
Cryptkeeper: Improving Security With Encrypted
RAM

Peter A. H. Peterson
University of California, Los Angeles

3564 Boelter Hall, Los Angeles, CA 90095
pahp@cs.ucla.edu

Abstract—Random Access Memory (RAM) was recently shown
to be vulnerable to physical attacks exposing the totality of
memory, including user data and encryption keys. We present
Cryptkeeper, a novel software-encrypted virtual memory man-
ager that mitigates data exposure when used with a secure key-
hiding mechanism. Cryptkeeper significantly reduces the amount
of cleartext data in memory by dividing RAM into a smaller,
cleartext working set and a larger, encrypted area. This extends
the standard memory model and provides encrypted swap as a
side effect. Despite a 9x slowdown in pathological cases, target
applications such as Firefox are only 9% slower with our Linux-
based prototype. We also identify several optimizations which
can significantly improve performance. Cryptkeeper enables the
expression of new security policies for memory, and demonstrates
that modern personal computers can perform heavy-duty work
on behalf of operating systems with surprisingly low overhead.

Index Terms—Operating systems, Data security, Memory man-
agement.

I. I NTRODUCTION

In 2008, a widely publicized paper by Halderman, et al.
[1] showed that DRAM is substantially less volatile than
commonly believed. Using only a computer, software, and
a can of “compressed air,” so-called “cold boot attacks”
can recover vast amounts of data from RAM. While the
“cold boot” paper focuses on recovering Full Disk Encryption
(FDE) [2] keys, RAM itself is likely to containgigabytes
of unencrypted private data due to aggressive caching and
prefetching schemes. While cold boot attacks are unlikely to
affect the average user, organizations for whom information
security is truly critical cannot afford to ignore this threat.

We mitigate this vulnerability with Cryptkeeper (CK), a
software-encrypted virtual memory manager. Traditional pro-
cessors cannot operate on encrypted data, so CK segments
RAM into a smaller working set called the Clear, and a
larger encrypted RAM device called the Crypt. As the working
space fills, pages are automatically swapped into the encrypted
portion of memory, and are decrypted on demand.

This paper describes the CK model and demonstrates that it
is practical today for real-world workloads. This is surprising
because software-encrypted RAM seems unlikely to perform
reasonably. CK is valuable because it has the potential to
protect data in RAM from physical exposure (in concert with
secure key storage). We discuss and analyze our prototype
which is based on Linux. Finally, we discuss future and related
work, performance optimizations, and methods for protecting
encryption keys.

II. CRYPTKEEPER

The main idea behind CK is that splitting RAM into a
smaller, faster, insecure segment, and a larger, slower, se-

cure segment, can improve security for a reasonable (and
adjustable) performance cost. In a CK system, the majority
of RAM (the Crypt) contains encrypted data and functions
like a high-priority encrypted swap which selectively passes
older pages to disk. The smaller portion of RAM (the Clear)
holds decrypted data for immediate use. Figure 1 describes a
series of operations in an idealized version of CK.

The size of CK’s Clear provides a direct “performance
versus security” tradeoff. A smaller Clear represents more
work, because the computer has a smaller “working set”
of unencrypted pages. However, a larger Clear represents a
greater security risk, because a larger portion of memory will
be unencrypted at any given time.

All pages are initially allocated as Clear pages, so each
allocation reduces the number of free Clear pages (FCP) in
the system. When the number of FCP is low, Clear pages are
freed by encrypting the least recently used Clear pages, which
“moves” them to the Crypt. Similarly, pages in the Crypt swap
to disk when memory pressure on the Crypt is high. As a
result, CK provides encrypted swap as a side effect. Data in
both the Crypt and swap are decrypted on demand, making
room in the Clear if necessary.

CK by itself does not fully protect against physical attacks
because personal computers do not have secure key storage.
All software cryptosystems (such as CK and FDE) must
keep keys in unencrypted RAM where they are vulnerable
to physical attacks. We discuss using the Trusted Platform
Module [15] or Exposure-Resilient Functions [16] as potential
solutions to this problem in Section VI.

III. M AINTAINING SYSTEM PERFORMANCE

The idea of encrypting and decrypting main memory on
the fly — in software — may seem positively quixotic. While
there are those willing to pay high costs for security, there
are still practical limits to usability and performance. Inthis
section, we discuss the fundamental realities that enable CK
to perform acceptably for common workloads.

