - Reliable connection-oriented streams (TCP)
- Dynamic selection of adaptive code modules at enabled points in the network
 - Conductor is incrementally deployable
- Application transparent, but not user transparent
 - User controllable

Introduction — Conductor — Selected Details — Results

Conductor Architecture

- Components: framework and adaptation modules
- Adaptation framework
 - Transparent interception and routing
 - Node/link status monitoring
 - Centralized planning and deployment
 - Adaptor runtime environment

Introduction — Conductor — Selected Details — Results

Conductor Architecture

- · Adaptor modules
 - Operate on data stream
 - Arbitrary modifications allowed
 - Easily extensible set
 - Frequently paired
 - Composable
 - Stored on Conductor-enabled nodes

Introduction — Conductor — Selected Details — Results

Stream Management

- Capture at socket level
 - Maintain existing socket API
 - Route through other Conductor nodes
 - Create transparent split-TCP connection
- · Stream identification
 - Port numbers, Protocol identifier, Magic number
 - Dynamic, fine-grained identification by adaptors

Introduction — Conductor — Selected Details — Results

Adaptor Selection

- Goal: Automatically select appropriate sets of adaptors for end-to-end conditions
- Issues
 - Speed, cost, coordination
- Plan based on distributed information
 - Node and link characteristics
 - Data characteristics
 - User preferences
 - Available adaptors

Introduction — Conductor — Selected Details — Results

Planning in Conductor

- Centralized planning
 - Gather all inputs to one location
 - Formulate plan
 - Pluggable architecture
 - Distribute plan
- Reaction to changing conditions
 - Adaptors handle a range of conditions
 - When tolerances are exceeded, replanning occurs

Introduction — Conductor — Selected Details — Results

What should be protected?

- Protect the nodes from misbehaving adaptors
 - Leverage existing research
- · Protect the user from misbehaving nodes
 - Allow only desired adaptations
- Protect the secrecy and integrity of the user data
 - But, still allow adaptation

Introduction — Conductor — Selected Details — Results

Security in Conductor

- Protect planning from untrusted nodes
 - Implicitly trust endpoints
 - Authenticate other nodes and establish trust
- Problem: no ubiquitous authentication mechanism
 - Conductor allows dynamic selection and enforcement of an authentication scheme
- · Adapt plaintext only at trusted nodes
 - Encrypt user data between trusted nodes

Introduction — Conductor — Selected Details — Results

Reliable Transmission

- Goal: Provide adaptation for applications that expect reliable delivery
 - TCP, exactly-once delivery of bytes
- Adaptation can violate typical assumption of data immutability
 - Must allow intentional data loss
 - Exactly-once delivery of transmitted bytes makes no sense

Introduction — Conductor — Selected Details — Results

Reliability in Conductor

- · Possible failures: nodes, links, adaptors
- New reliability model
 - Exactly-once delivery of semantic elements
- Semantic segmentation
 - Dynamic and automatic stream checkpointing
 - Ensures that adaptation is atomic
 - Provides exactly-once, in order delivery of the adapted stream

Introduction — Conductor — Selected Details — Results

Reliability in Conductor

- · Recovering from adaptor failure
 - Identify lost adaptors
 - Maintain distributed state describing adaptor pairing and composition
 - Restore adaptor consistency
 - Adaptor state is lost
 - Cannot just replace failed adaptor, in the general
 - Remove paired and composed adaptors
 - Replan and redeploy as required

Introduction — Conductor — Selected Details — Results

Adaptation Aware Apps

- Conductor provides transparency through automatic services:
 - Interception, planning, reliability, adaptation
- · But application knowledge can be useful
- An API can give some apps more control
 - Select and control adaptors
 - Select trusted nodes
 - Provide data for retransmission
- The best of both worlds

Introduction — Conductor — Selected Details — Results

34

Evaluating Conductor

- Effective delivery of adaptation
 - Significant benefit in three case studies
 - Low overheads
 - Demonstration of failure recovery
- Office deployment
 - Daily use for POP3 protocol
- · A platform for distributed adaptation
 - Beta software release
 - http://fmg.cs.ucla.edu/Conductor
 - A basis for further research

Introduction — Conductor — Selected Details — Results

In Greater Detail ...

- Conductor Reliability
- Conductor Security

Introduction — Conductor — Selected Details — Results

Reliability in Conductor • End-to-end connection built using multisplit-TCP • Reliability between points of adaptation • Leverage existing technology • Adaptation at each node independent of TCP • Node and link failures detected as TCP connection failures

Reliability in Conductor • Semantic Segmentation: a semantically meaningful unit of retransmission • Divide stream into semantic units • Dynamically, based on data type and adaptation • No application hints required • Preserve semantic meaning of each segment end-to-end • Maintained by segment combination • Adaptors can express recovery constraints

Rules of Segmentation

- Start with one byte segments
- Constrain each stream modification to one segment
- Combine segments where necessary
 - New segment contains combined semantic meaning
 - Assign segment ID from last combined segment
- Final delivery of complete segments only

Introduction — Conductor — Selected Details — Results

Benefits of Segmentation

- · Service guarantees:
 - Transaction-like adaptation (all or nothing)
 - Exactly-once, in-order delivery of some form of each semantic element
- Adaptors can express appropriate points for adaptation changes

Introduction — Conductor — Selected Details — Results

50

What nodes can we trust?

