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Abstract—Random Access Memory (RAM) was recently shown cure segment, can improve security for a reasonable (and

to be vulnerable to physical attacks exposing the totality of adjustable) performance cost. In a CK system, the majority
memory, including user data and encryption keys. We present

Cryptkeeper, a novel software-encrypted virtual memory man  Of RAM (the Crypt) contains encrypted data and functions
ager that mitigates data exposure when used with a secure key- like a high-priority encrypted swap which selectively pess

hiding mechanism. Cryptkeeper significantly reduces the amount i i
of cleartext data in memory by dividing RAM into a smaller, older pages to disk. The smaller portion of RAM (the Clear)

cleartext working set and a larger, encrypted area. This extends Nolds decrypted data for immediate use. Figure 1 describes a
the standard memory model and provides encrypted swap as a series of operations in an idealized version of CK.

side effect. Despite a 9x slowdown in pathological cases, target The size of CK's Clear provides a direct “performance
applications such as Firefox are only 9% slower with our Linux-

based prototype. We also identify several optimizations which Versus security” tradeoff. A smaller Clear represents more
can significantly improve performance. Cryptkeeper enables the work, because the computer has a smaller “working set”

expression of new security policies for memory, and demonstrates of unencrypted pages. However, a larger Clear represents a
that modern personal computers can perform heavy-duty work

on behalf of operating systems with surprisingly low overhead. 9reater security risk, becguse a larger portion of memoty wi
Index Terms—Operating systems, Data security, Memory man- be unencrypted at any given time.

agement. All pages are initially allocated as Clear pages, so each
|. INTRODUCTION allocation reduces the number of free Clear pages (FCP) in

In 2008, a widely publicized paper by Halderman, et ai_he system. When the number of FCP is low, Clear pages are

[1] showed that DRAM is substantially less volatile thamreed by encrypting the least recently used Clear pageswhi

commonly believed. Using only a computer, software, a oves” them to the Crypt. Similarly, pages in the Crypt swap

a can of “compressed air,” so-called “cold boot attackgo disk when memory pressure on the Crypt is high. As a

can recover vast amounts of data from RAM. While thrgeciﬂlt{h?(cfro;”gﬁz zcgyp;?g g\év(?rp "’t‘z daosr:dgeﬂfaeﬁ:j' [r)naatiién
“cold boot” paper focuses on recovering Full Disk Encryptio yp P yp ' 9

) S - room in the Clear if necessary.
(FDE) [2] keys, RAM itself is likely to containgigabytes . . .
of unencrypted private data due to aggressive caching né:K by itself does not fully protect against physical attacks

prefetching schemes. While cold boot attacks are unlikely ((ﬂcause personal computers do not have secure key storage.

affect the average user, organizations for whom infornmati softwarg cryptosystems (such as CK and FDE) must
eep keys in unencrypted RAM where they are vulnerable

security is truly critical cannot afford to ignore this thte i ) .
y y 9 to physical attacks. We discuss using the Trusted Platform

We mitigate this vulnerability with Cryptkeeper (CK), a . . .
software-encrypted virtual memory manager. Traditiorrak p Modgle [15] or Exposure—Re&hept Functions [16] as pant
{gtmns to this problem in Section VI.

cessors cannot operate on encrypted data, so CK Segmgﬁ
RAM into a smaller Working set called the Clear, and a I11. M AINTAINING SYSTEM PERFORMANCE
larger encrypted RAM device called the Crypt. As the working

space fills, pages are automatically swapped into the etm:typth T?le idga offtencrypting and decrypt_ipg Imain_ mt.ems\%.lon
portion of memory, and are decrypted on demand. € fly —In softwaré — may Seem positively quixotic. ne

This paper describes the CK model and demonstrates thalpﬁre are tho'se V\{illi.ng to pay 'high costs for security,.there
is practical today for real-world workloads. This is susing are still practical limits to usability and performance. this
because software-encrypted RAM seems unlikely to perfoﬁﬁcnon’ we discuss the fundamental realities that enallle C
reasonably. CK is valuable because it has the potential t%perform acceptably for common workloads.
protect data in RAM from physical exposure (in concert it Fyl| Disk Encryption as a Foundation
secure key storage). We discuss and analyze our prototyp
which is based on Linux. Finally, we discuss future and eslat
work, performance optimizations, and methods for probecti
encryption keys.