A. Full Disk Encryption as a Foundation

We assume that a CK user would also use an FDE solution,
because CK does not protect files. This is reasonable because
many security-conscious users are already using FDE despite
its performance impact. FDE is also an ideal base for CK
because the two systems have partially overlapping workloads
which can be combined. Nevertheless, we show that software
FDE is not required for CK to be practical.

Fig. 1. Example operation. In this scenario, Cryptkeeper hasa capacity of five physical memory pages which are split into twoClear pages and three Crypt
pages.(a): All memory is free. DataR is written into physical page0. (b): S is written into page1. (c): T is to be written into page2, but this would
result in three Clear pages. This forces the oldest page,0, to be encrypted and sent to the Crypt.(d): 0 is read, which decrypts it and returns it to the Clear.
However, the Clear is full, so page1 (the oldest clear page), is encrypted and sent to the Crypt.(e): DataL andN are written into3 and4, which causes0
and2 to be sent to the Crypt. RAM is now full.(f): DataE is being written. However, space must be created in both physical memory and the Clear before
this can happen. Page4 is sent to the Crypt because it is the oldest Clear page. Next,a page must be swapped to make room in RAM. Page1 is swapped
out because it is the oldest Crypt page.E is now written into page1. (g): The data in swap entry0 (an encrypted version ofS) is requested. Once again,
we make space by encrypting page3 (the oldest Clear page), and by swapping out page2 (the oldest Crypt page). The encrypted version ofT from page2
is written into swap entry1, andS is finally decrypted into page2.

Fig. 2. Comparison of traditional memory hierarchy with CK. Levels below
the dotted line are encrypted, levels above are unencrypted.

B. Performance Bounds and Hierarchical Memory

CK’s architecture extends the traditional hierarchical mem-
ory model shown in Figure 2, which requires each level in
the hierarchy to be slower and larger than the one above it.
This architecture is advantageous for many real-world usage
patterns and is standard in virtually all computers. CK doesnot
break this model, and as a result can use its properties. We can
also use this knowledge to reason about CK’s performance:

Our best-case scenario is thatCK will run as fast as an
equivalent system with normal RAM and encrypted swap.
Since CK will need to doat least this much work, CKcould
not be faster than such a system. However, that would still
be quite satisfactory; encrypted swap is a popular option for
Linux systems and is provided by many FDE solutions.

We can also easily define the point at which CK would
cease to provide any benefit. Given a CK system with a Clear
of M megabytes, we can compare it to a Linux system withM

megabytes of RAM and encrypted swap. If CK isslower than
such a system, a user who wanted CK’s security guarantees
would achieve better performance by limiting physical RAM
and using encrypted swap to protect inactive data.

C. Processing Power and Parallelism

Moore’s Law [3] has made many things possible that
were previously almost unimaginable, such as FDE on per-
sonal computers (PCs). Recently, multiprocessing has been
a prime mover in performance growth, and most new PCs
have multiple cores. Multiple processors can trivially runa
set of applications in parallel, but the difficulty of writing
parallel versions of individual programs has limited our ability
to fully utilize multiple cores. However, block cryptography
can often be parallelized — which significantly improves
CK’s performance by reducing the wait time associated with
cryptographic operations. We discuss algorithm choices and
other related issues in Section IV-C.

D. CPU vs. I/O Throughput

The performance gap between CPU and hard drive through-
put is wide and growing wider [4]. One outcome of this is that
the throughput of CPUs encrypting data can easily surpass
the throughput of hard drives writing data. Our test machine
(described in Section V) is able to encrypt approximately
208M/s using OpenSSL’s AES-256 CBC speed test. On the
other hand, the test machine’s hard disk1 can only write at a
sustained rate of about 67M/s2. As a result, CK can perform a
substantial amount of cryptography while waiting for file I/O
to complete.

E. Memory Management Techniques

CK must use the limited space of the Clear efficiently to
reduce cryptographic costs. Because CK fits neatly into the
standard memory hierarchy, we can use traditional techniques
for efficient memory management. For example, CK supports

1Hitachi DeskStar SATA, 250GB, 7200rpm
2For reference, the state-of-the-art mechanical hard drive as of September

2009 [5] is able to write at a sustained 138M/s.

2

demand paging to ensure that allocated Clear pages will actu-
ally be used. CK also supports Copy On Write (COW) shared
memory, reducing overall memory consumption. Finally, just
as Linux uses a Least Recently Used (LRU) algorithm to send
underused RAM pages to swap, CK uses a similar algorithm
when sending Clear pages to the Crypt.