- · Various levels of trust possible
 - See or modify plain text
 - See or modify encrypted text
 - None
- · Implicitly trust endpoints
- Trusting other nodes
 - Requires some type of authentication
 - Static list, dynamic trust model

Introduction — Conductor — Selected Details — Results

Complications of Distributed Adaptation

- · Users require different levels of security
- Adaptation may span administrative domains
 - No ubiquitous authentication infrastructure
 - Many choices; how do we agree securely?
- Must allow *limited* stream access within the network
 - Only desired adaptations
 - Typically restricted to trusted nodes

Introduction — Conductor — Selected Details — Results

Authentication

- Goals:
 - Verifiable node identity
 - Digital signature capability
- Plug-in modules provide various authentication schemes
 - Null
 - Public-key based: tree, chain of trust
 - Kerberos based

Introduction — Conductor — Selected Details — Results

Secure Planning

- Self-enforcing scheme selection
 - The client selects an authentication scheme
 - The server returns a signed message indicating the scheme used
- Authentication
 - Each node authenticates to the planner
 - The planner authenticates to each node
- Secure planning
 - Planning information is signed by the sender
 - Use only authentic information from trusted nodes
 - The plan is signed by the planner

Introduction — Conductor — Selected Details — Results

Virtual Link Encryption

- Allow plaintext adaptation <u>only</u> at trusted nodes
- Encrypt between points of adaptation
 - Use encryption adaptors
- Requires:
 - Selection of trusted nodes
 - Encryption adaptor selection and deployment
 - Secure key distribution

Introduction — Conductor — Selected Details — Results

Research Results ...

- Performance
- · Comparison with other research
- Key contributions
- Conclusions

Introduction — Conductor — Selected Details — Results

Selected Performance Results

- Overheads reduce the potential benefit of adaptation
 - Conductor has low startup and data handling costs
- The framework is only useful if adaptors can provide real benefit
 - Conductor provided significant benefit in our case studies

Introduction — Conductor — Selected Details — Results

Conductor Overheads

- · Data handling overheads
 - Reduction of throughput and latency over 100 Mbps Ethernet

	Per enabled node	Per <i>null</i> adaptor
Throughput Reduction	0.046%	0.004%
Latency Increase	270 μsec	40 μsec

Introduction — Conductor — Selected Details — Results

Conductor Overheads

- Startup overheads
 - − ~10 ms per enabled node
 - ~250 μs per null adaptor
- Small for connections that last a few seconds or more
- Offset by the benefits of adaptation

Introduction — Conductor — Selected Details — Results

Key Properties of Conductor

- · Automatic and transparent
 - No user or application action required
- Distributed and coordinated
 - Multiple adaptations at multiple locations
- Incrementally deployable
- Extensible set of adaptations
- Reliable and secure

Introduction — Conductor — Selected Details — Results

Other Approaches

- Situation-specific applications
 - Palm clipping apps
 - Text-based web browsers
 - » May require specialized applications
 - » Requires user diagnosis and intervention

Introduction — Conductor — Selected Details — Results

Other Approaches

- · Adaptable applications
 - Odyssey [Noble]
 - Rover [Joseph]
 - Application partitioning [Kottmann][Watson]
 - » Requires application modifications
 - » Application writer must foresee and understand possible network conditions

Introduction — Conductor — Selected Details — Results

Other Approaches

- · Adaptation as a network service
 - Boosting existing protocols
 - Snoop [Balakrishnan]
 - Protocol Boosters [Bellcore / U. Penn]
 - Protocol Transformers
 - Transformer Tunnels [Sudame , Badrinath]
 - Proxy architectures [Fox, Gribble] [Zenel]
 - Active Networks
 - » Lack coordination and reliability needed for arbitrary multipoint adaptation

Introduction — Conductor — Selected Details — Results

Key Contributions

- Transparent adaptation is desirable and achievable
 - Does not rule out adaptation-aware apps
- Significant benefit to raising the level of services within the network
 - In an incrementally deployable manner
- Reliable delivery of adapted data
 - Allows reliability despite stream modification

Introduction — Conductor — Selected Details — Results

Key Contributions

- Security architecture to maintain user control over distributed adaptation
 - With pluggable, self-enforcing authentication
- A working platform for distributed adaptation
 - In daily use
 - A basis for additional research

Introduction — Conductor — Selected Details — Results

Conclusions

- · Conductor extends adaptation ...
 - Automatic, application unaware
 - Distributed: multi-site, coordinated
- Key enabling services
 - New reliability model: semantic segmentation
 - Framework for automatic planning
 - Securit
- API for adaptation-enabled applications
- Conductor: effective distributed adaptation made easy

Introduction — Conductor — Selected Details — Results

Conductor: Distributed
Adaptation for
Heterogeneous Networks

Mark Yarvis yarvis@cs.ucla.edu

http://fmg.cs.ucla.edu/Conductor

November 8, 2001