?Ne assume that a CK user would also use an FDE solution,
because CK does not protect files. This is reasonable because
many security-conscious users are already using FDE éespit
its performance impact. FDE is also an ideal base for CK
Il. CRYPTKEEPER because the two systems have partially overlapping wodkloa
The main idea behind CK is that splitting RAM into awhich can be combined. Nevertheless, we show that software
smaller, faster, insecure segment, and a larger, slower, B®E is not required for CK to be practical.
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Fig. 1. Example operation. In this scenario, Cryptkeepereheapacity of five physical memory pages which are split into Glear pages and three Crypt
pages.(a): Al memory is free. DataR is written into physical pag®. (b): S is written into pagel. (c): T is to be written into page, but this would
result in three Clear pages. This forces the oldest page be encrypted and sent to the Cryfut): 0 is read, which decrypts it and returns it to the Clear.
However, the Clear is full, so pade(the oldest clear page), is encrypted and sent to the CfgptData L and N are written into3 and4, which cause$)
and?2 to be sent to the Crypt. RAM is now ful(f): Data F is being written. However, space must be created in both palysiemory and the Clear before
this can happen. Pagkis sent to the Crypt because it is the oldest Clear page. Mephge must be swapped to make room in RAM. Phde swapped
out because it is the oldest Crypt pade.is now written into page. (g): The data in swap entrg (an encrypted version o) is requested. Once again,
we make space by encrypting pag€the oldest Clear page), and by swapping out pagthe oldest Crypt page). The encrypted versiorf ofrom page2
is written into swap entryl, and S is finally decrypted into page.
smaller ) .
AN faster C. Processing Power and Parallelism

--------------- RAM split Moore's Law [3] has made many things possible that
were previously almost unimaginable, such as FDE on per-
sonal computers (PCs). Recently, multiprocessing has been

i /RAM
8 /SWAP
\ a prime mover in performance growth, and most new PCs

/D I S K\ sotr /D I S K\ have multiple cores. Multiple processors can trivially ran

arger set of applications in parallel, but the difficulty of wrign
Typical memory hierarchy with FDE. Cryptkeeper memory hierarchy. parallel versions of individual programs has limited ouiligb
Fig. 2. Comparison of traditional memory hierarchy with CK. &kvbelow to fully utilize multiple cores. However, block cryptogiap
the dotted line are encrypted, levels above are unencrypted can often be parallelized — which significantly improves
CK'’s performance by reducing the wait time associated with
cryptographic operations. We discuss algorithm choices an
other related issues in Section IV-C.

B. Performance Bounds and Hierarchical Memory

CK’s architecture extends the traditional hierarchicaime D CPU vs. 1/0 Throughput
ory model shown in Figure 2, which requires each level in The performance gap between CPU and hard drive through-
the hierarchy to be slower and larger than the one abovegtit is wide and growing wider [4]. One outcome of this is that
This architecture is advantageous for many real-world @saghe throughput of CPUs encrypting data can easily surpass
patterns and is standard in virtually all computers. CK dugs the throughput of hard drives writing data. Our test machine
break this model, and as a result can use its properties. e ¢@escribed in Section V) is able to encrypt approximately
also use this knowledge to reason about CK’s performance208M/s using OpenSSL's AES-256 CBC speed test. On the
Our best-case scenario is th@K will run as fast as an  Other hand, the test machine’s hard diglan only write at a
equivalent system with normal RAM and encrypted swap. sustained rate of about 67M/sAs a result, CK can perform a
Since CK will need to dat least this much work, CKcould Substantial amount of cryptography while waiting for fil©1/
not be faster than such a system. However, that would still t0 complete.
be quite satisfactory; encrypted swap is a popular option f
Linux systems and is provided by many FDE solutions.
We can also easily define the point at which CK would CK must use the_ limited space of the C!ear efficie_ntly to
cease to provide any benefit. Given a CK system with a cidgduce cryptograph_lc costs. Because CK f't?’. neatly Into the
of M megabytes, we can compare it to a Linux system with stand:_:lr_d memory hierarchy, we can use traditional teclesiqu
megabytes of RAM and encrypted swap. If CKsiswer than for efficient memory management. For example, CK supports

such a system, a user who wanted CK’s security guarantees
Id achieve better performance by limiting physical RAM Hitachi DeskStar SATA, 250GB, 7200rpm
wou p y g phy 2For reference, the state-of-the-art mechanical hard dsvef&eptember

and using encrypted swap to protect inactive data. 2009 [5] is able to write at a sustained 138M/s.