IV. CRYPTKEEPERPROTOTYPE

We built a prototype based on Linux 2.6.24 to demonstrate
CK’s performance. This required adding to and extending
many elements of the virtual memory manager. While our
prototype is Linux-based, the CK model is general and should
be portable to other operating systems.

A. Page Accounting and Management

CK must be able to accurately track the capacity of the
Clear, as well as trap and decrypt encrypted pages. To track the
free Clear pages (FCP), we added an atomic counter. In order
to be able to set or check the status of a physical page outside
of any process, we extended the kernelpage structure
with flags to indicate Crypt/Clear status. To trap accesses to
encrypted pages, we mark the page table entry (PTE) for
Crypt pages with a protection bit and a new “crypted” bit.
When a page fault occurs, if the PTE indicates that the page
is encrypted (or in swap), it is decrypted, the FCP count is
updated, and the page is returned to the process. If there are
not enough FCP, the faulting process will be descheduled until
more are available.

B. Page Reclamation

Each memory zone in the Linux kernel has its own thread
which sleeps until the zone is running out of free pages. This
thread,kswapd, is designed to keep “just enough” pages free
so that allocations are never blocked because of too few pages,
but not so many that pages sit unused. To accomplish this, the
kernel defines three “watermarks” for each zone,high, low,
andmin. When the count of free pages in a zone is belowlow,
kswapd is awoken and attempts to free inactive pages back
up to thehigh watermark. If less thanmin pages are available,
the kernel goes into “direct reclaim,” where the page allocator
manually removes pages from active processes. CK defines its
own high, low, andmin watermarks, createskcryptd threads
for each CPU, and uses these elements in a similar fashion to
keep “just enough” FCP available at all times.

C. Cryptography

While any standard block cipher could be used, our CK
prototype uses the Advanced Encryption Standard (AES)
algorithm [6], with code from the Nettle cryptographic library
[7]. We used Electronic Code Book (ECB) mode because
it is easier to debug, although this simplicity also allows
a considerable amount of information about the underlying
plaintext to be visible [8]. A fielded CK would use a stronger
mode such as Cyclic Block Chaining (CBC), which XORs
each plaintext block with the previous ciphertext block [9].
CBC clearly requires more work than ECB. However, the
additional cost of CBC is small due to the XOR’s low cost

compared to the cryptography [10]. Additionally, chaining
would not prohibit access to arbitrary sequences of pages,
because we could use unique keysper page and only chain
the cipher blocks in each page. This allows each page to
be encrypted and decrypted independently while benefiting
from the stronger protection of CBC mode. Ironically, this
may improve parallelism by reducing lock contention for
cryptographic keys.

V. EVALUATION

Ideally, CK would be integrated into a Full Disk Encryption
system, and thus we would compare CK+FDE to Linux with
FDE. Both systems must encrypt and decrypt a large portion
of the data they process, although CK does this in RAM and
FDE does this between RAM and disk (Figure 2). Because of
these overlapping workloads, a combined system would gain
the benefits of both without paying for them twice. However,
the additional cost of building a fully-integrated system is not
necessary to demonstrate the performance of the CK model.
Instead, we can factor out the common workload. To do this,
we compare CK (which provides encrypted swap) to Linux
with encrypted swap enabled.

A. Benchmark and Test System

Our memory microbenchmark,memeater, allocates,
writes, reads, and freesn pages of memory, and returns the
total test time in seconds and the average number of microsec-
onds each step takes per page. Asn grows,memeater takes
longer to complete, especially asn grows beyond the size of
the Clear.memeater has two read modes,stripe andrandom.
Stripe performs a “worst case” test for CK by reading pages
from oldest to youngest to increase the chance that pages being
read have been moved to the Crypt or swap.Random mode is
less pathological and readsn randomly chosen pages.

The kernels shown are CK, with 256M of Clear and 583M
of Crypt, and Linux+Crypt, which is a non-CK Linux kernel
with encrypted swap. We also compared three other kernels:
CK Single is a single-core version of CK, CK SMP1KCD is
a multiprocessing kernel with only onekcryptd thread, and
Linux NoCrypt which is the Linux kernelwithout encrypted
swap. Apart from the tested options, all kernels are built from
the same source and are run on the same Intel CoreDuo
2.66Ghz with 839M of RAM. Averages shown have 95%
confidence.