8. Memory Management Techniques



demand paging to ensure that allocated Clear pages will acttcompared to the cryptography [10]. Additionally, chaining
ally be used. CK also supports Copy On Write (COW) sharedbuld not prohibit access to arbitrary sequences of pages,
memory, reducing overall memory consumption. Finallyt judecause we could use unique keys page and only chain

as Linux uses a Least Recently Used (LRU) algorithm to setfte cipher blocks in each page. This allows each page to
underused RAM pages to swap, CK uses a similar algorithme encrypted and decrypted independently while benefiting
when sending Clear pages to the Crypt. from the stronger protection of CBC mode. Ironically, this
may improve parallelism by reducing lock contention for

i ) cryptographic keys.
We built a prototype based on Linux 2.6.24 to demonstrate
CK’s performance. This required adding to and extending V. EVALUATION

many elements of the virtual memory manager. While our |geg|ly, CK would be integrated into a Full Disk Encryption
prototype is Linux-based, the CK model is general and showWgstem, and thus we would compare CK+FDE to Linux with
be portable to other operating systems. FDE. Both systems must encrypt and decrypt a large portion
A. Page Accounting and Management of the data they process, although CK does this in RAM and
FDE does this between RAM and disk (Figure 2). Because of

CK must be able to accurately track the capacity of t £ ) ) .
ese overlapping workloads, a combined system would gain

Clear, as well as trap and decrypt encrypted pages. To K e benefits of both without paying for them twice. However
free Clear pages (FCP), we added an atomic counter. In orger paying ' '

to be able to set or check the status of a physical page outsi & additional cost of building a fully-integrated systesmot

of any process, we extended the kernglage structure necessary to demonstrate the performance of the CK model.

: o Ipstead, we can factor out the common workload. To do this,
with flags to indicate Crypt/Clear status. To trap accesses . : .

e compare CK (which provides encrypted swap) to Linux
encrypted pages, we mark the page table entry (PTE) v(\)nrth encrvpted swap enabled
Crypt pages with a protection bit and a new “crypted” bit. yp P ’
When a page fault occurs, if the PTE indicates that the page Benchmark and Test System
is encrypted (or in swap), it is decrypted, the FCP count is
updated, and the page is returned to the process. If there
not enough FCP, the faulting process will be descheduled u

more are available.

IV. CRYPTKEEPERPROTOTYPE

arOur memory microbenchmarkpeneat er, allocates,
r\]/}/rﬁes, reads, and frees pages of memory, and returns the
total test time in seconds and the average number of microsec
onds each step takes per page.rAgrows, meneat er takes

B. Page Reclamation longer to complete, especially asgrows beyond the size of

Each memory zone in the Linux kernel has its own thredhe Clearmenmeat er has two read modesiripe andrandom.
which sleeps until the zone is running out of free pages. ThifiPe performs a “worst case” test for CK by reading pages
thread kswapd, is designed to keep “just enough” pages frelfom oldest to youngest to increase the chance that pageg bei
so that allocations are never blocked because of too fewspad€ad have been moved to the Crypt or swagndom mode is
but not so many that pages sit unused. To accomplish this, &S Pathological and readsrandomly chosen pages.
kernel defines three “watermarks” for each zohigh, low, The kernels shown are CK, with 256M of Clear and 583M
andmin. When the count of free pages in a zone is below, ©f Crypt, and Linux+Crypt, which is a non-CK Linux kernel
kswapd is awoken and attempts to free inactive pages ba#fith encrypted swap. We also compared three other kernels:
up to thehigh watermark. If less thamin pages are available, CK Single is a single-core version of CK, CK SMP1KCD is
the kernel goes into “direct reclaim,” where the page alioca @ Multiprocessing kernel with only orecr ypt d thread, and
manually removes pages from active processes. CK defined-#dux NoCrypt which is the Linux kernehithout encrypted
own high, low, andmin watermarks, creatdecr ypt d threads SWap. Apart from the tested options, all kernels are bunitnfr

for each CPU, and uses these elements in a similar fashiorft Same source and are run on the same Intel CoreDuo

confidence.

C. Cryptography

While any standard block cipher could be used, our CR: Cryptographic and Bookkeeping Overhead
prototype uses the Advanced Encryption Standard (AES)CK imposes a small non-cryptographic overhead due to
algorithm [6], with code from the Nettle cryptographic Bloy bookkeeping, but this is dwarfed by the cryptographic costs
[7]. We used Electronic Code Book (ECB) mode becaus®e measured the average cryptographic cost that CK imposes
it is easier to debug, although this simplicity also allowby examining the data for the page allocations between 96,00
a considerable amount of information about the underlyirand 196,000 4K pages, which correspond to the range of
plaintext to be visible [8]. A fielded CK would use a strongeallocations that significantly use the Crypt but do not usesw
mode such as Cyclic Block Chaining (CBC), which XOR¢$f we average the differences in cost between CK NoCrypt
each plaintext block with the previous ciphertext block.[9]and CK over these ranges, we find that the average cost to
CBC clearly requires more work than ECB. However, thencrypt a page when writing is 26, and the average cost for
additional cost of CBC is small due to the XOR’s low costlecryption while reading is 6. With encryption, the average
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C. Impact of Parallelism

We examined the effect of parallelism on CK'’s performance.
Figures 3 and 4 show comparisons of write and read through-
put of three different CK kernels as allocation sizes change
The graphs show that CK usually benefits from parallelism.
One surprise is that CK SMP1KCD (with orlecr ypt d)
briefly outperforms the standard version of CK (with two
kcrypt ds) for writes when allocation sizes are low (Fig-
ure 3). This is due to CPU contentiomeneat er is single-
threaded and there are no other significant processes gunnin
on the test machine. In that environment, CK SMP1KCD can
win by using one core fomeneat er and the other core
for kcryptd when CK must balanceeneat er and two
kcrypt d threads. Another surprise is that reads for CK and
CK SMP1KCD converge once the allocation exceeds physical
RAM (Figure 4). This is because when swap dominates the
tests, the bottleneck becomes disk throughput. At thattpoin
onekcr ypt d is as good or better than two. This is made clear
during 360K page allocations, when twkr ypt d threads
degrade CK'’s performance while CK SMP1KCD’s growth
stays constant. A fielded CK could optimize performance by
managing the number dfcr ypt d threads on the fly.

D. Read vs. Write Performance

CK’s maximum tested per-page write time is around:$8
(Figure 3), while the maximum tested per-page read time
reaches 30@s (Figure 4). It would be tempting to ascribe
the poor read performance to the well-known latency of
swap disks. However, read times are uniformly higher than
write times well before swap is touched. This is actually
because processes are almost never blocked waiting to write
into memory since pages are sent to the Crypt in large
batches. However, page faults caused by reads must be Handle
sequentially because a fault blocks the process until it is
resolved. What's more, if one page must be brought in from
the Crypt, it is possible that the next page may also need to be
decrypted, but this will not be discovered until the currientt
is resolved. We will discuss some strategies for mitigathmg
in Section VI.

E. Performance vs. Clear Sze

We can now highlight the performance tradeoff between the
size of the Clear and the workload. Using trendom mode
of merreat er for more general performance, we measured
the runtime performance of 196K page tests (768M) over
Clear sizes from 64M to 768M. 64M/196K tests completed
in about 25 seconds, while 768M/196K tests completed in
about 5 seconds, with roughly linear growth in between. This
shows that CK’s performance can be maximized based on
the required level of security. More sophisticated trafieafe
discussed in Section VI.

test runtime is about 8 times slower in this range (13 sec-

onds versus 1.6 seconds). Cryptographic improvementsi cofii Cryptkeeper vs. Reduced Memory

dramatically improve performance, such as using OpenSSL'sTo provide any benefit, CK must outperform the “low mem-
implementation of AES (which is about 20% faster than thery plus encrypted swap” configuration from Section 1lI-B.