B. Cryptographic and Bookkeeping Overhead

CK imposes a small non-cryptographic overhead due to
bookkeeping, but this is dwarfed by the cryptographic costs.
We measured the average cryptographic cost that CK imposes
by examining the data for the page allocations between 96,000
and 196,000 4K pages, which correspond to the range of
allocations that significantly use the Crypt but do not use swap.
If we average the differences in cost between CK NoCrypt
and CK over these ranges, we find that the average cost to
encrypt a page when writing is 20µs, and the average cost for
decryption while reading is 76µs. With encryption, the average

3

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

m
ic

ro
se

co
nd

s
pe

r
pa

ge
 w

rit
e

Allocation in 1000s of 4K pages

Per-Page Write Time in Microseconds by Allocation Size

Cryptkeeper
Linux+Crypt

CK Single
CK SMP1KCD
Linux NoCrypt

Fig. 3. Write performance comparison of five kernels as allocation sizes
increase.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350

m
ic

ro
se

co
nd

s
pe

r
pa

ge
 r

ea
d

Allocation in 1000s of 4K pages

Per-Page Read Time in Microseconds by Allocation Size

Cryptkeeper
Linux+Crypt

CK Single
CK SMP1KCD
Linux NoCrypt

Fig. 4. Read performance comparison of five kernels as allocation sizes
increase.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350

se
co

nd
s

pe
r

te
st

Allocation in 1000s of 4K pages

memeater Run Time in Seconds by Allocation Size

Cryptkeeper
Linux+Crypt

CK Single
CK SMP1KCD
Linux NoCrypt

Fig. 5. Wall clock time comparison of five kernels as allocationsizes increase.

test runtime is about 8 times slower in this range (13 sec-
onds versus 1.6 seconds). Cryptographic improvements could
dramatically improve performance, such as using OpenSSL’s
implementation of AES (which is about 20% faster than the
Nettle AES implementation [11]).

C. Impact of Parallelism

We examined the effect of parallelism on CK’s performance.
Figures 3 and 4 show comparisons of write and read through-
put of three different CK kernels as allocation sizes change.
The graphs show that CK usually benefits from parallelism.
One surprise is that CK SMP1KCD (with onekcryptd)
briefly outperforms the standard version of CK (with two
kcryptds) for writes when allocation sizes are low (Fig-
ure 3). This is due to CPU contention;memeater is single-
threaded and there are no other significant processes running
on the test machine. In that environment, CK SMP1KCD can
win by using one core formemeater and the other core
for kcryptd when CK must balancememeater and two
kcryptd threads. Another surprise is that reads for CK and
CK SMP1KCD converge once the allocation exceeds physical
RAM (Figure 4). This is because when swap dominates the
tests, the bottleneck becomes disk throughput. At that point,
onekcryptd is as good or better than two. This is made clear
during 360K page allocations, when twokcryptd threads
degrade CK’s performance while CK SMP1KCD’s growth
stays constant. A fielded CK could optimize performance by
managing the number ofkcryptd threads on the fly.

D. Read vs. Write Performance

CK’s maximum tested per-page write time is around 58µs
(Figure 3), while the maximum tested per-page read time
reaches 300µs (Figure 4). It would be tempting to ascribe
the poor read performance to the well-known latency of
swap disks. However, read times are uniformly higher than
write times well before swap is touched. This is actually
because processes are almost never blocked waiting to write
into memory since pages are sent to the Crypt in large
batches. However, page faults caused by reads must be handled
sequentially because a fault blocks the process until it is
resolved. What’s more, if one page must be brought in from
the Crypt, it is possible that the next page may also need to be
decrypted, but this will not be discovered until the currentfault
is resolved. We will discuss some strategies for mitigatingthis
in Section VI.

E. Performance vs. Clear Size

We can now highlight the performance tradeoff between the
size of the Clear and the workload. Using therandom mode
of memeater for more general performance, we measured
the runtime performance of 196K page tests (768M) over
Clear sizes from 64M to 768M. 64M/196K tests completed
in about 25 seconds, while 768M/196K tests completed in
about 5 seconds, with roughly linear growth in between. This
shows that CK’s performance can be maximized based on
the required level of security. More sophisticated tradeoffs are
discussed in Section VI.