Nettle AES implementation [11]).

To show that CK is indeed faster than such a system, we



tested CK versus Linux+LowMem, which is Linux+Crypt withmultiple processes which use varying amounts of memory,
non-swappable ramdisks filling all but approximately 256MCPU, and disk resources. Linux kernel compilation is multi-
of RAM. The two systems performed equivalently until 64khreaded, multi-process, utilizes disk, RAM, and CPU.
page tests, when Linux+LowMem’s RAM was exhausted. At For a more realistic user scenario, we used the Linux Desk-
that point, Linux+LowMem'’s performance erratically dedea top Testing Project [12] to automate a session with Firefox
until it is roughly twice as slow as CK during 360K page testand the X Window System running on Ubuntu Linux. In this
test, the simulated user reads 100 archived Facebook and CNN
pages over a 100-megabit link. The script opens each page
Figures 3, 4, and 5 show a comparison between CK a(with a few seconds delay for “think time”), and randomly
Linux+Crypt (Linux with encrypted swap) omeneat er’s opens new tabs and switches between tabs to simulate user
pathological, worst-case workload. Before the Clear i$, fubehavior. Firefox alone uses between 200M and 270M of
performance times for Linux and CK are almost statisticallRAM during the test, while the X Window System and other
equivalent. The worst period for CK is when the Crypt is iwarious system processes use over 400M of RAM. With a
use but swap is not (64K to 196K page allocations). In thSlear size of 256M, this workload will overflow the Clear and
range, which essentially shows the raw cryptographic @amth exercise CK. Finally, we ran this Firefox test and the kernel
of CK, Linux writes take 6.2s versus CK's 28s, for a 352% test concurrently in order to create increased disk, memory
penalty. Predictably, reads are worse; Linux takes:d.Ber and CPU contention on the desktop.
read versus CK'’s 79, for a 6015% penalty. While this is a
huge increase, it is not at all surprising. Linux pays “notfii
for the read, but CK must encrypt a page, decrypt a page,Table | shows that the performance of the Linux kernel build
and update the page tables of all affected processes. Figuiie hardly penalized, so we can conclude that its requiresnent
shows that wall clock time is somewhat better because tharely exercise CK at all. This is probably because the total
overall system behavior hides the microbenchmark cosits teworkload does not expand much beyond the Clear, and the
in this range take an average of 1 second to complete bwmild generates considerable 1/O.
Linux+Crypt versus 14.6 seconds on CK, for a “mere” 1360% The Firefox results are much more informative. Predictably
penalty. As shown in Section V-B, this is by far the singléhe system time measurement is significantly different betw
biggest bottleneck for CK, and thus is where optimizationSK and Linux+Crypt. CK uses 1.07 seconds of system time
could have the greatest impact. versus Linux+Crypt, which uses only 0.04 seconds. This 1.03
The performance gap shrinks dramatically during the rangeconds represents the additional CK kernel workloadimelat
where swap is used (229K to 360K pages), because LinuxtdsFirefox. In wall clock time, CK uses 410 seconds on average
slowed both by disk latency and encryption overhead. CK jer test and Linux+Crypt uses 379 seconds for a 31-second
actuallyfaster than Linux for writes in this range — %& on or 8% penalty.
CK versus 74.4s per write on Linux for a 31%mprovement For the Firefox+kernel results, it is important to explain
over Linux. Reads on Linux take 164 in this range versus that the tests only trace the resources used by Firefox; the
only 212us for CK for a 32% penalty (which is 188 timeskernel build only adds to the ambient workload. Thus, when
better than the non-swap penalty of 6015%). Wall clock tinthe Firefox and the kernel build tests are combined, theegayst
in Figure 5 is again much better; for most of this rangdime penalty is only 0.94 seconds (which is statisticallyieg
CK is dtatigtically equivalent to Linux in runtime, although alent to the Firefox-only value of 1.03 seconds). Howeves, t
288K page tests take 1.3 second longer than Linux on averakgernel build resource usage is visible in the increased wall
and 360K page tests are 5.3 seconds longer than Linux (32l&éck time. In the end, CK uses 466 seconds of wall clock
instead of 27.2 seconds). time while Linux+Crypt uses 428 seconds for a difference of
Finally, it is interesting as a curiosity to note that 229K38 seconds or a 9% increase. This is unsurprising; the greate
page reads on Linux NoCrypt are actuallgwer (about 3Q:s the application load on the system, the greater the ovevatl ¢
per page) than Linux+Crypt. This could be for any number aff CK.
reasons; for example, encrypted swap might allocate kuffer Although swap activity hides CK'’s overhead, today’'s ma-
for encryption which result in better early swap perform@ancchines rarely experience swap churn. However, our Firefiok a
Regardless, CK should not affect this in any way. kernel tests essentially do not involve swap, demonstydkiat
L swap is not responsible for their reasonable performartoey T
H. Application Tests do involve disk /O, either as a part of their own operatiomsr
CK'’s target platform is a PC running typical applicationpart of the general operation of the system. This is one reaso
containing sensitive information. In order to get a morehy testing real-world applications is important; by thesry
accurate picture of CK performance on day-to-day tasksature, they introduce 1/O-related latency, which can abtu
we performed three kinds of application tests on CK aridhprove user-visible performance. Regardless, CK may sot b
Linux+Crypt. appropriate for large, memory-dominated tasks such as data
First, we built the Linux kernel on our test machine. Whilenining, but should perform within the demonstrated range fo
most “road warriors” don’'t compile code, they often rurypical user applications.