F. Cryptkeeper vs. Reduced Memory

To provide any benefit, CK must outperform the “low mem-
ory plus encrypted swap” configuration from Section III-B.
To show that CK is indeed faster than such a system, we

4

tested CK versus Linux+LowMem, which is Linux+Crypt with
non-swappable ramdisks filling all but approximately 256M
of RAM. The two systems performed equivalently until 64K
page tests, when Linux+LowMem’s RAM was exhausted. At
that point, Linux+LowMem’s performance erratically degrades
until it is roughly twice as slow as CK during 360K page tests.

G. Cryptkeeper vs. Linux

Figures 3, 4, and 5 show a comparison between CK and
Linux+Crypt (Linux with encrypted swap) onmemeater’s
pathological, worst-case workload. Before the Clear is full,
performance times for Linux and CK are almost statistically
equivalent. The worst period for CK is when the Crypt is in
use but swap is not (64K to 196K page allocations). In this
range, which essentially shows the raw cryptographic overhead
of CK, Linux writes take 6.2µs versus CK’s 28µs, for a 352%
penalty. Predictably, reads are worse; Linux takes 1.3µs per
read versus CK’s 79.5µs, for a 6015% penalty. While this is a
huge increase, it is not at all surprising. Linux pays “nothing”
for the read, but CK must encrypt a page, decrypt a page,
and update the page tables of all affected processes. Figure5
shows that wall clock time is somewhat better because the
overall system behavior hides the microbenchmark costs; tests
in this range take an average of 1 second to complete on
Linux+Crypt versus 14.6 seconds on CK, for a “mere” 1360%
penalty. As shown in Section V-B, this is by far the single
biggest bottleneck for CK, and thus is where optimizations
could have the greatest impact.

The performance gap shrinks dramatically during the range
where swap is used (229K to 360K pages), because Linux is
slowed both by disk latency and encryption overhead. CK is
actually faster than Linux for writes in this range — 51µs on
CK versus 74.1µs per write on Linux for a 31%improvement
over Linux. Reads on Linux take 161µs in this range versus
only 212µs for CK for a 32% penalty (which is 188 times
better than the non-swap penalty of 6015%). Wall clock time
in Figure 5 is again much better; for most of this range,
CK is statistically equivalent to Linux in runtime, although
288K page tests take 1.3 second longer than Linux on average,
and 360K page tests are 5.3 seconds longer than Linux (32.5
instead of 27.2 seconds).

Finally, it is interesting as a curiosity to note that 229K
page reads on Linux NoCrypt are actuallyslower (about 30µs
per page) than Linux+Crypt. This could be for any number of
reasons; for example, encrypted swap might allocate buffers
for encryption which result in better early swap performance.
Regardless, CK should not affect this in any way.

H. Application Tests

CK’s target platform is a PC running typical applications
containing sensitive information. In order to get a more
accurate picture of CK performance on day-to-day tasks,
we performed three kinds of application tests on CK and
Linux+Crypt.

First, we built the Linux kernel on our test machine. While
most “road warriors” don’t compile code, they often run

multiple processes which use varying amounts of memory,
CPU, and disk resources. Linux kernel compilation is multi-
threaded, multi-process, utilizes disk, RAM, and CPU.

For a more realistic user scenario, we used the Linux Desk-
top Testing Project [12] to automate a session with Firefox
and the X Window System running on Ubuntu Linux. In this
test, the simulated user reads 100 archived Facebook and CNN
pages over a 100-megabit link. The script opens each page
(with a few seconds delay for “think time”), and randomly
opens new tabs and switches between tabs to simulate user
behavior. Firefox alone uses between 200M and 270M of
RAM during the test, while the X Window System and other
various system processes use over 400M of RAM. With a
Clear size of 256M, this workload will overflow the Clear and
exercise CK. Finally, we ran this Firefox test and the kernel
test concurrently in order to create increased disk, memory,
and CPU contention on the desktop.

I. Application Results

Table I shows that the performance of the Linux kernel build
is hardly penalized, so we can conclude that its requirements
barely exercise CK at all. This is probably because the total
workload does not expand much beyond the Clear, and the
build generates considerable I/O.

The Firefox results are much more informative. Predictably,
the system time measurement is significantly different between
CK and Linux+Crypt. CK uses 1.07 seconds of system time
versus Linux+Crypt, which uses only 0.04 seconds. This 1.03
seconds represents the additional CK kernel workload relating
to Firefox. In wall clock time, CK uses 410 seconds on average
per test and Linux+Crypt uses 379 seconds for a 31-second
or 8% penalty.

For the Firefox+kernel results, it is important to explain
that the tests only trace the resources used by Firefox; the
kernel build only adds to the ambient workload. Thus, when
the Firefox and the kernel build tests are combined, the system
time penalty is only 0.94 seconds (which is statistically equiv-
alent to the Firefox-only value of 1.03 seconds). However, the
kernel build resource usage is visible in the increased wall
clock time. In the end, CK uses 466 seconds of wall clock
time while Linux+Crypt uses 428 seconds for a difference of
38 seconds or a 9% increase. This is unsurprising; the greater
the application load on the system, the greater the overall cost
of CK.

Although swap activity hides CK’s overhead, today’s ma-
chines rarely experience swap churn. However, our Firefox and
kernel tests essentially do not involve swap, demonstrating that
swap is not responsible for their reasonable performance. They
do involve disk I/O, either as a part of their own operation oras
part of the general operation of the system. This is one reason
why testing real-world applications is important; by theirvery
nature, they introduce I/O-related latency, which can actually
improve user-visible performance. Regardless, CK may not be
appropriate for large, memory-dominated tasks such as data
mining, but should perform within the demonstrated range for
typical user applications.

5

TABLE I
CRYPTKEEPERPENALTIES BY APPLICATION.

user sys real
Test sec. % sec. % sec. %
Kernel NA NA 0.45 2.6 0.07 0.04
Firefox NA NA 1.03 2575 31 8
Combined NA NA 0.94 2238 38 9

VI. FUTURE WORK

A. Speculative Decryption and Parallelization

CK could make better use of parallelism and speculation.
For example, CK could “pre-decrypt” pages that are mapped
in near a faulting page in an attempt to avoid future page
faults. We could also potentially decrease turnaround time
for sequences of page faults by decrypting discrete pages on
different cores, which would reduce the discrepancy between
per-page write and read times. Finally, swap read latency could
be masked by disk I/O if 128-bit cipher blocks were decrypted
as soon as possible, rather than after a full swap page is read.

B. Dynamically Sized Clear

The size of the Clear is currently hard-coded, but could be
adjustable during run time, allowing CK to respond dynami-
cally. For example, a policy might mandate a small Clear in
a untrusted environment, while in a secure environment, the
Clear could be increased until there is no performance cost.
Another approach would set the number of Clear pages as a
percentage of the number of used pages. In this scheme, if
only 100 pages were in use and the Clear percentage was set
to 25%, only 25 pages would be in the Clear. As the number
of used pages grows, the capacity of the Clear would likewise
grow. This would provide better protection than our prototype,
where no encryption is performed until the Clear is almost
full. Finally, a more finely grained approach would define
Clear size limitsper process rather than globally. Sensitive
processes could be heavily restricted — adding security to the
application through the operating system — without modifying
the program or penalizing other processes.

C. Kernel Memory

Kernel memory in Linux is never swapped out and kernel
memory cannot be page-protected [13] due to the complexity
required to support it [14]. As a result, our prototype only
protects userspace data. This is a limitation of the prototype,
not the model. Still, a fielded CK system must at least be able
to protect, trap and decrypt kernel memory in order to secure
encryption keys or other critical data. It may be possible to
implement the necessary parts in Linux without a complete
redesign. If not, other operating systems (such as Windows)
can swap kernel memory, so an alternative solution would be
to build CK on top of a different operating system.

D. Key Hiding

There is a chicken-and-egg problem that affects all typi-
cal software cryptographic systems, including CK and FDE.
Cryptography is the solution for data protection, but software
cryptography requires that keys be in RAM where they are
vulnerable to physical attacks. In order to fix this general

vulnerability, computersneed a method to keep at least a small
amount of data truly secure.

The Trusted Platform Module [15] can provide protected
storage by “binding” data — encrypting it with keys from
its root of trust. The TPM can also “seal” data, ensuring
that it cannot be unsealed unless the TPM’s Platform Control
Registers are in a particular state. Binding or sealing could
be used to protect encryption keys in CK when not in use.
However, key protection would have to be judiciously balanced
with performance because TPMs are not designed for speed.
Additionally, a CK+TPM design would need to consider any
scenarios where a TPM could be tricked into decrypting
memory keys through physical attacks on memory or the TPM
itself.

A fascinating potential solution which requires no special
hardware was suggested by Halderman, et al. [1] They discuss
using Exposure-Resilient Functions (ERF) [16] developed by
Canetti, et al. to protect keys in RAM. ERFs are cryptographic
functions that can make encrypted data unrecoverable given
some guaranteed number of unknown bits in the key. While
cold boot attacks slow bit decay, they cannot completely stop
it. If properly implemented, this inevitable decay combined
with ERF’s key expansion could ensure key destruction in a
power-cutting attack.