G. Cryptkeeper vs. Linux

I. Application Results



TABLE | o
CRYPTKEEPERPENALTIES BY APPLICATION. vulnerability, computerseed a method to keep at least a small

amount of data truly secure.

| .
. L The Trusted Platform Module [15] can provide protected
Kernel NA | NA [ 045| 26 | 0.07 | 0.04 storage by “binding” data — encrypting it with keys from
Firefox NA | NA | 1.03| 2575 | 31 | 8 i “caql” i
its root of trust. The TPM can also “seal” data, ensuring
Combined| NA | NA [ 0.94 | 223838 | 9 ;
orone that it cannot be unsealed unless the TPM’s Platform Control
VI. FUTURE WORK Registers are in a particular state. Binding or sealing ccoul

be used to protect encryption keys in CK when not in use.
) . However, key protection would have to be judiciously baghc

CK could make better use of parallelism and speculatiofi performance because TPMs are not designed for speed.
For example, CK could “pre-decrypt” pages that are mappedgitionally, a CK+TPM design would need to consider any
in near a faulting page in an attempt to avoid future pag@enarios where a TPM could be tricked into decrypting

faults. We could also potentially decrease turnaround tmr"ﬁemory keys through physical attacks on memory or the TPM
for sequences of page faults by decrypting discrete pages;Qa s

different cores, which would reduce the discrepancy betwee s ¢aqcinating potential solution which requires no special

per-page write and read times. Finally, swap read latenaldco, 5 q\vare was suggested by Halderman, et al. [1] They discuss
be masked by d|§k I/O if 128-bit cipher blocks were decryptqgsing Exposure-Resilient Functions (ERF) [16] developgd b
as soon as possible, rather than after a full swap page is rE‘é‘gnetti, et al. to protect keys in RAM. ERFs are cryptogrephi

B. Dynamically Szed Clear functions that can make encrypted data unrecoverable given

The size of the Clear is currently hard-coded, but could peme guaranteed numbgr of unknown bits in the key. While
adjustable during run time, allowing CK to respond dynamF—°|d boot attacks slow bit decay, they cannot completelp sto

cally. For example, a policy might mandate a small Clear th If properly implemented, this inevitable decay comisine

a untrusted environment, while in a secure environment, tWéth ERF's key expansion could ensure key destruction in a

Clear could be increased until there is no performance cojpwer-cutting attack.

Another approach would set the number of Clear pages a é<eys prqtected by either ERFs or a TPM cannot be used
percentage of the number of used pages. In this Scheme’orfdecryptlon; to be useful, they must .be decrypted and thus
only 100 pages were in use and the Clear percentage was'S e_vulnerable. However, b_y encrypting segments O.f RAM
to 25%, only 25 pages would be in the Clear. As the numb&ft different keys and protecting least recently used legis

of used pages grows, the capacity of the Clear would Iikewi% me mzck(;anism, we Czn Ii.n;]it exposure dtokthe dsta indlthe
grow. This would provide better protection than our propaty ear and data encrypted with unprotected keys. Regardless

where no encryption is performed until the Clear is aImlef the Enecha.nl.sm, we ”eeo,', a reasonably performant SOI.UUO”
full. Finally, a more finely grained approach would defin&® the “key h|d|ng proplem, or software cryptogystems I!ke
Clear size limitsper process rather than globally. Sensitive CK and FDE will continue to be insecure against physical
processes could be heavily restricted — adding securitii¢o nemory attacks.

application through the operating system — without modidyi VIl. PRIOR WORK

the program or penalizing other processes.

A. Speculative Decryption and Parall€lization

Previous work on physical attacks, cryptography, and key

C. Kernel Memory hiding motivates and informs CK. The paper on “cold boot
Kernel memory in Linux is never swapped out and kern@fttacks” by Halderman, et al. [1] describes physical RAM

memory cannot be page-protected [13] due to the complexit{facks, key recovery methods, and the use of limited decay

required to support it [14]. As a result, our prototype On|§,-¢1nd “key expansion” as a potential means of mitigating key

protects userspace data. This is a limitation of the prpmty fecovery. In typical cryptography, exposirapy bits of the

not the model. Still, a fielded CK system must at least be atfgy destroys security guarantees. Canetti, et al. [16]resc

to protect, trap and decrypt kernel memory in order to secuggPosure-Resilient Functions (ERF) which are a method of

encryption keys or other critical data. It may be possible f§aking cryptographic keys susceptible to decay.

implement the necessary parts in Linux without a complete Blaze introduced the Crypto File System [17] and Provos

redesign. If not, other operating systems (such as Windovgligcusses the (now) well-known reasons for using encrypted

can swap kernel memory, so an alternative solution would B@ap [18]. These methods serve to protect sensitive data in

o “crypto-paging” [19] [20], which is the encryption of cryp-
D. Key Hiding toproccessor memory before it is “swapped” to less secure

There is a chicken-and-egg problem that affects all typinedia. In particular, Yee shows how a cryptoprocessor with
cal software cryptographic systems, including CK and FDHEmited memory can increase its secure space through en-
Cryptography is the solution for data protection, but safiev crypted virtual memory techniques on its own memory, swap-
cryptography requires that keys be in RAM where they apmng encrypted pages out to the host system’s RAM. In this
vulnerable to physical attacks. In order to fix this generalay, crypto-paging, like CK, exchanges a performance pgnal



for a larger amount of secure memory. CK is closely related &ttacks. While they would increase overhead, the Trusted
these ideas. However, CK is unique as a proof-of-concept aRkhtform Module and Exposure-Resilient Functions provide
as a step towards improving the security of general purpogsemising means of protecting cryptographic keys in RAM.
memory on personal computers. Ultimately, CK pushes the boundaries of what software
There has been work on defenses to physical attacks. Bowaln do to protect physical memory on commodity systems; it
and Lipton describe a “Revocable Backup” system [21], ans surprising that a personal computer can achieve reakonab
Di Crescenzo, et al. [22] discuss “Erasable Memory,” an idgeerformance while encrypting and decrypting its memory
which is similar in spirit to the end result of CK. Erasable@n the fly. CK clearly demonstrates that modern hardware
Memory is more formally defined than Revocable Backupsends — in particular parallelism — provide systems with
but both rely on secure key destruction to render encryptadprecedented resources that can be used to improve gecurit
data “erased” even if the media is persistent. Erasalperformance, or usability at a small cost to the user.
Memory has some interesting security properties that CK
lacks, and it shares an architecture similar to CK and crypto

paging wherein a small special area is cryptographicallﬁ 1 A Hald ol “Lest We R ber: Cold Boot Attack
. A. Halderman ., “Lest We Remember: Co 00! acks on
leveraged to create a larger secure area. However, Erasea ] Encryption Keys."Proc. 17th USENIX Security Symposium, 2008.