Keys protected by either ERFs or a TPM cannot be used
for decryption; to be useful, they must be decrypted and thus
made vulnerable. However, by encrypting segments of RAM
with different keys and protecting least recently used keyswith
some mechanism, we can limit exposure to the data in the
Clear and data encrypted with unprotected keys. Regardless
of the mechanism, we need a reasonably performant solution
to the “key hiding problem,” or software cryptosystems like
CK and FDE will continue to be insecure against physical
memory attacks.

VII. PRIOR WORK

Previous work on physical attacks, cryptography, and key
hiding motivates and informs CK. The paper on “cold boot
attacks” by Halderman, et al. [1] describes physical RAM
attacks, key recovery methods, and the use of limited decay
and “key expansion” as a potential means of mitigating key
recovery. In typical cryptography, exposingany bits of the
key destroys security guarantees. Canetti, et al. [16] describes
Exposure-Resilient Functions (ERF) which are a method of
making cryptographic keys susceptible to decay.

Blaze introduced the Crypto File System [17] and Provos
discusses the (now) well-known reasons for using encrypted
swap [18]. These methods serve to protect sensitive data in
“non-volatile” storage such as hard disks. Yee introduced
“crypto-paging” [19] [20], which is the encryption of cryp-
toproccessor memory before it is “swapped” to less secure
media. In particular, Yee shows how a cryptoprocessor with
limited memory can increase its secure space through en-
crypted virtual memory techniques on its own memory, swap-
ping encrypted pages out to the host system’s RAM. In this
way, crypto-paging, like CK, exchanges a performance penalty

6

for a larger amount of secure memory. CK is closely related to
these ideas. However, CK is unique as a proof-of-concept and
as a step towards improving the security of general purpose
memory on personal computers.

There has been work on defenses to physical attacks. Boneh
and Lipton describe a “Revocable Backup” system [21], and
Di Crescenzo, et al. [22] discuss “Erasable Memory,” an idea
which is similar in spirit to the end result of CK. Erasable
Memory is more formally defined than Revocable Backups
but both rely on secure key destruction to render encrypted
data “erased” even if the media is persistent. Erasable
Memory has some interesting security properties that CK
lacks, and it shares an architecture similar to CK and crypto-
paging wherein a small special area is cryptographically
leveraged to create a larger secure area. However, Eraseable
Memory does not consider decay retardation methods such
as cold boot attacks and it is not designed to fit into the
hierarchical memory model. Furthermore, the specialized
guarantees of Eraseable Memory impose obstacles to efficient
use of large memory spaces, and the authors accordingly
acknowledge that their design is probably not suitable for large
data sets. CK does not require these guarantees, so it is able
to protect a larger space with a more efficient use of resources.

Execution Only Memory (XOM) [23], [24] is a memory
encryption architecture which supports copy and tamper re-
sistant software. With cryptographic hardware built into the
processor, XOM encrypts and decrypts all sensitive data as it
enters or leaves the CPU. XOM and CK can use predecryption
and caching to mitigate the resulting overhead. However,
while XOM’s guarantees are stronger, CK runs on commodity
hardware.

VIII. C ONCLUSION

By dividing RAM into a smaller cleartext (the Clear) and
a larger encrypted segment (the Crypt), and by moving pages
between these segments on the fly, Cryptkeeper extends the
traditional memory hierarchy and can help to significantly
reduce the exposure of sensitive data in RAM. CK represents
a direct and powerful performance versus security tradeoff
and opens the door for new security policies, such as
encrypting memory on a per-process basis without modifying
the applications.

CK’s performance is reasonable for desktop applications,
even though it requires more computation than Full Disk
Encryption or encrypted swap alone. While exposing less than
a third of RAM, our prototype imposes only a 9% penalty on
real-world applications in a desktop environment. Although
CK performs nine times worse on memory microbenchmarks,
these tests were engineered to demonstrate worst-case
performance. We have also discussed several optimizations
that could further improve results.

CK and systems such as FDE require a method to secure
cryptographic keys so that they are not vulnerable to physical

attacks. While they would increase overhead, the Trusted
Platform Module and Exposure-Resilient Functions provide
promising means of protecting cryptographic keys in RAM.

Ultimately, CK pushes the boundaries of what software
can do to protect physical memory on commodity systems; it
is surprising that a personal computer can achieve reasonable
performance while encrypting and decrypting its memory
on the fly. CK clearly demonstrates that modern hardware
trends — in particular parallelism — provide systems with
unprecedented resources that can be used to improve security,
performance, or usability at a small cost to the user.

REFERENCES

[1] J. A. Haldermanet al., “Lest We Remember: Cold Boot Attacks on
Encryption Keys,”Proc. 17th USENIX Security Symposium, 2008.

[2] A. Czeskis et al., “Defeating Encrypted and Deniable File Systems:
TrueCrypt v5.1a and the Case of the Tattling OS and Applications,” 3rd
USENIX HotSec, 2008.

[3] G. Moore, “Intel Museum – Moore’s Law,” http://www.intel.com/
museum/archives/historydocs/mooreslaw.htm, 2009, accessed Tuesday,
October 20th, 2009.

[4] P. Schmid, “15 Years of Hard Drive History: Capacities
Outran Performance,” http://www.tomshardware.com/reviews/
15-years-of-hard-drive-history,1368-7.html, 2008, accessed Sunday,
October 18th 2009.

[5] SG Barracuda XT Series SATA Product Manual, Rev. A, Seagate Tech-
nology, 2009, http://www.seagate.com/staticfiles/support/disc/manuals/
desktop/Barracuda%20XT/100586689a.pdf.

[6] J. Daemen and V. Rijmen,The Design of Rijndael:AES - The Advanced
Encryption Standard. Springer, 2002.

[7] N. Moller, “Nettle – a low-level cryptographic library,” http://www.
lysator.liu.se/∼nisse/nettle/nettle.html, 2009, accessed Tuesday, October
20th, 2009.

[8] N. El-Fishawy and O. M. A. Zaid, “Quality of Encryption Measurement
of Bitmap Images with RC6, MRC6, and Rijndael Block Cipher
Algorithms,” International Journal of Network Security, 2007.

[9] W. F. Ehrsam et al., “Message verification and transmission error
detection by block chaining,” U.S. Patent No. 4,074,066, 1978.

[10] M. Roe, “Performance of symmetric ciphers and one-way hashfunc-
tions,” in Fast Software Encryption, ser. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 1995, pp. 359–362.

[11] T. Bingmann, “Speedtest and Comparsion of Open-Source Cryp-
tography Libraries and Compiler Flags,” http://idlebox.net/2008/
0714-cryptography-speedtest-comparison/, 2008.

[12] Various, “The Linux Desktop Testing Project,” http://ldtp.freedesktop.
org/wiki/, accessed Tuesday, October 20th, 2009.

[13] M. Gorman,Understanding the Linux Virtual Memory Manager. Pren-
tice Hall, 2004, ch. 4, Process Address Space, p. 82.

[14] Various, http://lkml.indiana.edu/hypermail/linux/kernel/0104.2/0282.
html, 2001, accessed Monday, October 19th, 2009.

[15] Trusted Computing Group, “TPM Main Specification 1.2,” http://www.
trustedcomputinggroup.org/resources/tpmmain specification.

[16] R. Canetti et al., “Exposure-Resilient Functions and All-or-Nothing
Transforms,”EUROCRYPT 2000, LNCS 1807, 2000.

[17] M. Blaze, “A cryptographic file system for UNIX,”Proc. of the 1st ACM
conference on Computer and communications security, 1993.

[18] N. Provos, “Encrypting virtual memory,”Proc. of the 9th USENIX
Security Symposium, 2000.

[19] B. Yee, “Secure coprocessors in electronic commerce applications,”First
USENIX Workshop on Electronic Commerce, 1995.

[20] ——, “Using Secure Coprocessors (PhD Thesis),” Ph.D. dissertation,
School of Computer Science, Carnegie Mellon University, 1994.

[21] D. Boneh and R. J. Lipton, “A Revocable Backup System (Extended
Abstract),” USENIX Security Symposium, 1996.

[22] G. D. Crescenzoet al., “How to forget a secret (extended abstract),”
STACS’99, LNCS 1563, 1999.

[23] D. Lie, “Architectural Support for Copy and Tamper Resistant Software,”
Ph.D. dissertation, Stanford University, 2003.

[24] B. Rogerset al., “Memory predecryption: hiding the latency overhead
of memory encryption,”SIGARCH Comput. Archit. News, vol. 33, no. 1,
pp. 27–33, 2005.

7