Memory does not consider decay retardation methods suéi #. Céeskisest 1a|., “3efheat(i:ng En]f:r%pt_ei_d ?nd ggniagleA FiL_e Slygtgms:
oo ; - rueCrypt v5.1a and the Case of the Tattling and Appbeatf 3r
as cold.boot attacks and it is not designed to fit into .the USENIX HotSec, 2008,
hierarchical memory model. Furthermore, the specializegs] G. Moor/e, ‘gntel/hMuse;m - Moorle’s r|]_aw," http://www.irict]eom/d
: - museum/archives/histargocs/mooreslaw.htm, 2009, accessed Tuesday,
guarantees of Eraseable Memory impose obstacles to effl_clen October 20th, 2000.
use of large memory spaces, and the authors accordingh] P. Schmid, “15 Years of Hard Drive History: Capacities
; N ; Outran Performance,” http://www.tomshardware.com/reviews
acknowledge that their deSIQF_' is probably not Sunabled[_gé 15-years-of-hard-drive-history,1368-7.html, 2008, aseel Sunday,
data sets. CK does not require these guarantees, so it is able October 18th 2009.
; i ~i 5] SG Barracuda XT Series SATA Product Manual, Rev. A, Seagate Tech-
to protect a Iarger Space with a more efficient use of reseurcel nology, 2009, http://www.seagate.com/staticfiles/sugisc/manuals/
desktop/Barracuda%20XT/100586689a.pdf.
; i [6] J. Daemen and V. RijmerThe Design of Rijndael: AES - The Advanced
Execm_mon Oqu Memory_ (XOM) [23], [24] is a memory Encryption Standard, = Springer, 2002,
encryption architecture which supports copy and tamper rg7] N. Moller, “Nettle — a low-level cryptographic librafy,http:/Avww.
sistant software. With cryptographic hardware built inke t lysator.liu.setnisse/nettle/nettle.html, 2009, accessed Tuesday, Qctobe
' o . 20th, 2009.
processor, XOM encrypts and decrypts all sensitive dat& as[g] N. El-Fishawy and O. M. A. Zaid, “Quality of Encryption Msurement
i of Bitmap Images with RC6, MRC6, and Rijndael Block Cipher
enters or I.eaves the. CPU' XOM and (_:K can use predecryptlon Algorithms,” International Journal of Network Security, 2007.
and caching to mitigate the resulting overhead. Howevefg] w. F. Ehrsamet al., “Message verification and_transmission error
while XOM’s guarantees are stronger, CK runs on commodity, - detection by block chaining,’ U.S. Patent No. 4.074,066/819
0] M. Roe, “Performance of symmetric ciphers and one-way Hasle-
hardware. tions,” in Fast Software Encryption, ser. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 1995, pp. 359-362.
VIIl. CONCLUSION [11] T. Bingmann, “Speedtest and Comparsion of Open-Sourcgp-Cr
o ) tography Libraries and Compiler Flags,” hitp://idlebox/2808/
By dividing RAM into a smaller cleartext (the Clear) and 371_4-cryg%grall_phy-S%eecll(ttest-%on:parllsgon_/, th’oﬁftﬂﬁﬁpf deskt
: arious, e Linux Desktop Testing Project, .freedesktop.
a larger encrypted segment (the Crypt), and by moving padé@ org/wiki/, accessed Tuesday, October 20th, 2009.

between these segments on the fly, Cryptkeeper extends [ﬂSth- Gﬁrﬂﬁa;dgzderﬁafdpg the Li'rz\léxd\/irtuals Memory '\ggnager- Pren-
. . - ice Hall, , ch. 4, Process ress Space, p. 82.
traditional memory hierarchy and can help to significantly s various, * http://lkmi.indiana.edu/hypermail/inuelinel/0104.2/0282.
reduce the exposure of sensitive data in RAM. CK represents] html, 2d0(():1, accesseg Monday, Octobersl9th,f_2009. At
. . Trusted Computing Group, “TPM Main Specification 1.2{tgv/www.
a direct and powerful performance Ve_rsus S_e(_:umy trade([)]f? trustedcomputinggroup.org/resources/tpmain_specification.
and opens the door for new security policies, such &$] R. Canettiet al., “Exposure-Resilient Functions and All-or-Nothing
; ; ; T Transforms,"EUROCRYPT 2000, LNCS 1807, 2000.
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